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ABSTRACT: Exchange of the greenhouse gases carbon dioxide (CO2) and methane (CH4)
across inland water surfaces is an important component of the terrestrial carbon (C) balance.
We investigated the fluxes of these two gases across the surface of oligotrophic Lake Stechlin
using a floating chamber approach. The normalized gas transfer rate for CH4 (k600,CH4) was on
average 2.5 times higher than that for CO2 (k600,CO2) and consequently higher than Fickian
transport. Because of its low solubility relative to CO2, the enhanced CH4 flux is possibly
explained by the presence of microbubbles in the lake’s surface layer. These microbubbles may
originate from atmospheric bubble entrainment or gas supersaturation (i.e., O2) or both.
Irrespective of the source, we determined that an average of 145 L m−2 d−1 of gas is required to
exit the surface layer via microbubbles to produce the observed elevated k600,CH4. As k600 values
are used to estimate CH4 pathways in aquatic systems, the presence of microbubbles could alter
the resulting CH4 and perhaps C balances. These microbubbles will also affect the surface
fluxes of other sparingly soluble gases in inland waters, including O2 and N2.

■ INTRODUCTION

Inland lakes and reservoirs cover ∼3% of the global land
surface.1 These aquatic systems receive and transform
substantial amounts of organic carbon (C). Currently, however,
they are excluded from the terrestrial greenhouse gas (GHG)
balance.2,3 While it is estimated that inland waters receive 2.9
Pg C y−1 from the surrounding landscape, only ∼50% is buried
(21%) or transported to the sea (∼31%). Therefore, about half
of the allochthonous C is returned to the atmosphere as either
carbon dioxide (CO2) or methane (CH4) via gas exchange.4

While methane emissions from inland waters are generally
considered small compared to CO2,

3,5 the climatic forcing on a
per mass basis is substantially (∼25×) higher.6 However,
because of the complex flux pathways, and even epilimnetic
CH4 sources,

7,8 there is a large degree of uncertainty in GHG
emissions, especially freshwater CH4 fluxes.

5,9

Diffusive exchange of CO2 and CH4 across the water surface
is a key emission pathway that is generally assumed to follow
Fickian transport.9,10 The exchange coefficient, k, is normalized
as k600 to account for temperature and molecular diffusivity
variations among gases, and in a system driven by Fickian
diffusion, k600 can be used to compare the transport of different
gases.11,12 The k600 value is strongly affected by water-side
turbulence13−16 and increases with sea-surface roughness, rain,
and wave (both micro- and large-scale) breaking.17 In lakes and
reservoirs, turbulence is often driven by wind; however, as
turbulence is difficult to measure, k600 estimates are often
related to wind speed.13,18 These wind-parametrizations tend to

underestimate diffusive fluxes, as convective mixing due to
surface buoyancy loss (cooling) also strongly drives k600 values,
particularly at low wind speeds.14,17

Besides Fickian transport, the presence of surface micro-
bubbles (diameters generally <1 mm19) has been proposed to
increase the surface fluxes of sparingly soluble gases.20,21 Not to
be confused with sediment methane ebullition, microbubbles
are introduced into the surface layer because of, for example,
breaking waves, precipitation, or gas-supersaturation (e.g., from
primary production).21 Microbubble entrainment has also been
associated with Langmuir circulation,22 and in lakes, bubble
entrainment can occur at wind speeds from 3 to 8 m s−1.17

Because of their small size, microbubbles both remain in the
surface layer for long periods of time (i.e., days)23 and
equilibrate rapidly with other dissolved gases in the water where
they are exposed.20 The microbubble phenomenon, however,
has only recently been proposed as an important flux pathway
for CH4 in inland aquatic systems.9,10 Prairie and del Giorgio9

report a ∼2.3 fold increase in k600,CH4 versus k600,CO2 measured
on several meso- and oligotrophic lakes and a newly
impounded reservoir. The authors attribute this enhanced
k600,CH4 to the presence of microbubbles. Because CO2 is much
more soluble than CH4, its flux is expected to be less affected.
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We investigate microbubble-enhanced CH4 fluxes from an
oligotrophic lake. The study combines flux measurements using
a floating chamber attached to a portable GHG (CH4 and
CO2) analyzer, together with turbulence measurements. We use
a combination of bubble-modeling and a system-analytical
approach to investigate the measured fluxes, and we estimate
the volume of gas bubble exchange required to produce our
observed fluxes. We extrapolate our model results to investigate
the role of microbubbles on oxygen fluxes and, finally, we
comment on their possible sources and impacts.

■ MATERIALS AND METHODS
Study Site. The 24 h measurement campaign was

performed in 2013 (24 August 20:00 to 25 August 21:00) on
Lake Stechlin (53°9.69′N, 13°1.89′E; Germany; Figure S1 of
the Supporting Information). Measurements were performed in
the SW section of the lake (ca. 25−30 m water depth) and are
summarized in Table 1. Oligotrophic Lake Stechlin has a
maximum depth of 69.5 m and a surface area of 4.3 km2.24,25

Studies of its sediments showed very low methanogenic
activities,26−28 mainly occurring at sediment depths below 20
cm.29 The resulting porewater CH4 concentrations are low, and
subsequently no sediment-methane ebullition was found.26

Floating Chamber and Gas Analyzer. We measured
gaseous CO2 and CH4 emissions at the water−air interface with
a floating chamber attached to a portable GHG analyzer (Los
Gatos Research, Inc., USA). The floating chamber consisted of
an inverted plastic container with foam elements for floatation
(Figure S2 of the Supporting Information). To minimize
artificial turbulence effects, the buoyancy element was adjusted
so that as little as possible of the chamber penetrated below the
water surface (∼2 cm) while still ensuring an effective seal.16,30

The chamber was painted white to minimize heating. Two gas
ports (inflow and outflow) were installed at the top of the
chamber and were connected to the GHG analyzer via two 5 m
gastight tubes (Tygon 2375). The GHG analyzer measured the
gaseous CO2 and CH4 concentrations in the chamber every 1 s.
Transects were performed with the chamber deployed and kept
at a distance of ∼3 m from a small rowboat. The boat and
chamber were allowed to freely drift, with the chamber floating
in the general direction and speed of the surface water velocity
to minimize artificial disturbance. Fluxes were obtained by the
slopes of the resolved CH4 and CO2 curves over the first ∼8
min (see Figures S3 and S4 of the Supporting Information),
when the slopes were approximately linear (R2 > 0.98).
Dissolved Gases. Dissolved pCO2 and CH4 sensors

(HydroC, CONTROS Systems & Solutions GmbH, Germany)
were deployed off the side of the boat at ∼0.5 m depth during
the entire campaign, and they recorded data every 10 s. The
CH4 sensor was calibrated with measured CH4 water samples
obtained from the surface water of the lake. The pCO2 sensor
was factory calibrated shortly before the campaign (July 2013)
and was corrected for drift postcampaign by CONTROS.31 A
YSI multiprobe (6600 V2; YSI Inc., USA) was deployed
alongside the CONTROS sensors, which recorded temperature
and dissolved oxygen (O2) with a 10 s sampling frequency.
CH4 Sampling and Measurements.Water sample profiles

for dissolved CH4 were collected with a Ruttner water sampler
at a fixed location (near the weather station; water depth = 69
m) on four occasions during the campaign (August 24−25,
2013): afternoon (17:00), midnight, before sunrise (05:30),
and noon. On board, the water was carefully filled into 120 mL
glass bottles and was sealed gastight with butyl rubber septa and T
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aluminum caps. Dissolved CH4 was measured within 1 h in the
laboratory by the headspace displacement method32 on a gas
chromatograph equipped with a flame ionization detector
(Shimadzu GC 14A); the gas chromatograph was calibrated by
injecting at least five different volumes of a 1% methane
standard (Supelco, ScottyII analyzed gases, USA).
Weather Station Data. Meteorological parameters, includ-

ing air temperature, relative humidity, and wind speeds (at 2 m
height) as well as vertical profiles of the water temperature and
oxygen content were collected by the autonomous weather
station LakeESP (Precision Measurement Engineering, USA),
located at the deepest point of the lake (69 m). Wind speed
data were corrected to 10 m using the simple logarithmic law
without atmospheric stability correction.13,33 See the Support-
ing Information for sensor specifications.
Turbulent Kinetic Energy (TKE) Dissipation. The pulse-

coherent high-resolution acoustic Doppler profiler HR-
Aquadopp (Nortek AS, Norway) was moored up looking at
2.2 m beneath the lake surface. The profiler registered three
components of the current velocity vector at a sampling rate of
0.5 Hz with a vertical resolution of 0.02 m. The dissipation rate
(ε) of TKE was determined using the structure function
method and was used later to justify wind speed as proxy for
the mixing intensity in the upper water column (see Methods
of the Supporting Information).34

Gas Flux Calculations and Exchange Velocities. The
diffusive flux F (mol m−2 d−1) across the air−water interface for
an individual gas species i is defined as

= −F k C H P( )i i i i iwater, (4)

where k (m d−1) is the transfer velocity (or piston velocity),
Cwater (mol m−3) is the concentration of the dissolved gas, H
(mol m−3 Pa−1) is the Henry’s coefficient, and P (Pa) is the
atmospheric gas partial pressure. As the flux and both the air-
side and water-side gas concentrations are measured, the
transfer velocity k can be solved by

= −k F C H P/( )i i i i iwater, (5)

For comparison of transfer velocities between experiments and
for different gases, k is adjusted to a Schmidt number (Sc) of
600, where Sc is the ratio of the kinematic viscosity of water to
the diffusion coefficient of SF6 and Sc = 600 is for CO2 at 20
°C.13,35 The adjusted k, termed k600, is defined as

= −k k (600/Sc )i i
n

600 (6)

Similar to Guerin et al.36 and Prairie and del Giorgio,9 the
exponent n is taken as n = 2/3 for wind speed < 3.7 m s−1 and
n = 1/2 for wind > 3.7 m s−1.
Microbubble Model. For the microbubble modeling, the

discrete-bubble modeling approach was used. The modeling
approach here is a simplified, steady-state approach compared
to that of Merlivat and Memery.37 The model predicts the
evolution of gases (both dissolution and stripping) across the
surface of a single bubble38,39 as

= −
M
t

K C H P A
d
d

( )i
i i i biwater, s (7)

where dMi (mol) is the change of moles in the bubble, t is time
(s), Ki (m s−1) is the gas-transfer rate across the bubble surface,
As (m

2) is the surface area of the bubble, and Pbi (Pa) is the gas
partial pressure in the bubble. The model was used to estimate
the time it takes for a 1 mm diameter air bubble introduced into

the surface layer to become in equilibrium with ambient gases.
We used the average dissolved gas concentrations in our study
(Table 1) and tracked changes of O2, CH4, and CO2 in the
bubble. We assumed dissolved N2 in the surface water was at
atmospheric equilibrium.
For a bubble located at 10 cm depth, the 1 mm diameter

bubbles reached equilibrium with ambient dissolved gases in
<10 s. As the bubble residence time in the surface layer is likely
much longer than 10 s, and as the bubbles are likely smaller
than 1 mm,19 we can therefore assume steady-state to solve for
bubble gas partial pressures Pbi = Cwater,i/Hi. Henry’s coefficients
were obtained from Sander.40 The moles, n, of the particular
gas were solved using the ideal gas formulation, PbiV = nRT,
where V is the volume of the bubble (m3), T is the temperature
(K), and R is the gas constant (8.314 m3 Pa mol−1 K−1).

■ RESULTS
Overview. The onset of penetrative-convective mixing

driven by cooling of the lake surface (i.e., lake turnover) had
already begun several weeks prior to our study. The surface
mixed layer extended down to ∼7 m (<0.5 °C change over
depth) as indicated by the temperature profiles (Figures S5 and
S6 of the Supporting Information). The boat-mounted CH4
sensor and discrete CH4 samples from the center of the lake
(where the transects were performed) ranged from about 0.5
μmol L−1 at the start of the campaign and decreased to about
0.2 μmol L−1 toward the end of the campaign (Figure S7 of the
Supporting Information; Table 1). The surface mixed layer was
oversaturated with O2 (average ∼117% sat), and pCO2 values
ranged from about 215 to 240 ppm during the transects (Figure
S7 of the Supporting Information). The wind speed varied from
about 4 to 6 m s−1 and generally increased over time (Figure
1a). The wind speed and dissipation rate of TKE (ε) correlated

well (R2 = 0.94) excluding the brief period at the beginning of
the campaign during transect 1 (August 24 from 20:00 to
22:00; Figure 1a; Figure S8 of the Supporting Information); R2

was 0.65 including all data. The wind direction was nearly
constant and out of the east.
Each of the 12 transects (∼200−300 m) over the ∼24 h

campaign took on average 26 min and was in the direction of
the wind (westerly). For each transect, the average of each
constituent was calculated (Table 1). The atmospheric CH4
and CO2 concentrations were measured with the portable

Figure 1. Transect from August 24−25, 2013. (a) Wind speed
corrected to 10 m (gray is raw data, black is running mean) and
surface turbulence (dissipation rate of TKE measured by AQUA-
DOPP) over top 2 m. (b) Time series of CO2 and CH4 fluxes (F).
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GHG analyzer at the beginning of each transect. Surface
water−air fluxes of CH4 and CO2 measured with the floating
chamber showed smooth and linear changes of the gas
concentrations with time (linear fit correlation R2 > 0.98;
Figures S3 and S4 of the Supporting Information ), indicating
strictly diffusive transport; no abrupt concentration increases
associated with sediment-released CH4 bubbles were ob-
served.41

Flux Drivers. The CH4 and CO2 fluxes correlated strongly
with each other (R2 = 0.99; Figures 1b and 2a), indicating that

both were driven by similar processes. The transfer velocities
for CO2, k600,CO2, were on average about 2.7 times higher than
those calculated on the wind parametrizations after Crusius and
Wanninkhof;13 however, k600,CH4 was much (6.7 times) higher
(discussed below). The mass-transfer coefficients k600,CH4 and
k600,CO2 correlated well with wind speed (Figure 2b: R2 = 0.77,
R2 = 0.76, respectively, note that the first data point is
neglected) and the fluxes correlated with turbulence (Figure S9
of the Supporting Information; R2 = 0.69, R2 = 0.72,
respectively).
Enhanced k600,CH4 and the Role of Microbubbles.

While k600 values for CH4 and CO2 correlated well with one
another (R2 = 0.96), k600,CH4 was substantially higher. For
Fickian transport, k600 should be approximately equal for both
CH4 and CO2 at a given turbulence level. However, we found
that k600,CH4 was on average ∼2.5 times higher than k600,CO2
(Figure 3). The difference between k600,CH4 and k600,CO2
increased with wind speed, to nearly 3 times higher at the
maximum wind speed of 5.8 m s−1. This phenomenon has been

previously observed in lakes and has been attributed to the
presence and exiting of microbubbles from the surface layer.9

The microbubbles affect CH4 much more than CO2 because of
CH4’s lower solubility. We explore this hypothesis using a
simple bubble model combined with a system-analytical
approach.

Microbubble: Analytical Approach. In the following
analyses, we assumed the k600,CO2 is the baseline Fickian
transport for our system and, therefore, can be used to calculate
other gas fluxes using eq 4. The purpose was to separate the
Fickian flux component from the hypothesized microbubble
contribution. In this scenario, microbubbles can either be
formed in situ (e.g., O2 oversaturation from primary
production) or be introduced by turbulence due to wave
breaking and so forth. For CH4 and CO2, either assumption
will not affect the outcome. Within the surface layer, the
microbubbles strip the sparingly soluble gases (CH4, N2, and
O2) from the water into the gas phase and quickly reach
equilibrium (see Materials and Methods).
We performed our microbubble analysis in the following

steps:

(1) Assume that the k600,CO2 is the Fickian gas transfer
velocity for all dissolved gases and is thus unaffected by
the microbubbles.

(2) Calculate the Fickian CH4 flux (Figure 4a) using the
measured CH4 concentration driving force (Cwater,CH4 −
HCH4PCH4) and k600,CO2.

(3) Fit a linear regression to both the measured and
calculated (Fickian) CH4 fluxes as a function of wind
speed (Figure 4a).

(4) Solve for microbubble CH4 flux contribution taken as the
difference between the two regression lines from step 3
(dashed line, Figure 4a).

(5) Calculate the volume of gas that is necessary to exit the
surface layer to produce the microbubble CH4 flux
response (Figure 4b).

(6) Using the gas flux calculated in step 5, we check our
assumption in step 1 to see if the CO2 flux could also
potentially be enhanced by the microbubbles (Figure
4b).

(7) Finally, use the microbubble exchange to investigate their
effect on O2 fluxes across the water−air interface.

Microbubble: Analytical Results. On the basis of our
analysis, we assume that microbubble contribution to the CH4
flux (dashed line in Figure 4a) is negligible at winds ≤2 m s−1

and reaches a value of ∼2.4 mmol m−2 d−1 at wind speed = 6 m
s−1. Using the ideal gas law and the averaged surface dissolved
CH4 concentration, at steady state, a 1 mm diameter bubble in
the surface mixed layer would contain ∼5.76 × 10−9 mmol of
CH4. Using the flux enhancement estimated at a wind speed of
6 m s−1 (∼2.4 mmol m−2 d−1), the expected surface gas
exchange would be 0.22 m3 gas m−2 d−1 to produce the
observed CH4 flux enhancement.

Role of Microbubbles on CO2 Flux. The next question is
how will this microbubble gas exchange influence the CO2 flux?
In our system, the dissolved pCO2 was about 50% under-
saturated compared to atmospheric concentrations, which is
common for Lake Stechlin.42 Thus, the existing gas bubbles
would be similarly undersaturated with respect to atmospheric
concentrations, resulting in an apparent CO2 flux into the
water. Each 1 mm diameter bubble at equilibrium would be
undersaturated relative to atmospheric equilibrium by ∼−4.2 ×

Figure 2. (a) Methane flux vs CO2 flux indicating an excellent
correlation (R2 = 0.99) despite being in opposite directions (CH4
emission vs CO2 sink). (b) k600 for both gases as a function of wind
speed corrected to 10 m. k600 correlates well with wind speed, except
for first data points (open symbols), which were excluded from the
correlation because of the poor relationship between wind and
turbulence (see Figure 1).

Figure 3. k600,CH4 vs k600,CO2 with regression (solid line) and the 1:1
line (dashed line).
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10−9 mmol of CO2. Therefore, for 0.22 m
3 gas m−2 d−1 (at wind

speeds of ∼6 m s−1), the flux contribution for CO2 would only
be −1.7 mmol m−2 d−1 (Figure 4b). This CO2 flux contribution
from the microbubbles accounts for less than 4% of the flux we
expect at this wind speed (about −45 mmol m−2 d−1), which is
not surprising as CO2 is about 25−30 times more soluble than
CH4.

43

■ DISCUSSION
Elevated k600,CO2. During our campaign, the lake was a CO2

sink (−1300 mgCO2 m−2 d−1) with elevated CH4 emissions
(43 mg CH4 m−2 d−1 or 290 mg C m−2 d−1 as CO2
equivalents). Our measured k600,CO2 is ∼2.7 fold higher than
the values estimated according to Crusius and Wanninkhof13

and are in the same range as those reported by MacIntyre et
al.14 In lakes with high pH and undersaturated CO2,

44 such as
Lake Stechlin,42 conversion of CO2 to soluble bicarbonate/
carbonate and their precipitation at high pH (pH in Lake
Stechlin >8) can steepen the CO2 gradient in the diffusive
boundary layer and increase k600 for CO2 by 3.5−7.5 times,45

creating a chemically enhanced diffusion (CED) effect.
However, according to Bade and Cole,45 CED is likely to be
significant only in low turbulence situations and would only
affect k600,CO2 and not k600,CH4. Therefore, similar to the
conclusions reached by MacIntyre et al.14 and Eugster et al.,17

we assume that our k600 values are elevated because of
associated convective mixing and turbulent processes. This
∼2.7 fold increase over the estimates from Crusius and
Wanninkhof13 is therefore a Fickian enhancement and would
similarly affect k600 for both CO2 and CH4.
Microbubble-Elevated k600,CH4. Our k600,CH4 is on average

∼2.5 times higher than k600,CO2, slightly higher than the 2.3 fold
increase reported by Prairie and del Giorgio.9 Over our
campaign, an average of 145 L m−2 d−1 of gas must either be
exchanged with the atmosphere or be emitted as internally
generated microbubbles (or a combination). The microbubble
effect on surface mass transfer has long been discussed in
marine gas exchange studies46 but very rarely in freshwaters.10

To our knowledge, only one publication has suggested
microbubbles as an explanation for observed elevated k600,CH4.

9

Origin of Microbubbles in Lake Stechlin. Prairie and del
Giorgio9 suggest that the microbubbles result in supersaturated
waters because of seeding by suspended particles or colloids.

Indeed, algal and particle concentrations within the metal-
imnion of Lake Stechlin, including bacteria, could serve as gas
bubble nuclei.7

Ramsey47 studied bubble formation in a marine surface
mixed layer in oxygen oversaturated conditions and suggests
that for our conditions (O2 ∼ 117% saturation), bubble growth
can occur from the surface to a depth of ∼65 cm. These free
visible bubbles will result because of growth of invisible
microbubbles already present in the water column.47 Being
extremely small, these bubbles can have surface layer residence
times of up to several days.23 Additionally, once a free visible
bubble is formed, it will have a tendency to rise, and the
residence time in the surface mixed layer will decrease. As an
example, Melack and Kilham48 applied the theoretical Ramsey
calculations to measured O2 concentrations in Lake Nakuru
(Africa) and calculated that bubbles could theoretically grow at
depths of up to 2.5 m over their measurement campaign (see
their Figure 3). In fact, the authors were able to collect bubble-
gas samples with deployed gas traps in the surface layer of the
lake to verify the presence of bubbles.
As shown by our data (Figure 4a), microbubble fluxes were

related to wind speed and turbulence. Enhanced turbulence
could increase the exposure of gas-supersaturated water from
deeper in the mixed layer to the near surface, where the bubbles
could start growing faster because of lower hydrostatic pressure.
Bubble entrainment from the atmosphere is also expected to
occur in lakes at wind speeds from 3 to 8 m s−1,17

approximately the same range when we observed our
microbubble effects.
In Lake Stechlin and most inland waters, the two gases that

can conceivably produce microbubbles in the surface layer are
O2 and N2. In oxygenated surface water, the partial pressures of
these two gases far exceed other background gases, including
CH4, CO2, and argon (Ar). In the case of Lake Stechlin, besides
the supersaturated O2 during this study, dissolved N2
concentrations could also be supersaturated. Assuming the
lake water reached atmospheric gas equilibrium during spring
turnover at ∼6 °C, the bottom water concentration of N2
would be ∼730 μM whereas the surface equilibrium
concentration at 20 °C would be ∼540 μM.49 As the
thermocline was deepening because of penetrative convection,
it is conceivable that N2-rich bottom water upwelled into the
warmer surface mixed layer, thus adding to the total dissolved

Figure 4. (a) Measured CH4 fluxes (red circle) and recalculated CH4 fluxes using k600,CO2 (black square) and their linear fit (solid lines). We take the
difference between these as the microbubble flux contribution (dashed black line). (b) Calculated microbubble volume exiting the surface of the lake
as a function of wind speed (left axis). Right axis, corresponding microbubble-associated CO2 flux contribution.
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gas oversaturation, about 131% oversaturation of N2 + O2, and
stimulating the formation of microbubbles.
Implications. The microbubble phenomena can be

expected to enhance the flux of all sparingly soluble gases,
that is, N2, O2, and Ar. For example, using our assumed Fickian
k600 (for CO2) together with the measured O2 concentrations
gives an O2 outgassing of 220 mmol m−2 d−1 over our transect
period. According to our estimates, microbubble enhancement
will increase this value to 430 mmol m−2 d−1. This will be an
important point to consider for estimating carbon balances in
the surface productive layers, as O2 fluxes are often used as
proxies for inferring carbon turnover in aquatic systems.50

Fall turnover in lakes is an important time for CH4
outgassing when previously isolated CH4-rich waters in the
hypolimnion and metalimnion are mixed into the surface.51

However, the relative importance of direct CH4 emission versus
oxidation to CO2 during the turnover is less clear. For example,
Fernandez et al.52 compared CH4 emissions and oxidation rates
during turnover using a simple mass balance that relied on
literature k600 values. The authors conclude that only around
50% of the CH4 reaches the atmosphere, and the remaining is
oxidized. However, they also report that using the flux model
from MacIntyre et al.14 increases the released CH4 proportion
to 87% instead of 50%. Our work suggests that their CH4
emissions to the atmosphere may be even further under-
estimated if microbubbles were present, a condition which
seems likely to have occurred given the high wind speeds
measured during their campaign (up to 5−9 m s−1). Therefore,
even with a modest 2-fold increase in k600 because of
microbubbles, the estimated emissions to the atmosphere
would approach nearly 100% of the stored CH4.
Our work demonstrates the potential for considerable CH4

fluxes and emission from oxic, oligotrophic freshwaters. Using a
floating chamber, we directly measured an average CH4 flux of
about 2.6 ± 1.1 mmol m−2 d−1 (42 mg m−2 d−1). These are
surprisingly high surface fluxes, especially for an oligotrophic
lake. For comparison, these CH4 fluxes, though only measured
over a short period, are a factor of 4.2 times higher than the
diffusive fluxes reported for temperate lakes and are over 21
times higher than those in high temperate and subpolar
regions.5 In addition to the microbubble effect, these high CH4
fluxes are also attributed to the presence of the recently
discovered surface-layer methane production in oligotrophic
Lake Stechlin.7,8

Timing of Fluxes: The Unknown. The effect of wind
speed is conspicuous, from no flux enhancement at ≤2 m s−1 to
∼270% CH4 flux enhancement at 6 m s−1. The average wind
speed of 3.6 m s−1 (measured at 2 m height) during the
campaign corresponded to 145 L m−2 d−1 of gas emission via
microbubbles. Although multidecadal mean wind speed in Lake
Stechlin is below 2 m s−1 (1.8 averaged for 1958−2002, see
Kirillin et al.53), the effect could be significant during periods of
sustained gusts. We caution, however, against extrapolating our
results in terms of wind speed to other water bodies, as fetch
size along with many other factors could affect k600.

16

Questions remain as to the origin, prevalence, and timing of
microbubble formation. Microbubbles could have either
originated from (1) atmospheric entrainment of microbubbles,
(2) internal production due to gas supersaturation, (3) a
combination of both, or (4) some other unknown mechanisms.
We speculate that the phenomenon in Lake Stechlin was
related to the oncoming penetrative convective mixing
(turnover) combined with supersaturated O2 values, the

potential upwelling of N2-supersaturated water, and wind-
generating turbulence or bubble entrainment. The potentially
large impact of microbubbles on CH4 emission from aquatic
systems demonstrated here and the subsequent effect on the
terrestrial C budgets warrant further investigation.

■ ASSOCIATED CONTENT
*S Supporting Information
Meteorological sensor specifications and the turbulence
methods section, nine ancillary figures, including the map of
the study site (Figure S1), picture of the floating chamber
(Figure S2), and additional figures (Figures S3−S9) demon-
strating the background conditions and results. This material is
available free of charge via the Internet at http://pubs.acs.org/.

■ AUTHOR INFORMATION
Corresponding Author
*Phone: +41 22 379 0792; e-mail: daniel.mcginnis@unige.ch.
Author Contributions
D. F. McGinnis, S. Flury, K. Tang, G. Kirillin, C. Engelhardt,
and H.-P. Grossart conceived, designed, and performed the
study. P. Bodmer and S. Flury prepared the sampling
equipment (Berlin), and P. Bodmer designed and built the
flux chamber. P. Casper and H.-P. Grossart provided
equipment and sampling/measurement support from Neu-
globsow. D. F. McGinnis, G. Kirilin, and P. Bodmer performed
data analysis, and D. F. McGinnis developed and performed the
modeling. D. F. McGinnis wrote the manuscript with
contributions from all other authors. All authors contributed
equally to discussion of the results and manuscript develop-
ment. All authors have given approval of the final manuscript
version.
Notes
The authors declare no competing financial interests.

■ ACKNOWLEDGMENTS
The authors would like to express their gratitude to Elke Mach
and Solvig Pinnow for sample analyses and support. We would
also like to thank Katrin Premke for her support for this project
and her group at IGB for constructive input and discussion. We
thank two anonymous reviewers for their very constructive
input. D. F. McGinnis was supported by the Leibniz-Institute of
Freshwater Ecology and Inland Fisheries (IGB) Fellowship
Program in Freshwater Science. Funding for the study was
provided by the German Research Foundation (LO 1150/5-1).
G. Kirillin was supported by the German Science Foundation
(DFG project KI 853/7-1 LakeShift) and by the Leibniz-
Association (project SAW-2011-IGB-2 TemBi). S. Flury was
supported by the Swiss National Science Foundation
(PA00P2_142041 Fellowships for advanced researchers).
Additional support was provided by the DFG project
Aquameth (GR 1540/21-1). This work was (partially) carried
out within the SMART Joint Doctorate (Science for the
Management of Rivers and their Tidal systems) funded with
the support of the Erasmus Mundus program of the European
Union.

■ REFERENCES
(1) Aufdenkampe, A. K.; Mayorga, E.; Raymond, P. A.; Melack, J. M.;
Doney, S. C.; Alin, S. R.; Aalto, R. E.; Yoo, K. Riverine coupling of
biogeochemical cycles between land, oceans, and atmosphere. Front.
Ecol. Environ. 2011, 9 (1), 53−60.

Environmental Science & Technology Article

DOI: 10.1021/es503385d
Environ. Sci. Technol. 2015, 49, 873−880

878



(2) Battin, T. J.; Luyssaert, S.; Kaplan, L. A.; Aufdenkampe, A. K.;
Richter, A.; Tranvik, L. J. The boundless carbon cycle. Nat. Geosci.
2009, 2 (9), 598−600.
(3) Cole, J. J.; Prairie, Y. T.; Caraco, N. F.; McDowell, W. H.;
Tranvik, L. J.; Striegl, R. G.; Duarte, C. M.; Kortelainen, P.; Downing,
J. A.; Middelburg, J. J.; Melack, J. Plumbing the global carbon cycle:
Integrating inland waters into the terrestrial carbon budget. Ecosystems
2007, 10 (1), 171−184.
(4) Tranvik, L. J.; Downing, J. A.; Cotner, J. B.; Loiselle, S. A.; Striegl,
R. G.; Ballatore, T. J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L. B.;
Kortelainen, P. L.; Kutser, T.; Larsen, S.; Laurion, I.; Leech, D. M.;
McCallister, S. L.; McKnight, D. M.; Melack, J. M.; Overholt, E.;
Porter, J. A.; Prairie, Y.; Renwick, W. H.; Roland, F.; Sherman, B. S.;
Schindler, D. W.; Sobek, S.; Tremblay, A.; Vanni, M. J.; Verschoor, A.
M.; von Wachenfeldt, E.; Weyhenmeyer, G. A. Lakes and reservoirs as
regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54
(6), 2298−2314.
(5) Bastviken, D.; Tranvik, L. J.; Downing, J. A.; Crill, P. M.; Enrich-
Prast, A. Freshwater methane emissions offset the continental carbon
sink. Science 2011, 331 (6013).
(6) Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.;
Fahey, D. W.; Haywood, J.; Lean, J.; Lowe, D. C.; Myhre, G.; Nganga,
J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. Changes in
Atmospheric Constituents and in Radiative Forcing; In: Climate Change
2007: The Physical Science Basis. Contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z.,
Marquis, M., Averyt, K. B., Tignor, M., Miller, H.L., Eds.; Cambridge
University Press: Cambridge, United Kingdom and New York, NY,
USA, 2007.
(7) Grossart, H.-P.; Frindte, K.; Dziallas, C.; Eckert, W.; Tang, K. W.
Microbial methane production in oxygenated water column of an
oligotrophic lake. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (49), 19657−
19661.
(8) Tang, K. W.; McGinnis, D. F.; Frindte, K.; Bruchert, V.; Grossart,
H. P. Paradox reconsidered: Methane oversaturation in well-oxy-
genated lake waters. Limnol. Oceanogr. 2014, 59 (1), 275−284.
(9) Prairie, Y. T.; del Giorgio, P. A. A new pathway of freshwater
methane emissions and the putative importance of microbubbles.
Inland Waters 2013, 3 (3), 311−320.
(10) Beaulieu, J. J.; Shuster, W. D.; Rebholz, J. A. Controls on gas
transfer velocities in a large river. J. Geophys. Res.: Biogeosci. 2012, 117.
(11) Cole, J. J.; Bade, D. L.; Bastviken, D.; Pace, M. L.; Van de
Bogert, M. Multiple approaches to estimating air-water gas exchange in
small lakes. Limnol. Oceanogr. Meth. 2010, 8, 285−293.
(12) Jahne, B.; Munnich, K. O.; Bosinger, R.; Dutzi, A.; Huber, W.;
Libner, P. On the parameters influencing air-water gas-exchange. J.
Geophys. Res.: Oceans 1987, 92 (C2), 1937−1949.
(13) Crusius, J.; Wanninkhof, R. Gas transfer velocities measured at
low wind speed over a lake. Limnol. Oceanogr. 2003, 48 (3), 1010−
1017.
(14) MacIntyre, S.; Jonsson, A.; Jansson, M.; Aberg, J.; Turney, D. E.;
Miller, S. D. Buoyancy flux, turbulence, and the gas transfer coefficient
in a stratified lake. Geophys. Res. Lett. 2010, 37.
(15) Heiskanen, J. J.; Mammarella, I.; Haapanala, S.; Pumpanen, J.;
Vesala, T.; Macintyre, S.; Ojala, A. Effects of cooling and internal wave
motions on gas transfer coefficients in a boreal lake. Tellus, Ser. B:
Chem. Phys. Meteorol. 2014, 66.
(16) Vachon, D.; Prairie, Y. T.; Cole, J. J. The relationship between
near-surface turbulence and gas transfer velocity in freshwater systems
and its implications for floating chamber measurements of gas
exchange. Limnol. Oceanogr. 2010, 55 (4), 1723−1732.
(17) Eugster, W.; Kling, G.; Jonas, T.; McFadden, J. P.; Wüest, A.;
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