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Abstract

This paper presents a topology optimization algorithm for Mindlin±Reissner plate structures. Single- and three-layered arti®cial material

models are used with the resizing algorithm of Bendsùe and Kikuchi. The objective is to produce the stiffest single- or three-layered plate for

a given volume by redistributing the material throughout the plate. Numerical examples are provided to illustrate the process. q 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of ®nding optimum topologies for plate

structures has been treated extensively in the literature.

Since the late 1970s, it has been known that the optimum

reinforcement of plates may include in®nitely ®ne arrange-

ments of ribs [1]. This has given a special motivation to the

use of microscopically anisotropic plates using homogeni-

zation or other `smear-out' techniques. Olhoff et al. [2] and

Bendsùe [3] have investigated the optimum plate topology

based on Kirchhoff's theory, while Bendsùe and Kikuchi

[4], Soto and DõÁaz [5] Suzuki and Kikuchi [6] have used

the MR plate theory.

Three major techniques have been applied in structural

topology optimization, they have some common aspects

such as the material format used, the iterative improvement

scheme used and the constraint satisfaction strategy. They

can be classi®ed as follows:

² Evolutionary methods (E) [7,8]: The basic idea of this

method is to use the fully stressed design techniques. In

this case the inef®cient material is removed from the

design domain to allow the emergence of a new topology.

The removal process can be achieved by either varying

the elastic modulus as a function of the strain energy

density (as in the hard-kill/soft-kill methods) or by delet-

ing from the design domain the space occupied by the

group of elements with low strain energy density values

(as done in the ESO technique).

² Homogenization methods (H) [9±11]: The material is

represented by a sponge-like material with in®nitely

many micro-scale cells with void. The variation

of the porosity of this material throughout the struc-

ture is optimized using an optimality criteria algo-

rithm. Depending on the cell used, we have the

rank-1, rank-2 or microcell material models which

characterize the void size and orientation within the

unit cell. A more engineering concept for this char-

acterization is the arti®cial material model or the

SIMP method.

² Hybrid methods (H/E) [12,13] which contain attri-

butes of both (E) and (H) methods in differing

degrees. The earliest model uses the concept of the

Aboudi-cell method.

In the present paper, we consider the optimization of

structures that can be accurately modelled in bending

using Mindlin±Reissner (MR) models for lateral loading

and plane stress models for in-plane loading. The objec-

tive is to ®nd the stiffest plate structure subject to

a given loading, boundary conditions and material

Advances in Engineering Software 32 (2001) 159±168

0045-7949/01/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949(00)00141-3

www.elsevier.com/locate/advengsoft

* Corresponding author. Address: Department of Civil Engineering,

University of Wales, Swansea, UK.



properties. The plate dimensions are constrained so that

the plate ®ts within a speci®ed thin box and has a

speci®ed weight.

Single- and three-layered ®nite element (FE) models are

used. The stiffening topology (or layout) is found using a

topology optimization algorithm based on the arti®cial

material model or the SIMP method [10,11] with the resiz-

ing algorithm of Bendsùe and Kikuchi [4]. It is assumed that

with the single-layered model, the material is removed

creating zones of void and material within the layer.

However, with the three-layered model, the middle

layer must always be present throughout the whole

plate during the optimization process. The material

redistribution therefore takes place in the upper and

lower layers. This results in an optimum stiffening

topology, which is presented as a variable density plot

for the stiffening layers.

The process of shape and/or sizing structural optimization

can then continue, based on a fully integrated design opti-

mization tool, FIDO, in order to produce a reliable design of

the plate. Further details of the FIDO process can be found

in Ref. [14].

2. Generalized Mindlin±Reissner plate theory

The main assumptions of MR plate theory, which allows

for transverse shear deformation effects, are

² the displacements are small compared to the plate

thickness,

² the stress normal to the plate mid-surface is negligible,

and

² normals to the mid-surface remain straight but not neces-

sarily normal to the mid-surface after deformation.

The plate displacements �u; �v and �w at any point (x,y,z) can

be written as

�u�x; y; z� � u�x; y�1 zux�x; y�;
�v�x; y; z� � v�x; y�1 zuy�x; y�; �w�x; y; z� � w�x; y�;

�1�

where u(x,y), v(x,y), w(x,y), u x(x,y) and uy�x; y� are the

weighted averages for the in-plane, transverse de¯ection

and rotations of the normal in the xz-plane and the yz-

plane, respectively.

Note that here we are using a more general version of the

MR plate theory which allows membrane and bending

behaviour.

The in-plane strains may be written as

ep �
�u; x

�v;y

�v; x 1 �u;y

2664
3775 �

u; x 1 zux; x

v;y 1 zuy;y

u;y 1 v; x 1 z�ux;y 1 uy; x�

2664
3775

� em 1 zef ; �2a�

esh �
�w; x 1 �u;z

�w;y 1 �v;z

" #
�

w; x 1 ux

w;y 1 uy

" #
� es; �2b�

where e p, e f and ês are the membrane, curvature (or

¯exural) and transverse shear strains, and �u; x � 2 �u=x: By

assuming sz � 0; the stress±strain relations can be

expressed in partitioned form as

sp

ssh

" #
�

Dp 0

0 Dsh

" #
ep

esh

" #
; �3�

where sp � �sx;sy;sxy�T and ssh � �txz; tyz�T; and for an

isotropic material of elastic modulus E and Poisson's ratio n

Dp � E

1 2 n2

1 n 0

n 1 0

0 0 �1 2 n�=2

2664
3775 and

Dsh � E

2�1 1 n�
1 0

0 1

" #
:

�4�

The strain energy may be rewritten as

W � 1

2

Z
V
�eT

m 1 zeT
f ; e

T
sh�

Dp 0

0 Dsh

" #
em 1 zef

esh

" #
dv

� 1

2

Z
V
eT

mDpem dv 1
1

2

Z
V

zeT
f Dpem dv

1
1

2

Z
V
eT

mDpzef dv 1
1

2

Z
V

zeT
f Dpzef dv

1
1

2

Z
V
eT

s Dshes dv: �5�

If we assume that the material in the plate is placed symme-

trically about the mid-plane, there will be no membrane±

¯uxual coupling terms and then we have

W � Wm 1 Wf 1 Ws 1
1

2

Z
A
eT

mDmem dA

1
1

2

Z
A
eT

f Dfef dA 1
1

2

Z
A
eT

s Dses dA �6�

in which Dm, Df and Ds are the matrices of membrane,

¯exural and transverse shear rigidities, respectively, and

for a symmetric multi-layer model (with n layers) it may

F. Belblidia et al. / Advances in Engineering Software 32 (2001) 159±168160



be written as

Dm �
Xnl

i�1

Zzi 1 1

zi

Dpi
dz; Df �

Xnl

i�1

Zzi 1 1

zi

z2Dpi
dz;

Ds �
Xnl

i�1

Zzi 1 1

zi

1

a
Dshi

dz;

�7�

where Dpi
and Dshi

are the constitutive matrices for the ith

layer and a is a shear modi®cation factor.

Note that the associated stress resultant±strain resultant

relationship may be written as

sm

sf

ss

2664
3775 �

Dm 0 0

0 Df 0

0 0 Ds

2664
3775

em

ef

es

2664
3775 � De �8�

in which the membrane forces, the bending moment and the

transverse shear forces are, respectively,

sm � �Nx;Ny;Nxy�T �
Xnl

i�1

Zzi 1 1

zi

�sx;sy; txy�T dz;

sf � �Mx;My;Mxy�T �
Xnl

i�1

Zzi 1 1

zi

z�sx;sy; txy�T dz;

ss � �Qx;Qy�T �
Xnl

i�1

Zzi 1 1

zi

�txz; tyz�T dz:

�9�

Normally in topology optimization with the three-layered

model, the central layer is always taken as being solid

whereas the upper and lower layers have equal constitutive

properties that may represent a porous material. This is

called the stiffening model. If the upper and lower layers

are solid with the central layer representing a porous mate-

rial then this is called a honeycomb model.

3. Arti®cial material model

The layered model is suitable for use as a structural repre-

sentation when attempting to optimize the plate stiffening

topology. In this representation, when dealing with a single-

layer model, void and material zones are created within

the plate. The value of the constitutive matrices D1m and

D1s are therefore replaced by Dh
m and Dh

s : The same

procedure is applied to the three-layered stiffening

model. However, here the values of the constitutive

matrices D2m, D3m, and D2s, D3s are replaced by Dh
m

and Dh
s to represent the behaviour of the arti®cial mate-

rial which is now described.

There are three main material models used in topol-

ogy optimization: homogenized, rank-2 and arti®cial

material models. The arti®cial material model, which

is used in the present study, provides more practical

structural layouts than the homogenized material

model. In this model, instead of using the usual homo-

genized material model, the constitutive model can be

expressed as

Dh
m � x�x�Dm and Dh

s � x�x�Ds; �10�

where x (x) is a discrete function which has the form

x�x� �
1 if x [ Vs material

0 if x Ó Vs no material

(
�11�

For the numerical solution of the optimization problem,

the discrete function x causes solution dif®culties [9].

One easy way to overcome these dif®culties is to

replace the discrete function x by a continuous one j ,

where 0 # j�x� # 1: We will assume that the material

has a micro-cellular structure and each cell is a square

with a square hole of side length a, where 0 # a # 1;

and that the behaviour of the solid part of the structure

is isotropic rather than truly orthotropic. There is, there-

fore, no dependency on the orientation of the square

hole in the arti®cial material model unlike the case

for the more conventional homogenized model. Thus

in the present model

j�x� � 1 2 a 2�x� �12�

by using the material density parameter as a design

variable @ � �1 2 a�; the function may be written as

j�x� � �2@ 2 @ 2�: �13�
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The volume of solid material is then obtained by

Vs �
Z

V
j�x� dV �

Z
V
�2@ 2 @ 2� dV : �14�

It is desirable to suppress the porous areas on the layer

subject to optimization by penalizing its constitutive

equations [10,11] by an exponent g usually

taken between 3 and 9. See Fig. 1 for an illustration

of this relationship. This allows a better approximation

to condition (11). Consequently, the rigidity

matrices used in the stiffening layers can ®nally be

expressed as

Dh
m � �2@ 2 @2�gDm and Dh

s � �2@ 2 @2�gDs: �15�

4. Finite element analysis

A Lagrangian MR nine-node, general plate bending

element with an associated nine-node overlayed plane

stress element is adopted for the FE analysis in the

topology optimization. The element has ®ve degree of

freedom (u, v, w, u x, u y) at each node and can be used

for plate bending or plane stress by suppressing the

appropriate degrees of freedom as required. The detailed

fundamental formulation of the element can be found

elsewhere [15].

As we will see later, as part of the optimizing process we

will need the derivative of the strain energy with respect to

the density parameter @ i for each element i which will be

composed of a unique material. To obtain a membrane±

¯exural energy dominant layout for the plate, and as the

shear strain energy for thin plates is relatively small,

only the derivative of the membrane and ¯exural strain

energy Wmf has been taken into account here. Its deri-

vatives with respect to the material density parameter @ i

are written as

2W

2@i

.
2Wmf

2@i

� 2Wm

2@i

1
2Wf

2@i

�
Z

Ai

êT
m

2D̂h
m

2@i

êm 1
Z

Ai

êT
m

2D̂h
f

2@i

êm dA �16�

where from Eq. (7)

D̂h
m � �z3 2 z2�D1m

1�2@ 2 @2�g��z2 2 z1�D2m 1 �z4 2 z3�D3m�;

D̂h
f � 1

3
�z2

3 2 z3
2�D1m

1
�2@ 2 @2�g

3
��z3

2 2 z3
1�D2m 1 �z3

4 2 z3
3�D3m� (17a)

for the three-layered model and

D̂h
m � �2@ 2 @2�g�z2 2 z1�Dm;

D̂h
f � �2@ 2 @2�g

3
�z3

2 2 z3
1�Dm

�17b�

for the single-layered model. Note that Ai is the area of

element i.

In the examples presented later, the normalized value W/

Winitial is used to show the variation of the strain energy.

Because we are dealing with the arti®cial material model,

with a penalized form, the absolute strain energy value is

therefore not exact.

5. Resizing algorithm

The resizing algorithm adopted in the topology optimiza-

tion is now introduced. Each plate element is assumed to

have stiffening layers: one layer for the single-layer model

and the top and lower layers for the stiffening three-layer

model. The layers with each element are composed of a

unique arti®cial material with a unique density parameter

@ . Here, we will simply provide an outline of the resizing

algorithm, further details may be found elsewhere [4,6,9].

The topology optimization problem can be de®ned as

follows: minimize the strain energy Wmf, such that the speci-

®ed volume Vs must remain constant. The design variables

are the material density parameters @ � �@1;@2;¼;@nel�
where `nel' is the number of elements.

The necessary optimality conditions for the material

density parameters @ are a subset of the stationarity

conditions of the Lagrangian function (L) [9]

L�@� � Wmf 1 L
Xnel

i�1

Z
Vi

�2@i 2 @2
i � dV 2 Vs

� �

1
Xnel

i�1

Z
Vi

l1
@i
�@i 2 1� dV 2

Z
Vi

l2
@i
@i dV

� �
; �18�

where L; l1
@i

and l2
@i

are positive Lagrangian multi-

pliers, Wmf the combined membrane and ¯exural strain

energy of plate structure, and `nel' the number of

elements. The stationarity conditions for the material

density @ i are

2L

2@i

� 2Wmf

2@i

1 2L�1 2 @i�1 l1
@i

2 l2
@i
� 0;

i � 1;¼; nel

�19�
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or,

2Wmf

2@i

� 22L�1 2 @i�2 l1
@i

1 l2
@i
; i � 1;¼; nel �20�

with the switching conditions

l2
@i

$ 0; l1
@i

$ 0; l2
@i
@i $ 0; l1

@i
�@i 2 1� $ 0;

i � 1;¼; nel:
�21�

For intermediate densities �0 # @i # 1� which means the

side constraint is inactive, the necessary conditions can

be rewritten as

1

2 2L�1 2 @i�
2Wmf

2@i

� 1; i � 1;¼; nel: �22�

A resizing algorithm can then be devised in the follow-

ing form [9]:

where

Bk � 1

2L�1 2 @i�
2Wmf

2@i

; i � 1;¼; nel �24�

and h is a tuning parameter and z a moving limit. The

subscript k implies the kth iteration in the resizing

algorithm.

6. Topology optimization procedure

In topology optimization, the resizing algorithm and a FE
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Fig. 2. Clamped at one edge square plate under: (a) load condition (i); (b)

load condition (ii).

Fig. 3. Convergence of the normalized strain energy for clamped square

plate under a point load at the right-hand edge (load condition (i)): (a)

single-layer model; (b) three-layer model.

@k11
i �

max{�1 2 z�@k
i ; 1} if @k

i �Bk�h # max{�1 2 z�@k
i ; 0}

@k
i �Bk�h if max{�1 2 z�@k

i ; 0} # @k
i �Bk�h # min{�1 1 z�@k

i ; 1}

min{�1 1 z�@k
i ; 0} if min{�1 1 z�@k

i ; 1} # @k
i �Bk�h

8>><>>: �23�



analysis using the arti®cial material are applied in each

iteration step, and the original mesh does not change during

the iteration process.

The volume of the structure is needed. The strain energy

derivative is also required for each element i to update the

material density parameter @ i. Once the material density

parameter for each element has been updated, a termi-

nation criterion is considered. If the termination criter-

ion is satis®ed, the topology optimization iteration is

terminated.

The full topology optimization is now summarized:

1. Read problem data which includes: mesh data,

boundary and loading conditions, material properties,

de®nition of the design and non-design domains,

required volume reduction, and solution parameters.

2. Before starting the topology optimization loop, initi-

alize the density parameters @ i for each element, and

evaluate the rigidity matrices. Set the iteration para-

meter k � 0:

3. Increment the iteration number k by 1.

4. Perform a FE analysis for the current rigidity

matrices.

5. Resize the density parameter @ i within each element

based on (23) and (24).

6. Check the optimization termination criterion: if this

is satis®ed then output the optimal density parameters

and terminate the solution. Otherwise go to step (3).

Four termination criteria can be used:

² The number of iterations: a maximum number of

iterations, kmax, can be provided.

² The strain energy norm: the strain energy norm

�uWk 2 Wk21u=Wk21� between two subsequent topology

optimization iterations may be examined and if it is

smaller than a given value, then the program is

terminated.

² Strain energy level: if the strain energy of the

structure reaches a given value W0, the solution is

terminated.

² Change of the density parameter: if there is no

further change in the density parameter, the solution

is terminated.
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Fig. 4. Optimal stiffening topology for clamped square plate under a point

load at the right-hand edge (load condition (i)): (a) single-layer model; (b)

three-layer model.

Fig. 5. Convergence of the normalized strain energy for clamped square

plate under a point load at the top right-hand corner (load condition (ii)): (a)

single-layer model; (b) three-layer model.



7. Topology optimization examples

7.1. Introduction

The topology optimization is now illustrated for several

problems involving membrane or bending behaviour. For

each problem the variation of the normalized strain energy

is presented with the material distribution history. Two

material models are tested. The ®rst one is the single-layer

model where the layer is optimized by removing the mate-

rial and creating two main zones. A dark zone (in the ®gures

illustrating the results) represents the stiffening zone and the

light zone represents void. The second model is the

symmetric three-layered stiffening model with a solid

central layer. This central layer remains solid during

the optimization process and only the top and bottom

layers are subject to optimization. The dark zone in the

®gures illustrating the results for this model indicates

the existence of stiffening material in the top and

bottom layers, while the light colour shows the exis-

tence of the central layer only.

7.2. Square plates subjected to in-plane loads

Fig. 2(a) and (b) shows square plates clamped on the

left-hand edge and subjected to in-plane loadings for

which optimal topologies are sought. We will investi-

gate the optimal topologies using single- and three-layer

models. The loading conditions are (i) a point

load applied at the middle of the free edge opposite

the clamped edge and (ii) a point load applied at

the top right-hand corner. Note the non-design

domain shown as a shaded region near the load in

each case. No material may be removed in the non-

design domain.

The FE analysis input data is: elastic modulus E � 2:1 £
105

; Poisson's ratio n � 0:3; load intensity (for both

conditions) F � 2100: A structured FE mesh consisting

of 900 quadrilateral nine-node plane stress elements

with 3721 nodes is used to represent the plate. The

plate side length is a � 10; and the thickness is h �
0:1: For the three-layered model, the central solid

layer thickness is h0 � 0:05 and the combined top and

bottom layers' thickness is h1 � 0:05: All units are

F. Belblidia et al. / Advances in Engineering Software 32 (2001) 159±168 165

Fig. 6. Optimal stiffening topology for clamped square plate at one edge

under a point load at the top right-hand corner (load condition (ii)): (a)

single-layer model; (b) three-layer model.

Fig. 7. Convergence of the normalized strain energy for simply supported

square plate under a central point load: (a) single-layer model; (b) three-

layer model.



assumed to be consistent. For topology optimization, the

input data quantities are: volume fraction Vf � 50%;

arti®cial material exponent g � 3; tuning parameter h �
1:0; moving limit z � 0:015 and volume constraint toler-

ance d � 0:02:

Fig. 3(a) and (b) illustrates the variation of the

normalized strain energy with increasing number of

iterations for the single- and three-layer plate model

subjected to loading case (i).The optimal topologies

for these plates are shown in Fig. 4(a) and (b) at 100

iterations.

Fig. 5(a) and (b) illustrates the variation of the

normalized strain energy with increasing number of

iterations for the single- and three-layer plate model

subjected to loading case (ii). The optimal topologies

for these plates are shown in Fig. 6(a) and (b) at 100

iterations.

7.3. Plates subjected to lateral loads

We now consider some plates subjected to lateral

loads. In the two sets of examples the FE

analysis input data is: elastic modulus E � 10:92 £ 105
;

Poisson's ratio n � 0:3; the load intensity F � 2100;

and the plate thickness h � 0:1: The topology optimiza-

tion input data quantities are: volume fraction Vf �
50%; arti®cial material exponent g � 5; tuning para-

meter h � 0:8; moving limit z � 0:015 and volume

constraint tolerance d � 0:001: In all the examples

only a quadrant of the plate is analysed taking advan-

tage of the symmetry and all units are assumed to be

consistent.

7.3.1. Square plates under central load

The stiffening topologies for two centrally loaded square

plates are optimized. They have the following sets of

boundary conditions:

(i) Se simply supported on all four edges, and

(ii) Ce clamped on all four edges.

A structured FE mesh consisting of 625 quadrilateral

nine-node MR plate elements with 2601 nodes is used to

idealize the plate quadrant, and the plate side length a � 10:

Fig. 7(a) and (b) illustrates the variation of the normalized

strain energy with increasing number of iterations for the

simply supported plate with a single layer and three layers,

F. Belblidia et al. / Advances in Engineering Software 32 (2001) 159±168166

Fig. 8. Optimal stiffening topology for simply supported square plate under

a central point load: (a) single-layer model; (b) three-layer model.

Fig. 9. Convergence of the normalized strain energy for clamped square

plate under a central point load: (a) single-layer model; (b) three-layer

model.



respectively. The corresponding optimal topologies are

shown in Fig. 8(a) and (b) at 200 iterations.

Fig. 9(a) and (b) illustrates the variation of the normalized

strain energy with increasing number of iterations for the

clamped plate with a single layer and three layers,

respectively. The corresponding optimal topologies are

shown in Fig. 10(a) and (b) at 200 iterations.

7.3.2. Simply supported square plate with a central circular

hole subjected to four symmetrically placed point loads

The stiffening topology for the simply supported square

plate shown in Fig. 11, with a central circular hole subjected
to four symmetrically placed point loads, is optimized.

A structured FE mesh consisting of 200 quadrilateral

nine-node MR plate elements with 861 nodes is used

to idealize the symmetric plate quadrant (see Fig. 11).

The plate side length a � 2 and the radius of the hole is

R � 0:5: Each load is located at the centre of each plate

quadrant.

Fig. 12(a) and (b) illustrates the variation of the normal-

ized strain energy with increasing number of iterations for

the plate for a single- and three-layer model, respectively.

The optimal topologies are shown in Fig. 13(a) and (b) at

200 iterations for the plate for the single- and three-layer

models, respectively.

8. Conclusions

Using single- and three-layer, isotropic, nine-node plane

stress and MR plate bending elements and a resizing
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Fig. 11. Simply supported square plate with central circular hole subjected

to four symmetrically placed point loads: (a) design domain; (b) mesh of

plate quadrant.

Fig. 12. Convergence of the normalized strain energy for simply supported

square plate with central circular hole subjected to four point loads: (a)

single-layer model; (b) three-layer model.

Fig. 10. Optimal stiffening topology for clamped square plate under a

central point load: (a) single-layer model; (b) three-layer model.



algorithm, the topology optimization process has been

illustrated using several numerical examples for plates

under membrane and bending loading. In the examples

studied, the material is re-distributed in order to mini-

mize the strain energy with a constraint on the volume

of the plate.

For plates under membrane behaviour there is a decrease

of about 70±80% in the strain energy when using a single-

layered model and about 30±35% when using a three-

layered model. For plates under bending behaviour the

strain energy decreases by about 80±90% for both models.

The optimum design of plates is almost the same when using

a single- or a three-layered model. However, the difference

between a single- and three-layered model is more signi®-

cant for plates under membrane behaviour where the solid

central layer has a manifest structural purpose, while the

design look remarkably alike for plates under bending

behaviour.
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Fig. 13. Optimal stiffening topology for simply supported square plate with

central circular hole subject to four symmetrically placed point loads: (a)

single-layer model; (b) three-layer model.


