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Abstract 

 

Soil salinity causes osmotic and ion specific stresses and significantly affects growth, 

yield and productivity of wheat. The visual symptoms of salinity stressed wheat 

include stunted shoot growth, dark green leaves with thicker laminar surfaces, wilting 

and premature leaf senescence. There are three major components of salinity tolerance 

that contribute to plant adaptation to saline soils: osmotic tolerance, Na
+
 exclusion 

and tissue tolerance. However, to date, research into improving the salinity tolerance 

of wheat cultivars has focused primarily on Na
+
 exclusion and little work has been 

carried out on osmotic or tissue tolerance. This was partly due to the subjective nature 

of scoring for plant health using the human eye. 

 

In this project, commercially available imaging equipment has been used to monitor 

and record the growth and health of salt stressed plants in a quantitative, non-biased 

and non-destructive way in order to dissect out the components of salinity tolerance. 

Using imaging technology, a high throughput salt screening protocol was developed 

to screen osmotic tolerance, Na
+
 exclusion and tissue tolerance of 12 different 

accessions of einkorn wheat (T. monococcum), including parents of the existing 

mapping populations. Three indices were used to measure the tolerance level of each 

of the three major components of salinity tolerance. It was identified that different 

lines used different combinations of the three major salinity tolerance components as 

a means of increasing their overall salinity tolerance. A positive correlation was 

observed between a plant’s overall salinity tolerance and its proficiency in Na
+
 

exclusion, osmotic tolerance and tissue tolerance. It was also revealed that MDR 043 

as the best osmotic and tissue tolerant parent and MDR 002 as a salt sensitive parent 

for further mapping work. Accordingly, the F2 population of MDR 002 × MDR 043 

was screened to understand the genetic basis of osmotic tolerance and tissue tolerance 

in T. monococcum. Wide variation in osmotic tolerance and tissue tolerance was 

observed amongst the progenies. The broad sense heritability for osmotic tolerance 

was identified as 0.82. 

 



xx 

 

Similar, salinity tolerance screening assays were used to quantify and identify QTL 

for major components of salinity tolerance in Berkut × Krichauff DH mapping 

population of bread wheat (T. aestivum). Phenotyping and QTL mapping for Na
+
 

exclusion and osmotic tolerance has been successfully done in this mapping 

population. There existed a potential genetic variability for osmotic tolerance and Na
+
 

exclusion in this mapping population. The broad sense heritability of osmotic 

tolerance was 0.70; whereas, it was 0.67 for Na
+
 exclusion. The composite interval 

mapping (CIM) identified a total of four QTL for osmotic tolerance on 1D, 2D and 5B 

chromosomes. For Na
+
 exclusion, CIM identified a total of eight QTL with additive 

effects for Na
+
 exclusion on chromosomes 1B, 2A, 2D, 5A, 5B, 6B and 7A. However, 

there were QTL inconsistencies observed for both osmotic tolerance and Na
+
 

exclusion across the three different experimental time of the year. It necessitates       

re-estimating the QTL effect and validating the QTL positions either in the same or 

different mapping population.    
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