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Abstract 

 

Recent research has suggested that dietary nitrate (NO3
-) supplementation might alter the 

physiological responses to exercise via specific effects on type II muscle. Severe-intensity 

exercise initiated from an elevated metabolic rate would be expected to enhance the 

proportional activation of higher-order (type II) muscle fibers. The purpose of this study was 

therefore to test the hypothesis that, compared to placebo (PL), NO3
--rich beetroot juice (BR) 

supplementation would speed the phase II o2 kinetics (τp) and enhance exercise tolerance 

during severe-intensity exercise initiated from a baseline of moderate-intensity exercise. Nine 

healthy, physically-active subjects were assigned in a randomized, double-blind, crossover 

design to receive BR (140 mL/day, containing ~8 mmol of NO3
-) and PL (140 mL/day, 

containing ~0.003 mmol of NO3
-) for 6 days. On days 4, 5 and 6 of the supplementation 

periods, subjects completed a double-step exercise protocol that included transitions from 

unloaded-to-moderate intensity exercise (U→M) followed immediately by moderate-to-

severe-intensity exercise (M→S). Compared to PL, BR elevated resting plasma nitrite 

concentration (PL: 65 ± 32 vs. BR: 348 ± 170 nM, P<0.01) and reduced the o2 τp in M→S 

(PL: 46 ± 13 vs. BR: 36 ± 10 s, P<0.05) but not U→M (PL: 25 ± 4 vs. BR: 27 ± 6 s, P>0.05). 

During M→S exercise, the faster o2 kinetics coincided with faster NIRS-derived muscle 

[deoxyhemoglobin] kinetics (τ; PL: 20 ± 9 vs. BR: 10 ± 3 s, P<0.05) and a 22% greater time-

to-task failure (PL: 521 ± 158 vs. BR: 635 ± 258 s, P<0.05). Dietary supplementation with 

NO3
--rich BR juice speeds o2 kinetics and enhances exercise tolerance during severe-

intensity exercise when initiated from an elevated metabolic rate.         

 

Key Words: nitric oxide, muscle oxygenation, fatigue, phase II time constant, motor unit 

recruitment.   
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Introduction 
 

A step increment in skeletal muscle force production mandates an immediate increase in ATP 

turnover within the contracting myocytes. However, following an initial cardiodynamic phase 

(phase I), pulmonary O2 uptake ( o2) rises in an exponential fashion following the onset of 

exercise with similar response kinetics (denoted by the phase II time constant, τp) to that of 

muscle o2  (28, 38). In order to compensate for this relative lag in oxidative energy transfer, 

the energy yield from phosphocreatine (PCr) breakdown and ‘anaerobic’ glycolysis is 

increased until a steady-state in o2 is attained, at which time the oxidative reconstitution of 

ATP is coupled to the rate of muscle ATP utilization (56). While a o2 steady-state is attained 

within ~2-3 min following the onset of moderate-intensity exercise (i.e. below the gas 

exchange threshold, GET), a supplementary o2 slow component emerges during exercise 

above the GET that delays the attainment of steady-state within the heavy-intensity exercise 

domain (i.e., above the GET but below the critical power, CP) or results in the attainment of 

the maximal O2 uptake ( o2max) during severe-intensity exercise (> CP) when this is continued 

to the limit of tolerance (57, 66, 69). The o2 slow component develops concomitantly with a 

progressive reduction in muscle [PCr] (59, 60), reflecting a reduction in contractile efficiency 

as constant-work-rate exercise is continued (34). Interventions that reduce τp or the rate of 

development of the o2 slow component would be expected to positively impact on exercise 

tolerance (16). 

 

Dietary supplementation with inorganic nitrate (NO3
-), which undergoes a stepwise reduction 

to nitrite (NO2
-) and then nitric oxide (NO) and other reactive nitrogen species (48), has been 

reported to reduce the O2 cost of submaximal exercise (2, 5, 18, 44-47, 63) in association with 

a lower ATP cost of muscle force production (2) and an increase in the mitochondrial ratio of 

phosphate radicals esterified to atoms of oxygen consumed (P/O ratio; (45)). Muscle 

oxygenation is greater in contracting skeletal muscle following NO3
- ingestion (5), while 

intravenous nitrite infusion has been shown to increase skeletal muscle blood flow at rest and 

during exercise (25). These physiological effects likely account, at least in part, for the 

improved exercise tolerance (2, 5, 35, 44, 46) and exercise performance (18, 43) that has been 

reported following NO3
- supplementation. Recent studies have indicated that NO3

- treatment 
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might particularly alter metabolic and vascular control in type II muscles or muscle fibers (23, 

24, 32). Specifically, contractile force, rate of force development and sarcoplasmic reticulum 

calcium release were improved in type II but not type I muscle in mice supplemented with 

NO3
- (32), while augmented blood flow, predominantly within locomotor muscles comprising 

a greater proportion of type II fibers, was reported in rats fed NO3
- rich beetroot juice (23). 

However, the potential muscle fiber-type dependency of NO3
- supplementation on the 

physiological responses to exercise has not been investigated in humans. 

 

The size principle of Henneman and Mendell (29) posits that skeletal muscle fibers are 

recruited in a hierarchical manner during exercise according to the requirements for muscle 

force production. A protocol that has been employed to interrogate the metabolic response of 

different muscle fiber populations to exercise is the “work-to-work” step exercise test (14, 22, 

33). In this protocol, transitions to a higher metabolic rate are divided into two increments in 

work rate (i.e. lower step and upper step) to manipulate motor unit recruitment and hence 

reveal the metabolic response profiles of different segments of the motor unit pool. For 

example, a transition from unloaded cycling to a moderate-intensity work rate (U→M) would 

be expected to mandate the recruitment of muscle fibers that are positioned low in the 

recruitment hierarchy (i.e. type I fibers) whereas a subsequent transition from a moderate- to a 

severe-intensity work rate (M→S) would be expected to require the recruitment of muscle 

fibers positioned higher in the recruitment hierarchy (i.e. type II fibers) (42). Compared to 

U→M, the o2 τp during M→S is greater (i.e., o2 kinetics are slower) (22, 68). Moreover, 

compared to a transition from unloaded cycling to a severe-intensity work rate (U→S), the o2 

τp during M→S is greater and the amplitude of the o2 slow component is truncated, such that 

the overall response reverts towards being ‘first-order’ (20-22, 67, 68). It is possible that the 

slower o2 kinetics in M→S compared to U→M reflects a relative imbalance in muscle O2 

supply relative to demand. Consistent with this, it has been reported that microvascular PO2 

(which reflects the dynamic balance between muscle O2 delivery and muscle O2 utilization) 

declines more rapidly during contractions in predominantly type II compared to type I muscle 

(10, 51). Given that NO3
- supplementation has been reported to increase both the absolute and 

relative distribution of blood flow toward contracting type II muscle (23), this might be 

expected to improve the local matching of O2 delivery relative to muscle o2 and therefore to 
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speed phase II o2 kinetics during M→S. While NO3
- supplementation does not reduce the 

o2 τp during either U→M or U→S (2, 5, 44), the effect of NO3
- supplementation on the o2 τp 

during M→S has yet to be investigated.  

 

Therefore, the purpose of this study was to investigate the effects of short-term dietary NO3
- 

supplementation on o2 kinetics during work-to-work exercise transitions, i.e. U→M followed 

immediately by M→S. We used the muscle deoxyhemoglobin concentration ([HHb]) signal 

from near infrared spectroscopy (NIRS) measurements to explore the mechanistic bases for 

any NO3
--induced changes in phase II o2 dynamics. The kinetics (τ) of muscle [HHb] 

following the onset of exercise resembles that of mixed venous [O2] (28, 38) and approximates 

the reduction in microvascular PO2 during transitions from rest-to-electrically stimulated 

contractions (36). The [HHb] signal is therefore considered to provide an index of local O2 

extraction (19, 27) and hence to reflect the balance between muscle O2 delivery and muscle O2 

utilization. We hypothesized that NO3
- supplementation would reduce the o2 τp and increase 

the muscle [HHb] τ in M→S but not U→M. We also hypothesized that these kinetic changes 

following NO3
- supplementation would enhance severe-intensity exercise tolerance.    

 

Methods 

 

Participants 

Nine healthy subjects (4 male: mean ± SD age 30 ± 6 years; body mass 77 ± 11 kg; stature 

1.78 ± 0.06 m, and 5 female: mean ± SD age 30 ± 6 years; body mass 58 ± 4 kg; stature 1.66 ± 

0.02 m) volunteered to participate in the study. The participants were all recreationally active, 

but not highly trained. Prior to testing, participants were informed of the protocol and risks 

and gave written consent to participate in the study. All procedures were approved by Swansea 

University ethics committee and were conducted in accordance with the Declaration of 

Helsinki. Participants were asked to arrive at the exercise physiology laboratory at Swansea 

University in a rested state, at least two hours postprandial and to avoid strenuous exercise in 

the 24 h preceding each testing session.  Participants were also asked to refrain from caffeine 

and alcohol for 6 and 24 h before each test, respectively. The participants also refrained from 
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the use of antibacterial mouthwash throughout the duration of the study (26). All tests were 

performed at the same time of day (± 0.5 h). 

 

Procedures 

Participants were required to visit the laboratory on seven occasions over a 4-week period. On 

the first visit, participants completed a ramp incremental exercise test for determination of the 

o2peak and GET. The test included 3-min of baseline cycling at 15W, after which the work 

rate was increased at a rate of 20 W∙min-1 for females and 30 W∙min-1 for males until the limit 

of tolerance. The participants were asked to maintain a cadence of 70–80 rpm. Breath-by-

breath pulmonary gas-exchange data were collected continuously during the incremental tests 

and averaged over consecutive 5-s periods (Oxycon Pro, Jaeger, Germany). The o2peak was 

taken as the highest 10-s mean value attained before the subject’s volitional exhaustion in the 

test. The GET was determined using the V-slope method (9) as the first disproportionate 

increase in CO2 production ( co2) relative to the increase in o2, and subsequently verified by 

an increase in the ventilatory equivalent for o2 ( E / o2) with no increase in E / co2. The 

work rates that would require 90% of the GET (moderate-intensity exercise) and 70% of the 

difference (Δ) between the GET and o2peak (severe-intensity exercise, Δ70%) were 

subsequently determined, with account taken of the mean response time for o2 during ramp 

exercise [i.e. two thirds of the ramp rate was deducted from the work rate at the GET and peak 

o2 (65)].  

  

Following the ramp incremental test, participants were randomly assigned in a crossover, 

double-blind design to receive 6 days of dietary supplementation with NO3
--rich beetroot juice 

(BR) (140 mL/day; ~ 8 mmol NO3
-; Beet It, James White Drinks, Ipswich, UK) or NO3

--

depleted BR as a placebo (PL; 140 mL/day; 0.0034 mmol NO3
-; Beet It, James White Drinks, 

Ipswich, UK). The placebo NO3
--depleted BR beverage was identical in color, taste, smell and 

texture to the experimental NO3
- -rich BR beverage. The PL beverage was created by passage 

of the juice, before pasteurization, through a column containing Purolite A520E ion exchange 

resin, which selectively removes NO3
- ions. Five participants began with the BR condition, 

and the other four participants began with the PL condition. The subjects were instructed to 

consume the beverages (70 mL in the morning and afternoon) on days 1-3 of the 
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supplementation period. On days 4-6, the subjects were instructed to consume the beverages 

over a 10-min period, 2 h prior to the start of the exercise test (see below), based on recent 

evidence that plasma [NO2
-] peaks at approximately 2-2.5 h post-administration of  BR 

containing 8.4 mmol NO3
- (70). A 7-day washout period separated each supplementation 

period. Throughout the study, subjects were instructed to maintain their normal daily activities 

and food intake.  

 

On days 4, 5, and 6 of the supplementation periods, subjects completed a series of step 

exercise tests for the determination of o2 and muscle [HHb] kinetics. The protocol, which 

was performed on three consecutive days, consisted of 3-min ‘unloaded’ pedaling at 15 W, 

followed by 4-min of moderate-intensity cycling (U→M), and then 6-min of severe-intensity 

cycling (M→S). The tests were performed on separate days because it is known that prior 

exercise can alter the o2 response to exercise (3). A schematic illustration of the experimental 

protocol is shown in Fig 1. On day 6 of each supplementation period, the M→S bout was 

continued until task failure. The participants were blinded to the elapsed exercise time in both 

the BR and PL conditions. The time to task failure was used as a measure of exercise tolerance 

and was recorded when the pedal rate fell by > 10 rpm below the required pedal rate. In total, 

the participants completed three bouts of U→M and M→S exercise following BR and PL 

ingestion, with the o2 data being subsequently ensemble-averaged prior to curve-fitting to 

enhance the signal-to-noise ratio.   

 

Measurements 

Venous blood samples (~ 4 ml) were drawn into lithium-heparin tubes (7.5 ml Monovette 

Lithium Heparin, Sarstedt, Leicester, UK), which have very low levels of NO3
-  and NO2

-, on 

each of days 4-6. Within 3 min of collection, the samples were centrifuged at 2700 g and 4°C 

for 10 min. Plasma was extracted and immediately frozen at -80°C for later analysis of [NO2
-] 

using a modification of the chemiluminescence technique (7). All glassware, utensils, and 

surfaces were rinsed with deionized water to remove residual NO2
- prior to analysis. 

Following defrosting at room temperature, the [NO2
-] of the undiluted (non-deproteinized) 

plasma was determined by its reduction to NO in the presence of glacial acetic acid and 4% 

(w/v) aqueous NaI. The spectral emission of electronically excited nitrogen dioxide product, 
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from the NO reaction with ozone, was detected by a thermoelectrically cooled, red-sensitive 

photomultiplier tube housed in a Sievers gas-phase chemiluminescence nitric oxide analyzer 

(Sievers NOA 280i. Analytix Ltd, Durham, UK). The [NO2
-] was determined by plotting 

signal (mV) area against a calibration plot of 100 nM to 1 μM sodium nitrite. 

 

Throughout all exercise tests, participants wore a facemask and breathed through a low dead 

space (90 ml), low resistance (0.75 mmHg∙l-1∙s-1 at 15 l∙s-1) impeller turbine assembly (Jaeger 

Triple V, Hoechberg, Germany). The inspired and expired gas volumes and gas concentration 

signals were continuously sampled at 100 Hz, the latter using paramagnetic (O2) and infrared 

(CO2) analyzers (Jaeger Oxycon Pro, Hoechberg, Germany) via a capillary line connected to 

the mouthpiece. These analyzers were calibrated before each test with gases of known 

concentration, and the turbine volume transducer was calibrated using a 3 L syringe (Hans 

Rudolph, Kansas City, MO). The volume and concentration signals were time aligned by 

accounting for the delay in capillary gas transit and analyzer rise time relative to the volume 

signal. Breath-by-breath fluctuations in lung gas stores were corrected for by computer 

algorithms (8). A Reynolds Lifecard CF digital Holter recorder (Spacelabs Medical Ltd., 

Hertford, UK) was used to record a three-lead ECG continuously throughout the tests. The 

ECG leads were positioned in the modified V5, CC5, modified V5R electrode configuration.  

This system provided ECG data with a sample accuracy of 2.5 µV and 1024 Hz sampling 

frequency. During one of the U→M and M→S transitions, for both supplementation periods, a 

blood sample was collected from a fingertip into a capillary tube over the 20 s preceding the 

step transition in work rate and within the last 20 s of exercise. A capillary blood sample was 

also collected at the limit of tolerance for the M→S bout performed on day 6 of each 

supplementation period. The blood samples were subsequently analyzed to determine [lactate] 

(YSI 1500, Yellow Springs Instruments, Yellow Springs, OH) within 30 s of collection. Blood 

lactate accumulation was calculated as the difference between blood [lactate] at end-exercise 

and blood [lactate] at baseline. 

 

NIRS was used to monitor changes in oxygenation status of the m. vastus lateralis of the right 

leg during step exercise (NIRS; OxiplexTS; ISS, Champaign, IL). The NIRS probe was 

affixed over the midway point between the greater trochanter and lateral epicondyle of the 
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right leg using adhesive tape and secured by elastic Velcro strapping to ensure the device 

remained stationary and to minimize the interference of extraneous light during exercise. 

Source (NIR) light was emitted into the muscle at wavelengths of 690 and 830 nm and 

detection sampled at 2 Hz to measure absolute concentrations (µM) of oxyhemoglobin (HbO2) 

and deoxyhemoglobin (HHb) within the microcirculation of the interrogated muscle region. 

Light source-detector separation distances of 1.50–3.04 cm for each wavelength were used 

with cell water concentration assumed to be constant at 70%. The NIRS probe was calibrated 

before each testing session using a calibration block of known absorption and scattering 

coefficients. Calibration was then cross-checked using a second block of known but distinctly 

different absorption and scattering coefficients. Each of these procedures was performed 

according to the manufacturer’s recommendations. The contribution of myoglobin (Mb) to the 

NIRS signal is generally accepted to be relatively small (50, 62) but is currently unresolved. 

The [HHb] signal reported herein should therefore be considered to reflect the combined 

concentrations of both deoxygenated Hb and Mb.   

 

Data analysis procedures  

The breath-by-breath o2 data from each step exercise bout were initially examined to exclude 

‘errant’ breaths by removing values lying more than four standard deviations from the local 

mean determined using a 5-breath rolling average. Filtered o2 data were subsequently 

linearly interpolated to provide second-by-second values and, for each individual, identical 

repetitions of each exercise condition were time aligned to the start of exercise and averaged 

together to form a single data set for analysis.  

 

For the U→M transition, the first 20 s of data after the onset of exercise were deleted to 

remove the phase I (cardio-dynamic) response and a mono-exponential model with time delay 

(Eq.1) was then fitted to the averaged o2 data. 

 

Δ o2(t) = 𝐴1 ∙ (1 − 𝑒−(𝑡−𝛿1)/𝜏1)        (Eq. 1) 

 

where ∆ o2 is the increase in o2 at time t above the baseline value (calculated as the mean 

o2 from the first 45-s of the last min of baseline pedaling), and A1, δ1 and τ1 are the primary 
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component amplitude, time delay (which was allowed to vary freely), and time constant, 

respectively. Kinetic variables (A1, δ1 and τ1) and their 95% confidence intervals were 

determined by least squares non-linear regression analysis (Graphpad Prism, Graphpad 

Software, San Diego, CA).  

 

A mono-exponential model was ultimately used for both moderate and severe-intensity 

exercise because, for the M→S transition, a bi-exponential model (Eq. 2) produced an inferior 

and ambiguous fit based on analysis of the model residuals. 

 

Δ o2(t) = 𝐴1 ∙ (1 − 𝑒−(𝑡−𝛿1)/𝜏1)  +  𝐴2 ∙ (1 − 𝑒−(𝑡−𝛿2)/𝜏2)      (Eq. 2) 

 

Given the failure of the bi-exponential model to adequately describe the o2 response during 

M→S, the onset of the o2 slow component was determined using purpose designed 

LabVIEW software which iteratively fits a mono-exponential function to the o2 data until the 

window encompasses the entire response. The estimated τ for each fitting window was plotted 

against time and the onset of the o2 slow component was identified as the point at which the 

estimated τ consistently deviated from the previously “flat” profile (61).  The amplitude of the 

o2 slow component was subsequently determined by calculating the difference between the 

end exercise o2 and the sum of the primary amplitude and baseline o2. This was expressed 

both in absolute terms and relative to the end-exercise o2. The functional gain of the primary 

o2 response during U→M and M→S was also calculated by dividing the primary phase 

amplitude by the change in work rate. Finally, the mean response time (MRT) for both U→M 

and M→S was calculated by fitting a single exponential curve to the data with no time delay 

from the onset to the end of exercise.  

 

The NIRS-derived [HHb] response to exercise was also modeled to provide information on 

muscle oxygenation. The responses to each transition were interpolated to 1 s intervals, time 

aligned and averaged to produce a single data set. Since the [HHb] signal increased after a 

short delay in response to step exercise, the time of onset for the exponential-like rise in 

[HHb] was defined as a 1 SD increase in [HHb] above the mean baseline value  (19). The 

model in Eq. 1 was then used to resolve the [HHb] τ after omitting data points preceding the 
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exponential-like increase. For M→S, the model fitting window was constrained to the onset of 

the [HHb] slow component determined using the iterative curve fitting procedure as described 

for o2 above. The primary [HHb] amplitude was divided by the phase II o2 asymptote in 

order to determine the Δ[HHb]/Δ o2 ratio as an index of the change in fractional muscle O2 

extraction required to elicit a given Δ o2 during the primary phase. In addition, we assessed 

changes in total blood volume by summing the [HbO2] and [HHb] signals to provide an 

estimate of the total [Hbtot] in the area under investigation. Specifically, we determined the 

mean value at baseline (30 s preceding each transition), at 60 s intervals throughout exercise 

(15 s bins centered on each time point), and at end exercise (final 30 s) to facilitate 

comparisons between conditions. Finally, heart rate (HR) kinetics was modeled for each 

condition with the TD parameter in Eq. 1 fixed to t = 0 s (i.e. mono-exponential with no delay) 

and with the fitting window constrained to the onset of the o2 “slow component”.      

 

Statistics 

Gaussian distribution was confirmed by the Shapiro-Wilks test. Following this, the pulmonary 

o2, HR, and NIRS-derived variables were analyzed using two-way repeated measures 

analysis of variance (ANOVA) with ‘exercise intensity’ (U→M and M→S) and ‘supplement’ 

(BR vs. PL) included as within-subject factors. Differences in BP and plasma [NO2
-] were 

determined using two-way (supplement × time) repeated-measures ANOVA. Subsequent 

paired samples t-tests were employed as appropriate to identify the location of statistically 

significant effects. Pearson product moment correlation coefficients were used to analyze the 

degree of association between key variables. All statistical analyses were conducted using 

PASW Statistics 18 (SPSS, Chicago, IL). Data are presented as means ± SD. Statistical 

significance was accepted when P ≤ 0.05.  

 

Results 

 

The subjects’ peak o2 was 3.73 ± 0.46 L∙min-1 for men and 2.69 ± 0.52 L∙min-1 for women 

with the GET occurring at 2.08 ± 0.41 L·min-1 and 1.71± 0.41 L∙min-1, respectively. The peak 

work rate attained from the incremental test was 327 ± 32 W for men and 263 ± 38 W for 
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women. The work rates calculated to require 90% of the GET and Δ70% were 100 ± 26 and 

215 ± 37 W, respectively.  

 

Plasma [NO2
-] 

There was a main effect for ‘supplement’ on plasma [NO2
-] at rest over the last three days of 

the supplementation period (F[1,8] = 21.59, P = 0.01). Follow-up paired comparisons revealed 

that plasma [NO2
-] was elevated (P < 0.02) at each sample point following BR compared to 

PL ingestion on day 4 (PL: 64 ± 36 vs. BR: 300 ± 141 nM), day 5 (PL: 66 ± 35 vs. BR: 374 ± 

149 nM), and day 6 (PL: 65 ± 32vs. BR: 348 ± 170 nM).    

 

Muscle oxygenation 

The [Hbtot] and [HHb] values derived from NIRS interrogation are presented in Table 1. There 

was no significant main effect for ‘supplement’ on the [Hbtot] during U→M and M→S 

exercise. The [HHb] response during step exercise for a representative subject is illustrated in 

Fig. 2. Two-way ANOVA revealed a significant interaction effect between ‘exercise intensity’ 

and ‘supplement’ on [HHb] kinetics following the onset of exercise (F[1,6] = 15.30, P = 0.01). 

Specifically, compared to PL, the [HHb] τ was speeded during M→S following BR 

supplementation (PL: 20 ± 9 vs. BR: 10 ± 3 s, P = 0.05) but there were no differences between 

PL and BR during U→M (PL: 7 ± 3 vs. BR: 10 ± 5 s, P = 0.17). The [HHb] τ was 

significantly slower for M→S compared to U→M in PL (P = 0.01) but there was no 

difference between the upper and lower step in BR (P = 0.94) There was no significant main 

effect for ‘supplement’ on the primary [HHb] amplitude when normalized per unit change in 

o2 during the fundamental exponential phase (F[1,6] = 4.81, P = 0.07).  

 

HR kinetics 

The HR responses to step exercise are presented in Table 2. There were no differences in the 

primary HR τ between PL and BR for U→M or M→S (F[1,8] = 0.10, P = 0.77). During M→S, 

the relative change in the o2 τp was not correlated with the relative change in HR kinetics 

between conditions (r = 0.42, P = 0.27). There were no significant differences in blood 

[lactate] between conditions.    
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o2 kinetics and exercise tolerance 

The o2 kinetic parameters derived from the mono-exponential fit are presented in Table 3 and 

the o2 response of a representative subject to U→M and M→S is shown in Fig. 2. The group 

mean o2 profile during M→S is presented in Fig. 3. Two-way ANOVA revealed a significant 

interaction effect between ‘exercise intensity’ and ‘supplement’ on phase II o2 kinetics 

following the onset of exercise (F[1,8] = 18.54, P = 0.01). Compared to PL, the τp was shorter 

during M→S following BR ingestion (PL: 46 ± 13 vs. BR: 36 ± 10 s, P = 0.01) but there were 

no differences during U→M (PL: 25 ± 4 vs. BR: 27 ± 6 s, P = 0.25). For the PL condition, the 

τp was greater in M→S compared to U→M (P = 0.001), but there were no significant 

differences between U→M and M→S in the BR condition (P = 0.12). During M→S, the 

speeding of o2 τp was not correlated with the speeding of the primary [HHb] τ after BR 

compared to PL (r = -0.16, P = 0.76).       

 

There was no significant main effect for ‘supplement’ on the primary o2 amplitude (F[1,8] = 

0.01, P = 0.91) or primary o2 gain (F[1,8] = 0.05, P = 0.83) during U→M or M→S. The 

emergence of a slow phase in o2 during M→S occurred after a similar time delay and there 

were no differences in the absolute or relative amplitude of the o2 slow component between 

PL and BR (both P = 0.44). For M→S, there were no differences between PL and BR in the 

o2 amplitude at end-exercise (F[1,8] = 0.60, P = 0.46) or the total o2 gain (F[1,8] = 0.14, P = 

0.72).   

 

The o2 attained at task failure (PL: 3.12 ± 0.51 vs. BR: 3.09 ± 0.51 L∙min-1) was not different 

between conditions or when compared to the peak o2 obtained during the initial ramp 

incremental test (P > 0.66). Compared to PL, the exercise time to task failure was significantly 

increased during M→S following BR supplementation (PL: 521 ± 158 vs. 635 ± 258 s, P = 

0.02). The time to task failure was greater in every participant after BR compared to PL (range 

= 3% to 54%; Fig. 4). During M→S, the increased time to task failure was not correlated with 

the reduction in the o2 τp after BR compared to PL (r = 0.03, P = 0.95).  
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Discussion  

 

The principal novel finding of this investigation was that six days of dietary supplementation 

with NO3
--rich BR juice speeded pulmonary o2 and muscle [HHb] kinetics and increased the 

time-to-task failure following the onset of M→S exercise compared to NO3
--depleted PL 

juice. These results suggest that increasing plasma [NO2
-], and thus the potential for O2-

independent NO generation after BR supplementation, can speed the o2 τp in M→S such that 

it is not significantly different from the o2 τp in U→M. It is possible that this faster rate of 

ATP resynthesis through oxidative metabolism can account, at least in part, for the improved 

exercise tolerance observed during M→S exercise after BR supplementation. Given that 

M→S would be expected to recruit a population of muscle fibers that are positioned higher in 

the recruitment hierarchy (i.e., type II) compared to U→M (29, 39), these results suggest that 

BR supplementation may have specific effects on metabolic and/or vascular control in type II 

muscle fibers in humans, consistent with previous reports in rodent models (23, 32). 

 

In the present study, short-term dietary supplementation with NO3
--rich BR juice markedly 

increased plasma [NO2
-]. Surprisingly, however, this was not associated with a reduced 

steady-state o2 during U→M. This finding contrasts with previous studies in young, 

recreationally-active populations (2, 5, 44-47, 63), but is consistent with other studies in which 

the participants were well-trained (11, 55). Training status does not provide an explanation for 

the lack of effect of BR ingestion on steady-state o2 during moderate-intensity exercise in the 

present study because the participants were not well-trained (48 and 46 ml∙kg-1∙min-1 for males 

and females, respectively). In a recent study investigating the dose-response relationship 

between acute NO3
- intake and the physiological responses to exercise (70), it was reported 

that steady-state o2 during moderate-intensity exercise was significantly reduced following 

the consumption of 280 ml of BR (~ 16 mmol NO3
-) but not 70 ml BR (~ 4 mmol NO3

-) or 

140 ml BR (~ 8 mmol NO3
-). While this suggests that a higher NO3

-
 dose than the 8 mmol 

employed in the present study might have been required to elicit an altered O2 cost of exercise, 

it should be noted that significant reductions in steady-state o2 with 5-8 mmol NO3
- 

supplementation (administered as BR) have been reported previously (5, 44, 64). The 
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explanation for the lack of effect of BR on steady-state o2 during moderate-intensity exercise 

in the present study is therefore obscure. 

 

While NO2
- has traditionally been considered as an inert product of NO oxidation (53), recent 

studies have shown that NO2
- can be recycled back into bioactive NO (48). Moreover, in 

contrast to the generation of NO through the oxidation of L-arginine in a reaction catalyzed by 

nitric oxide synthase, the reduction of NO2
- to NO is O2-independent (17) and is potentiated by 

acidosis (52). Since pH and microvascular PO2 decline more rapidly in contracting type II 

muscle (10, 51), NO2
- reduction to NO may be a more effective pathway for NO generation in, 

and within the microvasculature surrounding, type II muscle fibers during contractions.  

 

In this study we have shown for the first time that, compared to PL, BR ingestion speeded 

phase II o2 kinetics in M→S exercise whereas, consistent with previous research (5, 44), BR 

did not impact on phase II o2 kinetics during U→M. The intensity-dependent effects of 

dietary NO3
- intake with BR on phase II o2 kinetics may be due, at least in part, to 

differences in muscle fiber activation patterns in U→M and M→S. In accord with an orderly 

‘size’ principle  of motor unit recruitment (31), M→S would be predicted to activate a fraction 

of the total muscle fiber pool positioned higher in the recruitment hierarchy compared to 

U→M. Empirical evidence to support this postulate is provided by the study of Krustrup et al. 

(42). These authors reported that PCr and glycogen content were lowered more in type II 

compared to type I muscle fibers when subjects cycled at an intensity corresponding to 80% 

o2max whereas the reverse was true at 50% o2max (42). The steady state o2 amplitude in the 

U→M step in the present study was ~ 54% of o2max, suggesting that type I muscle fibers 

were principally activated in the lower step transition. Conversely, the longer o2 mean 

response time and increased total o2 gain observed during M→S in the PL condition is 

consistent with what would be expected if a greater proportional activation of type II muscle 

fibers occurred in the upper step (6, 40, 41, 58). Our findings therefore suggest that the faster 

o2 kinetics observed following BR supplementation during M→S might be related to specific 

effects of NO3
- treatment on higher-order (i.e. type II) muscle fibers. 
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To explore the mechanisms responsible for any alterations in o2 τp in M→S, the NIRS-

derived muscle [HHb] signal was used to provide information on the dynamic (im)balance 

between microvasculature O2 delivery and metabolic demand (19, 27). For the same o2 

kinetics, enhanced muscle O2 supply relative to muscle O2 demand would be expected to 

result in a longer muscle [HHb] τ, whereas faster o2 kinetics alongside unchanged [HHb] 

kinetics would be interpreted as a proportionally similar increase in the rate of muscle O2 

delivery to o2. However, in the present study, faster o2 kinetics in M→S with BR was 

accompanied by a shorter [HHb] τ during which [Hbtot] (and by inference blood volume) in 

the interrogated muscle area was not different compared to PL. This suggests that BR may 

have speeded o2 kinetics, in part, by enhancing muscle O2 extraction. It has been reported 

that muscle O2 demand exceeds microvasculature O2 delivery in muscle comprised of 

predominantly type II fibers (10, 51) and that BR increases muscle bulk blood flow and 

promotes a greater distribution of blood flow to type II muscle fibers (23). If absolute or 

relative perfusion of type II fibers was greater after BR ingestion, this might have facilitated 

enhanced muscle O2 extraction, as suggested by the faster muscle [HHb] kinetics, and 

therefore permitted faster o2 kinetics in M→S. However, the faster o2 τp with BR compared 

to PL was not significantly correlated with the reduction in the [HHb] τ. It is therefore also 

possible that BR speeded o2 kinetics, by altering metabolic control in type II fibers during 

the transition from M→S. Given that short-term NO3
- supplementation does not increase 

markers of mitochondrial biogenesis in skeletal muscle (45), or speed the recovery of [PCr] 

following intense exercise (44) which would reflect increased muscle oxidative capacity (12), 

the faster o2 kinetics in M→S is unlikely to have resulted from an increase in mitochondrial 

volume. Increased intracellular calcium content [Ca2+]i has been observed during tetanic 

contractions of type II, but not type I, muscle fibers excised from mice supplemented with 

NO3
- (32). As well as activating the muscle contractile apparatus, Ca2+ has also been suggested 

to signal the activation of oxidative phosphorylation (30). Therefore, it is possible that 

increased [Ca2+]i and parallel activation of the contractile and oxidative metabolic machinery 

might have contributed to the faster muscle [HHb] and o2 kinetics reported in this study. 

 

It has been reported previously that the tolerable duration of severe-intensity exercise initiated 

from an unloaded cycling or resting baseline can be enhanced after a period of BR 
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supplementation (2, 5, 35, 44). The findings of this study extend these earlier reports by 

showing that the tolerable duration of severe-intensity cycle exercise initiated from a 

moderate-intensity baseline work rate can also be improved (by ~22% on average). Recent 

studies show that performance is also enhanced during high-intensity intermittent exercise (13, 

71), which would also be expected to engender significant recruitment of type II muscle fibers 

(39). It has been reported (using multi-channel NIRS) that there is marked inter-site 

heterogeneity in matching of O2 delivery to o2 within the quadriceps muscle during high-

intensity cycling (37). One possibility is that NO might inhibit O2 utilization in some well-

oxygenated muscle fibers (15) whereas the hypoxic and acidic environment within and 

surrounding muscle fibers receiving less O2 might stimulate NO2
- reduction to NO and thus 

increase microvascular O2 supply (29). Faster phase II o2 kinetics during M→S after BR 

might therefore have resulted from a more homogenous distribution of O2 relative to 

metabolic demand within contracting muscle. Interventions that speed o2 kinetics have been 

previously shown to improve the tolerable duration of severe-intensity exercise (3, 4). A faster 

adjustment of o2 during M→S would be expected to spare expenditure of the finite anaerobic 

reserves (i.e. from PCr breakdown and anaerobic glycolysis) and reduce the accumulation of 

metabolites that have been implicated in the development of skeletal muscle fatigue (1, 16, 

54). However, in the present study, whilst an increased time to task failure with BR was 

accompanied by a shorter o2 τp compared to PL, the two were not significantly correlated.             

 

Dietary supplementation with NO3
--rich BR juice has been reported to improve exercise 

tolerance in concert with attenuated skeletal muscle ATP turnover, PCr hydrolysis, and Pi and 

ADP accumulation during high-intensity exercise (2). Perturbations of skeletal muscle Ca2+ 

handling and membrane excitability are also hallmarks of skeletal muscle fatigue (1). In this 

respect, it is interesting that mice receiving NO3
- treatment had an improved capacity for 

sarcoplasmic Ca2+ release and increased tetanic force production in type II muscle (32). In 

humans, BR supplementation appears to blunt the accumulation of extracellular K+, possibly 

preserving muscle excitability, during intense intermittent exercise (71). As discussed earlier, 

improvements in muscle blood flow and a greater distribution of blood flow to type II muscle 

fibers with BR (23) might also have contributed to the improved exercise performance in this 

study. The enhanced exercise tolerance observed during M→S in the present study might 
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therefore be consequent to a conflation of alterations in skeletal muscle metabolism, 

excitation-contraction coupling and perfusion. Additional studies are required to address these 

issues. 

 

It is of interest that, in vitro, NO may inhibit oxidative ATP flux by competing with O2 for the 

O2-binding site at cytochrome-c oxidase (COX) in the electron transport chain (15). If NO3
- 

supplementation and the associated increased NO production significantly inhibited COX then 

an increased ATP contribution from anaerobic metabolism would be expected for the same 

work rate. However, we have reported previously that muscle PCr utilization is reduced and 

pH is not changed after NO3
- supplementation (2), which argues against this possibility. NO 

has many physiological effects and it is possible that any inhibition of COX by NO is offset by 

other, positive, effects. For example, COX inhibition of fibers nearest a capillary might allow 

O2 to diffuse to fibers further from the capillary which might be O2 deficient (thereby 

increasing ‘global’ oxidative ATP production across a muscle), (29). There is also evidence 

that greater NO production via NO3
- supplementation might improve matching of O2 supply to 

O2 utilization and increase the O2 driving pressure within contracting muscle (23, 24), increase 

the mitochondria P/O ratio (45) and improve mitochondrial function in hypoxia (64). 

Therefore, while the effects of NO on oxidative metabolism are complex, the existing 

evidence suggests that NO3
- supplementation has a beneficial rather than a detrimental effect 

on oxidative function.   

 

Perspectives and significance 

 

In this study we showed that six days of dietary supplementation with NO3
--rich BR juice 

speeded pulmonary o2 and muscle [HHb] kinetics and increased the tolerable duration of 

severe-intensity cycling in M→S compared to PL. It remains to be determined if longer 

periods of supplementation might elicit greater, or lesser, physiological and performance 

effects. It has previously been reported that o2max and peak power output during incremental 

exercise were increased, and that acute reductions of resting blood pressure and the O2 cost of 

moderate-intensity exercise were maintained, after 15 days of BR supplementation (63). This 

indicates that subjects do not develop tolerance to inorganic nitrate intake, at least up to 15 
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days of supplementation. From the results of the present study, we cannot rule out the 

possibility that NO3
-, or its derivatives, might have acted synergistically with other 

components in the BR juice. For example, ascorbate and polyphenols facilitate the reduction 

of nitrite to NO (49) which might augment NO production compared to NO3
- treatment, per se. 

However, since supplementation with NO3
--depleted BR juice does not impact on blood 

pressure, o2 responses, blood or exercise tolerance compared to a control condition with no 

supplementation (44), it appears that NO3
- is the key active ingredient in BR.  

 

The results of the present study have important implications for competitive sport and also 

provide insight into the mechanisms by which BR supplementation may improve performance 

during simulated competition (18, 43), as well as during high-intensity intermittent exercise 

(13, 71). Continuous athletic events such as cycling and running races are rarely completed at 

an even pace but are often stochastic with frequent ‘surges’ in speed (i.e., step transitions in 

metabolic rate) throughout the competition. The results of the present study, which indicate 

faster o2 kinetics in the transition from a lower to a higher metabolic rate, suggest that BR 

supplementation has the potential to enhance performance in such events. This provides 

further support to the notion that short-term BR supplementation may be conducive to exercise 

performance, at least in recreationally-active participants.  
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Figure Legends 

 

Figure 1: Schematic of the step exercise test protocol performed on days 4-6 of the 

supplementation period.   

 

Figure 2: NIRS-derived [HHb] of the m. vastus lateralis (Panel 1) and pulmonary o2 (Panel 

2) in a representative subject during U→M (A) and M→S (B) cycling transitions. Data are 

normalized relative to the end-exercise amplitude after correcting for [HHb] and o2 during 

baseline pedaling. The onset of step exercise is indicated by the vertical dotted line. Note the 

faster [HHb] and o2 dynamics in M→S but not U→M following BR compared to PL 

supplementation.     

       

Figure 3: Group mean o2 response during M→S exercise following BR and PL 

supplementation with the group mean ± SEM o2 at task failure also shown. The onset of step 

exercise is indicated by the vertical dotted line. 

 

Figure 4: Group mean ± SD time to task failure during the upper M→S step bout with 

individual responses shown (dashed black lines). *Significant difference between supplement 

conditions (P<0.05).    
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Table 1: Near-infrared spectroscopy-derived [Hbtot] and [HHb] responses to moderate- 

and severe-intensity exercise following BR and PL supplementation. 

 

 PL BR 

Unloaded-to-moderate-intensity exercise 

[Hbtot]   

Baseline (µM) 53.4 ± 27.1 50.4 ± 30.0 

120 s (µM) 56.4 ± 29.8 52.9 ± 31.2 

End (µM) 57.4 ± 30.3 53.9 ± 31.6 

[HHb]   

Baseline (µM) 15.3 ± 10.4  14.9 ± 10.9 

Primary time delay (s) 10 ± 3 8 ± 4 

Primary time constant (s) 7 ± 3 10 ± 5 

Primary amplitude (µM) 3.4 ± 4.0 3.3 ± 4.1 

Δ[HHb]/Δ o2 (µM∙L∙min-1) 3.4 ± 3.7 3.3 ± 3.6 

End (µM) 18.6 ± 14.4 17.4 ± 13.4 

Moderate-to-severe-intensity exercise 

[Hbtot]   

Baseline (µM) 57.4 ± 30.3 53.9 ± 31.6 

120 s (µM) 58.7 ± 31.2 54.9 ± 33.2 

End (µM) 61.3 ± 31.9 56.6 ± 32.0 

[HHb]   

Baseline (µM) 18.6 ± 14.4 17.4 ± 13.4 

Primary time delay (s) 1 ± 3* 3 ± 3* 

Primary time constant (s) 20 ± 9* 10 ± 3† 

Primary amplitude (µM) 4.0 ± 4.7 2.8 ± 3.3 

Δ[HHb]/Δ o2 (µM∙L∙min-1) 3.1 ± 3.7 2.4 ± 3.0 

End (µM) 24.7 ± 20.9# 23.0 ± 18.8# 

Values are mean ± SD. [Hbtot], total hemoglobin concentration; [HHb], deoxygenated 

hemoglobin concentration; Δ, change. Significantly different from moderate exercise within 

condition: *P < 0.01, #P < 0.05. Significantly different from PL: †P < 0.05. 
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Table 2: Blood [lactate] and heart rate dynamics during moderate- and severe-intensity 

exercise following BR and PL supplementation.    

 

 PL BR 

Unloaded-to-moderate-intensity exercise 

Baseline HR (b·min-1) 83 ± 11 82 ± 10 

Primary HR time constant (s) 30 ± 9 29 ± 10 

End-exercise HR (b·min-1) 119 ± 14 118 ± 14 

   

Baseline blood [lactate] (mM) 1.9 ± 0.6 1.7 ± 0.4 

End-exercise blood [lactate] (mM) 3.0 ± 0.9 2.6 ± 0.8 

Δ blood [lactate] (mM) 1.1 ± 1.4 1.0 ± 0.9 

Moderate-to-severe-intensity exercise 

Baseline HR (b·min-1) 117 ± 14* 116 ± 13* 

Primary HR time constant (s) 48 ± 19* 47 ± 12* 

HR at 360-s (b·min-1) 170 ± 13* 171 ± 13* 

HR mean response time (s) 73 ± 20 67 ± 17 

   

Baseline blood [lactate] (mM) 3.0 ± 0.9* 2.6 ± 0.8* 

Blood [lactate] at 360-s (mM) 11.0 ± 3.0 10.7 ± 3.1 

Δ blood [lactate] (mM) 8.0 ± 2.2* 8.1 ± 2.4* 

Blood [lactate] at exhaustion (mM) 10.8 ± 2.8 10.9 ± 2.3 

Values are mean ± SD. HR, heart rate; Δ, change. Significantly different from moderate 

exercise within condition: *P < 0.01, #P < 0.05. Significantly different from PL: †P < 0.05. 
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Table 3: Pulmonary O2 uptake responses to moderate- and severe-intensity exercise 

following BR and PL supplementation.    

 

 PL BR 

Unloaded-to-moderate-intensity exercise 

Baseline o2 (L·min-1) 0.76 ± 0.13 0.76 ± 0.15 

Phase II time constant (s) 25 ± 4 27 ± 6 

Primary amplitude (L·min-1) 0.91 ± 0.28 0.95 ± 0.33 

Primary gain (mL·min-1·W-1) 10.8 ± 1.4 11.1 ± 1.3 

End-exercise o2 (L·min-1) 1.67 ± 0.37 1.70 ± 0.39 

Mean response time (s) 40 ± 12 40 ± 6 

Moderate-to-severe-intensity exercise 

Baseline o2 (L·min-1) 1.66 ± 0.38* 1.69 ± 0.39* 

Phase II time constant (s) 46 ± 13* 36 ± 10† 

Primary amplitude (L·min-1) 1.18 ± 0.25 1.14 ± 0.26 

Primary gain (mL·min-1·W-1) 10.3 ± 1.1 9.9 ± 0.8 

Slow phase time delay (s) 163 ± 27 157 ± 21 

Slow phase amplitude (L·min-1) 0.24 ± 0.11 0.26 ± 0.12 

Slow phase relative amplitude (%) 17 ± 7 18 ± 8 

Total gain (mL·min-1·W-1) 12.4 ± 0.9# 12.3 ± 1.2 

o2 at 360-s (L·min-1) 3.08 ± 0.55* 3.10 ± 0.54* 

Mean response time (s) 76 ± 14* 69 ± 11* 

o2 at exhaustion (L·min-1) 3.12 ± 0.51 3.09 ± 0.51 

Values are mean ± SD. Significantly different from moderate exercise within condition: *P < 

0.01, #P < 0.05. Significantly different from PL: †P < 0.05. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


