
Treball final de grau

GRAU D’ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

Automatic Image Colorization

Author: Guillem Pascual

Supervisor: Dr. Santi Seguí
Completed in: Departament de

Matemàtiques
i Informàtica

Barcelona, June 30, 2016

Abstract
Colorizing is the act of giving color to grayscale images. A convolutional-neural-

network-based method to colorize images without human interaction is presented in
this project. Various frameworks, architectures, color spaces and approximations are
explored to obtain the final model, capable of correctly restoring the original color of
photographies without any further information than the image itself.

The principal aim of this project is to propose an idempotent architecture that could
be trained with all kinds of images and yet produce good results. To demonstrate how
the process works and show the obtained results, three categories of images will be
used along this project: synthetic images representing numbers, landscape images and
human faces.

Resum
Coloritzar consisteix en dotar de color a imatges originalment en escala de grisos.

En aquest treball es presenta un mètode basat en xarxes neuronals convolucionals per
coloritzar imatges sense cap interacció humana. Diferents frameworks, arquitectures,
espais de color i aproximacions s’exploraran per obtenir el model final, capaç de restau-
rar de forma adequada el color original de fotografies, sense cap altre informació que
la mateixa imatge.

L’objectiu final d’aquest projecte es presentar una arquitectura idempotent que pu-
gui ser entrenada amb qualsevol tipus d’imatge i produir bons resultats. Per demostrar
que el procés funciona i mostrar els resultats obtinguts, es faran servir tres categori-
es diferents d’imatges: imatges sintètiques que representen números, paisatges i cares
humanes.

i

Acknowledgements

First of all, I would like to express my gratitude to Dr. Santi Seguí. Not only for his
incommensurable support and assistance throughout this research project, but also for his
guidance all along this course. This project would not be the same without him.

I would also like to thank my whole family, for giving me the opportunity to study this
degree and for helping me reach thus far. I am particularly grateful to Aida Montserrat, for
her patience, her reviews and critiques to improve this project and for constantly encouraging
me and pushing me further.

Lastly, I would also like to acknowledge all Universitat de Barcelona’s professors, for
teaching me the necessary concepts to become who I am, and all my friends and classmates
who have accompanied me during this trajectory.

ii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation and Objectives . 1

1.3 Memory organization . 2

2 State of the Art 4

3 Artificial Neural Networks 5

3.1 What are they? . 5

3.2 Activation Functions . 8

3.2.1 Linear . 8

3.2.2 Binary threshold . 9

3.2.3 Sigmoid . 9

3.2.4 Hyperbolic tangent . 9

3.2.5 Rectified Linear Units . 10

3.2.6 Other activation functions . 10

3.3 Layers . 10

3.3.1 Fully Connected . 11

3.3.2 Dropout . 11

3.3.3 Convolution . 12

3.3.4 Pooling . 13

3.3.5 Batch Normalization . 14

3.3.6 Summation . 14

3.3.7 Other layers . 15

3.4 Learning algorithm . 15

4 Architecture 19

4.1 Method 1: Convolutional and fully connected layers 19

4.2 Method 2: Fully convolutional networks . 20

4.2.1 Finetuning . 21

iii

4.2.2 Residual Networks . 21

4.2.3 Color space . 23

4.2.4 Final architecture . 24

5 Implementation 27

5.1 Frameworks . 27

5.1.1 Caffe . 27

5.1.2 Tensorflow . 27

5.2 Network implementation . 28

5.2.1 Optimizer . 28

5.2.2 Number of parameters . 28

5.2.3 Tensorflow specific . 29

5.2.4 Visualization . 31

5.3 Online website . 34

5.3.1 Backend . 35

5.3.2 Frontend . 36

5.3.3 Communication . 36

6 Results 38

6.1 Measure of quality . 38

6.2 Datasets . 39

6.2.1 Synthetic data . 39

6.2.2 Landscapes . 41

6.2.3 Faces . 46

7 Conclusions 51

7.1 Research conclusions . 51

7.2 Future work . 52

References 54

iv

1 Introduction

1.1 Context

The main aim of this project is to contribute to the research of the artificial networks field,
and specifically to convolutional neural networks. It will be focused on applications of this
machine learning sub-field, making special emphasis on its capacity to learn by themselves.

Image colorization, a technique based on coloring an image which is only available in
grayscale, has existed from long before. However, most works until recently had to be done
either by using Photoshop or such programs or even by completely painting the image by
hand. That means the user criteria and experience came to the scene, being perhaps the
most important source of information. This process, when done manually, might take up
to hours or even days to accomplish, while the solution we seek for should only delay a few
milliseconds until it produced a colored image.

Artificial neural networks are perfect for this task. Their training time might be high,
but then testing or producing results is done in a matter of milliseconds. More important
even, they have the capacity to learn all alone. All the subfields of artificial neural networks
are quickly evolving, within a span of fewer than 10 years we have seen innumerable new
techniques that overwhelm the already existing. Convolutional neural networks, the main
architecture used in this project, are no exception [1].

The Treball de Fi de Grau (TFG) makes a particular stress on what has been taught
in the subject ”Aprenentatge automàtic i minèria de dades”, as in it applies much of the
concepts taught there, from regressions to cross-validation. It also has a relation with ”Taller
de nous usos de la informàtica”, but it rather expands the knowledge taught there.

1.2 Motivation and Objectives

Neural networks are not only, as said above, constantly updating but considered to be
state of the art in many research fields. The aim of this project is to further research on them
and propose new cases of use along with techniques that might outperform existing meth-
ods. When this project was started no other known implementations of colorization through
convolutional neural network existed, thus it was, aside from research, a new method for col-
orization automatization. This work should serve as scientific research, personal publication
and final project.

As said, other methods exist that color images, but they require the user’s attention.
My method aims to be completely user agnostic, in the sense that no action will ever be
required from the user.

1

It must also be fast, within seconds the image should be colored and made available to
the user. All existing implementations now either require a huge amount of previous time
to model a feature space [2] or a vast number of examples like the grayscale image we want
to colorize [3, 4]. This method should require neither of those, only the input image will be
used, without needing hand-crafted features nor more examples.

All results should faithfully represent the reality. For example, skies should be colored
blue and grass should be green. The algorithm must be consistent with the regions, as in
all the grass should be painted the same color while preserving its texture and shape.

This project also takes the user into consideration. Aside from giving easy to use methods
on the Python implementation, it will provide an intuitive and easy to navigate online
website. The user should be able to simply select an image or drag it into the website for
it to be colorized, thus making it not only fast and autonomous but accessible without any
programming knowledge.

1.3 Memory organization

The structure followed in this project goes bottom-up, it first explains the inherent
concepts in artificial neural networks and expands them until all the information necessary
for understanding the implemented model has been taught. It is organized as follows:

1. State of the art: Related work with this project. Previous works and current imple-
mentations considered to be performing best at the moment of writing this memory
are introduced. A brief explanation of other methods and shallow comparisons are
done.

2. Artificial Neural Networks: Artificial Neural Networks (ANN) have not been cov-
ered in any course of the degree in Computer Science at the Universitat de Barcelona,
thus a previous research had to be done. This section will cover the background in-
formation required to develop this project. It aims at explaining what an ANN is and
further proceed into explaining Convolutional Neural Networks (CNN).
This chapter covers the basic structures of the ANN, as well as the most important
types of activations and layers. Backpropagation and gradient descend, the basic
methods used in deep learning to train networks, will also be explained

3. Architecture: This section proposes architectures which are presumed to be able to
address the colorization problem. They will be discussed and detailed, explaining the
reasoning behind each choice and how each decision was taken.

4. Implementation: While the last section introduced the architecture used, this one
will center on how they were particularly implemented. It will not only explain the
frameworks used, Caffe and Tensorflow, but also enter into details on which optimizer
was chosen and which hyperparameters where used and how were they found.

2

The developed website will also be detailed in this section, explaining the used tech-
nologies: Python for the webserver and a combination of HTML/CSS/JS/AJAX for
the client rendering and communication.

5. Results: Practical examples and discussion on the obtained results. The implemented
architectures will be tested and the resulting images will be examined, both qualita-
tively and quantitatively, to elaborate on the network performance. It will also be
noted some alternative modifications done to the network to attempt to improve it.

6. Conclusion: It will be written if the proposed objectives has been met or not. Cases
of good and bad performance will also be analyzed and conclusions will be extracted
from them.
Some discussion on how to improve the current work and some future ideas will also
be mentioned.

3

2 State of the Art

This section does an overview on some existing and just released methods which also
address the colorization problem. They will be mentioned and briefly explained to put this
project into perspective and better contextualize it.

As mentioned in the introduction, colorization is not a new problem. Some methods [2,
3, 4] already exist that attempt to solve it. They, however, require a huge previous effort
from the user.

The first method to successfully remove all required user intervention, by using convo-
lutional neural networks, appeared on January 2016 [5]. It uses a pretrained VGG Network
[6], a neural network designed to classify images among 1.000 different classes using the
Imagenet dataset [7], as a mean of initialization. To perform colorization it takes concepts
from the Residual Networks [8], which will be explained in detail in the Architecture section.
The images used to train, and also to test, are taken from this same Imagenet dataset and
the results showed good performance. Its main interest is, as said, being totally unattended
while producing realistic images. It has been widely explored and used, for example, to
perform colorization on whole videos1. It even surprisingly manages to be consistent along
consequent frames, which is not trivial.

Some precedents exist, for example Z. Cheng’s Deep Colorization[9]. Unlike the first
method, their method requires both crafting features and manually labelling the images
so that a semantic segmentation is first done. Moreover, for their method to work a final
post-processing has to be done to reduce the artefacts which result from the patch-based
approach they take. This would not fit in the previous established objectives of not requiring
user intervention and being fast, but it is still worth mentioning as the results obtained are
amongst the best ones.

Some other recent methods [10, 11] produce much better results on the positive examples.
On the other hand, they tend to miss-classify pixels and produce inconsistent results. Some
erratic behaviour has been observed where the network attempt to paint outside of the
textures and boundaries. Both, however, produce much more saturated results than the
networks above, a problem we will introduce later in this document and fully explain and
reason about.

This project will also use techniques considered state of the art, as it parts from [5]
to construct a more complex method based on completely different datasets and explores
beyond the original architecture.

1Colorizing Black&White Movies with Neural Networks: https://www.youtube.com/watch?v=
_MJU8VK2PI4

4

https://www.youtube.com/watch?v=_MJU8VK2PI4
https://www.youtube.com/watch?v=_MJU8VK2PI4

3 Artificial Neural Networks

3.1 What are they?

A first, correct, definition of ANN is a computational model inspired by biological neural
networks used to approximate functions that are not known a priori. They imitate the
behaviour of neurons, but using a simplified model where only the electrical signal is taken
into account and not the chemical processes.

Figure 1: Simplified biological model of a neuron
Image by Virtual Laboratory of Artificial Intelligence, Agh University

Take for example the neuron in Figure 1, one single neuron will receive information
from a wide number of neurons through its dendrites. Further on, the synapses will decide
whether that input will stimulate or inhibit the neuron activity. For each pair of dendrite
and synapse, the result will be multiplied and summed with the others. If the neuron gets
activated, because the signal has reached a high enough value, it will send a signal through
its axon. Otherwise, it will remain silent (on the electrical perspective, it will send a 0V
signal, whether elsewhere it would send a positive or negative voltage).

This biological simplification can easily be converted into a mathematical model, see
Figure 2. The dendrites are now the input variable x⃗, which gets multiplied by a set of
weights w⃗, the synapses. Two more concepts are also introduced, a function which collects
all the products (which usually is the summation, but could also be the product), called f (x)
and the activation function g(x). The whole operation could now be described in terms of:

y⃗ = g(f (w · x)) (1)

5

Figure 2: Mathematical model of the biological neuron

Figure 2 also illustrates the simplest and first neuron that was implemented, called the
McCulloch-Pitts neuron [12]. From Equation 1, and considering this neuron uses the binary
threshold as activation, we have:

g(x) =

{
1, if x > 0

0, otherwise
(2)

f (x) = ∑ x

The McCulloh-Pitts neuron, all by itself, is capable of implementing simple lineal separa-
ble problems, such as the AND and OR functions, but fails to fit any non-lineally separable
model. Such limitation, as will be seen, can be overcame by building larger networks (Fig-
ure 3) and appropriately choosing its layers and activation functions. A layer, indeed, is
nothing else but a set of neurons put together, each with its connection (weight) to one or
more neurons.

From this we can derive a more specialized definition, a neuronal network must:

1. Contain a set of adaptive weights which can be tuned by a learning algorithm (which
will be further discussed in the next sections)

2. Be able to approximate non-lineal functions of their inputs, to be able to solve more
complex problems

When creating an artificial neural network, we create networks of neurons. Each block
of those networks is called a Layer, and depending on how we connect it with the previous

6

Figure 3: Artificial Neural Network: A Network of McCulloch-Pitts neurons

layer it receives one name or another. For example, on Figure 3 we would have 3 layers:
the input layer, one hidden layer and the output one. A network is usually considered to be
deep when 2 or more hidden layers are used. Taking a closer look, the hidden layer consists
of 4 neurons which are fully connected by the previous layer and fully connected to the next
one. The term fully connected is explained in the Layers sections below.

We can also differentiate amongst some basic types of networks (although much more
exist) depending on how we connect them:

1. Feedforward neural network: Layers are only connected in a forward way, there are
not any connections between neurons in the same layer nor it can have connections
to previous layers. The network is, then, assembled into a Directed Acyclic Graph
(DAG).

2. Convolutional neural network: It is a specialization of the feedforward network but
using convolutional layers (explained below) and retaining the original shape of the

7

input along the process.

3. Recurrent neural network: This type of network allows connections with previous
layers and amongst itself, simulating a short term memory.

3.2 Activation Functions

Activations are a fundamental part of neural networks, as for them to be able to approx-
imate any function, we must allow the network to calculate non-linearities. This section
discusses the different types we may use.

The first thing to take into account is that the learning algorithm will use the derivative
of all layers and activation functions to compute the error on the prediction done by the
network, which implies that a requirement for any activation function is to be differentiable.

(a) Linear (b) Binary threshold (c) Sigmoid

(d) Hyperbolic Tangent (e) Rectified Linear Unit

Figure 4: Activation functions

3.2.1 Linear

The linear activation is the most basic and, as it name implies, it does not perform any
non-linearity (Figure 4a)

Its mathematical formula is:

g(x) = x

8

3.2.2 Binary threshold

We have already seen this activation function as part of the McCulloch-Pitts neuron
(Equation 2), its graphical representation is shown in Figure 4b.

3.2.3 Sigmoid

This function maps an input value into the range [0, 1] (Figure 4c) by using the formula
below:

g(x) =
1

1 + e−x (3)

The sigmoid activation has been widely used successfully due to its easy and fast deriva-
tive. Knowing that (ex)′ = x′ex, we can simply derive it with:

g′(x) = g(x)(1− g(x))

That means the same values obtained by the activation of the function, g(x), can be
reused when computing the derivative. This makes the function blazing fast by caching the
activation results and reusing them later.

3.2.4 Hyperbolic tangent

This function maps an input value into the range [−1, 1] (Figure 4d) by using the formula
below:

g(x) = tanh(x) (4)

Alike the sigmoid function, the derivative of the tanh function can reuse the values from
the activation itself:

g′(x) = 1− g2(x)

Caching the activation values will, again, make this function faster. The main difference
with the sigmoid activation relies on having a higher slope and a wider range.

9

3.2.5 Rectified Linear Units

Rectified Linear Units [13] (or ReLU for short) are an improved version of the linear
activation which are shown to dramatically improve the performance of a network. Their
most important feature is improving the gradient stability (something that will be discussed
further on the learning algorithm section), which makes the network able to be deeper and
learn better features.

The activation is given by (Figure 4e):

g(x) =

{
x, if x > 0

0, otherwise
(5)

3.2.6 Other activation functions

Recent papers have shown some other activation functions to have equal or better per-
formance. They will be briefly mentioned but no expanded because they are not being used
during this project:

1. Leaky ReLU [14]:

g(x) =

{
x, if x > 0

αx, otherwise

Where alpha ≈ 0.01

2. Exponential Linear Unit [15]:

g(x) =

{
x, if x > 0

α(ex − 1), otherwise

3. Parametric ReLU [16]:

g(x) =

{
x, if x > 0

αx, otherwise

Where α is a learnable parameter

3.3 Layers

Depending on how we connect the layer to the previous ones or even on the operation
they perform, we might distinguish into a wide range of layers.

10

3.3.1 Fully Connected

This type of layer, which can also be called Dense layer, connects each neuron of the
previous layer with each of the neurons this layer itself has. Therefore, if the previous layer
has n neurons and this one has m neurons, the total number of connections done are n ·m.

Although we now talk in terms of connections, a much better term would be parameters
or weights. If we recall Equation 1 and Figure 2, a neuron activation was defined as the dot
product (summation of multiplication) on x⃗ and a set of weights w⃗, the connections. Thus,
from here on we will talk in terms of weights or parameters the neural network must learn
to fit a function.

It is clear that the fully connected layer can not be huge, as its size would soon be bigger
than the memory we have available. Supposing we work with float32 data types, each weight
would occupy a total of 4 bytes, which gives an allocation of n ·m · 4 bytes.

One associated problem with fully connected layers is also the overfitting of the training
data. That is, a neural network composed solely of fully connected layers will tend to fit
too much on the training data and lose the capacity to generalize on new data, which will
make new predictions fail. This gets worst the bigger the fully connected layer is (the most
neurons it has). Also, stacking too much layers of this type would produce overfit or make
the gradients explode (go out of the data range).

3.3.2 Dropout

On the theme of preventing overfitting, the Dropout [17] comes to action. Its working
principle is straightforward, some of the neurons in the layer are set to 0, so that their
activation is inhibited. Those neurons are chosen at random from a fraction of the total
neurons (from 0.1 to 0.7 usually).

Deactivating some neurons implies the other ones must be accordingly scaled, so as to
preserve the gradient. It could be implemented by:

g(xi) =

{
xi/(1− ratio), if rndi > ratio

0, otherwise

Where rndi is a random value per neuron ∈ [0, 1] and ratio is also a value ∈ [0, 1].

This effectively reduces the overfitting by allowing the network to not completely rely
on each of the activations and rather look for general patterns.

11

3.3.3 Convolution

A convolution layer is a biologically inspired layer [18] which performs the operation it
name implies, a convolution over the image. A convolution (Figure 5) is performed by sliding
a kernel (a pattern) of size k · p (usually k = p, where k and p are odd) over the image and
computing the element-wise multiplication of its elements by the images on each pixel. The
main advantage over the traditional convolutions is that features, or kernels, must not be
hand-chosen, as the network learns the best features for its input.

Figure 5: Convolution of a 3x3 kernel on a reference image
Image by Apple

Convolutions have a few advantages over fully connected layers:

1. When working with images, they:

(a) Preserve the spatial shape of the image along the forward and backward pass
(b) Find textures on the image
(c) Find boundaries on the image

2. They greatly reduce the number of parameters of the network

The number of parameters of this layer is equal to the kernel’s size. We say this layer
has shared weights because it applies the same k · p weights all over the image (it convolves

12

the k · p kernel), instead of having a weight per neuron/connection like the fully connected
layer. We usually let this layer produce more than a single filter, thus having q different
filters of size k · p, giving a total of q · k · p parameters. Also, it may have an input of r
channels (activations) which must also be taken into account, giving the final formula of:
r · q · k · p parameters.

This layer allows to tune the following hyperparameters:

1. Number of filters: The capacity of the layer, how many filters it will convolve on
the image. The shallower the layer, the fewer filters we need as less information is
available.

2. Kernel size: The size of the kernel(s) to be convolved. As with traditional convolu-
tions, the bigger the filter, the bigger structures it will find.

3. Stride: The interval at which the filter is applied to the input, usually 1

4. Padding: The kernel needs k/2 extra pixels on the image for it to output an image
of the same size of the original. This is usually solved by adding a 0 padding to
the original image. Some frameworks, like Tensorflow, abstract it to some predefined
padding types (’same’ and ’valid’).

3.3.4 Pooling

When working with CNNs the pooling layer is important because it allows performing
non-linear downsampling of the original input image (Figure 6). This layer operates amongst
regions of the input and performs an operation on them so that only one output is given.
Specifically, it can compute the following operations:

1. Maximum: Over the region, output the maximum value found

2. Minimum: Over the region, output the minimum value found

3. Average: Output the average value of the region

4. Stochastic: Output a random value of the region

As with the convolutional layer, we can define the kernel size and stride. It is common
in pooling operations to use a kernel size of 2x2 and a stride size equal to the size of the
kernel, that is 2 in this case (k in the general case).

When working with images the most used type is the maximum pooling, because it allows
the network to be rotation invariant, in the sense that small changes will not affect it, as
the overall intensity will be the same.

13

Figure 6: Pooling of a 2x2 kernel, stride 2, on a reference image
Image by Stanford University

3.3.5 Batch Normalization

This layer normalizes its input by a moving average on the mean and standard deviation
of the activations. It does, indeed, perform a standardization, the output has a 0 centered
mean and standard deviation 1 [19]. It also biases and scales the values by two learnable
parameters, also named bias and scale.

It has proven to be useful because it:

1. Stabilizes the gradient and solves exploding gradient problems

2. Helps reduce overfitting

3. Accelerates learning

4. Makes the learning rate influence more superficial, in the sense that finding a good
learning rate becomes an easier task

It is being widely used and is thought to replace the local response normalization layer,
which was used in conjunction to convolutions to normalize the activations, and even could
deprecate the dropout layer.

3.3.6 Summation

This type of layer simply joins two other layers by performing the element-wise summa-
tion of the activation of both layers.

14

f (x1, x2) = x1 + x2

It is commonly used in architectures like the residual networks, which will be detailed in
section 4.2.2.

3.3.7 Other layers

In the field of Convolutional Neural Networks we also have the Local Response Normal-
ization [20], which performs a neighbourhood value normalization. More related to the field
of feedforward networks we have the Highway Layer [21]. Some other layers not used in this
project are the RNN related LSTM [22] and the GRU layer [23].

3.4 Learning algorithm

The algorithm to learn the weights or parameters of the network receives the name of
backward propagation of errors, abbreviated to backpropagation. This method only works for
supervised learning because it requires the target output to be known so that a loss function
(error function) can be computed.

It is a generalization of the single-layer delta rule, updated to work with multi-layered
networks. It requires to first forward2 the input through the network and then backprop-
agate the errors from the output to the input, making each layer rectify its weights for a
proportional part of its error. To correctly reduce the error we iteratively subtract a portion
of the error, for example by using the gradient descent algorithm.

In the simpler case (Figure 7), a network with no hidden layers and only and input and
output layer, we need to think of the network as an optimization problem, whose last layer
outputs the error as:

E =
1
2
(y− ŷ)2

Where ŷ is the network prediction and y the target value3. Which, in the one-dimensional
space would produce a convex function whose representation can be seen in Figure 8.

We already know the error for the last layer and how to minimize it, by taking its
derivative and moving into the direction that minimizes it:

2In neural networks feeding some input through the first layer and propagating it until the last is usually
denoted as forward

3We include the term 1
2 to cancel, later on the derivative, the 2 from the power

15

Figure 7: Network with no hidden layer, input fully connected to output

Figure 8: Euclidean error of a 1D function

E′ = y− ŷ (6)

In case of multi-layered networks, the contribution of the weights wij to this layer layerj
can be extrapolated by using the chain rule, that is:

δE
δwij

=
δE

δoutputj

δoutputj

δlayerj

δlayerj

δwij

16

However, we can see that δlayerj
δwij

is the same as the output of the following layer. That
means we have to start backpropagating the error from the last layer to the first one. We
may also note that the derivative of an output with respect to its input is given by:

δoutputj

δlayerj
=

δg(x)
δx

That is the derivative of the activation function with respect to its input. Thus, this
connects with the statement made in Section 3.2, that all activation functions must be
differentiable. If we suppose we are using the sigmoid function g(x) = 1

1+e−x , then

δoutputj

δlayerj
= g(x)(1− g(x))

Finally, the term δE
δoutputj

is straightforward in the output case of the output layer, where
we simply need to compute the derivative of the error (Equation 6). However, in case of
a layer in the middle of the network, the error E is given by the accumulated error of the
other layers, that is:

δE(outputj)

δoutputj
=

δE(netj+1, ..., netj+k)

δoutputj
= ∑

(
δE

δoutputj

δoutputj

δlayerj

)

Then, we can generalize this expression to:

δE
δwij

= σjoutputi

σj =
δE

δoutputj

δoutputj

δlayerj
=

{
(y− ŷ)g′(x), if j is output
(∑ σiwji)g′(x), otherwise

Finally, we must update the network weights. It can be done by multiplying the error
computed with a negated learning rate α. We change its sign because we want to find the
minimum of the optimization problem. The term α, called learning rate, must be chosen so
that the function converges fast but the steps are not too big:

∆wij = −α
δE

δwij
(7)

17

This last Equation 7 is called the Gradient Descend, which minimizes the error iteratively
by taking steps. However, as easy as it looked with the convex function in Figure 8, a more
realistic error function might be the one in Figure 9. This figure makes it clear that a small
α would make the minimization process get stuck in a local minimum. However, choosing a
big α would make the function not converge and oscillate in the global minimum. Choosing
the right α is crucial for the network to work.

Figure 9: Real error function of a multi-layered network

Nowadays gradient descend is not used as is, but using the so called Stochastic Gradient
Descend. The main reason behind this is that the first would require the whole dataset to
be forwarded and backpropagated at once. Datasets usually consist of thousands or even
millions of data, which makes this impossible. Input is then submitted either one-by-one or
using mini-batches, small groups of data.

18

4 Architecture

In this section it is written an explanation on each of the tested architectures. It is
explained how and why the final architecture was built and all the logical reasoning to come
up with it.

4.1 Method 1: Convolutional and fully connected layers

Figure 10: 2xConvolutions of a 5x5 kernel without padding + 3x(1 fully connected layer of
1000 units + 1 fully connected layer of 784 units)

The initial version of the neural network was a combination of convolutional, pooling
and fully connected layers (Figure 10). It can be said this first attempt is naive and simple,
as it attempts to reconstruct the color with a small number of layers.

First, a common set of convolutional layers with ReLU activations is placed to allow the
network to find textures. They are shared amongst the 3 resulting channels, RGB, as the
textures will be the same independently on which channel will be used. The idea is to let
these convolutional layers to find boundaries, textures and more complex representations

19

as they get deeper. A system like this one, which has a common set of layers first and
then divides into more branches might be called early-fusion [24], while the opposed would
be a late-fusion network. In the early-fussion approach, the features are considered to be
dependent between them, which makes sense in our particular case.

Then, each channel of the RGB space is rebuilt separately by splitting the network into
3 different branches. Each of them contains a set of 2 fully connected layers with ReLU
activations. For this to work, the last layer must have exactly the same size of the input
image (for example, if working with 28x28 images, it would be 28 · 28 = 784), because we
must reshape them to the original size at the end.

The error, or loss, was computed as the sum of the euclidean distances between each of
the resulting channels and the respective target channels.

In order to explain why an alternative architecture was used, we need to analyse this
network from the point of view of the number of parameters. The network worked fine
when an image of low resolution, for example 28x28, was used. But when trying with bigger
images of size 256x256, the last layer had to be of 256 · 256 = 65536 neurons. That means
it would require a total of 65536 · 1000 = 65536000 parameters only for the last layer. That
exceeds the maximum size of an integer (215 − 1 = 32767) and is about 260MB of memory
(65536000 · sizeo f (f loat) = 65536000 · 4 ≈ 260MB), which makes it impractical for any
learning process to succeed.

It became clear that a network using fully connected layers would not be able to accom-
plish the task due to memory constraints and computational power limits. So, although this
architecture worked with small images, the demonstration can be seen in Results, it was
unable to use full-size images.

4.2 Method 2: Fully convolutional networks

A network with no fully connected layers, consisting of convolutions and non-linearities
only, is usually called a fully convolutional network. As we have already said, the big
advantage of convolutions is its low number of parameters and its capacity to detect repeating
patterns. Consequently, they are ideal when working with high-resolution images where one
expects to find common textures.

The network used in this project uses a wide variety of concepts that need to be explained
before attempting to understand the network itself.

20

4.2.1 Finetuning

Finetuning, also called transfer learning, is a technique based on initializing the network’s
weights with the weights of another already-trained network. Take for example the VGG
network, which has been trained to recognize 1000 different types of objects. Its first 10
convolutional layers must have learned to recognize complex patterns for those objects. If
we were to recognize another object, even if it is not among those 1000 classes, it makes
sense to use those layers as our first layers too, because the network would already know
what to look for. The alternative to finetuning is initializing the network either by random
values or using probability distributions like the gaussian.

The main advantages of using finetuning over a plain random initialization are:

1. Better initialization yields more stable gradients, avoiding the common vanishing
(tending to 0) and exploding (tending to ∞) gradients problems

2. Faster learning, as the network already has good representations of the objects

Also, when transferring weights from one network to another, we may choose to: a)
freeze them and stop the network from modifying them at all, b) allow them to be modified
but at a slower rate compared to other layers (by selectively decreasing its learning rate) or
c) treat them as another variable to be optimized.

The first approach is used when the trained network already has good representations
for the problem we are facing. We consider its filters to be good enough to detect all kind
of objects we might need. Likewise, the second case also assumes this, but allows small
modifications for a better fitting on the current data.

Common sources of fine tuning are the VGG and the Alexnet [20] (or modifications
of it), as its first convolutional layers are proven to have learned complex representations.
Googlenet [25] and residual network are now being used too.

For example (Figure 11), the convolutional layers from the VGG network are used to
initialize a new network which must predict dog breeds. Note that only the convolutional
layers are taken, and its weights are frozen, but the remaining fully connected layers are
trainable, so that it can adjust to the new categories to predict.

4.2.2 Residual Networks

Intuition might tell that deeper networks, consisting of more chained convolutional layers,
might lead to more complex representations of the input data. This, although it is true,
comes with hard to solve problems:

21

Figure 11: Finetuning of the VGG convolutional layers to classify doog breeds

1. Exploding or vanishing gradients: The gradient might tend to 0 (thus having no
direction) or to explode and go out of the data range. This problem has been recently
solved by the batch normalization layer, but classic strategies like better initialization
or gradient clipping are still useful and help to prevent these issues.

2. Degrading gradient: A deeper network will see its gradient lose its reference to the
input data, as in it will go so deep that the gradient will no longer hold meaningful
information. This makes the accuracy to get saturated at a lower point than normal.
Then, either it does not improve at all it worsens over time.

A recent paper from Microsoft defines an architecture they call Residual Networks which
addresses and solves these problems. A normal neural network would stack its layers in a
linear fashion (Figure 12a) while the Residual Networks take a different approach, they use
residual blocks (Figure 12b).

(a) Traditional layer stacking (b) Residual block

Figure 12: Tradicional layer stacking approach vs residual blocks

A block is composed of two convolutional layers and two non-linearities (ReLU on the
paper), with the particularity that before the last ReLU the input is summed to the acti-
vations. This allows the network to propagate some remaining information of the original
input (thus the name of residual networks).

22

It has been shown that using this strategy a network can go as deep as 1000 layers
on the CIFAR-10 [26] dataset and of 152 layers (8 times the size of the VGG) on the
imagenet dataset. Not only they successfully converge, but they also improve the previous
best accuracy.

4.2.3 Color space

Although not strictly related to CNNs, choosing the right color space is fundamental for
the network to work faster and better. The immediate and naive choice would be to use
RGB color space, which consists of 3 channels that mix lighting (intensity) and colors all
together. This, however, implies there is a high correlation between channels: increasing
either one of them would increase the overall intensity of that pixel. While RGB is a good
color space for humans to easily comprehend and visualize colors, it is not practical when it
must be used for machine learning algorithms.

When looking for non-correlated color spaces, the most habitual are [27]:

1. YUV: It is usually employed for video or image processing, commonly seen in the PAL
and NTSC specifications. It defines a luminance component (Y) and two chrominance
channels (UV) where color is encoded.

2. HSV: From Hue/Saturation/Value, it may also be called HSI (intensity) or HCI
(chroma or colorfulness) amongst others. The main advantage of this color space
is being intuitive. Colors might increase intensity in a natural manner, increasing only
Value, unlike RGB where you would have to increase each channel or YUV where you
would likewise have to increase UV. It also features a separation (Value) of intensity
from color.

3. L*a*b*: This color space is one of the created by Comission Internationale de l´Éclairage
(CIE) and considered standard in many applications. All colors from CIE try to im-
itate human vision and, as such, are based upon it. They achieve to be uncorrelated
between lightness (L) and color (a,b) but fail to be easily interpretable.

Doing a brief recap we can easily see that the input image, a grayscale image, could be
used as the luminance/intensity channel of either of these color spaces. Strictly checking
the values one would see that the Y/V/L channels (respectively to each color space) are
not exactly the same as the grayscale conversion of an RGB image, but the error is so
low that any difference would not be noticeable. This means we could reduce the problem
of outputting a 3 channels RGB image to a 2 channels YUV/HSV/L*a*b* image, as the
remaining 3rd channel would already be the submitted image.

When choosing the final color space, HSV got discarded due to even being intuitive, it
is not as powerful when it comes to encoding colors. Between YUV and CIE L*a*b*, the

23

decision was in favour of L*a*b* for a simple reason, it is more widely used and considered
to be standard, while being backed by the CIE organization.

Tests were done to assure that using a color space with 2 channels for an image would be
better than RGB, and all of them showed significant improvements. The final architecture
was then completely based off the L*a*b* approach.

4.2.4 Final architecture

The final architecture is shown in Figure 13. It will be first globally described and then
individually inspected.

Figure 13: Final fully convolutional architecture for image colorization. Each green block
consists of one or more convolutions. The yellow block is a convolution of a 1x1 kernel.

The summation is equivalent to the summation of the batch normalized green block above
and the convolved upsample of the activation of the green block below.

First of all, the image is forwarded through a subsection of the VGG network. Specifically,
it includes all the first 4 blocks of convolutions, but where a block of three convolutions is used
in the original VGG network, here a block of only two is used, due to memory constraints.
All the weights of this section are fixed, so that they are not taken into account during the
optimization process.

Then, an upsampling process is done in each of the upsampling blocks, described below.

24

The VGG performs a Max Pooling after each convolution block, so, if we use an initial image
of size 256x256, taking into account the convolutional layers have padding and we have a
total of 4 poolings, the final size will be 16x16. To restore the original size the network will
also need to do 4 upsamplings.

Upsampling block: One important characteristic of the VGG network is that the
number of parameters is constant all along the network. Whenever a pooling is done the
resulting activations are reduced by half, but the number of filters on the next convolutions
is doubled. The upsampling blocks, Figure 14, will follow the same logic, whenever the
image (or activations) is doubled in size, the number of filters in the filters bank will be
halved, thus achieving the constantness in parameters.

Figure 14: Closer look of the upsampling block

The upsampling might be done by using a bilinear filter, but for performance, a simpler
nearest neighbor filter with 4-connectivity has been used. Both have been tested and no
real impact is perceptible in the final image, neither color nor texture-wise.

Taking the same idea as the residual networks, the activation from the same level on the
VGG is summed to the upsampled image, so that the gradient is more stable. To make it
even more stable, before summing, the activation of the VGG network is forwarded through
a batch normalization layer.

To allow the network to have more complex representations along with a bigger number
of parameters, a convolution is also done to the upsampled image and to the summation

25

result. Otherwise, the network would have no parameters to optimize (as the VGG is fixed
and neither the batch normalization nor the summations have any significant parameter).

The next block simply takes as input the result of the last convolved summation, and
does the same operation but at a bigger size and with a lower number of filters.

Activations: The first tests were done using ReLUs as non-linearities after each con-
volution. The network completely failed to color the image and would often output either
grayscale images or sepia-colored images. Our color space, L*a*b*, uses numbers in the
range [−128, 127], which we normalize to [−1, 1]. It is obvious then that if all our weights
range from [0, ∞), due to the ReLU, we can not represent the lower negative half.

That is why all the network now uses hyperbolic tangents as activation functions. Their
derivatives are still easy and fast to compute and behave as expected, expanding the acti-
vations to the whole range of the color space.

Network output: After the last upsampling block two more convolutions are per-
formed, one with the same number of filters as the block and the last with only 2 filters. As
we want to output a 2-channels image, this is exactly what the last layer does, converge to
2 outputs.

As a measure of error, or loss function, the mean of the euclidean distance between the
target image and the resulting one is used:

E =
1
N
(y− ŷ)2

Where y is the target image and ŷ the resulting image. N depends on the batch size,
the number of images fed at the same time to the network, but in general terms that is:

N = batch · 256 · 256

The chosen batch size will be explained in more detail in the implementation section.

26

5 Implementation

To implement the network two frameworks have been used, Caffe [28] and Tensorflow [29].
Both of them with its advantages and disadvantages. Many more libraries and frameworks
exist, just to name a few: Theano, Neon and Microsoft CNTK.

5.1 Frameworks

5.1.1 Caffe

Its main backers are the Berkeley Vision Group. Caffe’s main feature is its performance
and speed, being the fastest among all the frameworks at the time of writing this project.
It is built in C++ and exposes a Python interface. All the networks must be written in
”Protocol Buffers” from Google4, which although makes the files clear and well structured,
it is not practical when one must write repeated structures. Its Python API allows defining
custom layers but with a high performance cost. It is mostly focused on visualization and
testing rather than network definitions.

Being the precursor of convolutional neural networks, it has a fine-tuned code and perfect
integration with GPU acceleration through NVIDIA CUDA (and recently OpenCL). Part
of its high performance comes from its hand-written derivatives. All layers must specify the
derivatives and it does not include any automatic-differentiation system. It is also one of
the best systems when it comes to memory usage, being able to fit large networks just fine.

5.1.2 Tensorflow

Recently open-sourced, it is the framework used internally by Google. Although it is not
as fast as Caffe nor does manage memory as fine, it has a few advantages:

1. It includes auto differentiation, so when creating new operations or layers, there is no
need to hand-write the derivatives, as they are automatically calculated

2. Fully exposed API to Python and many more languages, including network definition
(graph) with built-in support for language specific constructions (such as for-loops,
conditions...)

It features a complete set of functions for traditional neural networks, convolutional and
recursive. Newer papers and techniques can easily be implemented thanks to its support for
complex math operations and a supportive community.

4Available at http://code.google.com/apis/protocolbuffers/

27

http://code.google.com/apis/protocolbuffers/

More technical aspects of Tensorflow will be discussed below, referring specifically to the
implemented architecture and better illustrating its functionality.

5.2 Network implementation

As Tensorflow came later, this project was started with Caffe. As soon as Tensorflow was
available and stable enough, the whole architecture was ported to Tensorflow. Even though
two different frameworks have been used, the core of the layers are exactly the same, so an
initial general explanation will be done.

5.2.1 Optimizer

To optimize the network an Adam [30] optimizer has been used, tweaking the epsilon
parameter. It has been tested that problems like imagenet require an epsilon of ≈ [1, 0.1].
To find the appropriate learning rate and epsilon combination, a grid-search has been used.
That is, all combinations of learning rate in [1 · 10−1, 1 · 10−4] and epsilons [1, 1 · 10−4] have
been tested until the best one has been found. The net which converged faster and produced
better results was using learning rate 1 · 10−3 and epsilon 1 · 10−3. To make it work better,
a decaying exponential learning rate has also been used, every 1000 iterations the learning
rate is exponentially decreased by 0.95.

The batch size has also been tested to find the best one, compromising performance and
results. A batch size of 1 image does ≈ 5.25 iterations per second, but fails to converge with
good enough results. A batch size of 32 is slow, each iteration takes about 120 seconds, and
the network takes too long to achieve good results. Any number higher does not fit in the
memory of the GPU. Eventually, the batch size was set to 8, which yields goods results after
a decent amount of time.

It has also been tested whether the network generalizes better by applying an L2 regu-
larization to each weight (smoothing them) of either (0.001, 0.003, 0.05) or none at all. At
the end, the version with no regularization worked better and produced better results.

5.2.2 Number of parameters

As said, the VGG network maintains the number of parameters constant (except the
last that reduces dimensions for the next fully connected layers). Each one ordered as
(width, height, channels)5:

5The 16x16x1024 convolution is the one with a 1x1 kernel

28

256x256x64→ 128x128x128→ 64x64x256→ 32x32x512→ 16x16x512

↓
256x256x64← 128x128x128← 64x64x256← 32x32x512← 16x16x1024

The second line corresponds to the upsampling blocks, after upsampling, convolving
and summing. Finally, two more convolutions are performed to obtain the ab channels:
→ 256x256x32→ 256x256x2.

We can calculate the number of parameters of a given convolutional layer by applying
the formula: input_ f ilters · kernel_height · kernel_width · f ilters + bias. The bias has size
equal to f ilters in the equation above, as it is 1D. Knowing the upsample block consists of
2 convolutions, one with the same number of filters as the input and the other halved, we
can easily calculate each of blocks parameters:

Initial =512 · 1 · 1 · 1024 =524288

Upsample4 =(1024 · 3 · 3 · 512 + 512) + (512 · 3 · 3 · 256 + 256) =5899008

Upsample3 =(256 · 3 · 3 · 256 + 256) + (256 · 3 · 3 · 128 + 128) =885120

Upsample2 =(128 · 3 · 3 · 128 + 128) + (128 · 3 · 3 · 64 + 64) =221376

Upsample1 =(64 · 3 · 3 · 64 + 64) + (64 · 3 · 3 · 32 + 32) =55392

FinalConv1 =32 · 3 · 3 · 32 + 32 =9248

Output =32 · 3 · 3 · 2 + 2 =578

We should also take into account that batch normalization layers have also 2 parameters.
We have 4 layers of this type, which are 8 parameters in total. So, the network has

Total = 524288 + 5899008 + 885120 + 221376 + 55392 + 9248 + 578 + 8 = 7595018

parameters to optimize.

5.2.3 Tensorflow specific

As the final architecture is done and presented in Tensorflow, a deeper explanation on
how it works will be done in this section. Tensorflow has, as they say, a data oriented flow.
When working with Tensorflow one has to think in terms of the graph, not as a functional
programming language.

29

The graph is nothing but the assembled tree of all the operations, variables and place-
holders defined. When you create either of these using the API it provides, no real calculus
or operation is ever performed. It just stores the reference as a node in the graph and
postpones the real operation.

To actually execute anything first a session must be started. Sessions are specific to
devices, as operations, allowing to execute on GPU or CPU seamlessly. When the session is
running, you can evaluate or run any expression on the graph. Such evaluation yields the
real value. Doing so Tensorflow manages to:

1. Reduce all Python ↔ C++ communication, which would slow down all processing

2. Keep an organized directed acyclic graph which can be navigated or executed inde-
pendently

When using this framework, the so far called weights or parameters are renamed to
Variables. Any Tensorflow Variable will be a learnable parameter in the network, if not
specified otherwise. Tensorflow allows to keep a hierarchical graph of variables by using
variable_scopes. They allow all variables inside the scope to be initialized in the same
manner and keeps references to them grouped by the same common prefix, the scope’s
name.

As Tensorflow operates separately, in the session, to pass variables from the Python/C
side to the actual computational session, one must use placeholders. Unlike variables, place-
holders are not trainable and its only purpose is for data loading.

It also comes with a wide range of functions to initialize weights and a huge variety of
optimizers to train all the variables. Tensorflow does not, however, provide already done
layers, as it only makes available mathematic operations. Supplied with this project code
there are a few Python helper files which extend the framework:

1. Dataset.py: Usually datasets are big and do not fit in the main memory (RAM mem-
ory). This file provides classes to procedurally load from the drives. Only a batch is
loaded at once. Furthermore, the data is loaded asynchronously from a thread, using
the Python Queue object which is thread-safe by default. The training and loading
processes can be done at the same time, improving performance and reducing the
amount of time it takes to train the network.
Supplied classes allow to load from a) text files, where each line is a combination
of the image path and its class, b) LMDB files, using the Caffe format for image
serialization and de-serialization and c) native numpy arrays, that although does not
reduce memory usage it facilitates obtaining cyclic batches.

2. Models.py: It includes the definition of the VGG network graph, a reduced version of
it, and some base classes to simplify models:

30

(a) LearningRateDecay: Tensorflow allows to have an exponential decay over the
learning rate, but involves quite a few lines. This class simplifies it by grouping
everything in a simple object, with no additional calls.

(b) Optimizer: Wraps the optimizer, allowing to easily clip gradients or apply de-
caying learning rates. The methods exposed by this class are the same as the
exposed by the original Tensorflow optimizers, to ease the usage.

(c) Model: When developing more than one model or architecture, many lines of code
are the same. This class groups them and reduces the amount of code needed to
get a functional model, letting the user concentrate in the important aspects.

3. Layers.py: Defines all layers as classes. They all inherit from a base class which defines
default values that can be tuned, for example, if variables are trainable or not. They
are all based in the Tensorflow basic operations.
The main point on using classes is they make it easy to access the variables declared
in the layer itself, as they are saved as attributes of the class itself.

4. Network.py: It basically defines all layers, but as bare functions instead of classes.
They are more straightforward than the class based approach and might be faster to
use if one simply wants to quickly define a model. It also implements methods to load
saved numpy pre-trained models.

5.2.4 Visualization

An important part when doing neural networks is not only the results but the visualiza-
tion of the network, which implies:

1. In our particular case, visualizing the results

2. Monitoring and validating the loss and accuracy (if it applies) of the network, to see
possible under-fittings or over-fittings

3. Visualizing the learned filters on the convolutional layers, to see and verify they make
sense

Here Jupyter notebooks (previously known as IPython notebooks) have been used. They
are considered as the best option because they allow to interactively program and see the
results inline. All of it within a browser and without needing physical access to the machine.

Furthermore, it allows a wide range of languages to be used, like Python, Julia and R.
Due to its fast programming and extensive libraries available, Python has been the language
used. Caffe at some points had problems with Python and Julia was used as a backup.

31

To ease the process, OpenCV was used to do RGB ↔ L*a*b* conversions and image
manipulations, such as resizing and reading from disk. Matplotlib served as the main plotting
library, both for showing images and numeric results.

Tensorflow also comes with a visualization software called Tensorboard, which enables
us to: a) see a complete graph of our network (Figure 15), b) see all tensors in the graph and
c) inspect values all along the execution, including plots with average values, deviations...
It has been widely used to see the real progress and its values will be further discussed.

32

Figure 15: Graph of the colorization network

33

5.3 Online website

Any user should be able to use this technique, but it is clear that the Python files
provided require at least some basic programming knowledge. The programmed website
allows inexperienced users to colorize images and at the same time serves to do quick tests.

The website consists of three sections, one where the user is able to upload an image and
the system will automatically colorize it; and two informative sections, the first which links
to this document and the later which gives information about the author.

The user should also be able to supply images not in grayscale, thus the website must
automatically convert them. Of course, if the input image already has color, it will be
completely discarded and not used in the colorization process.

From the implemented website it will be analysed the backend (the server) and the
frontend (the actual user-interactive side). The interaction will be explained in a different
subsection, as it involves both sides. The whole implementation is supplied as source code
and found in the WebServer folder.

It is completely integrated with the interface Tensorflow gives and runs fine using CPU
only, so it could be deployed to a system which does not have GPUs.

The website, as seen in Figure 16, is available at: http://g-build-server.asuscomm.
com:5000/

Figure 16: Landing page of the implemented website

34

http://g-build-server.asuscomm.com:5000/
http://g-build-server.asuscomm.com:5000/

5.3.1 Backend

It is completely programmed using Python. The main reason behind using Python and
not any other server-scripting language, like PHP, is that Tensorflow already exposes a
complete API to Python, so no piping or communication with another Tensorflow process
will be required.

Flask: It is one of the many webservers programmed for Python. Other alternatives,
such as DJango and Bottle exist, but they come bloated with much more middleware and
utilities which will never be used for this project (like an admin panel in case of DJango).
Flask is lightweight and fast, and programming a website is easy and costless.

Creating a user visitable page with Flask is easy, it is defined as a Python function
and decorated with a helper function from Flask. The decorator, usually @app.route(path),
takes a parameter which corresponds to the URL for that page. Then, two options are
available, either directly returning a string containing HTML code or parsing and rendering
a template.

This project uses the templates engine provided by Flask, Jinja2. This engine allows to
pass variables, even objects, arrays and dictionaries, from the Python side to the HTML
template. Those variables get substituted and sent to the user as bare HTML. Templates
allow to make a clear separation between the controller (Python) and the view (HTML), so
they help to keep clean and understandable code.

This website is stateless, it maintains no information of the session, the user nor the
uploaded images, so it does not require of sessions nor databases.

Gunicorn: Although Flask itself is capable of handling incoming connections and serv-
ing requests, it is not powerful and saturates quite easily. Thankfully, we are not obligated
to use it, we can use external webservers, like Gunicorn, nginx or Apache. Again, with the
aim of keeping the code small, having as few dependencies as possible and being lightweight,
Gunicorn has been chosen.

Gunicorn integrates perfectly with Flask and no adjustment has to be done in order for
it to work. Even more important, our website is input/output (I/O) intensive, as it must
read and convert an image, blocking meanwhile. A normal webserver, as Flask, would leave
all connections hang until the conversion finished. Gunicorn, however, allows us to spawn
more than 1 worker, so that when one is blocked the others can still work. This project uses
5 workers, although more could be used.

35

5.3.2 Frontend

The user receives a website done with HTML5, CSS3 and Javascript, based on a free
available template called Grayscale6. Although it uses a template, none of the functionalities
here described were implemented beforehand, particularly the uploading process or the
communication with the backend.

HTML5: Important features of the HTML5 language have been used for this website.
To convert the input image to grayscale a <canvas> element is used combined with the
Javascript object FileReader. Basically, the submitted image is read using the FileReader
and drawn into the canvas, which allows to separately select each channel. It then averages
the 3 RGB channels, obtaining a grayscale image. Drag and drop is also doable thanks to
HTML5 and jQuery.

Javascript: It is used mainly through the jQuery library, which simplifies the syntax
and provides useful functions for DOM manipulation. It is used to update the dragged
images and the texts and elements that display the uploading and colorization progress.

It also simplifies all the AJAX communication, used to interchange messages with the
backend without making the user reload the page or follow any link. This enables the user
to do a transparent upload and colorization.

Also, jQuery introduces nice visual effects, like the upper menu and the smooth page
scrolling when following links or visualizing the colorization result.

CSS3: It also uses an external library, called Bootstrap, to make the web fluid and
adaptable to different screen sizes. It comes into special importance when visiting the
website from a mobile device, because it is able to correctly rearrange to maintain a pleasant
navigation.

Custom styles are used to make uploading process give feedback to the user. Also,
achieved through CSS, the user can hover the mouse over the colorized image to see the
original grayscale image.

5.3.3 Communication

As already advanced, AJAX is used to communicate the client with the server. The
advantages of using AJAX are: a) being able to show a progress, both of the state, uploading
or colorizing, and the percentage of the image uploaded and b) keep the user in the same
page, without extended loading times.

6Available at http://startbootstrap.com/template-overviews/grayscale/

36

http://startbootstrap.com/template-overviews/grayscale/

Sending the image to the server is achieved through the Javascript object FormData,
which enables to do multipart/form-data uploads. That means the body of a POST request
might have different objects inside it, for example, files. The server then receives the image
and colorizes it, converting to grayscale first if necessary. It also automates the L*a*b*
conversion.

Sending back the colored image to the client is trickier. The easiest way would be to
store the image in the server and then send a link to that image to the client, but that would
mean occupying storage in the server, which is limited. HTML5 introduced a URL based
method to display images, files and even music. An image can be encoded into an URL by
first encoding it in base64, so that it is encoded with printable characters. Then, the URL
is formed as: ”data:image/png;base64,” + ”encoded_base64_image”.

As this encoding works as a URL, it can be placed in the src field of an node,
making it display the image as if it was downloaded from a real URL. Changing this attribute
can easily be done using jQuery, we send the encoded URL as the response to the AJAX
request that uploads the image, thus making only a single connection in all the process.

37

6 Results

This section discusses the results obtained from the previously explained architectures
and its later implementation. It introduces a standard way to quantitatively measure the
quality and also discusses the images from a qualitative, human perceived, point of view.
Examples of where the network gives good results and where it fails to produce the expected
results will also be given and analysed.

6.1 Measure of quality

It has been said that to measure the error on the network and to make it learn, the
euclidean distance between the target image and the obtained image has been used. This is
a good function for a neural network as it is convex and can be easily derived, but it might
not fit the way a human perceives the reality.

When working with images the quality measurement is usually done with Peak Signal-
to-Noise Ratio (PSNR) [31]. This ratio is particularly used when using reconstructions of
lossy codecs during image compression or decompression. It makes sense to think of this
problem as a reconstruction problem (we are indeed recovering color), thus this measure
is suitable. Its main advantage over a bare euclidean distance is that it approximates the
human perception and its results are easier to interpret given the original and reconstructed
images.

A higher PSNR value means the reconstruction is of better quality, being ∞ the best
possible reconstruction and 0 the worst. Figure 17 shows the different values of PSNR into
context. The ratios of these images, however, have been obtained from a grayscale image
and not an RGB, so they are merely for illustration purposes and should not be directly
compared with the RGB use given from here on. PSNR might be calculated by:

PSNR = 10 · log10

(
MAX2

I
MSE

)

Where MAXI is the maximum pixel value for the image and MSE is the mean squared
error:

MSE =
1

256 · 256 · 3
3

∑
k=0

256

∑
i=0

256

∑
j=0

(y(i, j, k)− ŷ(i, j, k))2 (8)

An important note, as seen in Equation 8, is that the comparison is done in the RGB
color space. Although we could use the L*a*b* space, doing it in the RGB color space

38

comes into importance when comparing with other methods, for example state of the art
implementations. Also, images should be in the range [0, 255], thus MAXI = 255.

(a) PSNR =

∞, original
(b) PSNR ≈
30

(c) PSNR ≈
25

(d) PSNR ≈
20

(e) PSNR ≈
15

Figure 17: PSNR values for Lena
Image by Rice University, Digital Image Processing ELEC 539

6.2 Datasets

To train and test the framework three completely different datasets have been used. The
first one consists of synthetic images generated with the purpose of doing an initial test
and verification of the problem. The other two, landscapes and faces, are used to prove the
architecture is capable of obtaining good results whatever input is given. Of course, each
dataset is trained separately and then tested with images of that same category.

Before showing the datasets results, a special mention must be done. The loss graphic
obtained on each dataset will be shown, however, it may be misleading: there is a wide
range of images on the datasets, for example, we might find landscapes with a blue sky
or orange sunsets. If the network tries to minimize the first, the second would raise, and
vice-versa. That is why even though during some iterations the loss might seem to be stuck,
the resulting images have notable differences. The main interest on the loss is: a) to see if
it seems to converge up to a point and b) to make sure the train and test loss are about the
same, so that no overfitting is happening.

6.2.1 Synthetic data

The original problem relies on coloring images of size 256x256, which is more than the
usual 28x28 or 80x80 most neural networks use. Approaching the problem by trying to
colorize the full 256x256 resolution landscape images would have been a bad idea because:

1. It was uncertain if the problem, colorizing an image, would be able to be solved

2. The time spent to pre-process the original images would have been much greater than
the one to generate these ones

39

Especially because the first reason, it was decided that the initial network should work
with images taken from the MNIST[32] dataset. Each number from 0 to 9 was assigned a
color and painted to obtain an RGB version of the digit (Figure 18).

Figure 18: RGB colored MNIST dataset

This set consists of 60.000 training examples and 10.000 validation examples, generated
at a resolution of 28x28. It was meant to do quick tests on the architecture and validate
that it was producing the expected results.

This dataset was used to test the first architecture explained in section 4.1. As demon-
strated, using high resolution images would not work, but the small ones were still useful to
clarify some insights of how the process worked.

MNIST is rather easy to classify with good accuracy, for instance a Support Vector
Machine alone can achieve less than 2% error rate [33]. Results, as seen in Figure 19, are
almost perfect, in the sense that the color is well chosen and applied correctly on the number
itself. It is likely that the network has learned to classify numbers and applies the color based
on that classification. The most noticeable side effect of this algorithm is that it seems to
blur the resulting image, as seen in the samples.

Figure 19: Predicted colorization for each number in the synthetic dataset.
In each block, left is the predicted image and right the original

40

6.2.2 Landscapes

The first network has been trained on over 25.000 landscape images and tested on a
different validation set of 5.000 images. It gives, approximately, an 80/20 train/test split
(or hold out) to the dataset.

This dataset was obtained from highly rated websites taken by professional photogra-
phers. It is a semi-automatically subset of images selected from a bigger dataset of over 2
million images. Some examples can be seen in Figure 20. It can be easily seen that we can
expect a moderated amount of modifications in the images, performed to visually enhance
them.

Figure 20: Samples taken from the landscapes dataset

Also, it contains samples with noticeable differences in common patterns. For example,
in Figure 21 it can be seen the sky in more than 3 different tonalities. This, as will be
explained later in this chapter, might be a problem for the network.

Figure 21: Images with a wide range of color tonalities on the sky

41

Before qualitatively discussing the actual results, it must be noted that to make 10000
iterations the network spends approximately 5 hours. The network trains with 25000
images, so that means that after those iterations, with batch size 8, it will have seen
10000 · 8/25000 = 3.2 epochs. Seeing all the images is considered to be an epoch, so that
means it will have seen all images 3 times.

In Figure 22 a subset of the train and test loss can be seen. The optimizer used, Adam,
achieves to dramatically reduce the error in the first few iterations, as it can be seen in the
first huge slope. Then, the network seems to be stuck in a fixed range. While this is true,
visually the image changes greatly. The overall loss does not vary because, as it has already
been stated, many representations of the same elements exists. When one is minimized, the
other ones are maximised. To help the network learn which features are important, so that
it can appropriately minimize each texture, a decaying learning rate (Figure 23) has been
used. Every 1000 iterations it is exponentially reduced by 0.95.

Figure 22: Train (light blue) and test (dark blue) losses of the network

Figure 23: Exponential learning rate decay, 0.95 decay every 1000 iterations

In Figure 24 we can see a comparison at 40000 iterations (12.8 epochs, 20 hours), 80000
iterations (25.6 epochs, 1 day 16 hours) and 120000 epochs (38.4 epochs, 2 days 12 hours).
There are a few things to talk about, but here the main discussion will be centered in the
effect of letting the network do more iterations. It can be seen in all 4 examples that the
more iterations, the more orange they are painted. The network first learns to paint blue
skies and then tries to specialize at painting orange skies. The reason for this is simple,
there are significantly more examples of blue skies than there are of orange.

Therefore, it makes sense for the network to first paint them blue, as that would minimize
the error. This seems to indicate that if we let the network do more iterations, we would
see even more orange tonalities and perhaps they would be better placed. The first column
of Figure 24 is a clear case of mispainted orange, but still, there are images where orange is

42

G
ra
ys
ca
le

40
00
0
ite

r.
80
00
0
ite

r.
12
00
00
0
ite

r.
G
ro
un

d
tr
ut
h

Figure 24: 4 images colorized along 3 different iterations of the network. The first row is
the grayscale input and last one is the original image

correctly placed.

Quantitative analysis: When calculating the PSNR ratio of the landscapes, the aver-
age value is 20.79dB for the trained network. Figure 25 show cases where a) the PSNR is
high, mainly because the predominant textures are grass, trees, sky and clouds. And b) the
PSNR is bad, the original image has vivid colors and the network is unable to reproduce it.

A closer look to the images used for the PSNR reveal that original images with low
intensity colors, non saturated, perform much better than those that have intense colors.
Also, one might see that the resulting images have not as vivid colors as the original ones.

43

(a) PSNR = 27.85 (b) PSNR = 13.56

(c) PSNR = 27.78 (d) PSNR = 14.53

(e) PSNR = 25.863 (f) PSNR = 14.64

(g) PSNR = 25.861 (h) PSNR = 16.36

Figure 25: Images with the best PSNR on the left and with the worst PSNR on the right.
Each block, columns from left to right: Grayscale image, Colorized image, Ground truth

The problem, even if it seems so, comes not from the saturation, but rather from the loss
function used. As said, the euclidean distance is the measure of error on the trained images,
but the problem here is that we have many colors for the same object (for example, blue
and orange skies or even water of multiple colors).

To minimize the error the network will, intuitively, search for the mean color between
all the representations, as that would minimize the global error amongst them all, and not
with a single one only. These results can be easily confirmed by looking at the images in
Figure 26: places where the network knows not how to color (because it has seen too many
representations with too many different colors) are either painted sepia or with the mean
color which represents that texture. For example, it can be easily seen that all grass is
painted the same green, dark and not saturated, color.

Figure 27 shows more examples of colorized images. It can be appreciated images with
impressing results but also some images where the networks fails to partly colorize some
grass or water, leaving them almost gray.

44

(a) Predominant sepia color on the resulting image

(b) Sepia colored water

(c) Non-saturated colors

Figure 26: Common cases where the network fails.
Columns from left to right: Grayscale image, Colorized image, Ground truth

Figure 27: Good and bad examples of colorized images
Per block, columns from left to right: Grayscale image, Colorized image, Ground truth

45

6.2.3 Faces

The Faces in the Wild [34] dataset has been used for this purpose. This dataset, as
already said, serves to prove that the network architecture is able to generalize to new
problems without needing any change in its structure, but also to see whether it is able to
learn human characteristics or not. Some samples from the set can be seen in Figure 28.

Figure 28: George W. Bush faces taken from the Faces in the Wild dataset

Figure 29 shows some more examples taken from the dataset. There are important
features to note from these ones:

1. Not all images are the same size. They are all, therefore, normalized to 86x86, which
is the most common size amongst all of them

2. There are some images which are not faces. We can see some bodies and even cropped
faces

3. Grayscale images can also be found on the dataset. It would be better if all of them
were colored

It consists of 30.281 faces, ordered by clusters of people. When working with neural net-
works it is important to have a random order of images, so that when performing stochastic
gradient descend by minibatches the network sees different examples, thus having a correct
expected value for the gradient direction. After being randomly shuffled, they have been
split into 80% for training and 20% for testing.

Although the network architecture is the same, it is trained on images considerably
smaller, of size 86x86. The network does 10000 iterations much faster than before, taking
only about 32 minutes. As this network is faster to train it will only be presented at 120000

46

Figure 29: Random images selected from the Faces in the Wild dataset

iterations. Again, using a batch size of 8 that makes a total of 39.6, almost 40, epochs. This
is about the same number of epochs the landscapes version does.

Qualitative analysis: Figure 30 shows some cases selected from the test images where
the network performs amazingly good. It can be seen that it has learned to:

1. Distinguish faces color but not based from the lighting, as most have the same but
have different results, but from the human characteristic itself. We could even say it
has learnt the racial differences in human faces.

2. Differentiate men from women. It can be seen that none of the men in the figure has
its lips painted, while women have their lips of an appreciably different color.

3. Detect faces, because only the face region is consistently painted. It fails to paint
backgrounds, but that is understandable and even expected because the images given
for training were, mostly, faces.

Of course, there are also some other images (Figure 31) the network does not accurately
colorize. It is clear that some cases, like the first image, fail because the image has not a
face in it, but generally talking, when it fails it seems to be due to illumination issues (rows
2 and 3), because the orientation and illumination are strange (row 4) or due to a color
averaging problem as we have already seen with the landscapes dataset (rows 5 and 6).

Unexpectedly, although the network has been trained with faces, it is able to colorize
some other parts of the human body, Figure 32. This figure also gives the intuition that the
network has learnt that the face is not always centered, as in the second and third rows, the
shirts are not painted.

Quantitative analysis: The average PSNR for the network trained for 120000 iterations

47

Figure 30: Samples of colored faces.
In blocks of 3, columns from left to right: Grayscale image, Colorized image, Ground truth

Figure 31: Images the network fails to properly colorize
Each block, columns from left to right: Grayscale image, Colorized image, Ground truth

and tested on the whole test dataset, obtains a value of about 27dB. This value is high when
compared with the other values obtained in other papers and researches.

48

(a) Correctly painted hand

(b) Painted torso but omitted shirt

(c) The network paints the neck but not the shirt

Figure 32: Behaviour of the network when presented with images without faces.
Columns from left to right: Grayscale image, Colorized image, Ground truth

In Figure 33 it can bee seen side by side which images obtained the best PSNR ratios
and which ones the worst. Closely examining them, it could be argued that the PSNR ratio
here is not correctly representing the problem: colorizing faces. The PSNR is taking into
account the whole image and not the face itself, and as can be seen in the figure the images
obtaining bad results are not due to the face itself but most likely due to the background
color being completely different. Figure 34 does a colorization that, looking only at the face,
is subjectively worse than the here seen, and yet obtains a PSNR higher than those bad
cases faces.

Seeing these images and following this reasoning, the real PSNR value for the faces
dataset would be higher, maybe even close to 30dB.

49

(a) PSNR = 35.03 (b) PSNR = 17.44

(c) PSNR = 34.69 (d) PSNR = 18.03

(e) PSNR = 34.52 (f) PSNR = 18.33

(g) PSNR = 34.01 (h) PSNR = 18.80

Figure 33: Images with the best PSNR on the left and with the worst PSNR on the right.
Each block, columns from left to right: Grayscale image, Colorized image, Ground truth

Figure 34: Image subjectively worst with PSNR = 20.95
Columns from left to right: Grayscale image, Colorized image, Ground truth

50

7 Conclusions

This section is divided into two subsections. The first one explains the conclusions given
the results shown in the section above, discussing whether the initial objectives have been
achieved or not. The last one proposes new approaches to solve the problem and sets a
continuation to the work already done.

7.1 Research conclusions

The results obtained are satisfactory, concretely:

1. Colorization: The network is able to colorize images, it produces images which are
colored, beautiful and consistent, as shown and explained in previous sections. It is
also able to work with any category or class of image as long as the network is first
trained on that same class. It could also be trained on multiple categories at once
and it would be available to predict all of them equally. Of course, this last approach
would involve more problems caused by the euclidean distance averaging the results.
From the quantitative point of view, we have seen that the PSNR gives an accurate
value for the perceptible differences on the reconstructed image and the original one.
The landscapes dataset achieves about 20dB, but mostly due to the average problem
and the textures with multiple representations, like the sky. The faces dataset achieves
a much better value of 27dB, and would be better if only the faces would be taken
into account and not the background.
Qualitatively, most landscapes images could pass as authentic images if the user would
not have seen the original. It correctly paints all textures and objects, but fails to do
so in vivid colors. It should be taken into account, however, that given a grayscale
image the network has no way of telling if, for example, the sky should be blue, orange
or purple. That is why perceptually, the colorization is acceptable and valid.
The same applies to the faces dataset. All faces tested are painted consistently and,
more important, the color they should be. That means the network seems to have
learnt to differentiate races and genders and is able to apply the correct tonality in
each case.
The synthetic dataset has served its purpose too, testing and validating the first ar-
chitecture to know its limitations and how to improve it.

2. Research: As stated on Section 1.2, one of the purposes was to contribute in the
research. It could be considered as successfully done too, as novel techniques have
been applied to implement and further developed in the colorization field.
Residual networks have been used to further improve the results, combined with the
hyperbolic tangent activations and the L*a*b* color space has been key to obtain the
final outcome.

51

Both Caffe and Tensorflow, pioneer frameworks for deep learning, have been used.
Although some small differences between them have been observed, at the end re-
sults were good whichever was used. It required, however, appropriately tuning all
hyperparameters, because they did not coincide.

3. Online website: The user is able to test the algorithm on images of his own. It
is easy to use, widely available and works perfectly by correctly integrating with the
network trained with Tensorflow and producing the expected colorized images.

4. Overall objectives: The method introduced is, as was stated:

(a) Fast: If using a GPU NVIDIA Tesla K40, images are obtained in approximately
0.5 seconds. An NVIDIA GTX 970 also produced an image in about 0.7 seconds.
Using an Intel N3700 CPU raises this number to an average of 2.3 seconds.
Results would improve if better hard drives were used, for example by using
solid state drives. RAM and CPU/GPU also takes an important role, as well as
network connection when using the provided website.

(b) User agnostic: This method does not require the user to hand-craft features nor
to supply more images than the one desired to colorize. By simply submitting
an image the user obtains the final result and no interaction is required, thus
achieving the desired objective.

(c) User friendly: Alongside with the website, Python code and IPython notebooks
are supplied to show the actual implementation and to make available methods
for testing purposes.

7.2 Future work

Without doing fundamental modifications to the current architecture, some ideas that
could be tested and researched are:

1. Using a different loss function. It is clear that the problem comes from the loss function
we are using, so changing it or helping it with other functions might yield good results.
For example, when working with Caffe, the CIEDE2000 [35] L*a*b* similarity function
was used.
The main advantage over a plain euclidean distance is that it has two terms to correct
the hue and the saturation of the image. Tweaking them showed better results on
some images but the overall result was worse, more areas were painted sepia.
This function also has a high performance cost, due to the high amount of operations
it does. Results prove not to be good enough to compensate for this huge cost. PSNR
might also be a good option.

2. Changing the problem to be a classification task instead of a regression by performing a
per-pixel classification against the target color. Some of the cited papers have already

52

tried it and the colors have indeed more intensity, but new problems arise, such as
inconsistencies along textures or even unexpected colors on some objects.

3. Trying to help the network with more information. For example, in this project it
has been tried to use the Gram matrix, like used in Style transfer networks [36], but
the overall PSNR was better without it. Similarly, another way of adding some more
global information about the image, tonalities and global saturation might be by using
the histogram of the images. This approach has been tested but further research and
time is required to be able to extract conclusions.

In the search for better results, it is worth exploring other solutions aside from CNNs.
For example, the following types of artificial neural networks are becoming more popular as
days pass:

1. Variational Autoencoders [37] have already been used to generate artificial human
faces. From a theoretical point of view they should be capable of colorizing images,
but they are still hard to train as there is not a way to have a completely stable
gradient yet.

2. Generative Adversarial Nets [38] and specifically DRAW architectures [39] have also
been used to generate images over the MNIST dataset.

3. Some uprising types of networks which could eventually be useful for this problem are
Generative Moment Matching Networks [40] and Probabilistic Program Induction [41]
based networks.

It might also be a good idea to ask more complex questions than colorization alone: can
the network learn not only to colorize but also to apply a different style to the image? For
example, we might want a beach to be painted with daylight or with the orange tones of a
sunset. One interesting approach might be to further explore the gram matrices, as used in
Style Transfer, or by generating intermediate textures as done in Texture Networks [42].

53

References

[1] D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of CNN advances
on the ImageNet”, arXiv preprint arXiv:1606.02228, 2016 (cit. on p. 1).

[2] M. Kawulok, J. Kawulok, and B. Smolka, “Image Colorization Using Discriminative
Textural Features.”, in MVA, Citeseer, 2011, pp. 198–201 (cit. on pp. 2, 4).

[3] B. Sheng, H. Sun, S. Chen, X. Liu, and E. Wu, “Colorization using the rotation-
invariant feature space”, IEEE computer graphics and applications, no. 2, pp. 24–35,
2011 (cit. on pp. 2, 4).

[4] R. Irony, D. Cohen-Or, and D. Lischinski, “Colorization by example”, in Eurographics
Symp. on Rendering, Citeseer, vol. 2, 2005 (cit. on pp. 2, 4).

[5] R. Dahl. (2016). Automatic Colorization, [Online]. Available: http://tinyclouds.
org/colorize/ (cit. on p. 4).

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556, 2014 (cit. on p. 4).

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database”, in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, IEEE, 2009, pp. 248–255 (cit. on p. 4).

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,
arXiv preprint arXiv:1512.03385, 2015 (cit. on p. 4).

[9] Z. Cheng, Q. Yang, and B. Sheng, “Deep Colorization”, in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 415–423 (cit. on p. 4).

[10] R. Zhang, P. Isola, and A. A. Efros, “Colorful Image Colorization”, arXiv preprint
arXiv:1603.08511, 2016 (cit. on p. 4).

[11] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning Representations for Auto-
matic Colorization”, arXiv preprint arXiv:1603.06668, 2016 (cit. on p. 4).

[12] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity”, The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943
(cit. on p. 6).

[13] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines”, in Proceedings of the 27th International Conference on Machine Learning
(ICML-10), 2010, pp. 807–814 (cit. on p. 10).

[14] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models”, in Proc. ICML, vol. 30, 2013, p. 1 (cit. on p. 10).

[15] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs)”, arXiv preprint arXiv:1511.07289, 2015
(cit. on p. 10).

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”, in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1026–1034 (cit. on p. 10).

54

http://tinyclouds.org/colorize/
http://tinyclouds.org/colorize/

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting”, The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014 (cit. on p. 11).

[18] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, “Subject independent facial ex-
pression recognition with robust face detection using a convolutional neural network”,
Neural Networks, vol. 16, no. 5, pp. 555–559, 2003 (cit. on p. 12).

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167, 2015 (cit. on
p. 14).

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in Advances in neural information processing systems,
2012, pp. 1097–1105 (cit. on pp. 15, 21).

[21] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks”, arXiv preprint
arXiv:1505.00387, 2015 (cit. on p. 15).

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997 (cit. on p. 15).

[23] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical
machine translation”, arXiv preprint arXiv:1406.1078, 2014 (cit. on p. 15).

[24] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks”, in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732
(cit. on p. 20).

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions”, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9 (cit. on
p. 21).

[26] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images”,
2009 (cit. on p. 23).

[27] A. Ford and A. Roberts, “Colour space conversions”, Westminster University, London,
vol. 1998, pp. 1–31, 1998 (cit. on p. 23).

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional Architecture for Fast Feature Embedding”, arXiv
preprint arXiv:1408.5093, 2014 (cit. on p. 27).

[29] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

55

Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems, Software available from tensorflow.org, 2015 (cit. on p. 27).

[30] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, arXiv preprint
arXiv:1412.6980, 2014 (cit. on p. 28).

[31] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality
assessment”, Electronics letters, vol. 44, no. 13, pp. 800–801, 2008 (cit. on p. 38).

[32] Y. LeCun, C. Cortes, and C. J. Burges, The MNIST database of handwritten digits,
1998 (cit. on p. 40).

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998
(cit. on p. 40).

[34] T. L. Berg, A. C. Berg, J. Edwards, and D. Forsyth, “Who’s in the picture”, Advances
in neural information processing systems, vol. 17, pp. 137–144, 2005 (cit. on p. 46).

[35] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: Im-
plementation notes, supplementary test data, and mathematical observations”, Color
Research & Application, vol. 30, no. 1, pp. 21–30, 2005 (cit. on p. 52).

[36] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style”, arXiv
preprint arXiv:1508.06576, 2015 (cit. on p. 53).

[37] D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, arXiv preprint
arXiv:1312.6114, 2013 (cit. on p. 53).

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets”, in Advances in Neural Infor-
mation Processing Systems, 2014, pp. 2672–2680 (cit. on p. 53).

[39] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra, “DRAW: A
recurrent neural network for image generation”, arXiv preprint arXiv:1502.04623, 2015
(cit. on p. 53).

[40] Y. Li, K. Swersky, and R. Zemel, “Generative moment matching networks”, in Inter-
national Conference on Machine Learning, 2015, pp. 1718–1727 (cit. on p. 53).

[41] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning
through probabilistic program induction”, Science, vol. 350, no. 6266, pp. 1332–1338,
2015 (cit. on p. 53).

[42] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky, “Texture Networks: Feed-
forward Synthesis of Textures and Stylized Images”, arXiv preprint arXiv:1603.03417,
2016 (cit. on p. 53).

56

	Introduction
	Context
	Motivation and Objectives
	Memory organization

	State of the Art
	Artificial Neural Networks
	What are they?
	Activation Functions
	Linear
	Binary threshold
	Sigmoid
	Hyperbolic tangent
	Rectified Linear Units
	Other activation functions

	Layers
	Fully Connected
	Dropout
	Convolution
	Pooling
	Batch Normalization
	Summation
	Other layers

	Learning algorithm

	Architecture
	Method 1: Convolutional and fully connected layers
	Method 2: Fully convolutional networks
	Finetuning
	Residual Networks
	Color space
	Final architecture

	Implementation
	Frameworks
	Caffe
	Tensorflow

	Network implementation
	Optimizer
	Number of parameters
	Tensorflow specific
	Visualization

	Online website
	Backend
	Frontend
	Communication

	Results
	Measure of quality
	Datasets
	Synthetic data
	Landscapes
	Faces

	Conclusions
	Research conclusions
	Future work

	References

