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Although blood letting and the use of 
leeches dates back to pharaonic Egypt,1 the 
U.S. Food and Drug Administration only 

approved the use of Hirudo medicinalis as a medi-
cal device in 2004.2 Leeches are used by plastic,3–7 
maxillofacial,8–10 and other surgeons11,12 to aid sal-
vage of venously congested pedicled flaps,13,14 free-
tissue transfers,3,15–17 replanted digits,6,18–25 ears,26–32 
lips,33–36 nasal tips, and the penis.12 Nonsurgical 

uses include the treatment of chronic pain syn-
dromes associated with degenerative diseases.37–39

From 1987, H. medicinalis was considered the 
sole European medicinal leech species in clini-
cal use. In fact, there are at least three species: 
H. medicinalis, H. orientalis, and H. verbana.40,41 
Although most commercial suppliers sell medici-
nal leeches labeled as H. medicinalis, Siddall et al.40 
revealed that nearly all annelids were genetically 
distinct H. verbana. We have received shipments 
from commercial suppliers that contained both 
H. verbana and H. orientalis. It is likely that both 
are used in large quantities in North America 
and Northern Europe. Commercially used H. ver-
bana mainly originate from Turkey, southeastern 
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Background: There are at least three distinct European leech species used 
medicinally: Hirudo medicinalis, H. orientalis, and H. verbana. Infection caused 
by leech microbiota is the most widely reported complication. Few studies have 
reported the culturable and unculturable bacteria and examined the antibiotic 
resistances in H. orientalis.
Methods: Following stratified random sampling from a major worldwide leech 
supplier, Hirudo orientalis leeches were identified by visual comparison and 
amplification and sequencing the cox1 locus. Combined culture and culture-
independent approaches were used to characterize the microbiota of the mid-
gut, and bacterial gyrB sequences from distinct colonies were used to identify 
the Aeromonas isolates. Nonculturable studies involved clone libraries of 16S 
rRNA genes, and Etests were used to investigate antibiotic sensitivities.
Results: Analysis of 16S rRNA gene clone libraries revealed the presence of 
several species in the intraluminal fluid of the crop, including a new finding 
of Morganella morganii, with Rikenella-like (35 percent) and Aeromonas veronii 
(38 percent) dominant members. The intestinum contained bacteria not pre-
viously isolated from the leech: Magnetospirillium species and Roseospira marina. 
Etests showed all A. veronii isolates were sensitive to ciprofloxacin, with either 
a complete or intermediate resistance to Augmentin.
Conclusions:  The authors show diverse microbiota in the leech digestive tract. 
The pathogenic potential of the additional gut symbionts isolated in this study 
is yet to be elucidated; however, M. morganii, which is a known human patho-
gen, is a new finding. In addition to adding to the knowledge base regarding 
antibiotic sensitivities, this article serves as an update to the reconstructive 
surgeon regarding leech therapy. (Plast. Reconstr. Surg. 133: 408e, 2014.)
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Europe, and the Krasnodar Territory in Russia. 
Isolation by distance has shaped the genetic setup 
of H. orientalis, hailing mainly from scattered 
inhospitable arid and alpine areas of Central Asia 
and Transcaucasia.42 It is possible to identify leech 
species by visual comparison to published descrip-
tions of external color patterns41 (Fig. 1).

Infection is a widely reported complication of 
leech therapy, with an incidence between 4.1 and 
36.2 percent (Table 1). The dermal incisions from 
the leech teeth allow entry of pathogenic microbes 
from the digestive tract by means of regurgitation 
or from the anterior sucker (Fig. 2). The common 
clinical presentation of infection is cellulitis,43,44 
often with a foul odor, which may be complicated 
by subcutaneous abscess formation. Extensive tis-
sue loss and septicemia have been reported.45–47 
Several publications advocate prophylactic anti-
biotics to combat leech-borne infections.5–7,48–54 It 
is noteworthy that recently ciprofloxacin-resistant 
infections have been reported.55,56

The digestive tracts of animals, including 
humans, are colonized by complex microbial 
communities, which provide important functions 
to the host, including the synthesis of essential 
nutrients, stimulation of the immune system, and 
resistance against colonization of pathogens.57,58 
The digestive tract of the leech consists of the 
crop (the larger organ) in which the ingested 
blood meal is stored and where water and salts 
are absorbed,59 and the intestinum, where further 
digestion of the blood meal is carried out (Fig. 3). 
In the crop, the symbionts form mixed-species 
microcolonies that either resemble polysaccha-
ride-embedded biofilms or bacteria proliferating 
on host-produced mucin rafts.60,61

Fig. 1. The characteristic color patterns of the dorsal and ventral 
surfaces of H. medicinalis (above), H. orientalis (center), and H. ver-
bana (below). [Computer-generated image courtesy of Stephen 
Atherton, B.Sc.(Hons.), M.A., R.M.I.P.]

Table 1. Published Case Series and Infection Rates 
following Leech Therapy

Authors, Year
No. of  

Patients
Period  

(yr)
Infection  
Rate (%)

Mercer et al., 1987 30 3 20
Lineaweaver et al., 1982 42 Not stated 7
De Chalain et al., 1996 18 5 11
Sartor et al., 2002 122 5 4.1
Bauters et al., 2007 47 2 36.2
Whitaker et al., 2011 35 4 20

Fig. 2. The incisions into the dermis made by the leech jaws and 
teeth allowing the entry of pathogenic microbes from the leech 
digestive tract by means of regurgitation.
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To understand the interaction of the complex 
microbial communities with hosts, some easily 
characterized “model systems” have been used. 
The medicinal leech is an example of such a model 
system.62,63 Early descriptions of the digestive tract 
microbiota of medicinal leeches reported an 
unusual simplicity; only one bacterium was cultur-
able.64 Subsequent studies supported the presence 
of one dominant microbe, an Aeromonas species, 
but disagreed on two—the identity of the Aeromo-
nas species and the presence of other microbes 
in the leech midgut.43,65–68 Early case reports iden-
tifying Aeromonas hydrophila infections used com-
mercial chemotaxonomy phenotypic tests, which 
may not accurately identify environmental A. 
hydrophila to the species level.68–71 The second con-
troversy is the complexity of the midgut microbi-
ota. A few studies implementing nonquantitative 
approaches reported the presence of additional 
bacteria within the midgut,65 whereas other stud-
ies reported only Aeromonas species.66 Studies of 
invertebrate midguts using culture-independent 
methods to detect diverse gut microbial commu-
nities in a wide range of hosts reported more com-
plex microbial communities and were consistent 
with the observation that 95 percent of microbes 
in any environment cannot be cultured in a labo-
ratory setting.72

There have been attempts to characterize the 
culturable and unculturable microbiota of clini-
cally used medicinal leeches using a combination 
of molecular and biochemical studies. Only one 
publication has previously investigated H. orienta-
lis, which is used across Western Europe and North 
America. It has been demonstrated previously that 
the digestive tracts of H. verbana, H. medicinalis, 
and H. orientalis have different microbiota. Hirudo 
verbana contained A. veronii66,73 and Rikenella-like 
species, whereas H. orientalis was colonized with 
A. veronii or A. jandaei. From H. medicinalis, one 
polymerase chain reaction–based study detected 
A. hydrophila.74

In view of the use of leeches worldwide by 
reconstructive surgeons, and the potential for 
adverse effects associated with infections such as 
reduction in salvage rates, prolonged antibiotic 
therapy, inpatient stay, and additional procedures, 
we investigated the culturable and unculturable 
microbiota of H. orientalis using contemporary 
biochemical and molecular genetic techniques. 
In addition to investigating the microbiota, we 
also assessed, for the first time using highly sensi-
tive methods, the resistance profiles to antibiotics 
commonly used by the surgical community.7

MATERIALS AND METHODS

Animal Identification
Leeches were identified as H. orientalis by visual 

comparison to published external color patterns41 
and DNA barcoding. DNA barcoding involved 
amplification and sequencing of 630 bp from the 
eukaryotic mitochondrial cox1 locus and compari-
son to previously sequenced European medicinal 
leeches and other species of Hirudinidae.40 A com-
bined culture and culture-independent approach 
was used to characterize the microbiota in the 
midgut (crop and intestinum)66,73 of H. orientalis.

Culture-Based Studies
Five starved leeches were selected by stratified 

random sampling from a major worldwide leech 
supplier. Following dissection, 100 μl of intralumi-
nal fluid was extracted from the crop (Fig. 3). The 
intraluminal fluid was diluted serially and plated 
onto blood agar under aerobic conditions. Plates 
were incubated at 30°C until growth was observed.

Morphologically distinct colonies were sec-
ondarily streaked onto blood agar, and incu-
bated overnight at 30°C. Colony polymerase 
chain reaction was performed on individual 
colonies using GoTaq. Universal 16S rRNA gene 

Fig. 3. A computer-generated image showing the basic anat-
omy of the leech.
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and Aeromonas-specific DNA Gyrase gyrB prim-
ers73,75 were used both for amplification and for 
sequencing [16S primers, 1492R (5′-TACGGY-
TACCTTGTTAGGACTT-3′) and 27F (5′-AGAGT 
TTGATCMTGGCTCAG-3′); gyrB primers, gyrB3F 
(TCCGGCGGTCTGCACGGCGT) and gyrB14R 
(TTGTCCGGGTTGTACTCGTC)].

Total reaction volume was 100 μl: 50 μl of 
GoTaq (either 1 μl of primer 1492R and 1 μl primer 
27F or 1 μl of gyrase B 3F and 1 μl of gyrase B 14 
R, 1 μl of resuspended DNA template; the colony 
was resuspended in 20 μl of nanopure water) and 
47 μl of nanopure water. The thermal profile used 
was as follows: cycle 1, 95°C for 5 minutes; cycle 2 
(×34), 95°C for 30 seconds (amplification), 55°C 
for 30 seconds, and 72°C for 1 minute 30 seconds; 
and cycle 3, 72°C for 10 minutes.

Gel electrophoresis was performed on poly-
merase chain reaction products using a 0.7% 
agarose gel. The polymerase chain reaction prod-
ucts were purified using Qiagen kit, and DNA was 
quantified using a spectrophotometer. Polymerase 
chain reaction products were sequenced using 
primers 27F and 1492R (16S) and gyrase B 3F and 
14R.60 The reactions were run on an ABI PRISM 
3100 (Applied Biosystems, Foster City, Calif.) cap-
illary DNA sequencer. Sequences were aligned 
using ContigExpress (ContigExpress, New York, 
N.Y.) and analyzed using VectorNTI 7 (Life Tech-
nologies, Grand Island, N.Y.) or Geneious 6.06 
(BioMatters, Ltd., Aukland, New Zealand) and 
deposited in GenBank. The sequences were then 
compared with the National Center for Biotech-
nology Information database using BLASTX and 
BLASTN.66,76 The sequences were aligned using 
MUSCLE and the phylogeny reconstructed using 
PHYML with HKY85 substitution model and 1000 
bootstraps.

Nonculturable Studies
Two H. orientalis selected by stratified random 

sampling were fed a sterile blood meal at room 
temperature (21°C). After 42 hours, the crop was 
dissected and intraluminal fluid extracted. The 
intestinum was removed intact. Then, 200 μl of 
intraluminal fluid was placed into a sterile micro-
centrifuge tube. The intestinum sample was sus-
pended in 500 μl of 0.85% sodium chloride and 
vortexed in a microcentrifuge tube. DNA was 
extracted from both tubes using a MasterPure 
DNA purification kit (Epicentre Biotechnologies, 
Madison, Wis.). DNA was quantified by spectro-
photometry. Polymerase chain reaction was sub-
sequently performed on 100 μg of DNA using 16S 
primers (27F and 1492R) as described above.

The polymerase chain reaction amplicon was 
quantified using gel electrophoresis. A 16S rRNA 
gene clone library was constructed by cloning 
16S rRNA gene amplicons into pCR2.1 and trans-
formed into Escherichia coli TOP10 cells using a TA 
cloning kit (Invitrogen, Carlsbad, Calif.) accord-
ing to the manufacturer’s instructions. (The acces-
sion numbers for Ho_clone1-9, Ho1151, Ho1154, 
Ho11531, Ho11482, and Ho1149 are KC417278-
86, KC702159, KC702160, KC70216, KC70216, 
and KC702163, respectively.)

The cloned DNA was amplified by colony 
polymerase chain reaction of 48 white colonies 
from intraluminal fluid and 48 white colonies 
from intestinum using M13 reverse primer and 
M13 forward primer. Thermocycling was similar 
to that previously described but with an anneal-
ing temperature of 48°C. Amplicons from indi-
vidual clones were digested separately using the 
restriction endonucleases HaeIII and TaqαI (New 
England Biolabs, Ipswich, Mass.) to generate 
restriction profiles, which were visualized in a 
2.0% Metaphor agarose gel (Cambrex, East Ruth-
erford, N.J.) stained with ethidium bromide. The 
digest setup included two total reaction volumes 
of 20 μl. The TaqαI digests were incubated at 65°C 
overnight (12 μl of polymerase chain reaction 
product, 0.2 μl of bovine serum albumin, 2 μl of 
Buffer 4, 2 μl of TaqαI, and 3.8 μl of nanopure 
water). The HaeIII digests were incubated at 37°C 
overnight (12 μl of polymerase chain reaction 
product, 0.2 μl of bovine serum albumin, 2 μl of 
Buffer 4, 2 μl of HaeIII, and 3.8 μl of nanopure 
water). Representative plasmids were sequenced 
using BigDye version 1.1. Sequences were assem-
bled using ContigExpress and compared to known 
16S rRNA gene sequences using the Ribosomal 
Database Project classifier.

Generation of Spontaneous Rifampicin-Resistant 
Mutants

A. veronii spontaneous rifampicin-resistant 
mutants were generated by plating 100 μl of an 
overnight culture on Luria-Bertani rifampicin 100 
μg/ml, yielding 1106Rf and 1107Rf. Plates were 
incubated overnight at 30°C.

Growth Curve
Cultures 1106Rf, 1107Rf, and HM21S were 

grown overnight in 5 ml of Luria-Bertani broth 
containing antibiotics under aerobic conditions 
in a shaker at 30°C. The optical density at 600 nm 
was measured using a spectrophotometer and the 
cultures were diluted to an optical density of 0.1.
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Ten microliters of 0.1 optical density of over-
night cultures was added to 200 μl of Luria-Bertani 
broth in a 48-well plate. The growth was monitored 
by measuring the optical density at 600 nm every 
10 minutes for 24 hours using a spectrophotom-
eter. This growth curve of the rifampicin-resistant 
mutants was compared to HM21S, an A. veronii 
isolate spontaneously resistant to streptomycin, 
cultured from the crop of H. verbana.

Competition Assay
Using previously established tests,60,66,77 the 

colonization ability of 1106Rf and 1107Rf was 
tested against a competitor strain, HM21S, by 
inoculating a blood meal with 250 colony-forming 
units/ml of each strain. Then, 500 μl of blood was 
removed from each blood meal before feeding to 
verify input.75 Six H. verbana and seven H. orien-
talis were fed 5 ml of heat-inactivated inoculated 
defibrinated sheep blood. Blood was placed in 
a 15-ml Falcon tube (Becton Dickinson, Frank-
lin Lakes, N.J.) covered with Parafilm (Pechiney 
Plastic Packaging, Inc., Chicago, Ill.). A sterile 
needle pierced the Parafilm, releasing negative 
pressure as the leech fed. After 42 hours at room 
temperature, leeches were killed and intralumi-
nal fluid was removed aseptically. Serial dilutions 
were plated as before on Luria-Bertani Rf 20 μg/
ml and Luria-Bertani Sm 100 μg/ml. Plates were 
incubated overnight at 30°C and the number of 
colony-forming units was counted. The competi-
tive index value was calculated using the following 
equation: competitive index value = (mutant output/
competitor output)/(mutant input/competitor input). 
A competitive index of 1 indicated the mutant 
colonized the same level as the competitor strain 
and competitive index less than 1.0 indicated that 
the mutant had a colonization defect.

Antibiotic Sensitivity Testing
A lawn of A. veronii strains isolated from three 

H. orientalis crops was plated onto Mueller-Hin-
ton agar plates. An Etest (AB bioMérieux, Marcy 
l’Etoile, France) comprising a predefined gradi-
ent of antibiotic concentrations on a thin, inert, 
nonporous plastic strip was placed on each plate, 
to determine the on-scale minimum inhibitory 
concentration of ciprofloxacin, ampicillin, and 
Augmentin (GlaxoSmithKline, London, United 
Kingdom) according to the AB bioMérieux pro-
tocol. One side of the strip carried the minimum 
inhibitory concentration reading scale in micro-
grams per milliliter and a two- or three-letter code 
to identify the antibiotic (i.e., CL, ciprofloxacin; 

XL, Augmentin/Co-amoxiclav; AM, amoxicillin). 
A predefined exponential gradient of antibiotic, 
dried and stabilized, was on the other side. Clini-
cal and Laboratory Standards Institute interpreta-
tive standards (in micrograms per milliliter) are 
shown in Table 2.

RESULTS

Identification of Culturable Bacteria
Only one colony morphology was detected on 

Luria-Bertani agar from H. orientalis. Five strains, 
obtained from four annelids, were identified 
with the API 20E test as A. hydrophila. As the 16S 
rRNA gene sequence is problematic for identify-
ing Aeromonas to the species level,78 we polymerase 
chain reaction–amplified and sequenced gyrB to 
successfully identify Aeromonas species.79 Phyloge-
netic analysis of the gyrB sequence results identi-
fied all five strains in a clade as A. veronii (Fig. 4). 
This clade had greater than 99 percent bootstrap 
support.

Culture-Independent Identification of Bacteria
Figure 5 illustrates the different restriction 

patterns of amplicons that were obtained from 
individual clones following digestion with the 
restriction endonucleases HaeIII and TaqαI (New 
England Biolabs), visualized in a 2.0% Meta-
phor agarose gel (Cambrex, East Rutherford, 
N.J.) stained with ethidium bromide. Multiple 
clones for each representative restriction profile 
were sequenced using M13R and M13F primers. 
Table 3 shows a clone library containing a detailed 
description of the microbiota (division, genus, 
and species) of both the crop (intraluminal fluid) 
and the intestinum from two H. orientalis speci-
men studied.

Competition Assay
Spontaneous antibiotic-resistant mutants were 

isolated, and no difference in the growth rates 
of 1106Rf, 1107Rf, and Hm21S were observed 
when tested in a rich, liquid medium at 28ºC 
(data not shown). When equal amounts of the 
H. orientalis isolates were computed against the 

Table 2. Clinical and Laboratory Standards Institute 
Interpretative Standards of the Etest

Susceptible  
(μg/ml)

Intermediate  
(μg/ml)

Resistant  
(μg/ml)

Ampicillin (AM) ≤8 16 ≥32
Augmentin (XL) ≤4 8 ≥16
Ciprofloxacin (CL) ≤4 8 ≥16
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H. verbana isolate Hm21S, no colonization defect 
was detected (Fig. 6) in either host H. orientalis or 
H. verbana. These data indicated that the symbi-
onts can proliferate equally well in either host.

Etest Antibiotic Sensitivity Testing Results
All strains were resistant to amoxicillin and 

two of three were resistant to Augmentin, with the 
remainder showing intermediate resistance. All 

Fig. 4. Phylogenetic tree of Aeromonas strains using gyrB. A maximum likelihood tree was generated from the DNA sequence, and 
bootstrap support values from 1000 replicates are shown.

Fig. 5. Metaphor agarose gels (2.0%) stained with ethidium bromide 
illustrating the amplicons from individual clones following digestion 
with the restriction endonucleases HaeIII and TaqαI.
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strains were sensitive to ciprofloxacin (Table 4). 
Figure 7 clearly shows Aeromonas strain 1148 exhib-
iting sensitivity to ciprofloxacin.

DISCUSSION
This study reveals that the microbiota of the 

medicinal leech is not as simple as many believe, 
and the microbiota of H. orientalis is more diverse 
than described in the only previous study.80 Cul-
ture-dependent studies confirmed A. veronii in 
all four leeches, which concurs with previous 
studies,66,73 but we did not detect A. jandaei. We 
confirm that the API20E tests fail to accurately 
identify A. hydrophila to the species level,7 and 
highlight that care has to be taken when identi-
fying Aeromonas species without complementary 
molecular approaches.

Our culture-independent studies were more 
revealing. Our 16S rRNA gene clone libraries 
revealed several species in addition to A. veronii 
in the intraluminal fluid of the crop, including 
α-Proteobacteria (Anaplasma marginale and Ochro-
bactrum anthropii), γ-Proteobacteria (M. morganii), 

a Rikenella-like Bacteroidetes, and a Clostridium-like 
Clostridiales. The relative abundance of the Bacte-
roidetes (35 percent) and A. veronii (38 percent) 
suggests that they are the dominant members of 
the crop community, as reported in H. verbana.66 
Bomar et al. and Kikuchi and Graf showed that 
these symbionts form polysaccharide-embedded, 
mixed-species microcolonies resembling floating 
granular biofilms81 or mucous rafts.61

Clone libraries from the intestinum suggest a 
similarly diverse bacterial community, including 
bacteria not previously isolated from the leech 
such as α-Proteobacteria Magnetospirillum species 
and Roseospira marina. Aeromonas veronii, Rikenella 
species, and Morganella morganii were predomi-
nant in the intestinal flora. Like Aeromonas spe-
cies and Bacteroidetes, M. morganii has also been 
implicated as a human pathogen. No clinical cases 
have been published in the literature; however, we 
have experienced a Morganella species causing a 
clinically significant soft-tissue infection in our 
unit. Aeromonas veronii isolates from H. orientalis 
were able to colonize both H. verbana and H. orien-
talis species equally.

Experimentally, the ability of A. veronii strains 
to cause septicemia has been assessed using intra-
peritoneal injections in mice.82 Studies searching 
for virulence factors in Aeromonas species have 
demonstrated the importance of type III secretion 
systems in causing disease.60,83 Type III secretion 
systems act as molecular syringes, penetrating the 
membrane of eukaryotic cells and injecting bac-
terial proteins into the cytosol. These proteins 
inhibit or stimulate phagocytosis, confer cytotox-
icity, and induce apoptosis.60,84 The importance of 
Aeromonas species as emerging pathogens is high-
lighted as the leading cause of wound infections 
in victims of the tsunami in Thailand85 and caus-
ing necrotizing fasciitis in patients after liposuc-
tion.86 It is postulated that the virulence factors 

Table 3. 16S Clone Libraries from the Intraluminal Fluid and Intestinum of H. orientalis

Source Bacterial Division Organism Animal 1 Animal 2 Laufer et al., 200880

ILF α-Proteobacteria Anaplasma marginale ND 7 (26)
α-Proteobacteria Ochrobactrum ND 2 (7.7)
γ-Proteobacteria Aeromonas veronii 11 (38) 6 (23)
γ-Proteobacteria Morganella morganii 8 (27) 4 (15)

Bacteroidetes Rikenella 10 (35) 4 (15) 65 (98)
Clostridia Clostridium ND 3 (26)

Intestinum α-Proteobacteria Magnetospirillum 2 (7) 5 (17)
α-Proteobacteria Roseospira marina 5 (18) 8 (28)
γ-Proteobacteria Aeromonas veronii 5 (18) 2 (6.9) 3 (6)
γ-Proteobacteria Morganella morganii 3 (10) 8 (28)
δ-Proteobacteria Desulfovibrio 4 (14) ND 11 (20.7)

Bacteroidetes Rikenella 9 (32) 6 (21) 23 (46)
ILF, intraluminal fluid; ND, not determined.

Fig. 6. A scatterplot showing a competition assay suggesting 
that there is no colonization defect of 1106Rf or 1107Rf in the 
digestive tract of H. orientalis or H. verbena.
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associated with Aeromonas species are potentiated 
by venous congestion, leading to a localized area 
of immunocompromise that is more susceptible 
to infection. The most common clinical presen-
tation of aeromonad infection is cellulitis43,44; in 
severe cases, extensive tissue loss and septicemia 
have been reported.45–47,87 Aeromonas species seem 
to have a particular affinity for muscle tissue, and 
are capable of producing extensive proteolytic 
enzymes, leading to a clinical picture resembling 
clostridial myonecrosis with gas production.88 The 
ability of Aeromonas species to invade the walls of 
blood vessels with resultant vasculitis, thrombo-
sis, and hemorrhagic necrosis is of concern to 
microsurgeons.

Etest results suggest that quinolones are the 
most appropriate antibiotic therapy to help pro-
tect against infective complications. All three 
isolates were sensitive to ciprofloxacin, with the 
isolates showing either a complete or intermedi-
ate resistance to Augmentin. The plastic surgery 
community has long been aware of the infection 
risk associated with leech application89,90; however, 
despite the emerging evidence base that Augmen-
tin can be ineffective,91–93 with fluoroquinolones 
seeming to be consistently active,50,51,65,91,92 even 
new and widely used textbooks and Web sites con-
tinue to advocate the use of amoxicillin and cla-
vulanic acid preparations. Recently, the first cases 

to our knowledge of ciprofloxacin-resistant leech–
transmitted Aeromonas were reported.55,94

The alternative to antibiotic prophylaxis sug-
gested by Mumcuoglu et al.,95 feeding leeches 
with ciprofloxacin, is not advisable. Prolonged 
exposure of leeches to ciprofloxacin would inevi-
tably encourage Aeromonas species to develop 
resistance to ciprofloxacin, adding to the dra-
matic increase in multiresistant strains of bac-
teria, including ciprofloxacin.96,97 If Aeromonas 
species in leeches were resistant to ciprofloxacin 
at a clinical distribution facility, it would make 
such infections much harder to treat. In addition, 
if Aeromonas species were removed from the sym-
biotic natural flora of the leech digestive system, 
a possibly more virulent bacteria would fill the 
resultant vacuum. Interestingly, it has been pos-
tulated that switching from cow blood to chicken 
blood for raising medicinal leeches may have 
led to the appearance of ciprofloxacin-resistant 
Aeromonas strains.55

The lack of clarity in clinical practice is borne 
out in previous findings that less effective and 
superseded antibiotics are often used.7 In light 
of the recent reports from the United States and 
France highlighting new resistance patterns, 
it is prudent to take care in the prescription of 
leeches, being alert to standard infectious agents 
and the need to send swabs to accurately guide 
antibiotic therapy.
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Table 4. Etest Results

Aeromonas Strain Ciprofloxacin (μg/ml) Augmentin (μg/ml) Amoxicillin (μg/ml)

1147 0.004, sensitive 48, resistant >256, resistant
1148 0.004, sensitive 12, intermediate resistance >256, resistant
1151 0.003, sensitive 48, resistant >256, resistant

Fig. 7. The plate of Aeromonas strain 1148 exhibiting sensitiv-
ity to ciprofloxacin, intermediate resistance to Augmentin, and 
resistance to amoxicillin.
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