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Abstract 

Since the 1960’s polysomnographic sleep research has demonstrated that depressive episodes 

are associated with REM sleep alterations. Some of these alterations, such as increased REM 

sleep density, have also been observed in first-degree relatives of patients and remitted 

patients, suggesting that they may be vulnerability markers of major depressive disorder 

(MDD), rather than mere epiphenomena of the disorder. Neuroimaging studies have revealed 

that depression is also associated with heightened amygdala reactivity to negative emotional 

stimuli, which may also be a vulnerability marker for MDD. Several models have been 

developed to explain the respective roles of REM sleep alterations and negatively-biased 

amygdala activity in the pathology of MDD, however the possible interaction between these 

two potential risk-factors remains uncharted. This paper reviews the roles of the amygdala 

and REM sleep in the encoding and consolidation of negative emotional memories, 

respectively. We present our ‘affect tagging and consolidation’ (ATaC) model, which argues 

that increased REM sleep density and negatively-biased amygdala activity are two separate, 

genetically influenced risk-factors for depression which interact to promote the development 

of negative memory bias – a well-known cognitive vulnerability marker for depression. 

Predictions of the ATaC model may motivate research aimed at improving our understanding 

of sleep dependent memory consolidation in depression aetiology.   

Keywords: rapid eye movement (REM) sleep; amygdala; emotional memory bias; emotional 

memory consolidation; depression 
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1. Introduction 

Depression is a complex affective disorder associated with symptoms such as sad 

mood, fatigue, anhedonia and suicidal ideation (American Psychiatric Association, 2013). 

Major depressive disorder (MDD) is the leading cause of disability in developed countries, 

and is experienced by around 20% of individuals at some point in their life (Kessler et al., 

2003). It is recognised that MDD is a multifactorial disease, meaning that it may be caused by 

a wide range of hereditary and environmental factors (Bembnowska & Jośko-Ochojska, 

2015).    

Since the publication of Beck’s cognitive model of depression (Beck, 1967), a large 

body of empirical evidence has emerged demonstrating a relationship between negative 

biases in cognition and depression (Bourke, Douglas, & Porter, 2010; Everaert, Duyck, & 

Koster, 2014; Gaddy & Ingram, 2014; Naudin et al., 2014). For example, relative to healthy 

controls, individuals with depression tend to exhibit superior recall performance for negative 

emotional information (Everaert et al., 2014; Gaddy & Ingram, 2014). In accordance with 

Beck’s model, findings from longitudinal cohort studies and cognitive bias modification 

(CBM) studies have demonstrated that this ‘negative memory bias’ can play a causal role in 

the onset and maintenance of depressive symptoms (Newby, Lang, Werner-Seidler, Holmes, 

& Moulds, 2014; Sumner, Griffith, & Mineka, 2010). Memory bias in MDD is thought to be 

related to altered patterns of functional activity in the amygdala, a limbic structure implicated 

in the encoding of emotional material (Elliott, Zahn, Deakin, & Anderson, 2011). 

A separate line of research reveals that MDD vulnerability and depressive episodes 

are reliably associated with increased REM sleep density and increased REM sleep duration, 

respectively (Luik, Zuurbier, Whitmore, Hofman, & Tiemeier, 2015; Palagini, Baglioni, 
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Ciapparelli, Gemignani, & Riemann, 2013; Pillai, Kalmbach, & Ciesla, 2011). Studies in 

healthy participants demonstrate that both REM sleep density and REM sleep duration during 

the consolidation interval following encoding of emotional and neutral stimuli correlates 

positively with memory performance for negative but not neutral stimuli (Gilson et al., 2015; 

Nishida, Pearsall, Buckner, & Walker, 2009; Payne, Chambers, & Kensinger, 2012). These 

findings support the notion that REM sleep plays a selective role in the consolidation of 

negative emotional memories (Goldstein & Walker, 2014; Walker & van der Helm, 2009). 

Considered alongside evidence for REM sleep alterations in MDD vulnerability and 

depressive episodes, this may imply a relationship between REM sleep alterations and the 

emotional memory biases central to the onset and maintenance of depression.   

The aim of this paper is to evaluate evidence supporting the hypothesis that the REM 

sleep alterations associated with MDD vulnerability and depressive episodes may promote 

the onset and maintenance of MDD through the development of negative memory bias. We 

provide an overview of the existing evidence for increased REM sleep density and duration, 

and altered patterns of functional amygdala activity, in the pathology of depression; before 

reviewing their roles in emotional memory formation. We then integrate these two lines of 

research by introducing our ‘affect tagging and consolidation’ (ATaC) model, which 

proposes that interactive effects between altered patterns of functional amygdala activity in 

response to emotionally salient stimuli and REM sleep alterations could result in the 

development of emotional memory bias, potentially causing or maintaining depression. We 

discuss the possible genetic basis of these two mechanisms and suggest future research which 

should be conducted in order to validate the ATaC model.  

 

2. The Role of REM Sleep in Depression 
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Disturbances in sleep consistent with symptoms of insomnia are reported by up to 

90% of MDD patients (Palagini et al., 2013; Riemann, Berger, & Voderholzer, 2001) and 

may play a key role in the pathology of the illness (Alvaro, Roberts, & Harris, 2014; Baglioni 

et al., 2011). Aside from subjective sleep complaints, polysomnographic sleep research has 

revealed that up to 70% of MDD patients display a consistent pattern of neurobiological 

changes in their sleep (Riemann et al., 2001), the most reliable of which include a marked 

increase in REM sleep duration and density, and a decrease in REM sleep latency (Fig. 1; 

Luik et al., 2015; Nutt, Wilson, & Paterson, 2008; Palagini et al., 2013; Pillai et al., 2011; 

Schulz, Lund, Cording, & Dirlich, 1979). 
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Fig. 1.  

Graphic representation of sleep architecture in healthy controls and depressed patients. 

Amongst other characteristics, sleep architecture in depression is associated with: (a) reduced 

rapid eye movement (REM) sleep latency (the interval between sleep onset and the first 

period of REM sleep; Schulz, Lund, Cording & Dirlich, 1979), and (b) increased REM sleep 

duration, which is most notable in the first REM sleep period (Palagini, Baglioni, Ciapparelli, 

Gemignani, & Riemann, 2013). N1, N2 and N3 – stages of non-REM (NREM) sleep. 

 

 

In healthy humans, non-REM (NREM) and REM sleep alternate in cycles of 

approximately 90 minutes. The length of this cycle remains consistent throughout the night, 

however the ratio of NREM – REM sleep changes, with REM sleep becoming progressively 

more abundant with each cycle (see Fig. 1). Although the functional reasons for this late 

night increase in REM sleep are elusive (Walker, 2009), it is clear that REM sleep propensity 

is tightly regulated by circadian rhythms (Pace-Schott & Hobson, 2002). There is believed to 
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be a relationship between depression and circadian rhythm disturbances (Bunney & Bunney, 

2013; Etain, Milhiet, Bellivier, & Leboyer, 2011; Kronfeld-Schor & Einat, 2012), supported 

by a large scale study demonstrating a strong correlation between extreme chronotypes – a 

key feature of circadian rhythm disturbance – and depressive symptoms (Levandovski et al., 

2011). While the neurotransmitter systems related to REM sleep alterations in depression 

remain poorly understood, it has been hypothesised that circadian rhythm disturbances may 

be implicated in the increased REM sleep duration and density associated with MDD 

(Palagini et al., 2013). Indeed, polymorphisms and haplotypes in several circadian clock 

genes – genes involved in the regulation of circadian rhythms – have been linked to 

depression susceptibility (Bunney & Bunney, 2013; Etain et al., 2011; Utge et al., 2010), 

some of which have also been linked to extreme chronotypes including period homologue 3 

(PER3; Hida et al., 2014; Parsons et al., 2014), circadian locomotor output cycles kaput 

(CLOCK; Paul, McAlonan, & Banerjee, 2011) and casein kinase 1 epsilon (CSNK1E; Takano 

et al., 2004). It is important to note however that this area of research is in its infancy, and 

researchers are yet to provide strong evidence for a causal role of either circadian rhythm 

disturbances or variants in circadian clock genes in the development of MDD.   

Given that the spectral composition of sleep is highly heritable (Ambrosius et al., 

2008), it is perhaps unsurprising that some of the REM sleep characteristics exhibited by 

depressed patients, most notably increased REM sleep density, are also present in their first-

degree relatives (Lauer, Schreiber, Holsboer, & Krieg, 1995; Modell, Ising, Holsboer, & 

Lauer, 2002; Pillai et al., 2011). Indeed, the notion that REM sleep density is under strong 

genetic control is supported by work in mice who exhibit “almost perfect trait-like stability” 

of REM sleep density across several days (Fulda et al., 2011). Interestingly however, the 

presence of increased REM sleep density in first-degree relatives of MDD patients has been 

shown to predict development of later depressive episodes (Modell et al., 2002; Modell & 
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Lauer, 2007; Steiger & Kimura, 2010). In a meta-analysis of 56 studies, Pillai and colleagues 

(2011) report that some of the sleep changes exhibited in MDD such as increased REM sleep 

duration are restricted to the depressive episode, however increased REM sleep density often 

remains stable throughout remission (Pillai et al., 2011). Importantly, increased REM sleep 

density has been shown to predict poor clinical response to treatment in MDD (Buysse et al., 

1999; Clark et al., 2000; Modell & Lauer, 2007), and its persistence beyond depressive 

episodes may heighten vulnerability to relapse (Mendlewicz, 2009). Collectively, these 

findings suggest that increased REM sleep density may be associated with increased 

vulnerability to depression onset and relapse.  

It is well reported that most antidepressant drugs considerably inhibit REM sleep, 

thus increasing REM sleep latency or decreasing REM sleep density and duration (Mayers & 

Baldwin, 2005; Murck et al., 2003; Palagini et al., 2013; Steiger & Kimura, 2010; Thase, 

2006; Vogel, Buffenstein, Minter, & Hennessey, 1990). Furthermore, research in humans and 

animals demonstrates that selective REM sleep deprivation can produce rapid antidepressant 

effects (Benedetti & Colombo, 2011; Maturana et al., 2015). Findings such as these have led 

researchers to hypothesise that REM sleep suppression may be an essential component of any 

effective form of MDD therapy (Vogel, McAbee, Barker, & Thurmond, 1977). However, this 

notion may be refuted by studies which report that a few pharmaceuticals effective in the 

treatment of MDD such as the tricyclic antidepressant trimipramine, the norepinephrine-

dopamine reuptake inhibitor bupropion, and the serotonin reuptake enhancer tianeptine, do 

not inhibit REM sleep (Murck et al., 2003; Nofzinger et al., 1995; Sonntag et al., 1996). In 

addition, the inhibitory effects of antidepressants on REM sleep are robust early in treatment, 

but gradually return towards baseline with long-term treatment (Wilson & Argyropoulos, 

2005). Indeed, it is unclear whether the antidepressant effects reported in selective REM 

sleep deprivation studies are due to the absence of REM sleep or simply the disruption of 
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NREM sleep homeostasis. For example, it has been reported that the selective disruption of 

NREM sleep can also produce antidepressant effects (Grözinger, Kögel, & Röschke, 2002; 

Landsness, Goldstein, Peterson, Tononi, & Ruth, 2011). Overall, there appears to be some 

link between the suppression of REM sleep and the relief of depressive symptoms. However, 

it is clear that REM sleep suppression is not an exclusive mechanism by which antidepressant 

treatments reduce depressive symptoms.  

 

3. The Role of Amygdala Function in Depression 

The emotional and cognitive disturbances which characterise MDD are thought to be 

related to structural and functional alterations in several neural networks, particularly 

involving regions of the prefrontal cortex and closely related limbic, thalamic and striatal 

structures (for reviews see: Auerbach, Webb, Gardiner, & Pechtel, 2013; Drevets, Price, & 

Furey, 2008; Price & Drevets, 2012). The present review will provide a brief overview of the 

research exploring the relationship between amygdala function and depression, due to the 

involvement of the amygdala in emotional memory formation.  

In healthy participants the amygdala is activated in response to the presentation of 

both negative (Kumfor, Irish, Hodges, & Piguet, 2013; Stark et al., 2007) and positive 

(Kensinger & Schacter, 2006; Vrticka, Lordier, Bediou, & Sander, 2014) emotional material, 

however in participants with depression the amygdala is more sensitive to aversive stimuli, 

and less sensitive to positive stimuli. For example, whilst viewing masked facial expressions 

healthy participants exhibit stronger bilateral amygdala responses to happy relative to sad 

expressions, whereas the opposite pattern is demonstrated by MDD patients (Stuhrmann et 

al., 2013; Suslow et al., 2010). In comparison to healthy controls, depressed patients also 

demonstrate greater right amygdala activation for sad expressions (Costafreda et al., 2013; 
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Stuhrmann et al., 2013; Suslow et al., 2010). Complementary findings have also been 

reported in subclinically depressed participants who, relative to never-depressed participants, 

show increased bilateral amygdala activation in response to negative emotional words, a 

neural pattern which correlates with symptom severity (Laeger et al., 2012).  

Evidence suggests that affective reactivity in the amygdala may be influenced by 

several monoamine systems, including serotonin (5-HT), norepinephrine (NE), and dopamine 

(DA; Costafreda et al., 2013; Cousijn et al., 2010; Dannlowski et al., 2010; Delaveau et al., 

2009; Rasch et al., 2009). Initially, a simple lack of monoamines was thought to cause 

depressive symptoms, however the role of monoamines in MDD has been shown to be much 

more complex than this (Delgado, 2000; Hirschfeld, 2000). Nonetheless, a meta-analysis of 

90 monoamine depletion studies suggests a probable influence of 5-HT, NE and DA in 

depression vulnerability (Mason & Schene, 2007). Furthermore, the importance of 5-HT in 

MDD treatment is evidenced by the use of selective serotonin re-uptake inhibitors (SSRIs) as 

the current first-line treatment option for MDD patients (Davidson, 2010; Dold et al., 2016), 

although the efficacy of SSRIs in MDD treatment is doubted by some researchers (Kirsch, 

2014; Rücker & Jamil, 2015). Examining the relationship between monoamines and altered 

patterns of functional amygdala responsivity to affective stimuli may improve our 

understanding of both monoamines and genetic variation in depression vulnerability. Whilst 

we acknowledge that both functional amygdala activity and depression is influenced by 

multiple neuromodulator systems, in this review we focus primarily on 5-HT as it is the most 

widely studied with regards to depression. 

Neuroimaging research demonstrates that short-term SSRI treatment remediates the 

amygdala hyperactivity typically exhibited by MDD patients in response to fearful facial 

expressions (Godlewska, Norbury, Selvaraj, Cowen, & Harmer, 2012). Furthermore, genetic 
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research suggests that healthy carriers of the low-expressing short (S) allele in the 5-HT 

transporter-linked polymorphic region (5-HTTLPR) exhibit greater amygdala activation in 

response to negative emotional faces (Dannlowski et al., 2010; Lonsdorf et al., 2011; 

Pezawas et al., 2005), and aversive images (Heinz et al., 2005), relative to long (L) allele 

homozygotes. Similar results have also been observed in clinical populations, where S allele 

carriers with a diagnosis of MDD exhibit greater amygdala activations in response to 

negative facial expressions relative to both healthy and depressed non-carriers (Costafreda et 

al., 2013). 

Recent research demonstrates that relative to low-risk probands, offspring at high 

familial risk of MDD are four times more likely to be carriers of the 5-HTTLPR S allele 

(Talati et al., 2015). These findings support other studies and meta-analyses which suggest a 

relationship between the 5-HTTLPR S allele and MDD risk (Bogdan, Agrawal, Gaffrey, 

Tillman, & Luby, 2014; Kim et al., 2007; Kiyohara & Yoshimasu, 2010), although other 

meta-analyses have failed to replicate this finding (e.g. Risch et al., 2009). Moreover, first-

degree relatives of MDD patients have been observed to exhibit greater amygdala activity in 

response to negative emotional material relative to participants at low-risk for MDD (Monk 

et al., 2008; van der Veen, Evers, Deutz, & Schmitt, 2007). The 5-HTTLPR S allele is 

associated with decreased transcriptional efficiency of the promoter (Lesch et al., 1996), and 

increased available synaptic 5-HT acting on excitatory 5-HT receptor subtypes (Rainnie, 

1999). Alterations such as these in the serotonergic system are believed to underlie the 

amygdala hyper-responsivity to negative emotional material observed in S allele carriers 

(Haririr et al., 2002), which may be one of the neural bases for the additional risk of 

developing depression in this population. 
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It is important to emphasize that the altered patterns of functional amygdala activity 

described in both MDD patients and 5-HTTLPR S allele carriers are not necessarily the direct 

product of hard-wired alterations in emotional reactivity. Rather, it is thought that the 

increased amygdala response exhibited by these populations may reflect altered affective 

attentional processes which are pre-tuned and malleable according to context and 

motivational salience (Cunningham, Van Bavel, & Johnsen, 2008; Todd, Cunningham, 

Anderson, & Thompson, 2012). 

 

4. The Role of REM Sleep and Amygdala Function in Emotional Memory 

Physiological and behavioural evidence supports a role for REM sleep in emotional 

memory consolidation, which may aid our understanding of REM sleep alterations in the 

onset and maintenance of MDD. Neural regions implicated in emotional memory processing 

during wake, in particular the amygdala, entorhinal cortex and medial prefrontal cortex, are 

reactivated during REM sleep (Maquet et al., 1996; Nir & Tononi, 2010; Nofzinger, Mintun, 

Wiseman, Kupfer, & Moore, 1997). Indeed, preclinical evidence suggests that the amygdala 

may even play a crucial role in REM sleep regulation (Calvo, Simón-Arceo, & Fernández-

Mas, 1996; Sanford, Parris, & Tang, 2002; Sanford, Yang, Liu, & Tang, 2006). Furthermore, 

REM sleep is characterised by the occurrence of dominant hippocampal theta oscillations 

(Buzsáki, 2002) which are believed to allow coherence between limbic regions within the 

medial temporal lobe such as the amygdala and hippocampus (Walker & van der Helm, 

2009) and may directly reflect the selective processing of emotional memory traces 

(Hutchinson & Rathore, 2015). According to the ‘sleep to forget and sleep to remember’ 

(SFSR) hypothesis – a theoretical framework in which sleep has differential effects on the 

strength and affective tone of emotional memories – REM sleep provides an “optimum 
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biological theatre” for the consolidation of emotionally salient memories (Walker & van der 

Helm, 2009). The ‘sleep to forget’ component of the SFSR hypothesis postulates that REM 

sleep diminishes the emotional tone associated with affective memories, providing a source 

of catharsis. Although the evidence for this element of the hypothesis is not entirely 

conclusive (for review see: Landmann et al., 2015) evidence in support of the notion that 

REM sleep selectively consolidates emotional memories (the ‘sleep to remember’ component 

of the SFSR hypothesis) is more abundant.  

Behavioural research in support of the ‘sleep to remember’ element of the SFSR 

hypothesis reports that a group of healthy students selectively deprived of REM sleep show 

impaired next-day recognition performance for negative images encoded pre-sleep, relative to 

a control group deprived of NREM slow wave sleep (SWS; Wiesner et al., 2015). 

Importantly, the two groups did not differ in their recognition performance for neutral 

images. This emotion-specific effect of REM sleep corroborates earlier work which found 

that three hours of late night REM dominant sleep facilitates the consolidation of negative 

images (Groch, Zinke, Wilhelm, & Born, 2015) and information within negative stories 

(Wagner, Gais, & Born, 2001), relative to three hours of sleep obtained in the first half of the 

night where REM sleep is less abundant. Correlational analyses have yielded similar results, 

finding that the amount of time spent in REM sleep across a 12-hour retention interval 

correlates positively with recall performance for negative but not neutral objects within 

complex images (Payne et al., 2012). Complementary findings report that these effects can 

also emerge across a shorter time frame, demonstrating that the proportion of time spent in 

REM sleep during a 90-minute daytime nap correlates positively with recognition 

performance for negative images (Nishida et al., 2009). Collectively, these results suggest 

that REM sleep selectively consolidates emotional information and that its role in this process 

is active, rather than simply protective against the forgetting of emotional material.  
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While it is clear that the amount of time spent in REM sleep during consolidation 

intervals influences emotional memory performance, the impact of REM sleep density on 

emotional memory consolidation has received comparatively less empirical attention. 

Nonetheless, a recent study by Gilson and colleagues (2015) reports that in healthy 

participants greater REM sleep density during a 90-minute morning nap was associated with 

greater recall performance for sad emotional stories, but not neutral stories (Gilson et al., 

2015). Human neuroimaging studies reveal that rapid eye movements (REMs) during REM 

sleep are closely associated with transient activity in limbic regions such as the amygdala and 

parahippocampal gyrus (Abe, Ogawa, Nittono, & Hori, 2004; Ioannides et al., 2004). 

Amygdala activations time-locked to REM sleep REMs have also been detected using 

stereoelectroencephalograph (SEEG; Corsi-Cabrera et al., 2016) and single-neuron recording 

(Andrillon, Nir, Cirelli, Tononi, & Fried, 2015) methods. These findings suggest that REM 

sleep density may be a surrogate marker of limbic neural activity during REM sleep, and 

might be associated with emotional memory processing. Indeed, a positron emission 

tomography (PET) study by Nofzinger and colleagues (2004) reveals that relative to control 

participants, depressed patients exhibit greater activation of limbic and paralimbic structures 

from waking to REM sleep (Nofzinger et al., 2004). These differences in neural activation 

during REM sleep may be related to differences in REM sleep density between the two 

participant groups. 

It has been suggested that the emotional arousal elicited by affective stimuli at the 

time of encoding “tags” an event as salient, leading to its prioritised consolidation during 

REM sleep (Bennion, Payne, & Kensinger, 2015). According to influential theories, the 

amygdala plays a key role in this mechanism through interactions with neural regions 

involved in emotion, vision and learning including the posterior insula, lateral occipital cortex 

and hippocampus (Hermans et al., 2014; Markovic, Anderson, & Todd, 2014; McIntyre, 
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McGaugh, & Williams, 2012). In support of these hypotheses, work in rats has shown that 

artificial stimulation of the basolateral amygdala enhances the recognition of novel objects 

following a 24 hour retention interval (Bass, Nizam, Partain, Wang, & Manns, 2014; Bass, 

Partain, & Manns, 2012). These findings corroborate a recent human case study which 

reports that lesions in the left amygdala cause encoding and long-term memory deficits for 

emotionally arousing words, but have no effect on memory for neutral words (Claire, Sophie, 

Claudia, Philippe, & Eliane, 2015). Neuroimaging research in healthy participants reveals a 

positive correlation between bilateral amygdala activity during the encoding of emotional 

films and recall performance for film content three weeks later (Cahill et al., 1996; Canli, 

Zhao, Brewer, Gabrieli, & Cahill, 2000). Similar results have been found in MDD patients 

who, relative to control participants, exhibit increased right amygdala activity in response to 

negative emotional images which predicts superior recall for those images one week later, 

and correlates with depressive symptom severity (Hamilton & Gotlib, 2008).  

 

5. The ‘Affect Tagging and Consolidation’ (ATaC) Model 

Research which demonstrates that many compounds with antidepressant properties 

suppress REM sleep (Mayers & Baldwin, 2005; Steiger & Kimura, 2010; also see: Murck et 

al., 2003; Nofzinger et al., 1995; Sonntag et al., 1996), considered alongside evidence that 

REM sleep duration and density is associated with the consolidation of negative memories 

(Gilson et al., 2015; Groch et al., 2015; Nishida et al., 2009; Payne et al., 2012; Wagner et al., 

2001; Wiesner et al., 2015), has led researchers to speculate that REM sleep alterations may 

underlie the emotional memory bias observed in depressed patients (Walker & van der Helm, 

2009; Walker, 2009). However, the majority of studies directly investigating the effect of 

REM sleep on emotional memory consolidation focus exclusively on comparisons between 



  

THE ATAC MODEL OF DEPRESSION                                                                                             16 

 

 
 

recognition performance for neutral and negatively salient stimuli (however see: Cairney, 

Durrant, Power, & Lewis, 2015), ignoring the possibility that REM sleep may also play a role 

in the consolidation of positive memories. The amygdala is believed to exert its influence on 

memory consolidation based on its initial activation during the encoding of emotional 

information (Markovic et al., 2014), which is thought to underlie the emotion-specific 

consolidation effects of REM sleep (Bennion et al., 2015; Goldstein & Walker, 2014; Walker 

& van der Helm, 2009). However, as described earlier, in healthy participants the amygdala 

responds to both positive and negative material (Kensinger & Schacter, 2006; Vrticka et al., 

2014). To this end, it is likely that in the absence of excessive emotional tagging of negative 

material associated with altered patterns of functional amygdala activity, an increase in REM 

sleep duration or density would lead to a generally enhanced emotional memory, rather than 

the negative memory bias observed in depression. Consequently, increased REM sleep 

density as a vulnerability factor for depression may depend on an interaction with biased 

encoding mechanisms related to negatively-biased amygdala activity.  

As previously discussed, there is a probable link between the 5-HTTLPR S allele and 

MDD vulnerability (Munafò, Durrant, Lewis, & Flint, 2009; Talati et al., 2015; however see: 

Risch et al., 2009), which may be related to altered patterns of functional amygdala activity 

(Costafreda et al., 2013). There is also abundant evidence to suggest that amygdala 

hyperactivity towards negative stimuli is related to long-term negative memory bias in 

depression (Hamilton & Gotlib, 2008). Importantly however, negatively-biased amygdala 

activity is also exhibited by non-depressed 5-HTTLPR S allele carriers (Dannlowski et al., 

2010; Heinz et al., 2005; Lonsdorf et al., 2011; Pezawas et al., 2005) and first-degree 

relatives of MDD patients (Monk et al., 2008). Evidence suggests that modulatory effects of 

the amygdala on memory are absent during immediate recall (Bass et al., 2014, 2012; Claire 

et al., 2015), and only emerge at recall sessions at least 24-hours after immediate testing, 
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inferring that the amygdala may depend on overnight consolidation mechanisms to exert its 

influence on long-term memory.  

Founded on these notions, our ‘affect tagging and consolidation’ (ATaC) model (Fig. 

2) posits that amygdala hyperactivity during the encoding of aversive life events – and 

hypoactivity during the encoding of positive life events – could cause negative memories to 

be tagged as highly salient, ensuring that they are prioritised above positive memories during 

overnight consolidation. This process may be mediated by attentional biases which have been 

associated with both alterations in monoamine availability (Fox & Standage, 2012; Todd et 

al., 2013) and MDD (Peckham, McHugh, & Otto, 2010; Yang, Zhang, Ding, & Xiao, 2016; 

also see: Blaut, Paulewicz, Szastok, Prochwicz, & Koster, 2013; Everaert et al., 2014). If 

complemented by increased REM sleep duration or density, the amygdala may then be 

provided surplus opportunity to exert its influence on emotional memory consolidation. This 

could cause an excessive amount of negative material to be stabilised in long-term memory, 

ensuring that the negative aspects of events are remembered in most detail. Over an extended 

period of time the result of this process would be an autobiographical memory saturated with 

detailed accounts of negative experiences and a marked absence of positive memories. It is 

clear how this brain state could manifest as depressive symptoms and promote other 

depressive traits which could reinforce such symptoms.  
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Fig. 2.  

The affect tagging and consolidation (ATaC) model. This diagram provides a visual 

representation of enhanced amygdala activation in response to negative emotional 

experiences interacting with increased rapid eye movement (REM) sleep density to form an 

emotional memory bias over time. Panel (a) represents increased activation in the amygdala 

(depicted as a deeper red glow) during the encoding of negative stimuli (funeral) relative to 

positive stimuli (birthday). Panel (b) represents increased REM sleep density, which would 

lead to a general enhancement in emotional memory according to the ATaC model. Panel (c) 

represents negatively-biased amygdala activity interacting with increased REM sleep density 

to cause a negative memory bias, which is believed to increase vulnerability to depression 

(Beck, 1967; Everaert, Koster, & Derakshan, 2012). N1, N2 and N3 – stages of non-REM 

(NREM) sleep. 

 

The ATaC model predicts that the excessive emotional tagging of negative material 

associated with negatively-biased amygdala activity may not manifest as a clinically 

significant memory bias if REM sleep, which stabilises negative experiences in long-term 

memory (Groch et al., 2015; Nishida et al., 2009; Payne et al., 2012; Wagner et al., 2001; 

Wiesner et al., 2015; also see: Wagner, Hallschmid, Rasch, & Born, 2006), is adequately 
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regulated. As we have seen, REM sleep propensity is tightly regulated by circadian rhythms 

(Pace-Schott & Hobson, 2002) which are thought to be disturbed in depression (Bunney & 

Bunney, 2013; Etain et al., 2011; Kronfeld-Schor & Einat, 2012). It is believed that circadian 

rhythms are generated and regulated by circadian clock genes, which may play a role in 

depression vulnerability (Bunney & Bunney, 2013; Etain et al., 2011; Utge et al., 2010) and 

could plausibly be related to the REM sleep alterations characteristic of MDD (Palagini et al., 

2013). According to the ATaC model, variations in genes which promote an increase in REM 

sleep density may act as a risk factor for depression by allowing surplus opportunity for 

emotional memories to be consolidated, but only if it is adjunct to excessive tagging of 

negative emotional material associated with negatively-biased amygdala activity. We argue 

that these two vulnerability factors for MDD – increased REM sleep density and negatively-

biased amygdala activity – are independent of each other, and each have their own set of 

causes, but interact to create a long-term negative memory bias which manifests as depressive 

symptoms over time. Given that increased REM sleep duration is found in currently 

depressed patients, but not remitted patients or first-degree relatives of patients (Pillai et al., 

2011), we predict that an increase in REM sleep duration could support the maintenance of 

depressive symptoms once established. 

The importance of interactions between variants in clock genes and genes which 

modulate monoaminergic pathways such as the 5-HT system may go some way towards 

explaining the weak association between ‘risk genes’ and the prevalence of depression 

(Lohoff, 2010; Mitjans & Arias, 2012), whilst accounting for the comparatively high 

heritability of MDD (Agrawal, Jacobson, Gardner, Prescott, & Kendler, 2004; Kendler, 

Gardner, Neale, & Prescott, 2001; Sullivan, Neale, & Kendler, 2000). It should be noted 

however that in order to focus on core elements of the ATaC model we have discussed in this 

review only the fundamental mechanisms underlying negatively-biased emotional memory; 
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notwithstanding, we acknowledge that the overarching cause of depression is likely to be 

much more complex. For example, the ATaC model looks exclusively at endogenous 

mechanisms and therefore does not take into account environmental factors such as childhood 

stress or trauma, which are likely to interact with the 5-HTTLPR and other ‘risk genes’ in the 

development of some forms of depression (Kim et al., 2007; Munafò et al., 2009). 

Furthermore, although the ATaC model discusses the role of amygdala function in emotional 

memory and MDD, there is substantial evidence that other neural structures which modulate 

emotional memory are implicated in depression vulnerability (for analyses see: Beck, 2008; 

Disner, Beevers, Haigh, & Beck, 2011). Finally, as previously mentioned this review has 

focused primarily on the influence of the 5-HT system and the 5-HTTLPR on functional 

amygdala activity and depression vulnerability. However, we acknowledge the importance of 

genes which influence other monoamine systems such as ADRA2B and COMT in modulating 

affective amygdala function, emotional memory, and potentially depression vulnerability 

(Cousijn et al., 2010; Lonsdorf et al., 2011; Naudts, Azevedo, David, van Heeringen, & 

Gibbs, 2012; Shen et al., 2014; Todd, Palombo, Levine, & Anderson, 2011). 

 

6. Future Directions 

This article has reviewed the roles of REM sleep and the amygdala in emotional 

memory consolidation, and applied these insights to the understanding of REM sleep 

alterations and negatively-biased amygdala activity in the onset and maintenance of MDD. 

We have introduced the ATaC model which proposes testable hypotheses centred around the 

notion that interactive effects between altered patterns of functional amygdala activity and 

increased REM sleep density may play a role in the development of emotional memory bias 

and subsequent depressive symptoms.  
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Although derived from a substantial body of evidence, our model is hypothetical at 

present, and future research into the interplay between amygdala function and REM sleep, 

and its influence on memory consolidation, will determine its validity. In rats, such work 

could integrate selective REM sleep deprivation paradigms (e.g. Hunter, 2015) with direct 

amygdala stimulation techniques (e.g. Bass et al., 2014, 2012) to determine whether the 

effects of amygdala activation at encoding and subsequent REM sleep on memory are indeed 

interactive as hypothesised by the ATaC model. In humans, similar studies could investigate 

the effect of REM sleep, and sleep deprivation, on memory consolidation for positive and 

negative emotional material in carriers of the 5-HTTLPR S allele relative to L allele 

homozygotes. This strategy could reveal the respective contributions of negatively-biased 

amygdala activity and REM sleep duration and density to emotional memory biases. Further 

research should also focus on identifying genetic variants which may contribute to the 

increase in REM sleep density exhibited by MDD patients and their first-degree relatives. 

The discovery of these variants would allow researchers to explore their interaction with the 

5-HTTLPR in long-term emotional memory biases and overall depression vulnerability.  
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The ‘Affect Tagging and Consolidation’ (ATaC) Model of Depression Vulnerability: 

Highlights 

 Negatively-biased amygdala activity is related to encoding of negative stimuli. 

 Increased REM sleep causes emotional memories to be consolidated more readily.  

 These two mechanisms may interact to increase vulnerability to depression.  

 There is evidence that these mechanisms have separate genetic influences.    

 We present the Affect Tagging and Consolidation (ATaC) model of depression. 

 


