Letter in Response to 'Classification of Traumatic Brain Injury Severity Using Informed Data Reduction in a Series of Binary Classifier Algorithms'.
Bloom, BM; Maimaris, C; Lecky, F; Pearse, R

© 2016 IEEE.
"Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/19565

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk
Letter in response to
‘Classification of Traumatic
Brain Injury Severity Using
Informed Data Reduction in a
Series of Binary Classifier
Algorithms’

Corresponding author:
Dr Ben Bloom
Postal address: Emergency Department
Research Office, Royal London Hospital,
Whitechapel, London, E1 1BB, UK
Email: ben.bloom@nhs.net
Tel: 020 3594 0043
Fax: 020 3594 0887

All Authors
Dr Benjamin M Bloom, MB ChB BSc FRCEM,
Consultant in Emergency Medicine (1)(2);

Dr Chris Maimaris MB ChB FRCS FRCEM,
Consultant in Emergency Medicine (3)

Professor Fiona Lecky, MB ChB PhD FRCEM
FRCS(Ed), Clinical Professor & Honorary
Consultant in Emergency Medicine (4)(5)(6);

Rupert Pearse, MB BS MD FRCA FFICM, NIHR
Research Professor & Consultant in Intensive
Care Medicine (1)

Affiliations
(1) William Harvey Institute, Queen Mary
University of London, London, UK;
(2) Department of Emergency Medicine, Royal
London Hospital, London, UK;
(3) Emergency Department, Addenbrookes
Hospital, Cambridge University Hospitals NHS
Trust, Cambridge, UK;
(4) Department of Emergency Medicine,
Salford Healthcare Directorate, Salford Royal
Foundation Trust, Salford, UK;
(5) School of Health and Related Research
University of Sheffield, UK;
(6) Trauma Audit and Research Network,
Institute of Population Health, University of
Manchester, Manchester, UK.
Dear Editors,

We read with interest the article published by Prichep and colleagues in which they report the development of algorithms to discriminate between three classes of head injured patients, utilising quantitative electroencephalography (QEEG) measurements from electrodes placed at the Fp1, Fp2, F7, F8, AFz, A1 and A2 positions.¹ QEEG and undefined symptom and neurocognitive assessment data were collected from patients attending 13 Emergency Departments in the USA. The QEEG acquisition device used in this study was not described but the study was supported by BrainScope Co. Inc. and all but one of the authors were affiliated with BrainScope Co. Inc. at the time of publication. Prichep and colleagues also previously reported the development of an index based on quantitative electroencephalography (QEEG) results measured using a prototype handheld EEG acquisition device created by BrainScope Co. Inc.² Concussion Symptom Inventory; Standardised Assessment of Concussion; components of the New Orleans Criteria for referral of head injured patients for computed tomography (CT) scan; and the results of CT scans were recorded. Data were collected from patients attending 16 Emergency Departments in the USA. EEG data were collected using a limited frontal array montage headset with electrodes at the same positions as reported above.

We write to inform the editors that we conducted a similar study on behalf of, and funded by, BrainScope Co. Inc. (the B-Ahead UK Trial, Research Ethics Committee reference number 11/H1003/6) in three UK sites (London, Cambridge and Salford). Recruitment began on September 20th 2011. At this time we were aware that other similar or identical studies were ongoing in the USA. We recruited 265 patients over a six month period. However recruitment was abruptly halted on the instruction of BrainScope Co. Inc. on March 3rd 2012 following an internal quality assurance exercise which identified a fault with the headset. After a short period we were then informed that the data from this UK study were unusable as a result of this
fault. The B-Ahead UK Trial was then
terminated and the relationship between the
three UK sites and BrainScope Co. Inc. ended.

Given that both papers were published
several months after the UK study was
terminated, we felt it was important to make
you and your readers aware that the methods
used in these studies were very similar to the
methods used in the study we conducted, and
that it is entirely possible that data were
collected from patients using headsets with
the same technical fault. We note that the
authors do not refer to this technical fault
even though it arose months before the
publication of the papers.

Yours sincerely

Dr Benjamin Bloom
Dr Chris Maimaris
Pr Fiona Lecky
Pr Rupert Pearse

CC Edward Ciaccio, Editor-in-Chief,
Computers in Biology and Medicine

Funding disclosure:
Funding was received from BrainScope Co,
Inc. (Bethesda, Maryland, USA) for conducting
the study. The funder had no role in the
collection or analysis of the data, or of the
drafting of the manuscript.

References

injury severity using informed data
reduction in a series of binary
classifier algorithms. IEEE transactions
on neural systems and rehabilitation
engineering : a publication of the IEEE
Engineering in Medicine and Biology

2. Prichep LS, Ghosh Dastidar S, Jacquin
A, et al. Classification algorithms for
the identification of structural injury
in TBI using brain electrical activity.
Computers in biology and medicine.
2014;53:125-133.