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Abstract: Detailed 3D imaging of Gas ElectronMultiplier (GEM) foil hole geometry was realized.
Scanning White Light Interferometry was used to examine six topological parameters of GEM foil
holes from both sides of the foil. To study the effect of the hole geometry on detector gain, the
ANSYS and Garfield ++ software were employed to simulate the GEM detector gain on the basis
of SWLI data. In particular, the effective gain in a GEM foil with equally shaped holes was studied.
The real GEM foil holes exhibited a 4% lower effective gain and 6% more electrons produced near
the exit electrode of the GEM foil than the design anticipated. Our results indicate that the GEM
foil hole geometry affects the gain performance of GEM detectors.
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1 Introduction

Gas Electron Multiplier (GEM) detectors are radiation detectors [1] used in high-energy physics
and in nuclear physics experiments. The active GEM element is a thin (approximately 50 ± 1 µm)
polyimide foil with a 5 ± 1 µm copper/chromium coating on both sides [2]; see figure 1.

Figure 1. Cross-section of GEM foil obtained with a Scanning Electron Microscope. The outer diameter
(D) and inner diameter (d) of the holes, as well as the foil thickness (T ), are indicated.
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The foils have hourglass-shaped holes etched through them using lithography. Typically, their
outer diameter D is 70± 5 µm, the inner diameter d is 50± 5 µm, and the hole pitch P is 140 µm [2].
Local variations in the size, shape [3], and rim roughness of the holes can alter the operational
characteristics of the GEM foil. Consequently, these parameters should be uniform to achieve even
performance across the active surface of the detector. There are approximately 6400 holes per cm2

of GEM foil.
Several techniques are used for GEM quality assurance (QA). Most often a high-voltage test is

applied — leakage current measurement of the GEM foil [4]. Optical/visual QA of GEM foils is
less common. There are also ideas for X-ray-based GEM foil inspection.

Visual QA is necessary not only to examine the size and the shape of the hole, but also to catch
foil defects, residuals, and dust. Visual inspection is the only way to confirm the hole parameters.
Tardiness is the main disadvantage of visual QA compared to HV QA. Visual inspection usually
takes hours, while the HV test is done in approximately 30min. This drawback is pronounced since
there is a need for large-area GEM foil detectors.

The optical scanning system (OSS) for the quality assurance of GEM foils was developed
in the Laboratory for Nuclear Science at the Massachusetts Institute of Technologies (U.S.A.)
in 2006 [5, 6]. The University of Helsinki (Finland) [7] and Temple University (Philadelphia,
U.S.A.) [8] developed their own systems on the basis of the first one.

Previously, we have calibrated our large-area OSS for quality assurance of GEM foils by using
a transfer standard specifically manufactured for this purpose [9, 10]. The correlation between the
GEM hole size distribution and the corresponding gain variation has also been studied [11].

2 Methods

The major advance represented by the current study is the use of a 3D reference device to reveal the
GEM foil hole geometry; see figure 2. In addition to the parameters used nowadays, we introduce
and study four new parameters — the shift (S) between the centers of the inner and outer diameters,
the total foil thickness (T ), and metal (Tm) and polyimide (Tp) thickness— that we propose should
be controlled during GEM foil manufacturing. The variations in the pitch and rim roughness
parameters were not studied in this research.

A customized GEM foil sample allowed us to study the variation in hole size, as well as
concentricity issues between the inner diameter d and outer diameter D of the holes. The ± 5 nm
vertical resolution of our Scanning White Light Interferometer (SWLI) [12] permitted for the first
time the study of variation in the foil thickness as a basis for detailed 3D QA analysis of the GEM
foil hole geometry.

The effects of the six (d, D, S, T, Tm, Tp) parameters were examined using the ANSYS [13]
computer-aided engineering software and the Garfield++ [14] toolkit for detailed simulation of
particle detectors. We used ANSYS to create a field calculation for the GEM foil hole, using
topological parameter values obtained by SWLI. Garfield++ was then used to simulate the detector
gain for the real geometry of the hole. 1000 avalanches in an ArCO2 70/30% gas mixture with a
penning factor rp = 0.7 and VGEM = 600V were applied to the foil [3]. The probability rp that an
excited Ar atom ionizes a CO2 molecule through penning transfer was studied [15].

– 2 –
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Figure 2. Flow chart illustrating the logic of the study.

2.1 Setup

2.1.1 GEM foil sample preparation

A randomly chosen GEM foil was cut into 2.5 × 2.5 cm2 pieces. Using the GEM foil-frame gluing
technology [16], these pieces were cleaned and glued to a standard SF4 PCB (polychlorinated
biphenyl) frame; see figure 3. This procedure took place in a class 1000 clean room.

Figure 3. GEM foil 2.5 × 2.5 cm2 standard (left). Zoom-in view of the map of the 25 SWLI holes that were
examined (right); the red circles show the 10 holes chosen for the simulation studies.

2.1.2 Scanning White Light Interferometry

Our full-field-of-view non-contact SWLI device measures surface topography. On the basis of the
reflection from the measured surface of a white light beam into an interferometric objective, this
technique provides quantitative information across large areas with ± 5 nm vertical resolution [12].

– 3 –
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Our device had a NIKON CF IC Epi Plan DI 50X 0.55NA objective lens with 25X (0.5X tube-lens
NIKON) total magnification, a HAMAMTSU Orca Flash 2.8 camera, and a halogen bulb light
source (Philips, type 77241, Amsterdam, The Netherlands).

2.2 SWLI measurements

The six main GEM foil hole parameters were examined with SWLI: d, D, S, T , Tm, and Tp. All
25 holes in our sample were scanned three times from the top and bottom of the sample without
translating the hole between the images. Using the MountainsMap software [17], the GEM foil
parameters for each hole were determined from the SWLI data.

The hole diameters d and D of the GEM foil sample were defined using a ‘contour extraction’
method (25 holes × 2 diameters × 2 sides × 3 times = 300 measurements). This method, shown in
figure 4, employs the contour extraction feature of MMap. The top and bottom diameters d and D
were then defined by multiplying the radii that had been obtained by two.

During the contour extraction procedure poor concentricity [18] between d and D was observed
on both sides of the foil. Concentricity is the common center of cylindrical or spherical parts. We
studied the relative shift (S) between d and D on the top and the bottom sides of the GEM foil
sample when assuming the center of d to be the reference point for each side. The values were
obtained using the distance measure feature of the MMap software; see figure 4 (right). Each value
was formed as an average of three measurements (25 holes × 1 shift × 2 sides × 3 times = 150
measurements).

Figure 4. Inner (d) and outer (D) diameter extraction by the contour method for SWLI (left). The measured
shift S between the centers of d and D (right) was 0.99 µm for hole #8.

Detailed 3DQA analysis of the GEM foil hole geometrywas performed. The vertical resolution
of the SWLI allowed us to examine the foil thickness (T ) for the first time and study its variation
across the sample. Figure 5 shows the total thickness of the GEM foil around hole #8 scanned with
SWLI.

Figures 4 and 5 indicate the rim roughness R of the inner and outer diameter. The effect of this
GEM foil parameter was not studied in the present study.

All T values were measured with SWLI and obtained using the step height ISO 5436 feature
of the MMap software. The GEM foil sample was placed and gently pressed onto a flat reference
surface (optically flat, with -0.07 µm out-of-flatness and 0.02 µm out-of-parallelism). Each value
was calculated as an average of 4 step height profiles for the top and the bottom side of a single hole

– 4 –



2
0
1
5
 
J
I
N
S
T
 
1
0
 
P
1
2
0
1
4

(25 holes × 1 height × 4 profiles × 2 sides × 3 times= 600 measurements). The same technique
was used to obtain the metal and polyimide thickness on both sides of the GEM foil sample; see
figure 6.

Figure 5. MountainsMap software step height feature used in the study of the total thickness T of the GEM
foil sample.

The sandwiched polyimide, close to the center of the holes, appears to be very thin and
transparent to the SWLI, which left an unknown area in the image. Nevertheless, the measured total
thickness (63.17 ± 0.07 µm) around hole #8 of our GEM foil sample was close to the nominal value
for the GEM foil (60 ± 3 µm). Figure 7 shows a thickness reconstruction of GEM foil hole #8.

Figure 6. MountainsMap software step height feature used in the metal (Tm) and polyimide (Tp) thickness
study of the GEM foil sample.

Figure 7. Thickness reconstruction of GEM foil hole #8.
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The uncertainty of all the measurements for each hole was defined as required by [19] and [20].
All the SWLI measurements were performed manually, using the same features of MMap. The
precision and accuracy of the SWLI measurements depend on identifying the edges of the hole and
on the granularity of the computer mouse movement.

2.3 Simulation methods

The ANSYS and Garfield ++ software were employed to study the effective gain as a function of
hole parameters in a GEM foil with equally shaped holes. This simulation study focused on an
hourglass-shaped hole with a nominal d and D (50 ± 5 µm and 70 ± 5 µm), T of 60 ± 3 µm, and
P of 140 µm. We created and studied 70 different shape variations of the GEM foil hole. The five
basic scenarios are shown in figure 8.

First, the nominal hourglass hole geometry (#1) was simulated and its effective gain was
studied. After that the top part of the hole was kept static while the bottom part was moved from the
center to the left and then from the center to the right with 1 µm steps in a total range of -5 to 5 µm
(scenario #2 in figure 8). The same was done for scenario #3, but the bottom part of the hole was
kept static. In the end, scenarios #4 and #5 were studied when both parts of the hole were moved
in opposite directions with 1 µm steps in a total range of -5 to 5 µm.

A study of the effective gain as a function of the measured GEM foil hole shape was also
performed. ANSYS was used to recreate the GEM foil on the basis of SWLI data from 10 holes
in our GEM foil sample. These 10 holes were randomly chosen from the 25 holes examined
with SWLI.

Figure 8. Simplified side view of the five basic scenarios: #1 — original hourglass-shaped hole; #2 —
bottom opening moves but static top; #3 — top opening moves but static bottom; #4 — top to the left and
bottom to the right; #5 — top to the right and bottom to the left.
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The 10 holes were divided into three categories: A — deviation in the hole parameters with
±1 µm than the nominal values — see figure 4 and table 1; B — top and bottom hole elements with
a shift of more than 1 µm from the center of the hole; C — with a difference of more than 1 µm
between the top and bottom opening shift. The hole shapes shown in figure 9 present (from left
to right) the hourglass-shaped hole with nominal values and the replicated GEM foil holes from
categories B and C with their parameter values as measured with SWLI.

Figure 9. Simplified side view of the B and C GEM foil hole categories. See figure 3 for an A category
GEM foil hole.

Next, the performance of the 10 replicated GEM foil holes simulated with Garfield ++ was
evaluated against an hourglass-shaped hole (nominal result). The simulation results are reported in
the results section.

2.3.1 ANSYS

ANSYS is a computer-aided engineering software program that we used to create a field calculation
for a single GEM foil with equally shaped holes. For each simulated GEM hole category, a foil
sandwich structure (thin polyimide foil with metal coating on both sides) surrounded by a gas
mixture was created; see figure 10 (left).

Figure 10. Side view of the GEM foil sandwich structure (polyimide in beige and metal in brown) and gas
mixture (in blue) created using ANSYS.

The hole shape — see figure 10 (middle) — was created from three polyimide layers and two
layers of metal; see figure 7. All the volumes were then meshed to create a single body — see
figure 10 (right)—which was later cut out of the initial sandwich structure to achieve the final GEM
foil lookalike; see figure 11 (middle). VGEM = 600V was applied to the simulated foil and a field
calculation was performed for all 10 measured GEM foil holes and the 70 hole shaping scenarios.
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2.3.2 Garfield ++

Garfield ++ is a toolkit for the detailed simulation of particle detectors. Garfield ++ was employed
to simulate the detector gain using the ANSYS field calculations as input. For each of the 10 GEM
holes and the 70 scenarios, a Garfield ++ simulation was performed for 1000 avalanches in an
ArCO2 70/30% gas mixture, a penning factor rp = 0.7, and VGEM = 600V applied to the foil.

Figure 11. Top view of GEM foil holes created with ANSYS. The part in the center represents a small piece
of a real GEM foil, equal to the area inside the white rectangle.

3 Results

3.1 GEM foil hole parameters examined with SWLI

Figure 12 illustrates the GEM foil sample hole #8, scanned by SWLI and compared with the
corresponding OSS image. A contour extraction method was used for both hole diameters, d and
D; see figure 4.

Figure 12. GEM foil sample hole #8 diameter imaged with SWLI (left) and OSS (right).

The extraction method confirmed the observed shift S between the centers of the top and bottom
holes determined by SWLI; see figure 4 (right). It was, as expected, also possible to determine the

– 8 –
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total foil thickness T , as well as the thickness of the metal Tm and polyimide layers Tp. Table 1
presents the top and bottom parameters obtained for GEM foil sample hole #8. The results of the
GEM foil sample that was examined indicated a probable maskmisalignment during the fabrication.

Table 1. SWLI measured top and bottom parameters of GEM foil hole #8 with total thickness T of 63.17 ±
0.07 µm. The errors presented have a coverage factor k = 2.

Feature Top Bottom
d 51.18 ± 0.28 µm 51.16± 0 04 µm
D 62.81 ± 0.37 µm 63.15± 0.11 µm
S 0.22 ± 0 07 µm 1.41 ± 0 14 µm
Tm 3.64 ± 0.55 µm 3.28 ± 0.42 µm
Tp 22.96 ± 1.01 µm 23.35 ± 0.75 µm

Figure 13 shows a comparison of the shift between d and D on the top and bottom sides
measured with SWLI for the 25 holes of the GEM foil sample. The plot indicates that holes #5 and
#22 feature a relative top and bottom side shift of 3 µm. The impact of such a big shift is presented
in the simulation section below.

Figure 13. SWLI comparison of the shift between d and D on the top and bottom side (see figure 9 (right))
for the 25 holes in the GEM foil sample.

Figure 14 shows the total thickness (T ) measured with SWLI for the 25 holes of the GEM foil.
The T values ranged from 62.30 to 65.60 µm. The thickness of the GEM foil close to most of the
holes that were examined was 5.6 µm larger than the nominal thickness (60 ± 3 µm).

3.2 Comparison of multiple holes

This section focuses on the variation in the diameter of the holes located in one compact area of the
GEM foil sample; see figure 3. This data was obtained by the contour extraction method (figure 4).
Figure 15 presents a comparison of multiple holes for the top and bottom d measured with SWLI

– 9 –
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Figure 14. SWLI results for total foil thickness (T ) (see figure 5) around the 25 holes in the GEM foil sample.

for all 25 holes from the GEM sample, whereas figure 16 presents the same comparison but for the
top and bottom D.

Figure 15. The 25 inner holes d (see figure 4) in the GEM foil sample measured with SWLI.

Figure 16. The 25 outer holes D (see figure 4) in the GEM foil sample measured with SWLI.

Although there was fluctuation in the top and bottom d values, they all agree with the nominal

– 10 –
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value for the GEM foil, with a typical d of 50 ± 5 µm. However, the values obtained for D are
much smaller (-7.5 µm for both the top and bottom sides) than the nominal value (70 ± 5 µm). All
the data that was collected can be found in Supplementary_Material.doc (online resource 1).

3.3 Simulations

Figure 17 presents the variation in the effective gain studied with Garfield ++ for different shapes
of a single hole in a GEM foil with equally shaped holes. A 7% drop in the effective gain was
observed compared to the effective gain of the nominal hourglass-shaped hole. Figure 18 shows
that the electrons produced near the exit electrode that do not contribute to the effective gain. A 7%
maximum increase was observed in this region of the foil.

During the GEM hole parameter extraction values different from the nominal ones were
observed for the top and bottom sides of the foil. 10 of the 25 holes from our GEM foil sample
were randomly chosen to be recreated, as a single foil, with ANSYS and their gain was studied with
Garfield ++.

Figure 19 illustrates the simulated effective gain (left) compared to that of the nominal hour-
glass-shaped hole foil and the electrons produced near the exit electrode for 10 real GEM foil hole
geometries.

Several of the real GEM hole geometries exhibited a 4% lower effective gain compared to the
nominal case. A close look at the hole geometry shows that the high slope from the center to the
bottom of the foil might be the reason for this phenomenon. 6% more electrons were produced near
the exit electrode of the GEM foil, compared to the nominal case.

Figure 17. Simulated effective gain of the GEM foil hole with 70 differently shaped scenarios compared to
the nominal hourglass-shaped hole. See figure 8 for the color codes.
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Figure 18. Electrons produced near the exit electrode of the GEM foil for 70 differently shaped scenarios
compared to the situation in the nominal hourglass-shaped hole. See figure 8 for the color codes.

Figure 19. Simulated results based on 10 SWLI measured GEM foil hole geometries. The magenta marker
is for the hourglass-shaped hole and purple, cyan, and green are for the A (see figure 4), B, and C categories
(see figure 9), respectively.

4 Discussion

There are no detailed studies in the literature on the shape and size of GEM foil holes. Hitherto the
holes have been assumed to be perfectly hourglass-shaped [3] and only nominal hole shapes have
been simulated [21]. There are papers reporting on both simulations and real measurements with
regard to the optimal hole size for high gain [3, 22], and [23]. In these cases all the holes were
assumed to be identical. Most previous research on detector gain focuses on the gas mixture and
pressure and the voltage applied rather than the actual hole shape [15, 24], and [25].

– 12 –
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In the current study we used a calibration sample (to confirm the tool calibration) with a
surface comparable to that of the GEM foil to obtain accurate values for the real-life GEM foil hole
geometry. To guarantee accurate and traceable results we ensured that both individual holes and
ensembles of holes were correctly imaged. This was done by collecting the data with a calibrated
SWLI device. This kind of study has not been performed before. We also proposed a new approach
to the 3D quality assurance analysis of GEM foil hole geometry. This method applied to a double
masked GEM foil employs six parameters: inner (d) and outer (D) hole diameter, shift (S) between
the centers of the two holes, and the total foil (T ), metal (Tm), and polyimide layer (Tp) thicknesses.

The S parameter is, however, a little tricky. How does one know which side has moved? The
GEM foil fabrication process starts with etching from the top and then from the bottom to the center
of the foil. Hence the top side pitch is the first parameter to be created. It is therefore possible to
have misalignment of both top and bottom pitches. However, in this study we are observing a shift
between D and d on both sides, which should be due to the etching process — the etchant does
not create a perfectly centered cone. Consequently our approach of using the top hole center as our
reference point should be solid.

To determine the effect of hole geometry on gain, the ANSYS and Garfield ++ softwares were
employed to simulate the GEM detector gain performance on the basis of measured SWLI data. The
effective gain in a single foil with equally shaped holes was also studied. Compared to predictions
based on the ideal geometry, the hole based on the measured geometry featured 4% lower gain and
6%more produced electrons near the exit electrode of the GEM foil. Our results prove that the hole
geometry affects the gain performance of the GEM detectors. The recorded effect, while small,
may be important since the simulated cases are ideal — equally shaped holes along the GEM foil.
As demonstrated in this study, the GEM foil contains holes of different shapes and sizes. Most
papers report that GEM detectors are robust and can tolerate the radiation dose foreseen in 10 years
of operation without loss in gain and energy resolution. For instance, LHCb published a paper in
2012 stating that ‘as of today we don’t observe classical aging effects on our GEM detectors’ [26].

The simulations assumed a certain size and shape for all the holes in a GEM foil. For instance,
each marker in figure 19 represents a foil with identical holes. A GEM detector gain evaluation
on the device level could be performed for an assembly of differently shaped and sized holes over
several GEM foil detectors. It is likely that the effective gain could significantly increase or decrease
if a foil with different shapes and size holes is simulated. This is future work. The effect of the rim
roughness also needs to be examined since asperities concentrate the electric field.

The proposed method is slow if used to examine a GEM foil sized 10 by 10 cm2. However,
knowing the real hole geometry could help improve GEM fabrication, which could lead to better
detector performance. Improving GEM foil fabrication is important because it is assumed on the
basis of [3–8] that the characteristics of GEM foils strongly affect the behavior of the GEM foil
detector.

The present work is important to the field of metrology, as well as for the QA and fabrication
of GEM detectors. The study shows that the real GEM hole geometry differs from the designed
geometry. It might also provide a deeper understanding of the processes inside the GEM detector
during operation. We therefore recommend these parameters to be considered during further
development, manufacturing, and performance simulations of GEM foils.
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5 Conclusions

AGEM foil sample and high-resolution SWLI were used for a detailed examination of the geometry
of GEM foil holes. Both sides of the sample were examined and six topological foil parameters
were determined. On the basis of the measured data, ANSYS and Garfield ++ simulations were
performed to study the effect of hole geometry on detector gain. Our results indicated that the real
GEM foil holes exhibited a 4% lower effective gain and 6% more electrons produced near the exit
electrode of the GEM foil than the design anticipated.

Acknowledgments

This work was partly supported by the EMRP NEW08MetNEMS project and an associate research
excellence grant, NEW08-REG3. The EMRP is jointly funded by the participating countries in the
EMRP within EURAMET and the European Union.

We thank Dr. Alessandro Amato and Dr. Francesco Devoto for their C++ and ROOT support.

References

[1] F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nucl. Instrum. Meth. A 386
(1997) 531.

[2] R. Oliveira,MPGDs & GEM foils and detector fabrication techniques, talk given at the IWAD and the
14th RD51 Collaboration Meeting, Kolkata, India, 27–31 Oct 2014.

[3] S. Bachmann, A. Bressan, L. Ropelewski, F. Sauli, A. Sharma and D. Mormann, Charge amplification
and transfer processes in the gas electron multiplier, Nucl. Instrum. Meth. A 438 (1999) 376.

[4] M. Posik and B. Surrow, Optical and electrical performance of commercially manufactured large
GEM foils, Nucl. Instrum. Meth. A 802 (2015) 10.

[5] U. Becker, B. Tamm and S. Hertel, Test and evaluation of new GEMs with an automatic scanner,
Nucl. Instrum. Meth. A 556 (2006) 527.

[6] F. Simon et al., Development of tracking detectors with industrially produced GEM foils, IEEE Trans.
Nucl. Sci. 54 (2007) 2646 [arXiv:0707.2543].

[7] M. Kalliokoski et al., Study of GEM-Foil Defects with Optical Scanning, IEEE Nucl. Sci. Symp. Conf.
Rec., IEEE (2010), pp. 1446–1449.

[8] M. Posik and B. Surrow, Research and development of commercially manufactured large GEM foils,
in proceedings of 4th Joint Meeting of the APS Division of Nuclear Physics and the Physical Society
of Japan, Bulletin of the American Physical Society 59 (2014).

[9] A. Karadzhinova et al., Calibrating an optical scanner for quality assurance of large area radiation
detectors, Measur. Sci. Tech. 25 (2014) 115403.

[10] A. Karadzhinova et al.,Microfabrication of Transfer Standards for Calibration of Optical Quality
Assurance System, in proceedings of 24th Micromechanics and Microsystems Europe Conference,
Espoo, Finland (2013).

[11] T. Hildén et al., Optical quality assurance of GEM foils, Nucl. Instrum. Meth. A 770 (2014) 113.

[12] J. Seppä et al., Quasidynamic calibration of stroboscopic scanning white light interferometer with a
transfer standard, Opt. Eng. 52 (2013) 12.

– 14 –

http://dx.doi.org/10.1016/S0168-9002(96)01172-2
http://dx.doi.org/10.1016/S0168-9002(96)01172-2
http://dx.doi.org/10.1016/S0168-9002(99)00820-7
http://dx.doi.org/10.1016/j.nima.2015.08.048
http://dx.doi.org/10.1016/j.nima.2005.11.056
http://dx.doi.org/10.1109/TNS.2007.909912
http://dx.doi.org/10.1109/TNS.2007.909912
http://arxiv.org/abs/0707.2543
http://dx.doi.org/doi:10.1088/0957-0233/25/11/115403
http://dx.doi.org/10.1016/j.nima.2014.10.015
http://dx.doi.org/doi:10.1117/1.OE.52.12.124104


2
0
1
5
 
J
I
N
S
T
 
1
0
 
P
1
2
0
1
4

[13] ANSYS Inc., Southpointe, 2600 ANSYS Drive, Canonsburg, PA 15317, U.S.A.
http://www.ansys.com/.

[14] H. Schindler and R. Veenhof, Garfield++: Simulation of tracking detectors, http://cern.ch/garfieldpp.

[15] Ö. Şahin et al., Penning transfer in argon-based gas mixtures, 2010 JINST 5 P05002.

[16] S. Bachmann et al., Performance of GEM detectors in high intensity particle beams, Nucl. Instrum.
Meth. A 470 (2001) 548.

[17] Digital Surf Inc., 25000 Besançon, France, http://www.digitalsurf.fr/en/index.html.

[18] ISO 1101, Geometrical product specifications (GPS) — Geometrical tolerancing — Tolerances of
form, orientation, location and run-out, 3rd edition, Geneva, Switzerland (2012).

[19] Joint Committee for Guides in Metrology, Evaluation of measurement data — Guide to the expression
of uncertainty in measurement (GUM), JCGM 100:2008.

[20] G. Rodger, Dimensional Measurement using Vision Systems, Measurement Good Practice Guide No.
39, National Physical Laboratory, Teddington, U.K. (2010).

[21] G. Bencivenni et al., A comparison between GEM-based detector simulation and experimental
measurements, Nucl. Instrum. Meth. A 494 (2002) 233.

[22] O. Buyanov, M. Buyanov, R. Orava and V. Tikhonov, Foil geometry effects on GEM characteristics,
Nucl. Instrum. Meth. A 458 (2001) 698.

[23] F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nucl. Instrum.
Meth. A 805 (2016) 2.

[24] A. Bondar, A. Buzulutskov and L.I. Shekhtman, High pressure operation of the triple-GEM detector
in pure Ne, Ar and Xe, Nucl. Instrum. Meth. A 481 (2002) 200 [physics/0103082].

[25] F.D. Amaro et al., Operation of a single-GEM in noble gases at high pressures, Nucl. Instrum. Meth.
A 579 (2007) 62.

[26] A. Cardini et al., The Operational Experience of the Triple-GEM Detectors of the LHCb Muon System:
Summary of 2 Years of Data Taking, IEEE Nucl. Sci. Symp. Conf. Rec., IEEE (2012), pp. 759–762.

– 15 –

http://www.ansys.com/
http://cern.ch/garfieldpp
http://dx.doi.org/10.1088/1748-0221/5/05/P05002
http://dx.doi.org/10.1016/S0168-9002(01)00802-6
http://dx.doi.org/10.1016/S0168-9002(01)00802-6
http://www.digitalsurf.fr/en/index.html
http://dx.doi.org/10.1016/S0168-9002(02)01472-9
http://dx.doi.org/10.1016/S0168-9002(00)00897-4
http://dx.doi.org/10.1016/j.nima.2015.07.060
http://dx.doi.org/10.1016/j.nima.2015.07.060
http://dx.doi.org/10.1016/S0168-9002(01)01369-9
http://arxiv.org/abs/physics/0103082
http://dx.doi.org/10.1016/j.nima.2007.04.013
http://dx.doi.org/10.1016/j.nima.2007.04.013
http://dx.doi.org/10.1109/NSSMIC.2012.6551204

	Introduction
	Methods
	Setup
	GEM foil sample preparation
	Scanning White Light Interferometry

	SWLI measurements
	Simulation methods
	ANSYS
	Garfield ++


	Results
	GEM foil hole parameters examined with SWLI 
	Comparison of multiple holes
	Simulations

	Discussion
	Conclusions

