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Abstract 14 

The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in 15 

soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess 16 

the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field 17 

study was conducted to monitor the ecological impact of used motor oil under different perennial 18 

cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a 19 

boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial 20 

community following oil contamination over a four-year bioremediation period. Soil pH and 21 

electrical conductivity were associated with the shifts in bacterial community composition. Crops 22 

had no detectable effect on bacterial community composition or complexity. However, the legume 23 

fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination 24 

induced an abrupt change in bacterial community composition at the early stage, yet the effect did 25 

not last as long as the oil in soil. The successional variation in bacterial community composition can 26 

serve as a sensitive ecological indicator of oil contamination and remediation in situ.   27 
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1. INTRODUCTION 28 

Petroleum hydrocarbons (PHCs) originating from crude oil or refined petroleum products are 29 

detrimental to environmental health as soil contaminants. Used motor oil or crankcase oil is 30 

lubricating oil that is removed from the crankcase of internal combustion engines of vehicles (Irwin 31 

et al. 1997). The widespread handling of small volumes of used motor oil by enterprises, farms and 32 

private persons makes it a notable risk factor to cause scattered contamination. Besides physical 33 

removal (leaching and volatilization), PHCs are subjected to biodegradation, the metabolic ability of 34 

microorganisms to transform or mineralize organic contaminants to less harmful, non-hazardous 35 

substances (Margesin and Schinner 1997, Margesin and Schinner 2001, Namkoong et al. 2002, 36 

Chaîneau et al. 2003). Hydrocarbon fractions differ in their susceptibility to microbial attack (Leahy 37 

and Colwell 1990). In used motor oil, the concentrations of long-chain aliphatics, benzene-, and 38 

naphthalene-based compounds, polycyclic aromatic hydrocarbons (PAHs) and heavy metals are high; 39 

once released, these carcinogenic compounds can result in long lasting contamination due to their 40 

high resistance to microbial degradation (Irwin et al. 1997,  Dominguez-Rosado et al. 2004).  41 

Nitrogen is often a limiting factor in biodegradation of hydrocarbon-contaminated soils. Leguminous 42 

plants that are resistant to hydrocarbon pollutants assist bioremediation of oil-polluted sites 43 

effectively and sustainably as substitutes of N-fertilizers (Dominguez-Rosado et al. 2004, Kamath et 44 

al. 2004, Chiapusio et al. 2007). The perennial legume fodder galega (Galega orientalis) and smooth 45 

brome grass (Bromus inermis) are both suitable to grow in a boreal climate and have great potential 46 

to enhance bioremediation of oil-contaminated soil in microcosm and mesocosm studies (Suominen 47 

et al. 2000, Kulakow et al. 2000, Lindstrom et al. 2003, Kaksonen et al. 2006, Muratova et al. 2008, 48 

Jasinskas et al. 2008, Kryževičienė et al. 2008, Mikkonen et al. 2011a). Further assistance to the 49 

bioremediation process may be provided by plant growth promoting bacteria (PGPB) that have 50 

potential to mitigate plant stress response and increase the bioavailability of soil contaminants, 51 
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therefore enhancing the degradation of contaminants (Gurska et al. 2009, Hong et al. 2011, Pajuelo 52 

et al. 2011, Bhattacharyya and Jha 2012).  53 

Effectiveness and completeness are ultimate goals in a successful remediation project (White et al. 54 

1998). Complete removal of contaminants in the environment is not always easy to achieve. White et 55 

al. (1998) proposed an ecologically based test of “how clean is clean” using assessment of microbial 56 

community dynamics as a comprehensive tool to estimate contaminant disappearance. Hence, 57 

understanding the successional dynamics of bacterial communities on contaminated sites is an 58 

important aspect of risk assessment needed for the planning of following remediation actions. Due to 59 

the operational simplicity and high reproducibility in analyzing large sample series, length 60 

heterogeneity analysis of polymerase chain reaction products (LH-PCR, Suzuki et al. 1998) was 61 

widely used to monitor the succession of microbial communities in response to oil pollution  (Mills 62 

et al. 2003, Mills et al. 2006, Mikkonen et al. 2011b, Mikkonen et al. 2012). The possibility to 63 

compare the sizes of the amplicons against 16S rRNA gene sequences in silico enables preliminary 64 

identification of bacterial groups in the community (Mills et al. 2003, Tiirola et al. 2003). 65 

To date, bacterial community succession in used motor oil-polluted soil in a boreal climate zone has 66 

received little experimental attention. The studies on bacterial community succession in oil-polluted 67 

vegetated soil have been limited to short-term microcosm and mesocosm experiments (Mikkonen et 68 

al. 2011b, Mukherjee et al. 2013, Simarro et al. 2013). The successional patterns of soil microbial 69 

community following oil contamination in a boreal field are plausibly different from those in short-70 

term controlled conditions. Hence, a systematic field bioremediation study was established with the 71 

main aim to monitor the impact of used motor oil, different perennial cropping systems (fodder galega, 72 

brome grass, galega-brome grass mixture and bare fallow), plant growth promoting bacteria and soil 73 

parameters on bacterial community composition over a four-year period (2009-2012) in a boreal 74 

region, using LH-PCR microbial community fingerprinting analysis.  75 
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2. MATERIALS AND METHODS 76 

2.1 Experimental design, samplings and chemical analysis of soil  77 

The multi-year bioremediation field experiment was established in a split-plot design at Viikki 78 

experimental farm, Helsinki, Finland (60°14'N, 25°01'E, 8 m AMSL). Crop treatments of 79 

monocultures of brome grass and fodder galega, their mixture and bare fallow were the main plots 80 

in four replicated blocks. Used motor treatments (oil+/-) and plant growth promoting bacteria 81 

treatments (PGPB+/-) were the sub-plot factors. About 6 kg of used motor oil (Teboil Lubricants 82 

Classic Mineral Motor oil, SAE 10W-30, API SF/CD, Finland) was mixed with 10 kg of coarse 83 

sand (0.5-1.2 mm), spread and spiked onto the top 20 cm of each designated-to-be oil-contaminated 84 

plot with a rotary tiller on 17 June 2009, making the target contamination approximately to 7000 85 

ppm (7 g kg-1 dry soil). The non-contaminated control plots received pure sand on the top 20 cm 86 

soil. Before sowing, seeds of G. orientalis cv. 'Gale' (Naturcom Oy, Ruukki, Finland) were all 87 

inoculated with Neorhizobium galegae strain HAMBI 540 (University of Helsinki, Helsinki, 88 

Finland). The seeds of Neorhizobium galegae-inoculated G. orientalis  and B. inermis cv. 'Lehis' 89 

(Jõgeva Plant Breeding Institute, Estonia) were inoculated with two PGPB strains, Pseudomonas 90 

trivialis 3Re27 (Graz University of Technology, Graz, Austria) and Pseudomonas extremorientalis 91 

TSAU20 (National University of Uzbekistan) according to  Egamberdieva et al. (2010),  as the co-92 

inoculation of these two PGPB strains with Neorhizobium galegae were found to improve growth 93 

and symbiotic performance of fodder galega in a greenhouse experiment  (Egamberdieva et al. 94 

2010). PGPB-free seeds were used as controls. The seeds were manually sown and lightly covered 95 

by raking. Crops were harvested twice a year from 2010 on. Weeds were controlled manually. Soil 96 

samples were taken from the top 20 cm layer in the field at six time points (July 2009, May 2010, 97 

November 2010, May 2011, May 2012 and October 2012) and stored at -20°C until the analysis. 98 

Soil chemical properties of three sample sets (July 2009, November 2010 and May 2012) were 99 

measured. Electrical conductivity (EC) and soil pH were measured in a 1:2.5 (v:v) soil-water 100 
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suspension with MeterLab™ CDM210 (Radiometer Analytical) and SCHOTT CG842 pH-meter (SI 101 

Analytics), respectively. Soil dry matter content was determined by drying to constant mass at 105 102 

ºC. Soil total C and N contents were analysed using the VarioMax CN-analyzer (Elementar 103 

Analysensysteme GmbH, Hanau, Germany) and corrected to the dry-weight basis. The oil 104 

concentration in each oil-spiked plot was determined as the difference of total solvent extractable 105 

material (TSEM) concentration between the plot and the average of 4 to 5 randomly selected 106 

control plots at each sampling time. Detailed information on the field design, oil spike, soil 107 

sampling, measurements of soil chemical properties and TSEM determination are described in Yan 108 

et al. (2015). 109 

2.2 DNA extraction and LH-PCR 110 

Soil DNA was directly extracted from 0.50 g moist soil samples with FastDNA SPIN kit for Soil 111 

(Qbiogene, USA) according to the manufacturer’s instructions. The final elution volume was 75-125 112 

µL. The DNA yield of the first four sample sets was measured fluorometrically on a 96-well plate 113 

according to the manufacturer's instructions (PicoGreen dsDNA Quantification Reagent Kit; 114 

Molecular Probes).  115 

Soil DNA extract was diluted 1/50 with sterile deionized water to avoid PCR inhibition by co-116 

extracted humic substances in soil. Length heterogeneity PCR (LH-PCR) with 0.5-5 ng of DNA as a 117 

template was performed as described by Mikkonen et al. (2011b). The amplified fragments were 118 

separated with polyacrylamide capillary electrophoresis using ABI PRISM 310 Genetic Analyzer 119 

(Applied Biosystems). 120 

2.3 LH-PCR data processing 121 

The fingerprint electropherograms were imported from the GeneScan v. 3.7 (Applied Biosystems) as 122 

12-bit densitometric curves with Curve Converter into an artificial gel in BioNumerics v. 6.6 (Applied 123 

Maths, Sint-Martens-Latem, Belgium). The bands (peaks) of each sample profile (FAM-labeled) 124 
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were manually assigned to avoid background noise. The bands were aligned and normalized with the 125 

internal HEX-labelled size standards. The active area of each profile was set to the expected amplicon 126 

size of 460-565 base pairs (bp) with normalized position ranging between 18.11% and 64.92% 127 

(resolution = 1942 points). The densitometric curve of each bacterial community profile was directly 128 

exported from BioNumerics as curve-based raw data. The relative fluorescence ratio of each band 129 

point was calculated as its contribution of the fluorescence intensity to the summed fluorescence 130 

intensity of the 1942 band points within the size range of 460-565 base pairs.  131 

The fluorescence intensity, area and size (bp) of each peak and the number of peaks present in each 132 

LH-PCR profile were exported directly from the BioNumerics LH-PCR fingerprint report for peak-133 

based analysis. Each LH-PCR peak differentiated by BioNumerics software was considered an 134 

operational taxonomic unit (OTU), identified by its LH-PCR amplicon size (bp). The number of peaks 135 

(OTUs) was used as proxy of the species richness (S) of the bacterial community. The relative area 136 

of each OTU was calculated as its proportion in the summed area of all the peaks in that profile within 137 

the size range. Peak-based Shannon diversity index (H) of each bacterial community profile was 138 

calculated according to the formula: H= - Ʃ pi ln pi, where pi is the relative fluorescence intensity of 139 

the peak of the ith operational taxonomic unit (OTU).  140 

2.4 Statistical analyses 141 

LH-PCR curve-based fingerprinting data, which represented soil bacterial communities, were non-142 

normally distributed and included high numbers of zeroes. Therefore the LH-PCR and soil chemical 143 

data were subjected to non-parametric distance-based multivariate methods. Bray-Curtis distance was 144 

calculated between observations for all the following distance-based nonparametric multivariate 145 

analyses. Variation in the entire LH-PCR curve-based data was first visualized by the distance-based 146 

principal coordinates (PCoA), which was performed in the R environment (R Development Core 147 

Team 2014), using the function “cmdscale” in package Vegan (Oksanen et al. 2015). 148 
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The effects of crops (legume, grass, legume-grass mixture and bare fallow), oil and PGPB treatments, 149 

sampling time, and replicated blocks as well as their interactions on soil bacterial community 150 

composition were analysed using permutational multivariate analysis of variance (PERMANOVA) 151 

(Anderson 2001, McArdle and Anderson 2001) in PRIMER v.6 software (Clarke and Gorley 2006) 152 

with add-on package PERMANOVA+ (Anderson et al. 2008). We used 9999 permutations to 153 

calculate the significance of the treatment effects.  154 

To test differences of bacterial communities based on the a priori groups (e.g. crops, oil+/-, PGPB+/-, 155 

sampling times, experimental blocks, times in a growing season), we performed non-parametric 156 

distance-based discriminant analysis (db-DA, Anderson and Robinson 2003) using the function 157 

“CAPdiscrim” of R package BiodiversityR  (Kindt and Coe 2005). Discriminant analysis also 158 

calculated the proportion of observations that were correctly classified based on the above tested a 159 

priori groups. The significance of the classification was calculated using 9999 permutations. The 160 

multivariate homogeneity of group variances (dispersions) (Anderson 2006) was tested using the 161 

function “betadisper” in the package Vegan (Oksanen et al. 2015). The function 162 

“permutest.betadisper” with 9999 permutations was used to calculate significance for the pairwise 163 

comparisons of the multivariate dispersions of the groups (Supplementary Figure S1), the null 164 

hypothesis being that there were no differences in dispersion between groups. 165 

To study the variation in bacterial community composition as a function of soil physiochemical 166 

variables, a constrained analysis of principal coordinates (CAP), also called as distance-based 167 

redundancy analysis (Legendre and Anderson 1999) was performed. The CAP, which used soil 168 

physicochemical variables and LH-PCR curve-based data of PGPB-untreated samples from three 169 

sampling times (July 2009, Nov. 2010 and May 2012), was executed in the R package Vegan  170 

(Oksanen et al. 2015) using the function “capscale”. We used 9999 permutations of LH-PCR data 171 

with the function “permutest” to test significance. Insignificant and collinear soil chemical properties 172 

were excluded from the final CAP model. The idea behind CAP analysis is to apply multivariate 173 
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linear regression to represent the bacterial community assemblages as a function of explanatory 174 

variables such as our soil physiochemical variables. Subsequently, the principal coordinates of fitted 175 

values (Legendre and Anderson 1999) can be used to visualize the significant differences among the 176 

community assemblages. To be able to visualize each fragment as base pairs in the CAP ordinations, 177 

we combined all band points produced by LH-PCR within 1 bp by summarizing the relative 178 

fluorescence of these band points (summarized LH-PCR fragment) and calculating the average 179 

proportion of each summarized fragment. Thus, CAP analyses were based on the relative abundance 180 

of summarized LH-PCR fragments. The scores of individual components of the bacterial community 181 

assemblages (LH-PCR fragments) were calculated using the function “scores.rda” of the package 182 

vegan (Oksanen et al. 2015).  183 

Repeated measures split-plot analysis of variance (RM ANOVA) with the sampling time as the 184 

repeated factor (within-subject factor) was used to test the overall between- and within-subjects 185 

effects (sphericity assumed) on soil total DNA concentration and peak-based ecological indices (H 186 

and S) in SPSS (version 22, IBM Inc., Armonk, NY, USA). Crop and oil treatments were input as 187 

fixed factors and block (replicate) as a random factor. Crop was tested against the interaction term 188 

crop × block to take out the effect of the main plot from the residual variance so it does not skew the 189 

error variance of the subplot stratum. Oil treatment and its remaining interaction with crop treatment 190 

were tested against the subplot error mean square. For each sampling time, the dependent variables, 191 

e.g. H, S and soil DNA concentration were roughly normally distributed, checked with Normal Q-Q 192 

plots and Shapiro-Wilk normality test in SPSS, prior to parametric analysis. The population variances 193 

were assumed equal for treatment groups as the sample sizes were equal. Bonferroni multiple pairwise 194 

test was applied to compare the means, when treatment effect was significant. When the effects of 195 

interactions between sampling times and other treatment factors were significant, the split-plot 196 

univariate analysis of variance (UV ANOVA) was applied to further test the between-subjects effects 197 
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(oil, crop and oil × crop) on soil bacterial diversity at separate sampling times.  In all statistical 198 

analysis, differences were concluded significant at p<0.05. 199 

3. Results 200 

In our multi-year bioremediation field experiment, soil total DNA concentration was monitored for 201 

three years as a proxy for total soil microbial biomass (Table 1). Soil DNA concentration was different 202 

in different cropping systems (RM ANOVA, p<0.05). The soil planted with the legume fodder galega 203 

gained 3.2 ng g-1 fresh soil (18%) more soil microbial DNA than bare fallow on average (Table 1). 204 

The difference between legume and bare fallow on soil DNA concentration was most significant in 205 

May 2011 (Table 1). The impact of oil and PGPB treatment on soil total DNA was insignificant.  206 

3.1 Evaluation of treatment effect on bacterial community composition using curve-based measures 207 

We used LH-PCR to assess the effect of crop, oil and PGPB treatment on microbial diversity patterns 208 

in a four-year field experiment. In a principal coordinate analysis (PCoA) the 192 curve-based 209 

bacterial LH-PCR community-fingerprinting profiles showed a clear time-dependent shifting pattern 210 

(Supplementary Figure S2). The bacterial community profiles in contaminated and non-contaminated 211 

soil samples were different at the first and second sampling times. Crop and PGPB treatments had no 212 

detectable effect on the communities. 213 

The effect of treatments (crops, oil and PGPB) and their interactions on bacterial community structure 214 

was further evaluated using split-plot PERMANOVA. The effect of oil contamination on bacterial 215 

community composition was statistically significant at the beginning of the growing seasons of 2009, 216 

2010 and 2011, but insignificant at other sampling times (Supplementary Table S1). Experimental 217 

blocks significantly affected the variation in bacterial community composition (Supplementary Table 218 

S1). Crop treatment (brome grass, galega and their mixture) and plant growth promoting bacteria 219 

showed no significant impact on bacterial community composition (Supplementary Table S1).  220 
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Discriminant analysis was applied as a follow-up procedure to the PERMANOVA to confirm and 221 

visualize how the composition of microbial communities differs between a priori groups. The 222 

separation of the a priori groups based on sampling times (Figure 1a), oil treatment (Figure 1b) and 223 

times of a growing season (Figure 1d) was clear. However, the dispersions of observations at different 224 

sampling times (Supplementary Figure S1a) and time of a growing season (Supplementary Figure 225 

S1d) were not equal, which may have affected the differentiation of groups. The averaged LH-PCR 226 

profiles in the end of the growing seasons were also clearly similar to each other (Supplementary 227 

Figure S3c and S3f). The crop treatments showed no effect on bacterial community compositions 228 

(Figure 1c).  229 

3.2 Evaluation of treatment effect on bacterial community composition using peak-based measures 230 

The effects of oil, crops, sampling time and their interactions on the Shannon diversity and richness 231 

of bacterial community compositions were assessed with RM ANOVA (Table 2). The 192 LH-PCR 232 

profiles showed 10 to 38 peaks that were regarded as proxies for operational taxonomic units (OTUs). 233 

The peak-based ecological indices showed a strong time-dependent pattern. The species richness 234 

(number of OTUs) was not influenced by oil, but by time (RM ANOVA, p<0.05); the highest values 235 

were observed in spring 2010 and the lowest in both autumns (Table 2). The Shannon diversity indices 236 

differed with time and time × oil treatment (RM ANOVA, p<0.05). Bacterial diversity in the 237 

contaminated plots was significantly different from diversity in the non-contaminated plots at the first 238 

and fourth sampling times in July 2009 (p<0.05) and in May 2011 (p=0.051), respectively (Table 2). 239 

The Shannon diversities were highest in spring 2010 and lowest in November 2010 in both the 240 

contaminated and the non-contaminated plots (Table 2). Crop treatments did not affect soil bacterial 241 

diversity and species richness. The variation of bacterial diversity between blocks was high (RM 242 

ANOVA, p<0.05).  243 
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There was a time-dependent pattern in the abundance of the dominant OTUs. In non-contaminated 244 

plots, the OTUs with amplicons 469-470 bp, 495-496 bp, 520-521 bp and 535-536 bp were the most 245 

dominant bacterial groups with the relative peak area of over 10% in the averaged LH-PCR 246 

fingerprint profiles. The abundance of the OTUs 535 and 536 bp increased over time. In autumn 2012, 247 

the relative peak area of the OTU 536 bp reached 33%.  248 

3.3 Compositional changes in microbial community in response to changing soil variables  249 

Constrained analysis of principal coordinates (CAP) revealed a time-dependent pattern and a strong 250 

dependence between microbial community composition and soil variables (oil concentration, total C, 251 

total N, C:N ratio electrical conductivity and pH) in all PGPB-untreated plots from three sampling 252 

times (July 2009, November 2010 and May 2012). Among the measured soil variables, oil 253 

concentration (p=0.001), pH (p=0.002) and EC (p=0.011) were factors that accounted for 13.5% of 254 

the total variation in the bacterial community composition (Figure 2, p<0.0001). The first two CAP 255 

axes accounted for 97.6% of the variance. Both soil total C and C:N ratio were associated with the 256 

changes of bacterial community composition (data not shown); however, they were removed from 257 

the final CAP model due to the collinearity (high correlation) with oil concentration. 258 

The influence of sampling time was mostly shown along the first CAP axis, as the bacterial profiles 259 

shifted from right to left in the ordination space over time (Figure 2). Oil effect was better shown on 260 

the second CAP axis than on the first CAP axis, as 53.8% of the total variation originating from the 261 

oil concentration was loaded onto the second axis. Bacterial communities of the first sampling time 262 

from the non-contaminated samples correlated positively with EC and pH whereas those from oil-263 

contaminated soils correlated positively with oil concentration and pH. At later sampling times, 264 

bacterial communities of both oil-contaminated and control soils showed negative correlation with 265 

all tested parameters (Figure 2).  266 
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The bacterial taxa that primarily responded to the quantitative changes in soil variables were also 267 

defined by CAP analysis. The LH-PCR fragments 495-497 bp correlated positively with oil 268 

concentration (Figure 2). Specifically, the relative fluorescence ratio of the LH-PCR fragment 497 bp 269 

was much higher in oil-contaminated than in non-contaminated plots (Supplementary Figure S3a), 270 

accounting for 19% of the total peak area in July 2009, when the oil concentration was above 4.00 g 271 

kg-1. Although the oil concentration at the second sampling time was almost unchanged (3.85 g kg-1), 272 

the 497 bp peak disappeared (Supplementary Figure S3b). The LH-PCR fragments 471-472 bp, 517 273 

bp and 535-536 bp correlated negatively with oil concentration (Figure 2). The LH-PCR fragment 274 

469 bp correlated positively with soil EC in non-contaminated samples in the first sampling time. The 275 

OTUs 465-466 bp, 492 bp, 501 bp and 531-532 bp that were abundant in the first sampling time 276 

correlated positively with soil pH (Figure 2). LH-PCR fragments 537-539 correlated negatively with 277 

soil pH and EC. 278 

In addition, CAP revealed a strong negative correlation between soil electrical conductivity (EC) and 279 

oil concentration, and a strong positive correlation between electrical conductivity and pH (Figure 2). 280 

Oil concentration was weakly linked with pH (Figure 2). 281 

4. Discussion 282 

Microbial communities can be considered as functional units that are characterized by the sum of the 283 

metabolic properties of the microbial taxa involved (Wünsche et al. 1995). The field results showed 284 

that oil contamination had no effect on soil microbial biomass. It disagrees with the greenhouse 285 

experiment where soil total DNA concentration increased in the presence of oil during the first 15 286 

weeks’ time (Mikkonen et al. 2011a), due to the more complex environmental condition in the field 287 

than in the controlled greenhouse.  288 

The response of the microbial community to changes in the environment can be monitored with 289 

community fingerprinting methods, e.g. with length heterogeneity analysis of polymerase chain 290 
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reaction (LH-PCR) that is based on the natural length variation of 16S rRNA gene (Tiirola et al. 2003, 291 

Mikkonen et al. 2011b). The analysis of peak-based ecological indices (diversity and richness) is a 292 

simplified measure routinely used in most LH-PCR data analysis  (Mills et al. 2003, Mills et al. 2006, 293 

Mikkonen et al. 2011b, Mikkonen et al. 2012, Wu et al. 2015, Zou et al. 2015). Nevertheless, these 294 

traditional ecological indices are not as sensitive as the distance-based nonparametric multivariate 295 

measures to observe the potential treatment effect on microbial community, due to the inherently 296 

lower resolution because of limited number of peaks resolved  (Mills et al. 2006, Mikkonen et al. 297 

2011b). However, Mills et al. (2003) found that LH-PCR is operationally simpler and has better 298 

reproducibility than T-RFLP, another popular community fingerprint technique in profiling diverse 299 

microbial communities during bioremediation of petroleum-contaminated soils. The LH-PCR 300 

technique was also successfully implemented to study the changes in the bacterial community 301 

composition in the multi-year bioremediation field experiment. In this study, both curve-based 302 

multivariate analysis and peak-based univariate analysis were used to assess the succession of 303 

bacterial community during bioremediation. An LH-PCR densitometric curve-based profile was used 304 

to pattern the whole soil bacterial community structure, whereas LH-PCR peaks were taken as proxies 305 

for operational taxonomic units (OTUs) that approximate bacterial species or species groups  (Zou et 306 

al. 2015). Every LH-PCR fingerprint included at least ten peaks, indicating a fine resolution of 16S 307 

rRNA gene fragments among diverse bacterial populations, appropriate for monitoring the response 308 

of microbial community to oil contamination. The number of LH-PCR peaks did not change 309 

significantly in the presence of oil contamination, suggesting resilience of the dominant bacterial 310 

populations towards oil contamination in the agricultural soil. In the community profiles, the relative 311 

peak areas of the most abundant OTUs were less than 40% and those of several OTUs were over 10%, 312 

indicative of inherent compositional complexity of bacterial populations in the community.  313 

The discriminant analysis based on Bray-Curtis dissimilarity, produced an effective discrimination 314 

of bacterial LH-PCR profiles based on a priori groups including different sampling times, oil 315 
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contamination and growing seasons in the field study. Time and oil contamination lead to 316 

successional changes in the bacterial community composition. These findings agreed with the 317 

previous greenhouse experiment where the oil effect on bacterial communities was constantly 318 

significant during the whole 20-week experiment using Pearson dissimilarity (distance)-based 319 

discriminant analysis of LH-PCR curve data (Mikkonen et al. 2011b). The db-DA method, and 320 

particularly PERMANOVA, assumes equal dispersion (variance) of observations between a priori 321 

groups to be analyzed. However, the a priori groups of sampling times and seasons showed unequal 322 

dispersion, which may have effect on the discrimination based on the different sampling times and 323 

seasons. As the oil-contaminated samples separated clearly from non-contaminated ones in db-DA, 324 

particularly in the first two sampling times when the oil concentration was highest, one could assume 325 

that oil contamination level resulted in the unequal dispersion of observations between sampling times. 326 

The unequal dispersion of observations in the beginning and at the end of growing season was 327 

probably caused by the unequal sample sizes (beginning: n=224 and end: n= 96). Despite the unequal 328 

dispersions of times and seasons, the p-values of db-DA were highly significant, which indicate that 329 

the effect of time and season was considerable. In addition, db-DA (Anderson and Robinson 2003) is 330 

quite robust to violations of the assumptions.  331 

The successional shifts of microbial community reflected the changes of soil condition, such as motor 332 

oil addition and degradation in our experiment. One month after oil spike, oil diminished bacterial 333 

diversity significantly. The CAP analysis elucidated a significant difference in LH-PCR profiles 334 

between oil-contaminated and control plots. The structural change of microbial community in the 335 

presence of oil, especially the increased abundance of the bacterial group (OTU 497 bp), was 336 

associated with the rapid loss of oil (approximately 42% on average, Yan et al. 2015) observed in the 337 

first month following oil spike (June-July 2009). As indigenous microbial populations of differing 338 

taxonomic microbial groups capable of degrading hydrocarbons exist widely in natural environment 339 

(Atlas 1981), the presence of oil hydrocarbons may increase the absolute and relative abundance of 340 
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hydrocarbon-utilizing bacteria in the community. This structural difference between oil-contaminated 341 

and non-contaminated soil was associated with rapid oil reduction, suggesting that the difference in 342 

community composition was related to a functional difference, such as biodegradation of 343 

hydrocarbons in the oil-contaminated plots. Interestingly, the dominance of the OTU 497 bp 344 

disappeared on the later sampling occasions. This OTU likely represented a group of r-strategic 345 

hydrocarbon-utilizing bacteria that responded to certain easy-degradable hydrocarbon substrates, 346 

responsible for the initial biodegradation of hydrocarbons. According to Tiirola et al. (2003), the OTU 347 

497 bp likely belongs to Epsilon-Proteobacteria, Thermus/Deinococus, Alpha-Proteobacteria and 348 

Gram positives. This prediction agrees with the studies that demonstrated the dominance of Alpha-349 

Proteobacteria during the whole process of biodegradation, especially at the early stages of 350 

biodegradation (Mills et al. 2003, Vinas et al. 2005). Thermus sp. was also reported to effectively 351 

degrade hexadecane/pyrene mixture as the sole carbon and energy source at high temperature (70 °C) 352 

in bioreactor (Feitkenhauer et al. 2003). Gram-positive bacteria were also suggested to adapt to 353 

hydrocarbon biodegradation in soil in cold climate due to its high resistance to low temperature 354 

(Eriksson et al. 2001).  355 

Bacterial populations can adapt to and recover from oil contamination owing to their unique 356 

biological features including fast reproduction rates, high degree of physiological flexibility and rapid 357 

evolution through mutations or horizontal gene transfer (Winding et al. 2005, Allison and Martiny 358 

2008). From July 2009 to May 2010, the oil concentration remained almost unchanged (Yan et al. 359 

2015), yet the impact of oil on the composition of bacterial community decreased significantly, 360 

indicating an intensive adaptation of microbial populations in oil-contaminated soil. Bacterial 361 

diversity and species richness were significantly higher in both contaminated and non-contaminated 362 

soils in May 2010 than those in July 2009, reflecting the development of indigenous microbial 363 

populations over time, regardless of oil contamination.  364 



 

17 
 

The overall rate of biodegradation of the component fractions is affected by the compositional 365 

heterogeneity of crude oil products (Leahy and Colwell 1990). A second rapid oil reduction occurred 366 

during the second growing season in 2010 (Yan et al. 2015). Together with the optimum 367 

environmental conditions (especially high summer temperature, Yan et al. 2015), the biodegradation 368 

of available easy-degradable hydrocarbons was accelerated. The composition of the oil hydrocarbons 369 

remaining in the soil matrix was plausibly changed after this period of rapid biodegradation. After 370 

that, oil reduction slowed down, likely due to the exhaustion of easy-degradable hydrocarbons in soil. 371 

The low oil reduction rate was coupled with the reduced dissimilarity between bacterial community 372 

fingerprinting profiles in contaminated and non-contaminated plots over years. The return of a 373 

baseline community indicates that the risk associated with contamination is significantly decreased 374 

(White et al. 1998). However, since microbial communities change in time, the return of the pre-375 

contamination community composition may be impossible. Although oil hydrocarbons were not 376 

completely removed in the fourth growing season 2012 (Yan et al. 2015), the microbial communities 377 

in contaminated and non-contaminated soil were similar. The similarity of the communities can be 378 

considered as an indication of significantly decreased risk. If suitable clean control soil is available, 379 

the successional variation in bacterial community composition can serve as a sensitive ecological 380 

indicator of oil contamination and remediation in situ.  381 

Microbial community composition is strongly dependent on the presence of vegetation (Habekost et 382 

al. 2008), likely due to an input of nutrients as the vegetation cover is decomposed (Hobbie 2015). In 383 

a greenhouse bioremediation experiment, fodder galega increased the total microbial biomass and 384 

induced dissimilarity in the microbial community but did not affect the bacterial species diversity 385 

(Mikkonen et al. 2011a, 2011b). In field-lysimeters galega increased the diversity of bacteria in the 386 

rhizosphere (Kaksonen et al. 2006). We observed that under fodder galega the soil total DNA 387 

concentration was higher compared to the bare fallow, especially when the legume reached stable 388 

growth in 2011. None of the crop treatments (galega, brome grass or their mixture) showed detectable 389 
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effects on bacterial community composition and diversity, not even at the later phase of 390 

bioremediation when crops had fully established their roots in soil. There were no significant 391 

differences in soil total N content between crop treatments (Yan et al. 2015), disagreeing our 392 

hypothesis that crops, especially the legume inoculated with rhizobia, would increase soil N content 393 

and thus result in a change in bacterial community composition compared to bare fallow plots. The 394 

inherent complexity of the microbial populations in soil and the resolution limit of the LH-PCR 395 

technique might together make the effect of crop treatment on bacterial community composition hard 396 

to detect. In the range of 30:1 to 10:1, the C:N ratio is not considered to limit bioremediation (Alkoaik 397 

and Ghaly 2006). Most aerobic heterotrophic bacteria, which are associated with hydrocarbon 398 

degradation (Wrenn and Venosa 1996, Zhuang et al. 2003, Saul et al. 2005), favor a neutral pH (Leahy 399 

and Colwell 1990). As the C:N ratio and pH in our field were favorable for bioremediation (Yan et 400 

al. 2015), the lack of effect of the plants and PGPB on bacterial community structure and on oil 401 

reduction rate may be attributed to the optimum soil conditions. Thus, when soil is nutrient-rich and 402 

satisfies the metabolic requirements of the soil organisms, the effect of vegetation and PGPB on 403 

microbial communities is negligible.  404 

Seasonal changes in the bacterial community structure were distinct. It is consistent with the finding 405 

that seasonality was the most influential factor influencing microbial community structure, provided 406 

that the experimental plots share the same soil type (Schutter et al. 2001). At the end of each growing 407 

season, microbial communities were less diverse than in the beginning. In contrast to our results, a 408 

phospholipid fatty acid (PLFA)-based analysis of microbial community structure in grassland in Jena, 409 

Germany, revealed a more diverse pattern of microbial populations in October than in May (Habekost 410 

et al. 2008). The authors conferred the seasonal changes to the higher availability and quality of 411 

organic input by vegetation in the autumn. In our experiment, the seasonal succession was not driven 412 

by organic input since the succession was similar in both bare fallow and vegetated plots. An earlier 413 

study revealed that the seasonal difference in PFLA-based microbial community patterns in temperate 414 
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grassland systems was related to soil mineral nitrogen and soil moisture contents (Bardgett et al. 415 

1999). Environmental conditions, especially the difference in soil temperature and moisture between 416 

spring and autumn, were likely to be the major factor behind the seasonal variation. The lowest values 417 

of ecological indices, regardless of oil contamination, were observed in autumn 2010, when the soil 418 

was covered with snow. The similarity of LH-PCR profiles of the autumn samples between 419 

contaminated and non-contaminated plots suggested that the bacterial populations exhibited a similar 420 

development pattern in both soils in autumn. Thus, seasonal variation in bacterial community was 421 

stronger than variation caused by oil contamination. As biodegradation rates increase with 422 

temperature increase (Leahy and Colwell 1990) and low temperature limits the oxidation of 423 

hydrocarbons in motor oil-contaminated soil (Alkoaik and Ghaly 2006), the similarities in the LH-424 

PCR profiles between oil-contaminated and non-contaminated soils might be associated with the low 425 

oil reduction rate in autumn.  426 

Taken together, the LH-PCR community fingerprinting technique and the following data analysis 427 

demonstrated a dynamic succession of the bacterial community in field soil. The microbial 428 

communities responded quickly to oil contamination, yet the effect of oil on community composition 429 

did not last as long as the oil in soil. Besides oil concentration, the changes in soil chemical properties 430 

such as soil pH and electrical conductivity significantly influenced the structural changes in bacterial 431 

community. Linking the oil degradation to the changes in community structure more strongly would 432 

require additional studies on functional genes. LH-PCR accompanied with multivariate data analysis 433 

was an effective method for monitoring microbial succession. However, if the goal is taxon 434 

identification it needs to be complemented with sequencing-based methods.  435 

Acknowledgements 436 

This work was funded by Legume Futures, an international research project funded by the European 437 

Union through the Framework 7 Programme (FP7) under grant agreement number 245216 (FP7-438 



 

20 
 

KBBE-2009-3), and by MUTKU ry for oil analysis. Asko Simojoki and Frederick L. Stoddard were 439 

acknowledged for their supervision in soil and crop analysis. We thank Markku Tykkyläinen for his 440 

technical assistance in the field management and plant harvest. The authors also acknowledge Anni-441 

Mari Pulkkinen and Kati P. Pulkkinen for their technical assistance with oil analysis.  442 

References 443 

Alkoaik, F. & Ghaly, A. 2006. Thermobioremediation of soil contaminated with used motor oil. 444 

Energy Sources, Part A 28: 487-500. 445 

Allison, S.D. & Martiny, J.B. 2008. Colloquium paper: resistance, resilience, and redundancy in 446 

microbial communities. Proceedings of the National Academy of Sciences of the United States of 447 

America 105 Suppl 1: 11512-11519. 448 

Anderson, M.J., Gorley, R.N. & Clarke, K.R. 2008. PERMANOVA+ for PRIMER: Guide to 449 

Software and Statistical Methods. Plymouth, UK: Primer-E Ltd. 450 

Anderson, M.J. 2006. Distance‐Based Tests for Homogeneity of Multivariate Dispersions. 451 

Biometrics 62: 245-253. 452 

Anderson, M.J. & Robinson, J. 2003. Generalized discriminant analysis based on distances. 453 

Australian & New Zealand Journal of Statistics 45: 301-318. 454 

Atlas, R.M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. 455 

Microbiological Reviews 45: 180-209. 456 

Bardgett, R.D., Lovell, R.D., Hobbs, P.J. & Jarvis, S.C. 1999. Seasonal changes in soil microbial 457 

communities along a fertility gradient of temperate grasslands. Soil Biology and Biochemistry 31: 458 

1021-1030. 459 



 

21 
 

Bhattacharyya, P.N. & Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in 460 

agriculture. World Journal of Microbiology & Biotechnology 28: 1327-1350. 461 

Chaîneau, C., Yepremian, C., Vidalie, J., Ducreux, J. & Ballerini, D. 2003. Bioremediation of a crude 462 

oil-polluted soil: biodegradation, leaching and toxicity assessments. Water, Air, and Soil Pollution 463 

144: 419-440. 464 

Chiapusio, G., Pujol, S., Toussaint, M., Badot, P. & Binet, P. 2007. Phenanthrene toxicity and 465 

dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three 466 

spiked soils. Plant and Soil 294: 103-112. 467 

Clarke, K.R. & Gorley, R.N. 2006. PRIMER v6: User Manual/tutorial. Plymouth, UK: Primer-E 468 

Ltd. 469 

Dominguez-Rosado, E., Pichtel, J. & Coughlin, M. 2004. Phytoremediation of soil contaminated with 470 

used motor oil: I. Enhanced microbial activities from laboratory and growth chamber studies. 471 

Environmental Engineering Science 21: 157-168. 472 

Egamberdieva, D., Berg, G., Lindström, K. & Räsänen, L. 2010. Co-inoculation of< i> Pseudomonas 473 

spp. with< i> Rhizobium improves growth and symbiotic performance of fodder galega (< i> Galega 474 

orientalis Lam.). European Journal of Soil Biology 46: 269-272. 475 

Eriksson, M., Ka, J.O. & Mohn, W.W. 2001. Effects of low temperature and freeze-thaw cycles on 476 

hydrocarbon biodegradation in Arctic tundra soil. Applied and Environmental Microbiology 67: 477 

5107-5112. 478 

Feitkenhauer, H., Müller, R. & MAuml, H. 2003. Degradation of polycyclic aromatic hydrocarbons 479 

and long chain alkanes at 6070 C by Thermus and Bacillus spp. Biodegradation 14: 367-372. 480 



 

22 
 

Gurska, J., Wang, W., Gerhardt, K.E., Khalid, A.M., Isherwood, D.M., Huang, X., Glick, B.R. & 481 

Greenberg, B.M. 2009. Three year field test of a plant growth promoting rhizobacteria enhanced 482 

phytoremediation system at a land farm for treatment of hydrocarbon waste. Environmental Science 483 

& Technology 43: 4472-4479. 484 

Habekost, M., Eisenhauer, N., Scheu, S., Steinbeiss, S., Weigelt, A. & Gleixner, G. 2008. Seasonal 485 

changes in the soil microbial community in a grassland plant diversity gradient four years after 486 

establishment. Soil Biology and Biochemistry 40: 2588-2595. 487 

Hobbie, S.E. 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends in 488 

Ecology & Evolution . 489 

Hong, S.H., Ryu, H., Kim, J. & Cho, K. 2011. Rhizoremediation of diesel-contaminated soil using 490 

the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22: 593-601. 491 

Irwin, R.J., VanMouwerik, M., Stevens, L., Seese, M.D. & Basham, W. 1997 Environmental 492 

Contaminants Encyclopedia. National Park Service, Water Resources Division, Fort Collins, 493 

Colorado. Distributed within the Federal Government as an Electronic Document (Projected public 494 

availability on the internet or NTIS: 1998).  495 

Jasinskas, A., Zaltauskas, A. & Kryzeviciene, A. 2008. The investigation of growing and using of tall 496 

perennial grasses as energy crops. Biomass and Bioenergy 32: 981-987. 497 

Kaksonen, A., Jussila, M., Lindström, K. & Suominen, L. 2006. Rhizosphere effect of Galega 498 

orientalis in oil-contaminated soil. Soil Biology and Biochemistry 38: 817-827. 499 

Kamath, R., Rentz, J., Schnoor, J.L. & Alvarez, P. 2004. Phytoremediation of hydrocarbon-500 

contaminated soils: principles and applications. Studies in Surface Science and Catalysis 151: 447-501 

478. 502 



 

23 
 

Kindt, R. & Coe, R. 2005. Tree Diversity Analysis: A Manual and Software for Common Statistical 503 

Methods for Ecological and Biodiversity Studies. Nairobi, Kenya: World Agroforestry Centre. 504 

Kryževičienė, A., Jasinskas, A. & Gulbinas, A. 2008. Perennial grasses as a source of bioenergy in 505 

Lithuania. Agron.Res 6: 229-239. 506 

Kulakow, P.A., Schwab, A. & Banks, M. 2000. Screening plant species for growth on weathered, 507 

petroleum hydrocarbon-contaminated sediments. International Journal of Phytoremediation 2: 297-508 

317. 509 

Leahy, J.G. & Colwell, R.R. 1990. Microbial degradation of hydrocarbons in the environment. 510 

Microbiological Reviews 54: 305-315. 511 

Legendre, P. & Anderson, M.J. 1999. Distance-based redundancy analysis: testing multispecies 512 

responses in multifactorial ecological experiments. Ecological Monographs 69: 1-24. 513 

Lindstrom, K., Jussila, M.M., Hintsa, H., Kaksonen, A., Mokelke, L., Makelainen, K., Pitkajarvi, J. 514 

& Suominen, L. 2003. Potential of the Galega-Rhizobium galegae system for bioremediation of oil-515 

contaminated soil. Food Technology and Biotechnology 41: 11-16. 516 

Margesin, R. & Schinner, F. 2001. Biodegradation and bioremediation of hydrocarbons in extreme 517 

environments. Applied Microbiology and Biotechnology 56: 650-663. 518 

Margesin, R. & Schinner, F. 1997. Laboratory bioremediation experiments with soil from a diesel‐519 

oil contaminated siteation experiments with so‐adapted microorganisms and fertilizers. Journal of 520 

Chemical Technology and Biotechnology 70: 92-98. 521 

McArdle, B.H. and Anderson M.J. Fitting multivariate models to community data: A comment on 522 

distance-based redundancy analysis. Ecol 2001; 82: 290-297. 523 



 

24 
 

Mikkonen, A., Hakala, K.P., Lappi, K., Kondo, E., Vaalama, A. & Suominen, L. 2012. Changes in 524 

hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination 525 

gradients in an old landfarming field for oil refinery waste. Environmental Pollution 162: 374-380. 526 

Mikkonen, A., Kondo, E., Lappi, K., Wallenius, K., Lindström, K., Hartikainen, H. & Suominen, L. 527 

2011a. Contaminant and plant-derived changes in soil chemical and microbiological indicators during 528 

fuel oil rhizoremediation with< i> Galega orientalis. Geoderma 160: 336-346. 529 

Mikkonen, A., Lappi, K., Wallenius, K., Lindström, K. & Suominen, L. 2011b. Ecological inference 530 

on bacterial succession using curve‐based community fingerprint data analysis, demonstrated with 531 

rhizoremediation experiment. FEMS Microbiology Ecology 78: 604-616. 532 

Mills, D.K., Entry, J.A., Voss, J.D., Gillevet, P.M. & Mathee, K. 2006. An assessment of the 533 

hypervariable domains of the 16S rRNA genes for their value in determining microbial community 534 

diversity: the paradox of traditional ecological indices. FEMS Microbiology Ecology 57: 496-503. 535 

Mills, D.K., Fitzgerald, K., Litchfield, C.D. & Gillevet, P.M. 2003. A comparison of DNA profiling 536 

techniques for monitoring nutrient impact on microbial community composition during 537 

bioremediation of petroleum-contaminated soils. Journal of Microbiological Methods 54: 57-74. 538 

Mukherjee, S., Heinonen, M., Dequvire, M., Sipilä, T., Pulkkinen, P. & Yrjälä, K. 2013. Secondary 539 

succession of bacterial communities and co-occurrence of phylotypes in oil-polluted Populus 540 

rhizosphere. Soil Biology and Biochemistry 58: 188-197. 541 

Muratova, A.Y., Dmitrieva, T., Panchenko, L. & Turkovskaya, O. 2008. Phytoremediation of Oil-542 

Sludge–Contaminated Soil. International Journal of Phytoremediation 10: 486-502. 543 

Namkoong, W., Hwang, E., Park, J. & Choi, J. 2002. Bioremediation of diesel-contaminated soil with 544 

composting. Environmental Pollution 119: 23-31. 545 



 

25 
 

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara R et al. 2015. Vegan: 546 

community ecology package [online]. R package version 2.2-1. http://CRAN.R-547 

project.org/package=vegan.  548 

Pajuelo, E., Rodríguez-Llorente, I.D., Lafuente, A. & Caviedes, M.Á 2011. Legume–rhizobium 549 

symbioses as a tool for bioremediation of heavy metal polluted soils. Legume–rhizobium symbioses 550 

as a tool for bioremediation of heavy metal polluted soils. Biomanagement of metal-contaminated 551 

soils. Springer. p. 95-123. 552 

R Development Core Team. 2014. R: A Language and Environment for Statistical Computing. 553 

Vienna, Austria: R Foundation for Statistical Computing. Available online at http://www.R-554 

project.org/. 555 

Saul, D.J., Aislabie, J.M., Brown, C.E., Harris, L. & Foght, J.M. 2005. Hydrocarbon contamination 556 

changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiology 557 

Ecology 53: 141-155. 558 

Schutter, M., Sandeno, J. & Dick, R. 2001. Seasonal, soil type, and alternative management 559 

influences on microbial communities of vegetable cropping systems. Biology and Fertility of Soils 560 

34: 397-410. 561 

Simarro, R., González, N., Bautista, L. & Molina, M. 2013. Assessment of the efficiency of in situ 562 

bioremediation techniques in a creosote polluted soil: change in bacterial community. Journal of 563 

Hazardous Materials 262: 158-167. 564 

Suominen, L., Jussila, M., Mäkeläinen, K., Romantschuk, M. & Lindström, K. 2000. Evaluation of 565 

the< i> Galega–Rhizobium< i> galegae system for the bioremediation of oil-contaminated soil. 566 

Environmental Pollution 107: 239-244. 567 

http://cran.r-project.org/package=vegan
http://cran.r-project.org/package=vegan
http://www.r-project.org/
http://www.r-project.org/


 

26 
 

Suzuki, M., Rappé, M.S., & Giovannoni, S.J. 1998. Kinetic bias in estimates of coastal picoplankton 568 

community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length 569 

heterogeneity. Applied and environmental microbiology, 64(11), 4522-4529. 570 

Tiirola, M.A., Suvilampi, J.E., Kulomaa, M.S. & Rintala, J.A. 2003. Microbial diversity in a 571 

thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR). Water 572 

Research 37: 2259-2268. 573 

Vinas, M., Sabate, J., Espuny, M.J. & Solanas, A.M. 2005. Bacterial community dynamics and 574 

polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-575 

contaminated soil. Applied and Environmental Microbiology 71: 7008-7018. 576 

White, D.C., Flemming, C.A., Leung, K.T. & Macnaughton, S.J. 1998. In situ microbial ecology for 577 

quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the 578 

subsurface, the rhizosphere and in biofilms. Journal of Microbiological Methods 32: 93-105. 579 

Winding, A., Hund-Rinke, K. & Rutgers, M. 2005. The use of microorganisms in ecological soil 580 

classification and assessment concepts. Ecotoxicology and Environmental Safety 62: 230-248. 581 

Wrenn, B.A. & Venosa, A.D. 1996. Selective enumeration of aromatic and aliphatic hydrocarbon 582 

degrading bacteria by a most-probable-number procedure. Canadian Journal of Microbiology 42: 583 

252-258. 584 

Wu, T., Milner, H., Díaz-Pérez, J.C. & Ji, P. 2015. Effects of soil management practices on soil 585 

microbial communities and development of southern blight in vegetable production. Applied Soil 586 

Ecology 91: 58-67. 587 

Wünsche, L., Brüggemann, L. & Babel, W. 1995. Determination of substrate utilization patterns of 588 

soil microbial communities: an approach to assess population changes after hydrocarbon pollution. 589 

FEMS Microbiology Ecology 17: 295-305. 590 



 

27 
 

Yan, L., Penttinen, P., Simojoki, A., Stoddard, F.L. & Lindström, K. 2015. Perennial crop growth in 591 

oil-contaminated soil in a boreal climate. Science of the Total Environment 532: 752-761. 592 

Zhuang, W., Tay, J., Maszenan, A., Krumholz, L. & Tay, S. 2003. Importance of Gram‐positive 593 

naphthalene‐degrading bacteria in oil‐contaminated tropical marine sediments. Letters in Applied 594 

Microbiology 36: 251-257. 595 

Zou, L., Tuulos, A., Mikkonen, A., Stoddard, F.L., Lindström, K., Kontro, M.H., Koponen, H. & 596 

Mäkelä, P.S. 2015. Fusarium-suppressive effects of green manure of turnip rape. European Journal 597 

of Soil Biology 69: 41-51. 598 

   599 



 

28 
 

Tables 600 

Table1. Development of total soil microbial DNA concentration (ng g-1 fresh soil) between July 601 

2009 and May 2011.  602 

Crop treatment mean July 2009 May 2010 Nov. 2010 May 2011 

bare fallow 18.2b 15 18.7 18.6 20.4b 

brome grass 20.0ab 15.5 21.9 20.2 22.5ab 

galega 
 

21.4a 16.8 22.6 21.5 24.9a 

mixture 
 

20.2ab 14.8 21.1 20.7 24.2ab 

SEM   0.7 0.8 1.8 0.6 1.1 

  
significance level 

Source df RM  UV  UV  UV  UV  

crop 3 p<0.05 ns ns ns p<0.05 

mean the average value from the four sampling times under each crop treatment regardless of oil 603 

treatment, because oil had no effect on soil DNA concentration, SEM standard errors of mean (SEM), 604 

ns not significant, RM repeated measures ANOVA, UV univariate ANOVA based on each sampling 605 

time. Different superscript letters (a and b) indicate significant differences (p < 0.05) between the 606 

means of crop treatment, based on Boferroni post-hoc pairwise comparisons. The tests were based on 607 

split-plot-based repeated measures (RM) ANOVA model: Y1 = residue (error) + crop + crop × 608 

replicate + oil + PGPB + oil × PGPB + oil × crop + crop × PGPB + oil × crop × PGPB, with time as 609 

the repeated factor. The factors or interactions that had no significant effects on soil physiological 610 

parameters are not presented in this table.  611 

  612 
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Table 2. The development of peak-based ecological indices of bacterial communities in the PGPB-613 

untreated plots.  614 

Sampling time Shannon diversity (H)   Species richness (S) 

  mean oil+ oil- SLO  mean oil+ oil- SLO  

July 2009 2.56b(0.03) 2.48(0.05) 2.64(0.05) p<0.05 
 

19b(1) 17(1) 18(1) ns 

May 2010 2.85a(0.04) 2.87(0.06) 2.83(0.05) ns 
 

25a(1) 23(2) 22(1) ns 

Nov. 2010 2.28d(0.02) 2.24(0.03) 2.32(0.04) ns 
 

15c(0.5) 14(0.5) 15(1) ns 

May 2011 2.59b(0.03) 2.52(0.04) 2.66(0.04) p=0.051 
 

20b(1) 18(1) 20(1) ns 

May 2012 2.35cd(0.02) 2.37(0.03) 2.33(0.04) ns 
 

16c(0.3) 15(1) 15(1) ns 

Oct. 2012 2.44c(0.02) 2.42(0.03) 2.45(0.02) ns   15c(0.4) 14(0.3) 15(1) ns 

SLO significance level of oil effect analysed using univariate analysis of variance based on a split-615 

plot experimental design (model: Y2 = residue (error) + crop + crop × replicate + oil + oil × crop), ns 616 

not significant, mean the average value from all plots at each sampling time regardless of oil treatment, 617 

oil+ oil-contaminated plots and oil- control plots. Standard errors of mean were indicated in brackets. 618 

Species richness was estimated as the number of peaks in each sample. Different superscript letters 619 

(a, b, c and d) indicate significant differences between the means of sampling times regardless of oil 620 

treatment,  based on Bonferroni post-hoc pairwise comparisons. 621 

 622 

  623 
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Figures 624 

 625 

Figure 1. Differences in soil bacterial communities of a priori groups using distance-based 626 

discriminant analysis (db-DA) of the LH-PCR curve-based data. A priori groups were (a) sampling 627 

times: A: July 2009, B: May 2010, C: November 2010, D: May 2011, E: May 2012 and F: October 628 

2012; (b) oil treatment; (c) crop treatment: galega, brome grass, galega-brome grass mixture and 629 

bare fallow and (d) the stages of a growing season: beginning: May-July and end: October-630 

November. In addition, sampling times were shown in the figure b with labels in different colors. 631 

“As there was only one dimension in the figure (b) and (d) to discriminate the oil and seasonal 632 

effect, sample numbers (n=320) were plotted on the x-axis. The percentage of the observations 633 
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which were correctly classified based on a priori hypotheses were (a) 81% (p<0.001), (b) 68% 634 

(p<0.001), (c) 29% (p=0.4978) and (d) 85% (p<0.001). Altogether, 20 (a), 14 (b), 19 (c) and 19 (d) 635 

principal coordinates used in the discriminant analyses explained 99.3 % (a), 93.1% (b), 98.5% (c), 636 

and 98.5% (d) of the variation in LH-PCR data, respectively.   637 
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 638 

Figure 2. Relationships between bacterial community composition, bacterial taxa (LH-PCR 639 

fragments) and soil parameters. Constrained analysis of principal coordinates (CAP) was performed 640 

using soil chemical parameters (oil concentration, pH and electrical conductivity) as explanatory 641 

variables (blue arrows) and bacterial LH-PCR curve-based community profiles (n=96) as response 642 

variables. The observations were bacterial community profiles of three sampling times (A: July 2009, 643 

C: November 2010, and E: May 2012). In order to fit the LH-PCR fragments, microbial community 644 

observations and soil chemical parameters in the same figure, the scores of each LH-PCR fragment 645 

on the first two CAP axes were scaled by 15 times to the eigenvalues and labeled by its amplicon 646 
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size. Bacterial LH-PCR fragments that fell close to the origin with scores between -0.5 and 0.5 on 647 

both axes were removed. All results presented were from PGPB un-inoculated plots. Proportions of 648 

soil constraining variables loaded on the first two CAP axes were calculated from their absolute 649 

values of the biplot scores, illustrated in the upper-left stacked column plot.  650 

 651 

 652 

  653 
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Supplementary materials 654 

Table S1. The significance of the main effects (crop, oil and PGPB) and their interactions on bacterial 655 

community composition  656 

Source df July 2009 May 2010 Nov. 2010 May 2011 May 2012 Oct 2012 

B 3 *** *** *** *** *** *** 

C 3 ns ns ns ns ns ns 

O 1 *** *** ns * ns ns 

P 1 ns ns ns ns - - 

C×O 3 ns ns ns ns ns ns 

C×P 3 ns ns ns ns - - 

O×P 1 ns ns ns ns - - 

C×O×P 3 ns ns ns ns - - 

B experimental block (replicate), C crop treatment, O oil treatment, P PGPB treatment, df degrees 657 

of freedom, ns not significant, * p < 0.05 and *** p < 0.001. The tests were based on Bray-Curtis 658 

distance-based PERMANOVA model on the basis of a split-plot design with 9999 permutations. 659 

Samples taken in 2012 were all from PGPB-untreated plots, so the PGPB effect was excluded in the 660 

analysis model for these two sampling sets.  661 
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 662 

Figure S1. Homogeneity of variances between a prior groups used in the distance-based 663 

discriminant analysis on bacteria LH-PCR data. A priori groups were (a) sampling times: A: July 664 

2009 (n=64), B: May 2010 (n=64), C: November 2010 (n=64), D: May 2011 (n=64), E: May 665 

2012(n=32) and F: October 2012 (n=32); (b) oil treatment: oil- control, oil+ oil-contaminated; (c) 666 

crop treatment and (d) the stages of a growing season: beginning: May-July and end: October-667 

November. The significance of homogeneity of multivariate dispersions were (a) p=0.0001, (b) 668 

p=0.6112, (c) p=0.1840 and (d) p=0.0001, based on 9999 permutations. Different letters (a, b and c) 669 

in the figures indicate unequal dispersions between a prior groups based on pairwise comparisons 670 

(permuted p<0.01).   671 
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 672 

Figure S2. Principal Coordinate Analysis of 192 LH-PCR profiles obtained from PGPB-untreated 673 

plots. The first two principal coordinates explain 25.3% and 21.4% of the total variation, respectively. 674 

Oil-contaminated and control samples are labelled with different symbols and sampling times (A: 675 

July 2009, B: May 2010, C: November 2010, D: May 2011, E: May 2012 and F: October 2012) in 676 

different colors. 677 

  678 
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 679 

Figure S3. Averaged curve-based LH-PCR profiles between the oil-treated and control plots over 680 

time: (a) July 2009, (b) May 2010, (c) November 2010, (d) May 2011, (e) May 2012 and (f) October 681 

2012. Each averaged oil-treated bacterial profile was created by 16 profiles (4 crop treatments × 4 682 

blocks) and each averaged control profile was created by 16 control profiles (4 crop treatments × 4 683 

blocks) in PGPB-untreated plots at each sampling time using the Create Averaged Fingerprint script 684 

in BioNumerics software.  685 

 686 

 687 

 688 


