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Equivalent in-plane elastic properties of irregular
honeycombs: An analytical approach
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Abstract

An analytical formulation has been developed in this article for predicting the equivalent
elastic properties of irregular honeycombs with spatially random variations in cell an-
gles. Employing unit-cell based approaches, closed-form expressionsof equivalent elastic
properties of regular honeycombs are available. Closed-form expressions for equivalent
elastic properties of irregular honeycombs are very sCarcetin-available literature. In gen-
eral, direct numerical simulation based methods are prevalent for this case. This paper
proposes a novel analytical framework for predictingrequivalent in-plane elastic moduli of
irregular honeycombs using a representative unit cell element (RUCE) approach. Using
this approach, closed-form expressions of, equivalent in-plane elastic moduli (longitudi-
nal and transverse Young’s modulus, shear modulus, Poisson’s ratios) have been derived.
The expressions of longitudinal Young’s modulus, transverse Young’s modulus, and shear
modulus are functions of both structural geometry and material properties of irregular
honeycombs, while the Poisson’s ratios depend only on structural geometry of irregular
honeycombs. Thée elastie:moduli obtained for different degree of randomness following the
proposed analyticalyapproach are found to have close proximity to direct finite element

simulatien“results’
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1. Introduction

Honeycombs have gained considerable attention in recent years as an advanced mate-
rial due to its capability of meeting high performance requirements in various critically
desirable application-specific parameters. These include specific strength and stiffness,
electro-mechanical properties, acoustic properties, shock absorption, fatigue strength,
corrosion and fire resistance. Such lattice and/or lattice-like structures are“present in
materials and structures across different length-scales. The use of honeycomb core in
several applications of sandwich structures is an important area of research’( Yongqiang
and Zhiqiang, 2008; Zenkert, 1995). An in-depth analysis of the structural behaviour of
honeycomb can be useful in emerging research areas such as carben-hano-materials like
graphene, as these are generally idealized to have hexagonal'periodic structural forms (Liu
et al., 2012; Pantano et al., 2004; Scarpa et al., 2009Y.

Honeycombs are modelled as a continuous solid having an equivalent elastic moduli
throughout its domain. This approach eliminatessthe need of detail finite element mod-
elling of honeycombs in complex structural systems like sandwich structures. To date,
extensive amount of research has been carried out to predict the equivalent elastic proper-
ties of regular honeycombs consisting of perfectly periodic hexagonal cells (El-Sayed et al.,
1979; Gibson and Ashby, 1999;, Goswami, 2006; Zhang and Ashby, 1992). Constitutive
models for two-dimensional linear‘as well as non-linear elastic foams have been developed
in (Warren and Kraynik, 1987) and (Warren et al., 1989) respectively considering an ap-
propriate representative,volume element to analyse periodic foam structure. Elasto-plastic
yield limits and failure surfaces for large deformations of transversely crushed honeycombs
have beenranalysed using theoretical predictions in (Klintworth and Stronge, 1988). Re-
cently numerical investigations of buckling and crushing behaviour of expanded honey-
comb are-found to be carried out by Jang and Kyriakides (2015), while Wilbert et al.
(2011) have studied buckling and progressive crushing of laterally loaded honeycombs.
Other important research areas concerning the study of different responses related to pe-
riodic honeycombs include low velocity impact (Hu and Yu, 2013) and buckling analysis
(Lopez Jimenez and Triantafyllidis, 2013) and wave propagation through lattices (Schaef-

fer and Ruzzene, 2015). There is a substantial amount of literature available on the study

2



of perfectly periodic hexagonal auxetic honeycombs (Critchley et al., 2013; Rossiter et al.,
2014; Scarpa et al., 2000). Of late theoretical formulations for equivalent elastic proper-
ties of periodic asymmetrical honeycomb have been developed in (Chen and Yang, 2011),
while the tailorable properties of hierarchical honeycombs, including spiderweb honey-
combs have been investigated in (Ajdari et al., 2012; Mousanezhad et al., 2015). Analysis
of two dimensional honeycombs dealing with in-plane elastic properties presentediin the
above survey are commonly based on unit cell approach, which is applicable only for
perfectly periodic cellular structures.

A significant limitation of the aforementioned unit cell approach. is‘that it cannot ac-
count for the spatial irregularity, which is practically inevitable. Spatial irregularity in
honeycomb may occur due to manufacturing uncertainty,striactural defects, variation in
temperature, pre-stressing and micro-structural variability in honeycombs. To include
the effect of irregularity, voronoi honeycombs have.beemconsidered in several studies (Li
et al., 2005; Zhu et al., 2001, 2006). Dynamiewcrushing behaviour of honeycomb struc-
tures with irregularity in cell shapes and céll wall thickness have been investigated in (Li
et al., 2007). Triantafyllidis and Schraad«(1998) have reported study on failure surface
of aluminium honeycombs under gemeral inplane loading to compare the theoretical re-
sults, obtained for the infinitey perfectly periodic honeycomb model and the numerical
results, obtained for the finite,counterpart with micro-structural imperfections consider-
ing uncertainties in manufagturing and fabrication. Jang and Kyriakides (2015); Papka
and Kyriakides (19943,1998) carried out numerical and experimental study of honeycomb
buckling and crushing)behaviour considering geometrical imperfections in the structure
such as variation in’length of bond line and over or under expanded cells. Though these
studies/substantially explore the effect of imperfections as pioneering works, a further
needyis felt to extend these works for spatially random imperfections to develop more
realistic model of the uncertainties associated with such irregularities. Stochastic multi-
scale analysis for the elastic properties of honeycombs have been presented in more recent
studies (Basaruddin et al., 2014). The effect of defects on the behaviour of regular as
well as voronoi honeycombs (Ajdari et al., 2008), and the effect of manufacturing irreg-

ularity on auxetic honeycomb (Liu et al., 2014) have been investigated. In the studies



involving voronoi honeycombs, the shape of all irregular cells generated using voronoi
diagram may not be necessarily hexagonal, which violates the presumption of hexagonal
cell structure in many applications. Published researches that explore the effect of differ-
ent forms of irregularity on elastic properties and structural responses of honeycombs are
based on either experimental investigations or expensive finite element (FE) simulation.
Experimental investigations, being very expensive and time consuming, its practically not
feasible to capture the effect of random irregularities in honeycomb structure/by testing
huge number of samples. In finite element approach, a small changesin geometry of a
single cell may require completely new geometry and meshing of-the entire structure.
In general this makes the entire process time-consuming and tedious. For quasi-static
and dynamic analysis, finite element modelling of the cellular core in a sandwich panel
may increase the degree of freedom of the entire structuize up to huge extent, making the
overall process more complex and prohibitively expensive to simulate. The problem be-
comes even worse for uncertainty quantificationwof thewesponses associated with irregular
honeycombs, where the expensive finite element model is needed to be simulated for a
large number of samples while using a Mente Carlo based approach (Dey et al., 2015a,b,c;
Hurtado and Barbat, 1998). Directsnumerical simulation to deal with irregularity in hon-
eycombs may not necessarily provide proper understanding of the underlying physics of
the system. An analyticalsapproach could be a simple, insightful, yet an efficient way to
obtain effective elastic_properties of honeycombs.

This paper deyelops an analytical framework for predicting equivalent in-plane elas-
tic properties ,0f irregular honeycomb having spatially random variations in cell angle.
Geometrical imperfections due to over or under expanded cells have been considered by
Papka and Kyriakides (1994). However, random spatial distribution of over or under ex-
panded cells has not been considered yet, which can be a realistic and logical extension of
the previous work. As this article proposes closed-form formulae for such irregularities,
the responses can be investigated in a more robust but efficient manner. Towards the
development of explicit analytical formulae of in-plane elastic moduli for addressing any
such form of irregularity in cellular structures, this is the first attempt of its kind to the

best of authors’ knowledge. closed-form formulae developed here can be a computation-



ally efficient and less-tedious alternative to the expensive finite element modelling and
simulation approach for many applications. This article is organized as follows. Deriva-
tions of formulae for five in-plane elastic moduli of irregular honeycombs are described
in section 2. Development of finite element model to obtain the in-plane elastic moduli
numerically and validation of the finite element code with available literature (Gibson and
Ashby, 1999) are discussed in section 3. Variations of elastic moduli for different degree
of random variations in the cell angle and comparison of results between the proposed
analytical approach and finite element simulation are detailed in section 4.“Finally, sec-
tion 5 summarises the main findings and draws conclusions based.on the results obtained

in the paper.
2. Elastic properties of irregular honeycombs

The key idea to obtain the effective in-plane_elastic moduli of the entire irregular
honeycomb structure is that it is consideredto be“consisted of several representative
unit cell elements having different individaal elastic moduli. Elastic properties of each
representative unit cell element (RUCE)sdepends on its structural geometry and material
properties. The irregularity is accounted implicitly by means of the RUCEs. The RUCE
considered in this study for deriving the expressions of different in-plane elastic moduli
for an irregular honeycomb strtcture is shown in figure 1(b). The expressions for elastic
moduli of a RUCE is dérived first and subsequently the expressions for effective in-plane
elastic moduli of the entire irregular honeycomb are derived by assembling the individual
elastic moduli of,these RUCEs using basic principles of mechanics as discussed in the
preceding sections; These formulae are applicable for both tensile as well as compressive

stresses.

2. 15 hengitudinal Young’s modulus (Ey)

To-derive the expression of longitudinal Young’s modulus for a RUCE (Ejy), stress
o1 is applied in direction-1 (refer figure 1) as shown in figure 2. The inclined cell walls
having inclination angle o and S do not have any contribution in the analysis, as the
stresses applied on them in two opposite directions neutralise each other. The remaining

structure except these two inclined cell walls is symmetric. The applied stresses cause the



Representative
unit cell element

(a) regular honeycomb (b) irregular-heneycomb

Figure 1: Typical representation of regular and irregular héneycomb/structure

inclined cell walls having inclination angle 6 to bend. From the condition of equilibrium,
the vertical forces C' in the free-body diagram of these cell walls (refer figure 2(b)) need to
be zero. In the present analysis the cell walls are treated as beams of thickness ¢, depth b
and Young’s modulus E;. [ and h are the léngths of inclined cell walls having inclination

angle 6 and the vertical cell walls respeetively. JFrom figure 2(b),

Pl si
A sin 6 (1)
2
where
P =o1(h+1sinfd)b (2)

From the standard<beam theory (Roark and Young, 1976), the deflection of one end
compared to the other, end of the cell wall shown in figure 2(b) can be expressed as
PPsin®

12E,1

where [ is th¢ second moment of inertia of the cell wall, that is I = bt3/12.

5= (3)

The,.component of § parallel to direction-1 is d sin §. The strain parallel to direction-1

becomes

B dsin 6

Y7 Tcos

(4)
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Figure 2: RUCE and free-body diagram used in the proposed analysis for F,

Thus the Young’s modulus in direction-1 for a RUCE .éan be\expressed as
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B = =B, (Z> h
! ( )sin29

— +sin 6
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(a) Entire idealizedyitregular honeycomb structure (c) Idealized " cell in j* strip

Figure 3: Eree-body diagrams of idealized irregular honeycomb structure in the proposed analysis of F;

To derive the expression of equivalent Young’s modulus in direction-1 for the entire

irregularyhoneycomb structure (Eje,), the Young’s moduli for the constituting RUCEs

(Ehp)rare assembled as discussed next. In the present analysis, the entire irregular honey-

comb structure (figure 1(b)) is assumed to have m and n number of RUCEs in direction-1

and direction-2 respectively. A particular cell having position at i column and j** row

is represented as (4,7), where ¢ = 1,2,...,m and j = 1,2, ...,n. To obtain FEj.,, stress o,

is applied in direction-1 as shown in figure 3(a). If the deformation compatibility condi-
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tion of j strip (as highlighted in figure 1(b)) is considered, the total deformation due to
stress oy of that particular strip (A7) is the summation of individual deformations of each
RUCES in direction-1, while deformation of each of these RUCEs in direction-2 is same.

Thus for the ;™ strip
A=) Ay, (6)
i=1
The equation (6) can be rewritten as
€1L = Z ElijLij (7)
i=1

where €; and L represent strain and dimension in direction-1 of respective elements.

Equation (7) leads to
O'lL in: UlLij
= (8)

Ey; = Ewi

From equation (8), equivalent Young’s modulus of j* strip (Elj) can be expressed as
m
lij COS 01']‘
=l
g = i lijeos 0, 9)
izt Eiuij

where 6;; is the inclination angle 6f the cell walls having length /;; in the RUCE positioned
at (.7).

After obtaining the Young’s moduli of n number of strips, they are assembled to achieve
the equivalent Young’s modults of the entire irregular honeycomb structure (Ej.,) using

force equilibrium/and deformation compatibility conditions.
O'le: ZO’lijb (10)
j=1

where By, is_the dimension of j™ strip in direction-2 and B = > B;. b represents the

7j=1
depth/of honeycomb.

As strains in direction-1 for each of the n strips are same to satisfy the deformation

compatibility condition, equation (10) leads to

(Z B]) Erg =Y FEy;B, (11)
j=1 j=1



Using equation (9) and equation (11), equivalent Young’s modulus in direction-1 of the

entire irregular honeycomb structure (E.,) can be expressed as

1 n Zl le COS 9”

Z Bj e i lij COS 91']‘

j=1 =1 Eiuij

Eieq = B, (12)
where Young’s modulus in direction-1 of a RUCE positioned at (4,5) is Eyy;;, which can

be obtained from equation (5).

2.2. Transverse Young’s modulus (Es)

To derive the expression of transverse Young’s modulus for a RUCE (Eyy), stress o9
is applied in direction-2 (refer figure 1) as shown in figure 4 (&) Total deformation of the
RUCE in direction-2 consists of three components, namely deformation of the cell wall
having inclination angle «, deformation of the cell walls having inclination angle # and
deformation of the cell wall having inclination,angle“g. All the cell walls are considered
axially rigid in this analysis. If the remaining structure except the two inclined cell walls
having inclination angle o and [ is eomsidered, two forces that act at joint B are W
and M;. For the cell wall having inelination angle «, effect of the bending moment M;
generated due to application of WA at point D is only to create rotation (¢) at the joint
B.

Vertical deformation ofithe cell wall having inclination angle @ has two components,
bending deformationtin’ direction-2 and rotational deformation due the rotation of joint

B as shown in figwre 4(b). The bending deformation in direction-2 can be expressed as

3
Weosa ( , )
Oopp = Stha coso (13)

3BT

where W = 203lbcosf and I = bt3/12.
From figure 4(b), M; = Wscota. Cell walls BC and BA will share half of moment M; each
as they have equal stiffness. Using the standard result of Euler-Bernoulli beam theory,

deflection at one end due to application of moment at the other end (§ = MI?/6E,I), the
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Figure 4: RUCE and free-body diagram used in the proposed analysis for Ey
angle of rotation at joint B can be expressed as

My N\

¢ = 2. 68,1

(14)

The component of rotational deformationwef the cell wall having inclination angle « in

direction-2 can be expressed as

Pour = 0 (

Thus from equation) (13)=(15) after replacing W = 20ylbcos, M; = Wscota and

> coso (15>

stno

I = bt3/12, totaldeformation in direction-2 of the cell wall having inclination angle o can

be expressed-as

61)2 - 521}1) + 62117“ =

2095% cos 0 cos? 9
B (48 —— + lcot”a (16)

SN~ &
Deformation in direction-2 of the cell wall having inclination angle 3 can also be expressed

in the similar way as

. 2095%lcost cos? 3 9
Opa = B (45 7 + lcot” 3 (17)

sin
From figure 4(c), deformation of each of the cell walls having inclination angle 6 in

10



direction-2 W

(7 Cos 9) ?
57}1 = ]_Q—_EJSI cos 6 (18)
Replacing W = 209lbcosf and I = bt?/12 from equation (18), total deformation in

direction-2 of two cell walls having inclination angle # can be expressed as

2050* cos®
Opl = —m
12FE.13

Thus total deformation in direction-2 of the RUCE represented in figure 4(a) due to

(19)

application of stresses o is

X l 9 2 2
Oy = Opa+0p2+0,1 = 27 €08 <2[3 cos® f + 8s° (cos3 a + o B) + 253l (cot®a + cotQB))

E.t3 sina  sin®g
(20)
Strain in direction-2 can be obtained as
Oy
= 21
2 ht2s+2lsmd (1)
Thus Young’s modulus in direction-2 of a RUCEwan be expressed as
Eoy = 2
€2

t\’ 1
Es ( ) s\3 (cos*a  cos® 3 5\2
cos 6 (2 cos? 0+ 8 (7> ( — + ) +2 (—) (cot?a + cot%))

sina  sin® [

(ﬁ 492 +2sin9>

(22)

To derive the expression of equivalent Young’s modulus in direction-2 for the entire ir-
regular honeycomb structure (Es.,), the Young’s moduli for the constituting RUCEs (Eqy)
are assembled as discussed below. For obtaining Fs.,, stress o9 is applied in direction-2
as shownt in figuré 5(a)). If the force equilibrium under the application of stress oy of 5™

strip (asthighlighted in figure 5(b)) is considered,

09 (Z QZW COS 02]) b= (Z O-QijQZij COS 01]) b (23)
1=1 =1

By deformation compatibility condition, strains of each RUCE in direction-2 of the j*
strip are same. Equation (23), rewritten as
m m
Egj (Z lij COS 9”) € = <Z EQUijlij COS 9@‘6@') (24)
i=1 i=1

11
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Figure 5: Free-body diagrams of idealized irregular honeycomb structure in the proposed analysis of Eo

where €;; = ¢, for i = 1,2...m in the j strip. EQj is the equivalent elastic modulus in

direction-2 of the ;™ strip.

~ :

m
E2Uijlij COS 91']'

i=1

EQJ‘ =

(25)

Z le COS 92]
i=1
Total deformation of the enitire.honeycomb in direction-2 (Ay) is the sum of deformations

of each strips in that direction,
Ay =) Ay, (26)
j=1
The equation (26) can be rewritten as
CQB = Z Engj (27)
j=1

whele‘es, €2; and B; represent total strain of the entire honeycomb structure in direction-
2, strain of j™ strip in direction-2 and dimension in direction-2 of j** strip respectively.

Equation (27) can be rewritten as

72 z1 B] a O-QB‘
— = — (28)
E2eq ; EZ]‘



From equation (25) and equation (28), the Young’s modulus in direction-2 of the entire

irregular honeycomb structure can be expressed as

1 n
EQEQ = m Z Bj (29)
. > 1 cos 0 j=1
> Bj—

1
J EQUZ']‘ lij COS Hij
=1

)

where Young’s modulus in direction-2 of a RUCE positioned at (i,5) is Baj5which can
be obtained from equation (22).

It is worthy to mention here that the derived expressions of Young’s moduli for ir-
regular honeycombs (equation (12) and (29)) can be reduced-tosthe/formulae provided
by Gibson and Ashby (Gibson and Ashby, 1999) in case.of uniform honeycombs (i.e.
By =By =..=B,; s="h/2; a =0 =090%1[; =4 and 6;; = 6, for all i and j). By
applying the conditions By = By = ... = By,; [;; =land"¥;; = 6, equation (12) and (29)
reduce to By and Eop respectively. For s = h/2%and o = § = 90°, Eypy and Esy produce
the same expressions for Young’s moduli of mniferm honeycomb as presented by Gibson

and Ashby (Gibson and Ashby, 1999). In case of regular uniform honeycombs (6 = 30°)

g ) B3 £\?
G )5y, (1) w

where E} and E7 denotethe Yourlg moduli of uniform regular honeycombs in longitudinal

and transverse direction respéctively.

2.8. Poisson’s ratiodvo
Poisson’s ratios are calculated by taking the negative ratio of strains normal to, and
parallelto, thesloading direction. Poisson’s ratio of a RUCE for the loading direction-1

(r190) is'ebtained as (refer figure 2(a))

€
Viou = ——2 (31)
€1

where €; and €, represent the strains of a RUCE in direction-1 and direction-2 respectively
due to loading in direction-1. € can be obtained from equation (4). From figure 2(b), e,

can be expressed as
26 cos 0

- 2
h+2lsinf + 2s (32)

€y —

13



Thus the expression for Poisson’s ratio of a RUCE for the loading direction-1 becomes

2cos? 6

<28in9+2§ + %) sin @

Visy = (33)
To derive the expression of equivalent Poisson’s ratio for loading direction-1 of the
entire irregular honeycomb structure (v19¢,), the Poisson’s ratios for the constituting
RUCESs (v19r) are assembled as discussed below. For obtaining vys.,, stress o; is.ap-
plied in direction-1 as indicated in figure 3(a)). If the application of stress of.in the j*
strip (as highlighted in figure 3(b)) is considered, total deformation”of the 5™ strip in
direction-1 is summation of individual deformations of the RUCEs in direction-1 of that

particular strip. Thus from equation (7), using the basic definition, of4/,,
€2 = 62ijLij

= (34)

V125 1 YUL2i

where €5 and €y;; are the strains in direction-2 of gtstrip and individual RUCEs of ;%
strip respectively. vy19;; represents the Poisson's,ratiorfor loading direction-1 of a RUCE
positioned at (,7). 12; denotes the equivalent Poisson’s ratio for loading direction-1 of
the j** strip.

To ensure the deformation compatibility condition €, = €y;; for ¢ = 1,2,...,m in the

J strip. Thus equation (34) leadsito

. L
Vigj = (35)
ij
i=1 V120145

Total deformation” of the entire honeycomb structure in direction-2 under the application
of stress o, aleng.the two opposite edges parallel to direction-2 is summation of the

individual.deformations in direction-2 of n number of strips. Thus

e2B = ;B (36)
j=1
Using, the basic definition of v15 equation (36) becomes
V12eq€1B = Z V12j€1ij (37)
j=1

where 119, represents the equivalent Poisson’s ratio for loading direction-1 of the entire

irregular honeycomb structure. €; and €;; denote the strain of entire honeycomb structure

14



in direction-1 and strain of j** strip in direction-1 respectively.
From the condition of deformation comparability €; = €;; for j = 1,2,...,n. Thus from
equation (35) and equation (37),

m
lij COS ‘9ij
=1

1 | ¢
V126q = - Z W B] (38)
> B, | 3 ey
7=1

i=1 V12Uij

where v151;; can be obtained from equation (33).

2.4. Poisson’s ratio vy

Poisson’s ratio of a RUCE for the loading direction-2 (v917) is obtained as (refer

figure 4(a))

o1y = —6—1 (39)

€2

where €; and €, represent the strains of a RUCE in direetion=1"and direction-2 respectively

due to loading in direction-2. €5 can be obtained from equation (20) and equation (21) as

02l cos 0 3.2 S fcos*a  cos? 3 ) ) ,
= 21 Z 2s°l(cot t
@ T EB(h+ 25 + 2sin) ( cos” Ol V5, + g ) T2 oot ot cotf)
(40)
From figure 4(c)
01 sinf
- 41
“ lcos (41)
(% cos 9) I
where ; = RTINS and W = 205lbcos . Thus equation (41) reduces to
o — elsindcost )

Et3

Thus the expression for Poisson’s ratio of a RUCE for the loading direction-2 becomes

l l
3 2 2 2
2cos?6 + 8 (§> 0983 ¥ C,OS3 b +2 (§> (cot? v + cot? 3)
[ sina  sin” 3 l

To derive the expression of equivalent Poisson’s ratio for loading direction-2 of the

sin 6 (E + 2f + 281110)
(43)

v =

entire irregular honeycomb structure (v21¢,), the Poisson’s ratios for the constituting

RUCESs (v9117) are assembled as discussed below. For obtaining vs1,, stress o is ap-

15



plied in direction-2 as shown in figure 5(a)). If the application of stress oy in the j*
strip (as highlighted in figure 5(b)) is considered, total deformation of the j strip in
direction-1 is summation of individual deformations of the RUCESs in direction-1 of that

particular strip. Thus,

e L = Z elijLij (44)
i=1
Using the basic definition of v5; equation (44) leads to
1921j€2L = Z V21Uij€2ijLij (45)
i=1

where 15, represents the equivalent Poisson’s ratio for loading direction-2-of the 5t strip.
€2 and e€y;; are the strains in direction-2 of 4t strip and individual-RUCEs of j* strip
respectively. vo17,; represents the Poisson’s ratio for loading direction-2 of a RUCE posi-
tioned at (7,7).

To ensure the deformation compatibility condition €= €y;; for ¢ = 1,2,...,m in the

gt strip. Thus equation (45) leads to

m
Z V21Uijlij COS ei]'
=1

(46)

Valj = “om
Z lij COS c9ij
i=1

Total deformation of the entire honeyc¢omb structure in direction-2 under the application
of stress o, along the two" opposite edges parallel to direction-1 is summation of the

individual deformations in direction-2 of n number of strips. Thus

©2B =) ;B (47)
j=1
By definition of vy ‘equation (47) leads to
9 =Y Yip (48)
Vo1eq = V915

From the condition of deformation comparability €; = €;; for j = 1,2,...,n. Thus the

equivalent Poisson’s ratio for loading direction-2 of the entire irregular honeycomb struc-
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ture

1
1/21€q = Z B‘7 (49)

m
Z li]‘ COS 97;]‘ Jj=1

n =1
1=
Zl Bj—
= > Vawiglij cos 0y
i=1

where v517;; can be obtained from equation (43).

It can be noted here that following the similar way as discussed in section 2.2;the
derived expressions of two Poisson’s ratios (equation (38) and (49)) can beyreduced to the
formulae provided by Gibson and Ashby (Gibson and Ashby, 1999) in case of uniform
honeycombs (i.e. By = By =...=B,; s =h/2; a = f=90°% [;f = | and 0;; = 6, for all
i and 7), which follows Ejvf, = Efv;,. For regular uniformrhoneyeombs vf, = v, = 1,

where v}, and v3; denote the Poisson’s ratios of uniform regular honeycombs.

2.5. Shear modulus (G12)

To derive the expression of shear modulus (G1or) for a RUCE, shear stress 7 is applied
as shown in figure 6(a). Lateral deformation of peint' D with respect to point H consists of
three components, namely lateral deformation of the cell wall having inclination angle «,
lateral deformation of the vertical cell walls,and lateral deformation of the cell wall having
inclination angle 8. The remaining structure except these two inclined cell walls having
inclination angles @ and (3 is'symmetric. Thus points A, B, C (and points E, G, F') do not
have any relative lateral movement under the applied stresses. For this reason, the cell
walls having inclination angle 6 do not have any contribution in the lateral deformation
of the RUCE. From-figure 6(b) M = F's, where F' = 27lbcosf. Due to equal bending
stiffness of ¢ell walls AB and BC, they will share half of moment M each. Using the
standard result*of Euler-Bernoulli beam theory, (deflection at one end due to application
of moment.at the other end § = MI?/6F,I), the angle of rotation at joint B can be

expressed as

M 1 Fsl

¢ = 9 6E,  12E.I

(50)

Lateral deformation of the cell wall having inclination angle o has two components, bend-
ing deformation and rotational deformation due the rotation of joint B as shown in fig-

ure 6(b).
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Figure 6: RUCE and free-body diagram used in the proposed amalysis for G2

Thus the total lateral deformation of point D with respect to,point B is

Fsina s \3 S i
Op1 = ( . ) + o= sina
3E] \sina sinao (51)
_F 52 - 4s
- 12EI sina

Lateral deformation the cell wall having inclination angle 3 can also be expressed in the

2
& =) (z+ 48) (52)

similar way as

~ 12ET sinf
In figure 6(c), J is the midpoint of the member AE. Displacement of point J with respect
to point A is calculated in‘the similar way as above considering the rotation of point A

and bending deformation of member AJ,

Fh?
b1 = == (1 +2h) (53)

Displacementief-point J in direction-1 with respect to point E (d74) is same as 073. By
replacing, F' = 27lbcos and I = bt®/12 in equation (51), (52), (53) total lateral movement

of peint D with respect to point H

O =0p1+ 02+ 03+ 914

971 cos 0 12l 1 1 (54)
:ﬂ(2ls2+h3+7+4s3< T ))

Et3 sina  sinf3
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The shear strain v for a RUCE can be expressed as

7_23—|—h+2lsin€ (55)
27l cosd 2[2+h3+h2l+43 1 N 1
= s — +4s
Et3(2s + h 4 2lsin6) 2 sina  sinf
Thus the expression for shear modulus of a RUCE becomes
T
Guv = -
Y
h s _
N <7 +27 JFQSIII@) (56)
=B (;

5\ 2 s\3 ([ 1 1 AN 2N
2cos6 | 2 (—) 4 (—) _ . NN
o8 < [ + [ szna+sznﬂ + [ +2 l
To derive the expression of equivalent shear modulus of the entiresitregular honeycomb
structure (Giaeq), the shear moduli for the constituting RUCES (Giay) are assembled

as discussed below. For obtaining (a4, shear stress 7 s applied parallel to direction

direction-1 as shown in figure 7(a)). If the equilibrium of forces for application of stress

7 in the j strip (as highlighted in figure 7(b))\is’€onsidered,

DL P
i 1 T T T
T \‘_ ‘l‘ 11 \ | \\ jth Cellli | lT
i =
\ Jj™ Strip "\ IB}- b —
B ! 1
T1 \ \ I,T (b) Idealized j*" strip
\
\ \
L} ! L
\ !

L=
I\
T
J =
N
]
—
=
!
o,
——
-

(a) Entire idealized irregular honeycomb structure (c) Idealized i cell in j'* strip

Figuren?: Free-body diagrams of idealized irregular honeycomb structure in the proposed analysis of G2

7L = Z TijLij (57)
i=1
By definition of shear modulus equation (57) can be rewritten as
GhojyL = Z Ghovijvij L (58)
i=1
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where G 12j represents the equivalent shear modulus of the 4t strip. v and 7i; are the shear
strains of j strip and individual RUCEs of the j* strip respectively. Giar; represents
the shear modulus of a RUCE positioned at (i,j).
To ensure the deformation compatibility condition y = v;; for i = 1,2, ...,m in the j*
strip. Thus equation (58) leads to
m
Z GlZUijlij COS 0”

A i=1
Gioj =

m (59)
Z lij COS 92‘]‘
i=1

Total lateral deformation of one edge compared to the oppositetedge of the entire
honeycomb structure under the application of shear stress 7 i the summation of the

individual lateral deformations of n number of strips. Thus
YB =Y ;B (60)
j=1

By definition of G2 equation (60) leads to
B£Y Y p, (61)

=1 125

T

GlZeq

From equation (59) and (61), equivalent shear modulus of the entire irregular honeycomb

structure can be expressed as

1
GlQeq N Z Bj (62)

m
n Zl l” COS 974] Jj=1
1=
Zl B+
= > Guavijlij cos Oy
i=1

where Giap;;€an be obtained from equation (56).

It is worthy to note that the derived expression of shear modulus for irregular hon-
eycombs (equation (62)) can be reduced to the formulae provided by Gibson and Ashby
(Gibsenm,and Ashby, 1999) in case of regular uniform honeycombs (i.e. By = By = ... = By;
s=h/2; =0 =90%1l; =1and 6;; =0, for all i and j) following the similar way as

discussed in section 2.2. For a regular honeycomb with 6,; = 6 = 30°

* t 3
El? = 0.57 (Z) (63)

where GG, denotes the shear modulus of uniform regular honeycombs. The regular uniform
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honeycombs correctly obey the relation G = E/2(1 + v), where E, G and v represent

Young’s modulus, shear modulus and Poisson’s ratio of isotropic solids respectively.

3. Finite element modelling and validation

A finite element code has been developed using Matlab (MATLAB, 2013) to,obtain
the in-plane elastic moduli numerically for honeycombs having spatially randomystruc-
tural variation. The purpose of the finite element model in the present studyis to validate
the proposed analytical approach for obtaining in-plane elastic moduli.ef irregular honey-
combs. Each cell wall has been modelled as an Euler-Bernoulli beam.element having three
degrees of freedom at each node. Axial and shear deformations have been neglected in this

study with the assumption of high axial rigidity and low cell'wall'thickness respectively.

1.15

p—
—_—

1.05

Ratio of elastic modulus

09| S

0.9 i i i
0 500 1000 1500 2000

Number of RUCE

Figure:8: Convergence study and validation of finite element model for obtaining elastic moduli (Ratio
of the elastic moduli obtained using the finite element code and formulae provided by Gibson and Ashby
for different elastic moduli have been plotted)

For obtaining F; and v15 numerically, two opposite edges parallel to direction-2 of the
entire honeycomb structure are considered (refer figure 1). Along one of these two edges,

uniform stress parallel to direction-1 is applied while the opposite edge is restrained against
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translation in direction-1. Remaining two edges (parallel to direction-1) are kept free.
Similarly, for obtaining Fy and 15, numerically, two opposite edges parallel to direction-1
of the entire honeycomb structure are considered. Along one of these two edges, uni-
form stress parallel to direction-2 is applied while the opposite edge is restrained against
translation in direction-2. Remaining two edges (parallel to direction-2) are kept free.
To obtain G2 numerically, uniform shear stress is applied along one edge keeping the
opposite edge restrained against translation in direction-1 and 2, while the Temaining two
edges are kept free.

The finite element model has been validated with results frem awailable literature
(Gibson and Ashby, 1999). The developed finite element codeis capable of accepting
the number of RUCEs in direction-1 and 2 as input in addition to material properties
and other geometrical features to obtain corresponding five elastic moduli as output.
Representative results for validation are furnished.in figure 8 for a regular honeycomb
having cell angle 30° and h/l ratio of 1.5. Cenvergence studies have been carried out
for the five in-plane elastic moduli with different, number of RUCE to ensure the average
global behaviour of the entire honeycombyby avoiding any localised deformation due to
boundary effect. In the present study, the number of RUCE has been adopted as 1681

for all the subsequent analyses:

4. Results and discussSions

The analytical approach proposed in this study is capable of obtaining equivalent in-
plane elastic properties for irregular honeycombs from known spatial variation of cell angle
and material properties of the honeycomb cells. Such irregularities in honeycomb material
can be/characterized by using common techniques like digital image analysis. For the
purpose offinding the range of variation in elastic moduli due to spatial uncertainty, cell
angles and material properties can be perturbed following a random distribution within
specific bounds. From the expressions of effective elastic moduli derived in section 2, it
is evident that all the five elastic moduli depend on the ratios h/l,t/l, s/l and the angles
0,a, [ (refer figure 4(a)). In addition to these quantities, the two Young’s moduli and

shear modulus also depend on FE;. In the present analysis, results (figures 10 -14) have
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been presented for three different h/l ratios, namely: 1, 1.5 and 2 with a very small
t/l value(~ 1072). For each of these h/l ratios, three different cell angles have been
considered, namely: 30°, 45° and 60°. Only bending deformation has been accounted in
the present analysis as the effect due to axial and shear deformation becomes negligible
for very high axial rigidity and small value of the ratio ¢/l respectively. In case of large
deformation, the axial force that has been neglected in this study, creates a beam-éelumn
effect leading to an additional moment in the inclined cell walls caused by thefact that the
axial loads no longer remain co-linear. The formulations presented in-section 2 are valid
for small strain allowing the non-linearity due to beam-column efféet to.be neglected. As
the two Young’s moduli and shear modulus of low density honeyeomb are proportional to

E.p® (Zhu et al., 2001), the non-dimensional results for elastic'moduli E,, Es, v19, vo; and
Eleq E EQeq

(12 have been obtained using £y = KPS , By = Kpg {Vhg = Vioeq , Va1 = Va1eq and Gig =

G

Emeg respectively, where ‘ 77 represents the non-dimensional elastic modulus and p is the
sP

relative density of honeycomb (ratio of the planamarea of solid to the total planar area of

the honeycomb). Results have been presentedifor gpatial irregularity in the cell angles only.
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(a) Distribution of the cell angle (9) (b) Distribution of the inclination angle («)

Figure)9: Typical statistical distribution of cell angle () and inclination angle a (number of RUCE:
1681)

The maximum, minimum and mean values of non-dimensional in-plane elastic moduli for
different degree of spatially random variations in cell angles (Af = 0°,1°,3°,5°,7°) are

shown in figure 10 -14. For a particular cell angle @, results have been obtained using a
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set of uniformly distributed 1000 random samples in the range of [0 — A#, 6 + Af]. The
set of input parameter for a particular sample consists of N number of cell angles in the
specified range, where N(=n x m) is the total number of RUCEs in the entire irregular
honeycomb structure. In the present analysis ¢, s and E have been modelled to possess
no spatial variation. The quantities h and 6 have been considered as the two random
input parameters while «, 5 and [ are dependent features. Typical statistical distribution
of cell angles for a randomly chosen sample is shown in figure 9(a). For that/particular
sample, the statistical distribution of the inclination angle « is presented imfigure 9(b).
The figures indicate that, even though the cell angles of an irregular heneycomb sample
have been drawn from an uniform distribution, interestingly,spatial distribution of the
inclination angle o changes to Gaussian. The numerical.walties shown in the right side
of each ‘I’ shaped marks (figures 10 -14) represent pércentage errors in the maximum
and minimum values of elastic moduli calculated. using:the proposed analysis compared
to the finite element results. The numerical values shown in the left side represent the
same for the mean values. Smaller values inithe percentage errors would indicate that the
proposed analytical approach is capableof,obtaining in-plane elastic moduli for irregular
honeycombs with high precision andyvice versa. Points on the Y-axis depicts the values

of elastic moduli corresponding towperfectly periodic cell structure (i.e.Af = 0).

4.1. Longitudinal elastic modulus/FE1 )

Variation in the values of"F; due to spatially random variations in the cell angles is
shown in figure 10., From the figures it is clear that irregularity in the cell angles have
negligible influencejin/the longitudinal elastic modulus. Figure 10 also reveals that with
the increase of both the cell angle (0) and h/l ratio, the mean values of non-dimensional
E for the entire irregular honeycomb decrease. This can be attributed to the fact that
same trend is followed in the non-dimensional F; of a single RUCE with the variation of

cell angle and h/[ ratio.

4.2. Transverse elastic modulus (Es)

Figure 11 shows the effect of irregularity due to spatially random variations of cell

angles in Fs. From the figures it is evident that the values of Fs reduce considerably with
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Figure 10: Effect of structural irregularity on non-dimensional Fj.

increasing degree of randomyvariations in cell angles. The highest rate of reduction in the
values of s with the increase in degree of irregularity is noticed for mean cell angle of 60°,
followed by 45° and 30°. figure 11 also reveals that with the increase of both cell angle
(0) and h/lratio, mean values of non-dimensional E, for the entire irregular honeycomb
increasé depending on the variation of non-dimensional F, of a single RUCE with cell
angle,and h/l ratio respectively. The range of variation of E, is found to increase with

increasing degree of irregularity in cell angles.

4.8. Poisson’s ratio vqs

Variation of 15 due to spatially random variations in cell angles is shown in figure 12.
The figures indicate that irregularity in cell angles do not have much influence in v45. The

highest reduction in the values of 115 with the increase in degree of irregularity is noticed
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Figure 11: Effect/of structural irregularity on non-dimensional Ejs.

4.4. Poisson’s*ratio vy

Figure=#3 shows the effect of irregularity due to spatially random variations of cell
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for mean cell angle of 30%. Figure 12 also shows that with the increase of both cell angle (0)
and h/l ratio, méan values of v, for the entire irregular honeycomb decrease depending

on the variation of'wy of a single RUCE with cell angle and A/l ratio respectively.

angles in v9;. From the figures it is evident that the values of 15 reduce considerably
with increasing degree of random variations in cell angles. The highest rate of reduction
in the values of 15, with the increase in degree of irregularity is noticed for mean cell
angle of 60°, followed by 45° and 30°. figure 13 also reveals that with the increase of both

cell angle () and h/l ratio, mean values of non-dimensional 1, for the entire irregular
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honeycomb increase depending on the variation of v9; of a single RUCE with cell angle

and h/l ratio-respegtively.

4.5. Shear-modulus (G12)

The “effeet of irregularity due to spatially random variations of cell angles in Gy
is depicted in figure 14, which shows that the values of G5 reduce considerably with
increasing degree of random variations in cell angles. Figure 14 also reveals that with the
increase of both cell angle (¢) and h/l ratio, mean values of non-dimensional G5 for the
entire irregular honeycomb decrease depending on the variation of G5 of a single RUCE

with cell angle and h/l ratio respectively. The range of variation of non-dimensional G2

. 5
Random variation in cell angle (degree)

(c) hfl =2
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Figure 137 Effect of structural irregularity on non-dimensional ;.

is noticed to increase with increasing degree of spatially random variations in cell angle.
4.6. Discussion

The results presented in sections 4.1—4.5 show that the elastic moduli obtained using
the analytical method and by finite element simulation are in good agreement, establishing
the validity of the closed-form expressions derived here. Papka and Kyriakides (1994) have
reported that under-expansion in honeycomb cells results in a response which has a higher
elastic moduli, while over-expansion has the opposite effect. The present investigation
shows the effects of spatially random distribution of under and over expanded cells of
different degree on elastic moduli of the entire irregular honeycomb structure. Figures

10 -14 show that the variation in E; and v;5 due to spatially random variations in cell
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angles is very less, while there is considerable amount of reductions in the values of Ej,
v91 and G1o withiincreasing degree of irregularity. In the analysis of irregular honeycomb
structure having spatially random variations in cell angles, the cell walls having inclination
angles & and [ play a vital role. As the range of random variation in cell angles (Af)
increases, the inclination angle with respect to direction-2 of these cell walls are also found
to in¢rease. Thus with the increase of Af, component of axial stiffness of these cell walls
in direction-1 increase, while that in direction-2 decrease. As the cell walls are considered
axially rigid in this analysis, component of axial stiffness of these cell walls in direction-2
are much higher compared to bending stiffness for small value of Af. Thus with the

increase of A#, stiffness in direction-2 decreases causing subsequent reduction in Fy and
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Figure 14: [Effect of structural irregularity on non-dimensional Gs.




V1. However for small Af as considered in this study, component of axial stiffness of
these cell walls in direction-1 are much lesser compared to that of direction-2 resulting
the bending stiffness to be predominant in direction-1. Due to this reason, the variations
in F; and vy, are found negligible for small Af. The reason for reduction in Gy, with the
increase of Af can be explained using the same analogy. Under the application of shearing
stresses (refer figure 7(a)), as the component of bending stiffness in direction-1 deereases

with the increase with A#, a subsequent reduction in reduction in G is noticed.

5. Summary and conclusions

A novel analytical approach for predicting equivalent in-plane elastic moduli of hon-
eycombs having spatial irregularities is presented in this artiele.) Though there are few
literature available dealing with different forms of irregularity in honeycombs, those are
based on either experimental investigation or numerical\simulation approach. This study
proposes an efficient analytical framework. The results obtained using the proposed an-
alytical method for spatially random variation '0f cell angles have been compared with
those obtained from the direct finite element simulation. The mean and range of vari-
ation for different elastic moduli are.found to be in good agreement. Equivalent elastic
properties of irregular honeycombs. can be obtained using the proposed analytical frame-
work more efficiently compared to expensive finite element simulation approach without
compromising the accuracy, of results. The closed-form formulae of elastic moduli for
irregular honeycombs,have been summarized in Table 1 for ready reference to the read-
ers along with the €xpressions of elastic moduli for uniform honeycombs. The quantities
Zaa, Zy and Z., represent the elastic moduli of regular honeycomb provided by Gibson
and Ashby (Gibson and Ashby, 1999), elastic moduli of a single representative unit cell
element (RUCE) and elastic moduli of the entire irregular honeycomb respectively, where

‘Z’ denotes the in-plane elastic modulus.
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Table 1: Summary of formulae for effective in-plane elastic properties of honeycombs
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It can be noticed that the expressions of longitudinal Young’s modulus, transverse Young’s
modulus and shear modulus are functions of both structural geometry and material prop-
erties of the irregular honeycomb (i.e. ratios h/l,t/l, s/l and angles 0, o, 5 and Ej), while
the Poisson’s ratios depend only on structural geometry of irregular honeycombs (i.e.
ratios h/l,t/l, s/l and angles 0, «, 5) (refer Table 1).

An important finding of this study is that, though the effect of variations in. cellangle
on Fy and vqy is small, Es, v and G5 reduce significantly with the increasesin degree of
random variation of the cell angles. The highest reduction in the values,of elastic moduli
is observed in case of Ey and v, when the mean cell angle is considered 60°. This uncer-
tainty in the elastic moduli of honeycombs owing to random variationsin cell angle would
have significant influence on the subsequent analysis and<design process. The formulae
developed here can also be used to predict equivalent, in=plane elastic moduli of irregular
honeycombs having spatial variation in material preperties and thickness of cell wall. The
proposed conceptual analytical framework to efficiently deal with spatial irregularities in
honeycombs can be extended further to other cellular structures considering appropriate

representative unit cell element.
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