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Coarse structures are an abstract construction describing the behavior of a space at a large distance.

In this thesis, a variety of existing results on coarse structures are presented, with the main focus

being coarse embeddability into Hilbert spaces. The end goal is to present a hierarchy of three

coarse invariants, namely coarse embeddability into a Hilbert space, a property of metric spaces

known as Property A, and a �nite-valued asymptotic dimension.

After outlining the necessary prerequisites and notation, the �rst main part of the thesis is an

introduction to the basics of coarse geometry. Coarse structures are de�ned, and it is shown how a

metric induces a coarse structure. Coarse maps, equivalences and embeddings are de�ned, and some

of their basic properties are presented. Alongside this, comparisons are made to both topology and

uniform topology, and results related to metrizability of coarse spaces are outlined.

Once the basics of coarse structures have been presented, the focus shifts to coarse embeddability

into Hilbert spaces, which has become a point of interest due to its applications to several unsolved

conjectures. Two concepts are presented related to coarse embeddability into Hilbert spaces, the

�rst one being Property A. It is shown that Property A implies coarse embeddability into a Hilbert

space, and that it is a coarse invariant.

The second main concept related to coarse embeddability is asymptotic dimension. Asymptotic di-

mension is a coarse counterpart to the Lebesgue dimension of topological spaces. Various de�nitions

of asymptotic dimension are given and shown equivalent. The coarse invariance of asymptotic di-

mension is shown, and the dimensions of several example spaces are derived. Finally, it is shown

that a �nite asymptotic dimension implies coarse embeddability into a Hilbert space, and in the

case of spaces with bounded geometry it also implies Property A.
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Chapter 1

Introduction

This master's thesis introduces the reader to coarse structures, and presents several con-
cepts related to coarse embeddability into Hilbert spaces. Coarse structures are a way
of characterizing how a metric space behaves at large distances, similar to the tools pro-
vided by topology for analyzing behavior at small distances. As in many other theories
of mathematics, property-preserving mappings and equivalence are de�ned among coarse
spaces. The resulting theory can be used to categorize discrete spaces, with for example
the space of integers sharing an equivalence class with the space of real numbers.

After presenting the basics of coarse structures, coarse embeddings become a major
focus for the thesis. Coarse embeddings have gained a lot of recent attention, as sev-
eral major conjectures have obtained partial solutions based on the existence of a coarse
embedding into a Hilbert space.

The thesis presents two major coarse invariants related to the aforementioned coarse
embeddability. The �rst is a property of metric spaces called Property A, which implies
coarse embeddability into a Hilbert space. The second is a coarse counterpart for the
Lebesgue covering dimension called the asymptotic dimension. For metric spaces, a �nite
asymptotic dimension implies coarse embeddability into a Hilbert space. Basic properties
of both invariants are proven, along with the previously mentioned embeddability results.

The reader is assumed to be familiar with basic topology and functional analysis.
Although it isn't used in this thesis, a degree of familiarity with category theory may
enhance the reader's understanding of coarse structures.
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Chapter 2

Prerequisites

This chapter is a short review of concepts the reader should be familiar with. The chapter
also goes over the notation used in this thesis.

2.1 General terminology and notations

The standard symbols of Z, Q and R for integers, rational numbers and real numbers are
used. The set of natural numbers N is assumed to consist of all nonnegative integers. The
set of all positive integers is denoted by Z+. Similarly, the set of all positive real numbers
is denoted by R+. For the set of all nonnegative real numbers, the notation R0 is adopted.

For an applicable function f , the term increasing is used, if the condition f(x) ≤ f(y)
holds whenever x is less than y. For the strict version, the term strictly increasing is used.
The terms decreasing and strictly decreasing are de�ned correspondingly.

A metric space (X, d) or a topological space (X, T ) may be abbreviated as just X, if
the metric or topology in question is clear from the context. Similar abbreviations may
also be used for other similar concepts de�ned later on, such as coarse and uniform spaces.
For a given metric d, the topology induced by it is denoted by Td.

2.2 Set theory

This master's thesis uses standard set-theoretical notation for union, intersection, subsets,
elements, and the empty set. The notation X \ Y is used to denote the di�erence of two
sets X and Y . In addition to this, the symmetric di�erence of two sets X and Y is de�ned
by

X 4 Y = (X \ Y ) ∪ (Y \X) .
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The power set of a set X is denoted by P (X). The power set consists of all subsets of the
set X.

If X and Y are sets, their product set is denoted by X×Y . In the case of the product
of n copies of a set X, the shorthand Xn is used. The diagonal ∆X of a set X is a subset
of X2, de�ned by

∆X = {(x, x) | x ∈ X}.

Furthermore, let X be a set, and consider the subsets of X2. Several operations on
these subsets will be of use later on. If A is a subset of X2, the inverse of A is de�ned by

A−1 = {(y, x) ∈ X2 | (x, y) ∈ A}.

If A and B are subsets of X2, the composition of A and B is de�ned by

A ◦B =
{

(x, z) ∈ X2 | there is a y ∈ X such that (x, y) ∈ A and (y, z) ∈ B
}
.

2.3 Functional Analysis

Throughout this thesis, various spaces from functional analysis are required. Recall that
a Banach space is a complete normed vector space, and a Hilbert space is a complete inner
product space. Furthermore, recall that an in�nite sum of non-negative numbers ai over
an index set I is de�ned as follows:∑

i∈I

ai = sup

{∑
i∈I′

ai

∣∣∣∣∣ I ′ ⊂ I, |I ′| <∞

}
.

In�nite sums for non-positive numbers are de�ned similarly. For numbers ai attaining
both positive and negative values, if the absolute values |ai| have a �nite sum, one can
de�ne the sum by splitting the numbers into positive and negative subsets.

Let X be a set. For a real number p ≥ 1, one can de�ne the lp-space over X, denoted
by lp(X), as follows:

lp(X) =

{
a ∈

∏
x∈X

R

∣∣∣∣∣ ∑
x∈X

|ax|p <∞

}
.

The space lp(X) is a Banach space under the usual lp-norm when summation and scalar
multiplication are de�ned coordinatewise. In the case of p = 2, lp(X) is a Hilbert space
with the standard inner product of l2-spaces. These spaces are a special case of the more
general Lp-spaces for spaces X equipped with a measure µ, obtained by selecting µ to be
the counting measure. The aforementioned properties in the general case can be found
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from various functional analysis textbooks, for example [1]. If x is an element of X, the
unit vector along the x-coordinate in lp(X) will be denoted by ex.

Another construction required later is the direct sum of Hilbert spaces. Let I be an
index set, and for every i in I, let Xi be a Hilbert space. The direct sum, denoted by⊕

i∈I Xi, is de�ned by

⊕
i∈I

Xi =

{
x ∈

∏
i∈I

Xi

∣∣∣∣∣ ∑
i∈I

‖xi‖2 <∞

}
.

The elements of
⊕

i∈I Xi are expressed in the form of
⊕

i∈I xi, where the coordinates xi
are elements of Xi correspondingly. As in the previous case, the space

⊕
i∈I Xi is a Hilbert

space when using coordinatewise de�nitions of summation and scalar multiplication, along
with the inner product de�ned by

〈x, y〉 =
∑
i∈I

〈xi, yi〉 .

The proofs resemble the ones for regular L2-spaces and are omitted here.
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Chapter 3

Coarse geometry

This chapter is an introduction to the theory of coarse spaces. Coarse spaces are sets
equipped with a coarse structure, which describes the behavior of the space at a distance.
A coarse space has a well-de�ned notion of boundedness and bounded subsets. One can
obtain some intuition on the concept by considering a extremely zoomed-out view of a
space, under which for example the spaces Z and R look similar.

After initial de�nitions, a method of deriving a coarse structure from a metric is
obtained. This is similar to how a metric induces a topology or some other topological
structure, but the properties described are majorly the opposite of those described by
topology. The closest topological counterpart to coarse structures is the concept of uniform
structures, which is used for example in generalizing uniform continuity.

Following this, various property-preserved mappings for coarse spaces are de�ned,
along with the notion of coarse equivalence. The end of the chapter presents some addi-
tional results, most of which are referred to later on in this thesis.

The concepts presented in this chapter are mostly based on the doctoral thesis [6],
although with some in�uences from other papers. One can also refer to the book [10] for
more information.

3.1 Coarse structures

De�nition 3.1. Let X be a set, and let E be a subset of P (X2). The collection E is a
coarse structure on X, if the following conditions apply:

• Diagonal property: The diagonal ∆X is an element of E .

• Subset property: If A ∈ E and B ⊂ A, then B ∈ E .

• Finite union property: If A,B ∈ E , then A ∪B ∈ E .
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• Inverse property: If A ∈ E , then A−1 ∈ E .

• Composition property: If A,B ∈ E , then A ◦B ∈ E .

The elements of the coarse structure E are commonly referred to as controlled sets or
entourages. The pair (X, E) is called a coarse space.

Example 3.2. Let X be a set and let Emax be the entire power set P (X2). Then Emax is
a coarse structure.

Furthermore, let Emin be composed of all the subsets of the diagonal ∆X . The collection
Emin contains ∆X , and is closed under subsets and unions. In addition to this, if A
is a subset of ∆X , then A−1 = A. Furthermore, if B is another subset of ∆X , then
A ◦B = A ∩B, which is contained in ∆X . Therefore, Emin is a coarse structure.

Due to the diagonal and subset properties of controlled sets, every coarse structure on
X contains Emin. Furthermore, since coarse structures on X are subsets of P (X2), every
coarse structure on X is contained within Emax. Hence, Emin and Emax are the smallest
and largest possible coarse structures on X.

A key property of coarse structures is that they introduce a notion of boundedness on
sets.

De�nition 3.3. Let X be a set and E a coarse structure on X. Let B be a nonempty
subset of X. We say that X is bounded with respect to E , if there is an x ∈ X such that
B × {x} is controlled.

Proposition 3.4. Let X be a set and E a coarse structure on X. Let B be a nonempty

subset of X. Then B is bounded with respect to E if and only if the set B2 is controlled.

Proof. Assume that B2 is controlled. Since B is nonempty, there is some element x
contained in B. Due to the subset property of controlled sets, {x} ×B is controlled.

Next, assume that there is an x ∈ X such that B × {x} is controlled. The set B2 can
be written in the form

B2 = (B × {x}) ◦ ({x} ×B) = (B × {x}) ◦ (B × {x})−1.

Hence, due to the inverse and composition properties of controlled sets, B2 is controlled.

Because ∆X is always controlled, the subset property of controlled sets implies that
{(x, x)} is controlled for all x ∈ X. Hence, by our de�nition, singletons are always
bounded. In addition to this, subsets of bounded sets are bounded: This follows from the
subset property of controlled sets, since if B is bounded and A is a nonempty subset of
B, the set A2 is a subset of B2.
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The �nite union of bounded sets is, unlike in the case of metric spaces, not always
bounded. A counterexample can be seen in Emin, the bounded sets of which are precisely
the singleton sets. Using the subset property, one can see that the entire space X is
bounded if and only if the coarse structure is Emax.

3.2 Coarse geometry

This section develops coarse structures on metric spaces. Similarly to the theory of topo-
logical spaces, one can �nd a canonical coarse structure for X using the metric d. This
structure describes the bounded sets of X.

Let (X, d) be a metric space. Recall that the diameter of a set A ⊂ X is de�ned by
d(A) = supx,y∈A d(x, y), and a set A is bounded in (X, d) if it has a �nite diameter. This
is equivalent to A being contained in a ball of �nite radius Bd(x, r), where x ∈ X and
r ∈ R.

For the sake of convenience, several new notations are adopted. Let r be a nonnegative
real number. The r-diagonal of (X, d), denoted by ∆d(r), is de�ned by

∆d(r) = {(x, y) ∈ X2 | d(x, y) ≤ r}.

Note that the 0-diagonal ∆d(0) is the regular diagonal ∆X of X.
Furthermore, let E be a subset of X2. The notation d[E] is adopted for the following

value:
d[E] = sup

(x,y)∈E
d(x, y).

The value of d[E] may be in�nite. For the previously de�ned r-diagonals, the value of
d[∆d(r)] is at most r. In addition to this, if B is a subset of X, d[B2] equals the diameter
of B.

Proposition 3.5. Let (X, d) be a metric space. De�ne Ed ⊂ P (X2) as follows:

Ed =
{
E ⊂ X2

∣∣∣ d[E] <∞
}

Then Ed is a coarse structure.

The structure Ed de�ned in Proposition 3.5 is called the bounded coarse structure of
(X, d).

Proof. The distance d(x, y) is zero for each (x, y) ∈ ∆X . Therefore, d[∆X ] equals zero,
and as such ∆X is an element of Ed.

8



Let A be an element of Ed. Because d(x, y) = d(y, x) for every (x, y) ∈ A, d[A−1] equals
d[A]. Hence, the set A−1 is an element of Ed. Let A′ be a subset of A. As a supremum
over a smaller set, d[A′] is at most d[A], and therefore A′ ∈ Ed.

Let A and B be elements of Ed. If (a, b) is an element of A ∪ B, either (a, b) ∈ A
and d(a, b) ≤ d[A], or (a, b) ∈ B and d(a, b) ≤ d[B]. Therefore, d[A ∪ B] is at most
max(d[A], d[B]). This shows that A ∪B is an element of Ed.

Finally, let A and B be as previously, and let (a, c) be an element of A ◦ B. In this
case, there is an element b of X for which (a, b) ∈ A and (b, c) ∈ B. Using the triangle
inequality, one obtains the bound

d(a, c) ≤ d(a, b) + d(b, c) ≤ d[A] + d[B].

Hence, d[A ◦B] is at most d[A] + d[B], and therefore A ◦B is an element of Ed.

Proposition 3.6. Let (X, d) be a metric space, and let B be a nonempty subset of X.

Then B is bounded with respect to d if and only if B is bounded with respect to Ed.

Proof. Due to Proposition 3.4, B is bounded with respect to Ed if and only if B2 is an
element of Ed. By the de�nition of Ed, this is true precisely when d[B2] is �nite, or in
other words, when the diameter of B is �nite. Therefore, B is bounded with respect to
Ed if and only if B is bounded with respect to d.

Example 3.7. Let X be the open interval {x ∈ R| − 1 < x < 1}. Denote the euclidian
metric on X by d0. Let d1 be the discrete metric on X, where d1(x, y) = 1 whenever
x 6= y. Finally, let d2 be the metric on X de�ned by d2(x, y) = |tan(πx/2)− tan(πy/2)|.

The metrics d0 and d2 induce the same topology on X, while the topology induced by
d1 is di�erent. Note that the entire set X is bounded under d0 and d1, but not under d2.
Hence, both d0 and d1 induce the maximal coarse structure on X, but d2 doesn't. As a
result, Td0 = Td2 , but Ed0 6= Ed2 . Conversely, Ed0 = Ed1 , but Td0 6= Td1 .

This illustrates how the topology and the coarse structure de�ned by a metric describe
di�erent properties of the metric, and similarity of two metrics in one does not guarantee
the similarity of them in the other. While openness describes the properties of a set on a
small scale, boundedness describes its properties on a large scale.

Example 3.8. The following example shows that even if two metrics have the same
bounded sets, they may de�ne di�erent coarse structures. Let N be the set of natural
numbers. If f : N → R is a strictly increasing function, one may de�ne a metric d on N
via d(x, y) = |f(x)− f(y)|. Take the functions f1 and f2 from N to R, where f1(n) = n
and f2(n) = n2, and de�ne d1 and d2 as previously.

Let B be a nonempty subset of N, and denote its smallest element by b0. Assume �rst
that B is �nite. Hence, it has a largest element b1. One sees that the diameter of B with
respect to d1 is b1 − b0, and the diameter with respect to d2 is b

2
1 − b20.
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Next, assume instead that B is in�nite. Hence, there is a sequence (bi)
∞
i=1 which tends

to in�nity in B. One sees that both d1(b0, bi) = bi − b0 and d2(b0, bi) = b2i − b20 become
arbitrarily large as i tends to in�nity. Hence, both d1 and d2 have �nite sets as their
bounded sets.

Observe the set E = {(n, n+1)|n ∈ N}. Since d1(n, n+1) = 1 for all natural numbers
n, one sees that E is an element of Ed1 . However, E is not an element of Ed2 , since
d2(n, n+ 1) = 2n+ 1 attains arbitrarily large values as n tends to in�nity. Hence, d1 and
d2 de�ne di�erent coarse structures, despite having the same bounded sets.

The comparisons presented so far have been between coarse and topological spaces.
However, the closest topological counterpart to coarse spaces is the concept of a uniform

space. For the sake of comparison, the basics of uniform spaces will be brie�y presented
here. For further details on the subject including proofs, see [4].

De�nition 3.9. Let X be a set, and let S be a subset of P (X2). The collection S is a
uniform structure on X, if the following conditions apply:

• Every element of S contains the diagonal ∆X .

• If A ∈ S and A ⊂ B, then B ∈ S.

• If A,B ∈ S, then A ∩B ∈ S.

• If A ∈ S, then A−1 ∈ S.

• If A ∈ S, then there is an element B ∈ S ful�lling B ◦B ⊂ A.

Similarly to coarse structures, the elements of a uniform structure S are referred to as
entourages, and the pair (X,S) is called a uniform space.

One can see how the required properties of coarse structures correspond to the ones
of uniform structures, only in most cases being de�ned in the opposite direction. Readers
familiar with the concept may note that uniform structures are �lters on X × X. A
uniform structure S on X yields a unique topology on X, where a given point x is in the
interior of a set U if U × {x} = V ∩X × {x} for some V ∈ S.

For a given uniform structure S, a subset S ′ of S will be called a generating set of S
if every entourage of S contains a set of S ′. Note that in literature, the term fundamental

system of entourages of S may be used for such sets S ′. Using the fact that supersets of
entourages are entourages, the structure S can be obtained from the set S ′ uniquely.

If (X, d) is a metric space, one can show that the set {∆d(r) |r > 0} forms a generating
set for a uniform structure Sd. Hence, a metric d on X de�nes a uniform structure Sd on
X, similarly to how it de�nes a topology Td and a coarse structure Ed.
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Uniform spaces are used to generalize the concept of uniform continuity between metric
spaces. Let (X,S) and (Y,S ′) be uniform spaces. A map f : X → Y is said to be
uniformly continuous if for every entourage V ′ of Y the set (f ×f)−1V ′ is an entourage of
X. This can be shown to coincide with the metric de�nition of uniform continuity when
the uniform structures are induced by metrics.

Example 3.10. Similarly to Example 3.7, this example shows that coarse and uniform
structures induced by a metric contain di�erent information on the inducing metric. Let
d1, d2 and d3 be three metrics on N de�ned as follows for n,m ∈ N, n 6= m:

d1(n,m) = 2−n + 2−m,

d2(n,m) = 2,

d3(n,m) = 2n + 2m.

One can easily show that the resulting di are metrics. Under d1 and d2 the space N is
bounded, whereas under d3 it is not. Hence, one sees that Ed1 = Ed2 6= Ed3 .

Note that the sets ∆d2(1) and ∆d3(1) are both the diagonal ∆N. Due to this, both Sd2
and Sd3 contain the diagonal, and the �rst two properties of uniform structures show that
Sd2 = Sd3 = {V ∈ P (X2) |∆N ⊂ V }. Next, it is shown that Sd1 does not contain ∆N.
Assuming the contrary implies that ∆d1(r) ⊂ ∆N for some r > 0, since {∆d1(r) | r > 0}
is a generating set for Sd1 . This is clearly not true, as the distances d1(n, n + 1) become
arbitrarily small as n increases. Therefore, one concludes that Sd1 6= Sd2 = Sd3 .

3.3 Maps and coarse equivalence

Property preserving mappings are a key part of most �elds of mathematics. For coarse
spaces, there are two main classes of mappings which could be considered analogous to
the continuous functions of topology.

De�nition 3.11. Let (X, EX) and (Y, EY ) be coarse spaces. A map f : X → Y is coarsely
uniform if, whenever E is an X-controlled set, the set (f × f)(E) is Y -controlled.

A map f : X → Y is a coarse map if, in addition to being coarsely uniform, it is
coarsely proper : f−1B is bounded in X whenever B is bounded in Y .

The identity mapping idX is a coarse map. In addition to this, both coarse uniformness
and coarse properness are preserved in compositions of mappings.

The next step is de�ning coarse equivalences, the notion of similarity for two coarse
spaces. A desirable property would be that all bounded spaces would be consider coarsely
equivalent. This can be motivated by the idea that coarse structures describe large-scale
properties, and at a large distance, a bounded set appears similar to a point.
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The standard approach of de�ning equivalence would be to use property-preserving
mappings that have a similarly property-preserving inverse. However, this approach will
not result in similarity of bounded spaces: If X and Y are bounded spaces with |Y | < |X|,
there is no bijective map from X to Y . Therefore, no map from X to Y has an inverse.

In order to avoid this problem, an equivalence relation on mappings is introduced.

De�nition 3.12. Let X be a set and (Y, EY ) a coarse space. Let f and g be maps from
X to Y . The maps f and g are close, if the set {(f(x), g(x)) | x ∈ X} is controlled.

For any two maps f , g from a set X to a set Y , the notation (f, g)(X) is adopted for
the set {(f(x), g(x)) | x ∈ X}.

Proposition 3.13. Closeness of maps is an equivalence relation.

Proof. Let f , g and h be maps from set X to coarse space (Y, EY ). Because (f, f)(X) is
a subset of ∆Y , closeness is re�exive. Furthermore, (g, f)(X) is the inverse of (f, g)(X),
which shows that closeness is symmetric. Finally, transitivity is obtained by seeing that
(f, h)(X) is a subset of (f, g)(X) ◦ (g, h)(X).

Remark 3.14. Suppose that Y is a metric space with metric d, and EY is the bounded
coarse structure with respect to d. In this case, due to the de�nition of bounded coarse
structures, two maps f and g are close if and only if supx∈X d(f(x), g(x)) is �nite.

Using the notion of closeness, a de�nition for coarse equivalences is introduced.

De�nition 3.15. Let (X, EX) and (Y, EY ) be coarse spaces. Let f be a coarsely uniform
map from X to Y . Then f is a coarse equivalence if there is a coarsely uniform map
g : Y → X, for which g ◦ f is close to idX , and f ◦ g is close to idY . The map g is called
a coarse inverse of f .

Two coarse spaces are said to be coarsely equivalent, if there is a coarse equivalence
between them.

Proposition 3.16. Coarse equivalence of spaces is an equivalence relation. Furthermore,

the composition of coarse equivalences is a coarse equivalence.

Proof. Let (X, EX), (Y, EY ) and (Z, EZ) be coarse spaces. The identity map idX is a coarse
equivalence, with itself as a coarse inverse. If f : X → Y is a coarse equivalence, then its
coarse inverse g : Y → X is also a coarse equivalence. Hence, coarse equivalence of spaces
is re�exive and symmetric.

Next, assume that f ′ : Y → Z is another coarse equivalence, with coarse inverse
g′. The maps f ′ ◦ f and g ◦ g′ are both coarsely uniform. Now, let x be a point of X.
Because g′ ◦f ′ is close to idY , the pair (f(x), (g′ ◦f ′ ◦f)(x)) is an element of the controlled
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set (idY , g
′ ◦ f ′)(Y ). Hence, the pair ((g ◦ f)(x), (g ◦ g′ ◦ f ′ ◦ f)(x)) is an element of

the set (g × g) ((idY , g
′ ◦ f ′)(Y )), which is controlled due to the coarse uniformness of g.

Consequently, we obtain the relation

(idX , g ◦ g′ ◦ f ′ ◦ f)(X) ⊂ (idX , g ◦ f)(X) ◦ (g × g) ((idY , g
′ ◦ f ′)(Y )) ,

which shows that (g ◦ g′) ◦ (f ′ ◦ f) is close to idX . The proof for (f ◦ f ′) ◦ (g′ ◦ g) is
analoguous. Hence, f ′ ◦ f is a coarse equivalence with coarse inverse g′ ◦ g. As a result,
the composition of coarse equivalences is a coarse equivalence, and coarse equivalence of
spaces is transitive.

The de�nition of coarse equivalences uses coarsely uniform maps. The following Propo-
sition shows that a de�nition via coarse maps yields the same coarse equivalences.

Proposition 3.17. Let (X, EX) and (Y, EY ) be coarse spaces. Let f : X → Y be a coarse

equivalence, with g as its coarse inverse. In this case, both f and g are coarse maps.

Proof. It su�ces to show that both f and g are coarsely proper. Since g is also a coarse
equivalence, the claim follows merely by showing that f is coarsely proper.

Let B be a bounded subset of Y , and let (x, y) be an element of (f−1B)2. Note that
the set (g(B))2 = (g × g)(B2) is controlled. Since f(x) and f(y) are elements of B, the
points (g ◦ f)(x) and (g ◦ f)(y) are elements of g(B). Due to this, the pair (x, y) is an
element of the controlled set

(idX , g ◦ f)(X) ◦ (g(B))2 ◦ (g ◦ f, idX)(X).

Therefore, (f−1B)2 is a subset of a controlled set, which shows that f−1B is bounded.
Hence, f is coarsely proper.

Let (X, EX) be a bounded coarse space. Note that EX is the power set P (X), and
therefore every subset of X2 is controlled. Due to this, every map f from a coarse space
into X is coarsely uniform, and every pair of maps f, g from a set into X is close. Hence, if
(X, EX) and (Y, EY ) are bounded coarse spaces, one may select arbitrary maps f : X → Y
and g : Y → X, and conclude that f is a coarse equivalence with coarse inverse g. In other
words, all bounded coarse spaces are coarsely equivalent, and all maps between bounded
coarse spaces are coarse equivalences.

Furthermore, assume that (X, EX) is bounded and f : Y → X is a coarse equivalence.
Proposition 3.17 shows that f is coarsely proper, and therefore Y = f−1X is also a
bounded coarse space. Hence, not only are all bounded coarse spaces equivalent with
each other, but also no non-bounded coarse space is equivalent with a bounded one. This
is the �rst example of a coarse invariant, and therefore also provides the �rst example of
two spaces not being coarsely equivalent.
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3.4 Coarse embeddings

The main mapping class of interest in this thesis is the coarse embedding. As with
topological embeddings, a coarse embedding f : X → Y is a coarse equivalence from X
into a coarse subspace of Y . In order to state the de�nition for general coarse spaces, a
notion of coarse subspaces is �rst required.

Proposition 3.18. Let (X, E) be a coarse space, and let A be a subset of X. De�ne the

collection E|A by

E|A = {E ∈ E | E ⊂ A2} = E ∩ P (A2).

The collection E|A is a coarse structure.

Proof. Since both E and P (A2) are closed under composition, inverses, subsets and �nite
unions, the same properties pass on to E|A. The diagonal ∆A is a subset of ∆X , and
therefore also an element of E . Since the diagonal ∆A is also a subset of A2, it is an
element of E|A.

Note that when A is a subspace of a metric space (X, d), the bounded coarse structure
Ed|A is also of the form {E ∈ Ed | E ⊂ A2}. Hence, the notion of a coarse subspace coincides
with the notion of a metric subspace for bounded coarse structures Ed.

Let (X, E) be a coarse space, and let A be a subset of X. Observe the sets of the form
E ∩A2, where E is an element of E . Due to the subset property, E ∩A2 is an element of
E . Since E ∩ A2 is a subset of A2, it is also an element of E|A. Furthermore, if E is an
element of E|A, one obtains that E = E ∩ A2. Therefore, every element of E|A is of this
form, and the set E|A can be written in the form

(3.19) E|A = {E ∩ A2 | E ∈ E}.

Next is the �rst formal de�nition of coarse embeddings. The de�nition follows the
standard method of de�ning various types of embeddings.

De�nition 3.20. Let (X, EX) and (Y, EY ) be coarse spaces. A mapping f : X → Y is a
coarse embedding if f is a coarse equivalence from (X, EX) to (f(X), EY |f(X)).

Proposition 3.21. Let X and Y be coarse spaces, and let f : X → Y be a coarse

equivalence. Then f is a coarse embedding.

Proof. Since every controlled set of (f(X), EY |f(X)) is also a controlled set of (Y, EY ),
the coarse uniformness of f is preserved when restricting the target space. Denote the
coarse inverse of f by g, and let h : f(X)→ X be the restriction h = g|f(X). If E is an
element of EX , (h× h)−1E can be written in the form ((g × g)−1E) ∩ (f(X))2. Hence, it
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follows from equation 3.19 that h is coarsely uniform. Since h◦f and g ◦f are equal, h◦f
is close to idX . Finally, the set (f ◦ h, idf(X))(f(X)) is the intersection of (f ◦ h, idY )(Y )
with (f(X))2, which proves that f ◦ h is close to idf(X).

The following Proposition yields an alternate de�nition of coarse embeddings, which
is generally easier to check.

Proposition 3.22. Let (X, EX) and (Y, EY ) be coarse spaces. A mapping f : X → Y
is a coarse embedding if and only if the conditions {(f × f)(E) | E ∈ EX} ⊂ EY and

{(f×f)−1E |E ∈ EY } ⊂ EX hold. In other words, f is a coarse embedding if and only if f
is coarsely uniform, and the pre-image of every controlled set under (f × f) is controlled.

Proof. First, note that f : X → Y is coarsely uniform if and only if f : X → f(X) is
coarsely uniform. This is an immediate consequence of the fact that all sets (f × f)(E),
where E is a subset of X2, are elements of P (f(X)2).

Next, assume that there is a coarse inverse g : f(X) → X. Let E be an element of
EY . Let (x, y) be a pair which f × f maps into E. Note that the pair (f(x), f(y)) is
also an element of E ∩ f(X)2, which due to equation 3.19 is a controlled set of EY |f(X).
Hence, the pair ((g ◦ f)(x), (g ◦ f)(y)) is an element of the set (g × g)(E ∩ f(X)2), which
is controlled. From this, one can infer the inclusion

(f × f)−1E ⊂(idX , g ◦ f)(X) ◦ (g × g)(E ∩ f(X)2) ◦ (g ◦ f, idX)(X).

Consequently, (f × f)−1E is controlled for every E ∈ EY .
For the other direction, assume that for every E ∈ EY the set (f×f)−1E is controlled.

Select g : f(X) → X as follows: For every element y in f(X), g(y) is an arbitrarily
chosen element in f−1{y}. This de�nition immediately yields that f ◦ g = idf(X). If E is
an element of EY |f(X), the set (g × g)(E) is a subset of (f × f)−1E. Since E is also an
element of EY , the set (g × g)(E) is controlled. Consequently, g is coarsely uniform.

Finally, let x be an element of X. Since the maps f ◦ g and idf(X) are equal, the map
f ◦ g ◦ f maps x to f(x). Hence, the pair (x, (g ◦ f)(x)) is an element of (f × f)−1∆f(X).
Therefore, (idX , g ◦ f)(X) is controlled, or in other words, g ◦ f is close to idX . In
conclusion, g is a coarse inverse of f .

Coarse embeddings have a useful characterization in metric spaces. In works which
only use coarse embeddings in the context of metric spaces, this is commonly used as the
de�nition of a coarse embedding.

Proposition 3.23. Let (X, d) and (Y, d′) be metric spaces. A map f is a coarse embed-

ding from (X, Ed) to (Y, Ed′), if and only if the following condition applies: There exist
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increasing functions ρ+ and ρ− from R0 to itself, for which both ρ+(t) and ρ−(t) tend to

in�nity as t increases, and the inequality

ρ−(d(x, y)) ≤ d′(f(x), f(y)) ≤ ρ+(d(x, y))

holds for all pairs (x, y) ∈ X2.

Proof. Let f be a map from X to Y . Assume �rst that the functions ρ+ and ρ− exist as
de�ned above. Let E be an element of Ed. By the de�nition of Ed, d[E] is �nite. Using
the increasingness of ρ+, one obtains the inequality

d′
[
(f × f)(E)

]
= sup

(x,y)∈E
d′(f(x), f(y)) ≤ sup

(x,y)∈E
ρ+ (d(x, y)) ≤ ρ+

(
d[E]

)
<∞.

Hence, (f × f)(E) is controlled.
Next, let F be an element of Ed′ . Fix an element (x, y) of (f×f)−1F . Since (f(x), f(y))

is in F , one obtains the inequality

ρ−(d(x, y)) ≤ d′(f(x), f(y)) ≤ d′[F ].

Since ρ− tends to in�nity, there is some real number C for which ρ−(C) is greater than
d′[F ]. Due to ρ− being increasing, d(x, y) is less than C. Because this bound holds for all
elements (x, y) of (f × f)−1F , the set (f × f)−1F is controlled. By Proposition 3.22, f is
a coarse embedding.

Next, assume that f is a coarse embedding. De�ne functions g− : R0 → R0∪{∞} and
g+ : R0 → R0 by

g−(r) = inf {d′(f(x), f(y)) | d(x, y) ≥ r} ,(3.24)

g+(r) = sup {d′(f(x), f(y)) | d(x, y) ≤ r} = d′
[
(f × f)(∆d(r))

]
.(3.25)

Note that if X is bounded, g−(r) may be an in�mum over an empty set. In this case, the
value of g−(r) is de�ned to be in�nite. For values of r less than d(X), g−(r) is guaranteed
to be �nite-valued. Since f is a coarse embedding, g+ is �nite-valued for all nonnegative
r. Furthermore, the sets ∆d(r) and {(x, y) | d(x, y) ≥ r} are respectively increasing and
decreasing with respect to r. Due to this, both g− and g+ are increasing functions.

Using the previously de�ned g+ and g−, de�ne functions ρ− and ρ+ as follows:

ρ−(r) = min(g−(r), r),(3.26)

ρ+(r) = max(g+(r), r).(3.27)

Both ρ− and ρ+ are �nite-valued, since ρ−(r) is at most r and ρ+ is a maximum of two
�nite-valued functions. As a minimum and a maximum of two increasing functions, ρ−
and ρ+ are increasing. It is clear that ρ+ tends to in�nity.
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To show that ρ− tends to in�nity, one has to show that g− obtains arbitrarily large
values. Assume to the contrary that g− has an upper bound C. Hence, for every
natural number n, there exists a pair (xn, yn) of X2 which ful�lls d(xn, yn) ≥ n and
d′(f(xn), f(yn)) ≤ C. It follows that d [(f × f)−1∆d′(C)] is in�nite, which contradicts the
fact that f is a coarse embedding. Hence, the function ρ− tends to in�nity.

Finally, let x and y be two elements of X. The de�nitions 3.24-3.27 directly yield the
inequalities

ρ−(d(x, y)) ≤ g−(d(x, y)) ≤ d′(f(x), f(y)) ≤ g+(d(x, y)) ≤ ρ+(d(x, y)).

This completes the proof.

Example 3.28. Equip R with the standard euclidean metric dE. De�ne a map f : R→ R
as follows:

f(x) =

{
x+ 1 x ∈ Q
x x /∈ Q

.

The map f ful�lls the following inequality:

dE(x, y)− 1 ≤ dE(f(x), f(y)) ≤ dE(x, y) + 1.

Hence, selecting ρ−(x) = max(x − 1, 0) and ρ+(x) = x + 1 shows that f is a coarse
embedding. Furthermore, since f(R) = R, it is a coarse equivalence. Note, however, that
f is discontinuous at every point of R. This example shows that, despite the similarity
between coarse embeddability and the bilipschitz condition, coarse embeddings between
metric spaces are not necessarily continuous anywhere.

Example 3.29. Equip the spaces R and Z with the euclidean metric dE. Let f : R→ Z
be the �oor function, which maps x to the largest integer n which is at most x. This
function is commonly denoted by f(x) = bxc. Similarly to Example 3.28, f is a surjection
which ful�lls the inequality

dE(x, y)− 1 ≤ dE(f(x), f(y)) ≤ dE(x, y) + 1.

Hence, the spaces (R, EdE) and (Z, EdE) are coarsely equivalent.
One can similarly �nd a coarse equivalence from Rn to Zn, by de�ning f(x1, . . . , xn) =

(bx1c, . . . , bxnc). In this case, the inequality f ful�lls is given by

dE(x, y)− n ≤ dE(f(x), f(y)) ≤ dE(x, y) + n.
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3.5 Discrete metric spaces

A major focus in coarse geometry is the study of discrete metric spaces. Since discreteness
is characterized by all subsets being open, topological equivalence doesn't di�erentiate
between discrete spaces beyond their cardinality. Coarse equivalence, on the other hand,
provides a way of categorizing various discrete spaces. This section presents several results
indicating the signi�cance of discrete metric spaces in coarse geometry.

One question of interest is determining when a coarse space has a compatible met-
ric. It turns out there is a surprisingly simple characterization of this coarse version of
metrizability. Assume that E ′ is a subset of a coarse structure E of a coarse space X, and
assume that every element E ∈ E is a subset of some E ′ ∈ E ′. In this case, the structure
E can be de�ned from E ′ via E = {E ⊂ X2 | ∃E ′ ∈ E ′ : E ⊂ E ′}. This behavior is very
much counterpart to the generating sets de�ned for uniform spaces, and hence the same
terminology is used for such sets E ′.

The following Proposition is from [10], and the proof presented here is essentially
similar to the one given there.

Proposition 3.30. Let (X, E) be a coarse space. The following conditions are equivalent:

1. There is a metric d on X for which E is the bounded coarse structure Ed.

2. The structure E has a countable generating set E ′ which ful�lls ∪E ′ = X2.

Proof. Condition 2 follows easily from condition 1 by selecting

E ′ =
{

∆d(n)
∣∣ n ∈ N

}
.

Assume then that E ′ = {E1, E2, . . .} is a generating set of E , and that the union
⋃
i∈Z+

Ei
is X2. For all natural numbers i, de�ne the sets Fi recursively as follows:

F0 = ∆X

Fi = (Ei ∪ E−1i ) ∪ Fi−1 ∪
i−1⋃
j=1

(Fj ◦ Fi−j) for i ∈ Z+

Recall that a set A ⊂ X2 is symmetric if A−1 equals A. The diagonal ∆X is a
symmetric element of E ′, the unions (Fj ◦ Fi−j) ∪ (Fi−j ◦ Fi−(i−j)) are symmetric, and
unions of symmetric sets are symmetric. In addition to this, the union used to de�ne Fi
is �nite. Using these facts, one can see by induction that Fi are symmetric elements of
E . Furthermore, since Ei is a subset of Fi for every positive value of i, the sets Fi form a
countable generating set of E , and the union

⋃∞
i=0 Fi is X

2.
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Now de�ne d : X2 → R as follows: d(x, y) is the smallest integer i for which (x, y) is
an element of Fi. Since the union of Fi is X

2, d is well de�ned and �nite-valued. Since
F0 is the diagonal of X, d(x, y) is zero if and only if x and y are equal. Since the sets Fi
are symmetric, d is symmetric.

Next, let x, y, and z be elements of X. If any two of these elements are equal, the
triangle inequality holds trivially for them. In the remaining case of x 6= y 6= z 6= x, note
that (x, y) and (y, z) are elements of Fd(x,y) and Fd(y,z) respectively. Hence, (x, z) is an
element of the set Fd(x,y) ◦Fd(y,z), which is a subset of Fd(x,y)+d(y,z). Therefore d(x, z) is at
most d(x, y) + d(y, z). This concludes the proof that d is a metric.

Finally, note that by the de�nition of d, the sets Fi are exactly the sets ∆d(i). Hence,
the coarse structures E and Ed have an equal generating set. Since a coarse structure can
be uniquely determined from a generating set, E and Ed are equal.

A similar metrizability result also holds for uniform structures: A uniform space is
metrizable precisely when it has a countable generating set and the intersection of the
generating set is the diagonal. For further details on this, see [4].

Example 3.31. De�ne a coarse structure E on R as follows: E consists of all subsets E
of R2 for which E \∆R is �nite. It is easily checked that E is a coarse structure. However,
if sets E1, E2, . . . form a countable generating set of E , the set (

⋃∞
i=1Ei)\∆R is countable,

and therefore the set
⋃∞
i=1Ei is not equal to R2. Hence, (R, E) is not metrizable.

Note that the metric constructed in Proposition 3.30 is discrete, as its image set is the
set of natural numbers. Therefore, the proof of Proposition 3.30 immediately yields the
following corollary.

Corollary 3.32. Let (X, d′) be a metric space. Then there is a discrete metric d on X
for which the coarse structures Ed and Ed′ are identical.

Proof. Due to Proposition 3.30, the coarse space (X, Ed′) has a countable generating set,
and in the proof of the aforementioned Proposition, a discrete metric d is constructed
from the generating set ful�lling Ed = Ed′ .

Corollary 3.32 can be thought of as a counterpart to the well known result that every
metric has a topologically equivalent bounded metric. Just as discrete metric spaces are
similar topologically, bounded metric spaces have similar coarse properties.

Besides Corollary 3.32, Proposition 3.30 has another important corollary.

Corollary 3.33. Metrizability of coarse spaces is a coarse invariant.

Proof. LetX be a coarse space, (Y, d) a metric space, and f : X → Y a coarse equivalence.
By Proposition 3.21, f is a coarse embedding, letting one use Proposition 3.22. For every
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controlled subset E of X2, (f × f)(E) is contained in the set ∆d(n) for some natural
number n. Therefore, the set E is contained in (f × f)−1∆d(n) for some n ∈ N. Since
the sets (f × f)−1∆d(n) are controlled and their union is (f × f)−1Y 2 = X2, Proposition
3.30 implies the metrizability of the coarse space X. This concludes the proof.

The �nal result of this section yields another way of reducing an arbitrary metric
space to a coarsely equivalent discrete space. This is possible due to the fact that spaces
of di�erent cardinality can be coarsely equivalent.

De�nition 3.34. Let (X, d) be a metric space, and let c be a positive real number. A
subset A of X is called c-discrete, if for every pair (a, b) ∈ A2, either a equals b or d(a, b)
is at least c.

Proposition 3.35. Let (X, d) be a metric space, and �x a positive real number c. Let A
be a maximal c-discrete subset of (X, d). Then the spaces X and A are coarsely equivalent.

Proof. Let x be an element in X. Since A is a maximal c-discrete subset, there is an
ax ∈ A which ful�lls d(ax, x) < c, since otherwise A ∪ {x} would be a larger c-discrete
subset of X. De�ne a map p : X → A via p(x) = ax. Note that if a is an element of A, p
maps a to itself. Hence, p is a surjection.

Let x and y be elements of X. Using the triangle inequality, one obtains the inequality

d(x, y) ≤ d(x, p(x)) + d(p(x), p(y)) + d(p(y), y) < 2c+ d(p(x), p(y))

and the inequality

d(p(x), p(y)) ≤ d(p(x), x) + d(x, y) + d(y, p(y)) < 2c+ d(x, y).

Therefore, using the notation of Proposition 3.23, a selection of ρ+(t) = t + 2c and
ρ−(t) = max(0, t − 2c) proves that p is a coarse embedding. Since p is also a surjection,
p is a coarse equivalence.

One can use Zorn's lemma to prove that every metric space X contains a maximal
c-discrete subset for every positive real value of c.
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Chapter 4

Coarse embeddings into Hilbert spaces

This chapter focuses on coarse embeddability of metric spaces into Hilbert spaces. A
major reason for the interest into coarse spaces is that coarse embeddability has been
of use in trying to solve several complicated conjectures in K-theory. This chapter gives
some background information on these applications. Furthermore, a property stronger
than coarse embeddability known as Property A is presented, and various results related
to it are derived.

4.1 General background and motivation

This section is an informal overview of the connections of coarse embeddability and sev-
eral K-theoretic conjectures, which stands as the main motivator for research on coarse
embeddability into Hilbert spaces. The level of detail will be considerably low, as even
most de�nitions in K-theory are well beyond this thesis. Information on the relevant
conjectures can be found for example in [11] and [7].

To start o�, several basic concepts of metric spaces have to be introduced. A metric
space is proper if every closed ball is compact. A metric space (X, d) is said to have
bounded geometry, if for every positive real number r the supremum supx∈X |B(x, r)| is
�nite. Note that bounded geometry implies discreteness. Since discrete spaces are proper
precisely when all closed balls are �nite, all spaces of bounded geometry are also proper.

The Baum-Connes conjecture concerns a map, referred to as the index map, between
two groups derived from a countable group. The value group of the index map is derived
purely analytically using tools of K-theory. The domain group, on the other hand, is de-
rived using K-homology, the dual theory of K-theory, and is instead related to geometry
and topology. The Baum-Connes conjecture claims that the map in question is an iso-
morphism, a claim that would provide a link between these two theories. The conjecture
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is still an open question, having been proven only in speci�c special cases.
The coarse Baum-Connes conjecture is a variation of the original Baum-Connes con-

jecture. For proper metric spaces, one can de�ne similar groups and a similar index map
to the original Baum-Connes conjecture. The coarse Baum-Connes conjecture states that
for spaces with bounded geometry, the de�ned index map is an isomorphism. The index
maps of the two variations are related on discrete groups with a �nite generating set, a
class for which both maps can be de�ned.

In the paper [14], Guoliang Yu proved the following major result.

Theorem 4.1 (Yu). Let X be a metric space with bounded geometry, and assume that

X is coarsely embeddable into a Hilbert space. In this case, the coarse Baum-Connes

conjecture holds for X.

One reason for the interest in the coarse Baum-Connes conjecture is that it can be
seen as a stronger form of multiple other conjectures. One such conjecture is the Novikov
conjecture, an important conjecture in topology which is closely linked to the injectivity
of the Baum-Connes index map.

Similarly to the Baum-Connes conjecture, one can de�ne a coarse variant of the
Novikov conjecture for metric spaces with bounded geometry. This variant has also ob-
tained a partial solution, given by Kasparov and Yu in the paper [8].

De�nition 4.2. Let H be a normed vector space. The space H is uniformly convex if,
for every positive real number ε, there is a positive real number δ ful�lling the following:
If x and y are unit vectors of H and ‖x− y‖ is at least ε, the value of ‖(x+ y)/2‖ is at
most 1− δ.

Theorem 4.3 (Kasparov, Yu). Let X be a metric space with bounded geometry, and

assume that X is coarsely embeddable into a uniformly convex Banach space. In this

case, the coarse Novikov conjecture holds for X.

Note that every Hilbert space is uniformly convex. To see this, let x and y be unit
vectors of a Hilbert space with a real-valued inner product. The norm ‖x− y‖2 can be
written in the form 2 − 2 〈x, y〉, and the norm ‖(x+ y)/2‖2 can be written in the form
1/2 + 〈x, y〉 /2. Hence, if ‖x− y‖ is at least ε, 〈x, y〉 is at most 1 − ε2/2, and one may
select δ = 1 −

√
1− ε2/4. The same method of proof works for complex-valued inner

products.
If a coarse space X has a coarse embedding f into a Hilbert space, Corollary 3.33

implies that X has an inducing metric. Due to this, coarse embeddability into Hilbert
spaces is of interest only in the context of metric spaces.
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4.2 Property A

In the paper [14], Guoliang Yu introduced the Property A for metric spaces. The main
interest of Property A is that it implies coarse embeddability into a Hilbert space. An
in-depth survey of existing results related to Property A can be found in the article [12].

De�nition 4.4. Let X be a metric space with a metric d. The space X has Property A

if, for every ε > 0 and r > 0, one can select a family {Ax ⊂ X × N | x ∈ X, |Ax| <∞}
which ful�lls the following conditions:

1. For every x and y in X, if d(x, y) is at most r, the intersection Ax∩Ay is nonempty
and the sets Ax and Ay ful�ll the inequality

|Ax4 Ay|
|Ax ∩ Ay|

< ε.

2. There is an R > 0 for which every set Ax is contained within BX(x,R)× N.

Yu's original de�nition of Property A considered only discrete metric spaces. However,
nothing in the de�nition explicitly requires the discreteness of X. The compatibility of
the above de�nition with non-discrete spaces will be analyzed later in detail.

Besides requiring the discreteness of X, Yu's de�nition also replaces the second con-
dition with the following two conditions:

• There is an R > 0 ful�lling d(prX(Ax)) ≤ R for every x in X, where prX is the
usual projection map from X × N onto X.

• Every set Ax contains the element (x, 0).

It can be shown that replacing the second condition of De�nition 4.4 with the above two
conditions yields an equivalent de�nition.

Theorem 4.5. Let X be a metric space with metric d. If X has Property A, there is a

coarse embedding from X into a Hilbert space H.

Proof. This proof follows the outline given in the paper [14]. The Hilbert space H is given
by

H =
∞⊕
k=1

l2(X × N).
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In order to de�ne a coarse embedding f , for every positive integer k, select the families
{A(k)

x } using the de�nition of Property A with r = k and ε = 2−k. Now, �x an element
x0 of X. The coarse embedding f can be de�ned via

f(x) =
∞⊕
k=1


 1√
|A(k)

x |

∑
a∈A(k)

x

ea

−
 1√
|A(k)

x0 |

∑
a∈A(k)

x0

ea


 .

What remains is to show that f is a coarse embedding, and that f maps elements of X
into H.

Next, let x be an element of X. An estimate is derived for the l2-norm of (f(x))k,

the k:th coordinate of f(x). Assuming that A
(k)
x ∩ A(k)

x0 is nonempty, ‖(f(x))k‖l2 can be
written in the form

‖(f(x))k‖l2 =

√√√√√√√
 ∑
a∈A(k)

x

1∣∣∣A(k)
x

∣∣∣
+

 ∑
a∈A(k)

x0

1∣∣∣A(k)
x0

∣∣∣
−

 ∑
a∈A(k)

x ∩A
(k)
x0

2√∣∣∣A(k)
x

∣∣∣ ∣∣∣A(k)
x0

∣∣∣


=

√√√√√√1 + 1−
2
∣∣∣A(k)

x ∩ A(k)
x0

∣∣∣√∣∣∣A(k)
x

∣∣∣ ∣∣∣A(k)
x0

∣∣∣(4.6)

=

√√√√√√√
2

√∣∣∣A(k)
x

∣∣∣ ∣∣∣A(k)
x0

∣∣∣− 2
∣∣∣A(k)

x ∩ A(k)
x0

∣∣∣√∣∣∣A(k)
x

∣∣∣ ∣∣∣A(k)
x0

∣∣∣
.(4.7)

The form 4.6 immediately yields that ‖(f(x))k‖l2 is at most
√

2. This holds also when

A
(k)
x ∩ A(k)

x0 is empty, as in that case ‖(f(x))k‖l2 equals
√

2.
Let A and B be arbitrary sets. Recall the arithmetic-geometric mean inequality, which

states that for nonnegative numbers a and b,
√
ab is at most (a+ b)/2. By applying this,

one obtains the inequality

2
√
|A| |B| − 2 |A ∩B| ≤ |A|+ |B| − 2 |A ∩B|

= (|A| − |A ∩B|) + (|B| − |A ∩B|)
= |A \B| − |B \ A|
= |A4B| .
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Further assessment of the form
√
|A| |B| yields the inequality√

|A| |B| =
√

(|A ∩B|+ |A \B|) (|A ∩B|+ |B \ A|)

≥
√
|A ∩B|2 = |A ∩B| .

Next, the two previous inequalities are applied to the formula 4.7. With the assumption
of A

(k)
x ∩ A(k)

x0 being nonempty, one obtains the inequality

‖(f(x))k‖l2≤

√√√√√
∣∣∣A(k)

x 4 A
(k)
x0

∣∣∣∣∣∣A(k)
x ∩ A(k)

x0

∣∣∣ .
Hence, due to how the sets A

(k)
x were selected, ‖(f(x))k‖l2 is at most

√
2−k whenever k is

at least d(x, x0). This yields the following upper bound for ‖f(x)‖l2:

‖f(x)‖l2 =

√√√√√
bd(x,x0)c∑

k=1

‖(f(x))k‖2l2

+

 ∞∑
k=bd(x,x0)c+1

‖(f(x))k‖2l2



≤

√√√√√
bd(x,x0)c∑

k=1

2

+

 ∞∑
k=bd(x,x0)c+1

2−k


≤
√

2d(x, x0) + 1.

The resulting bound shows that f(x) is an element of
⊕∞

k=1 l
2(X × N), as its l2-norm is

�nite.
The bound can also be used to obtain half of the requirements for a coarse embedding.

Let x and y be elements of X, and observe the di�erence f(x)−f(y). The x0-terms cancel
out, resulting in a form otherwise identical to f(x), but with x0 replaced by y. Therefore,
the above calculations yield the bound

‖f(x)− f(y)‖l2≤
√

2d(x, y) + 1.

Hence, using again the notation of Proposition 3.23, one may select ρ+(t) =
√

2t+ 1, and
all that remains is �nding a suitable lower bound ρ−.

For every positive integer k, denote by Rk the bound satisfying the second condition
of coarse embeddability for the previously selected values of r = k and ε = 2−k. Fix a
positive integer k, and let x and y be elements of X with d(x, y) ≥ 2Rk. In this case, the
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open balls BX(x,Rk) and BX(y,Rk) don't intersect, and therefore the sets A
(k)
x and A

(k)
y

are separate.
As has been previously stated, if the sets A

(k)
x and A

(k)
y are separate, the value of

‖(f(x))k‖l2 is
√

2. Hence, one obtains the lower bound

‖f(x)− f(y)‖l2≥

√√√√2
∞∑
k=1

12Rk
(d(x, y)) ,

where 12Rk
is the characteristic function of the set {t ∈ R | t ≥ 2Rk}. This allows one to

make the selection

ρ−(t) = min

√√√√2
∞∑
k=1

12Rk
(t), t

 .

The minimum is used to avoid the problem of the �rst function being potentially in�nite,
as �niteness is only guaranteed up to the diameter of f(X). The resulting ρ− is increasing
as a minimum of two increasing functions. Lastly, the limit limt→∞ ρ−(t) is clearly in�nite.
This concludes the proof.

Next, it is shown that Property A is a coarse invariant for metric spaces. The proof
follows the one presented in the article [12].

Proposition 4.8. Property A is preserved in coarse equivalences between metric spaces.

Proof. Let (X, dX) and (Y, dY ) be metric spaces, and let f be a coarse equivalence from X
to Y , with coarse inverse g. Assume that the space X has Property A, and �x nonnegative
real numbers r and ε. Since g is coarsely uniform, the set (g× g)(∆dY (r)) is controlled in
X. Denote by r′ the �nite-valued supremum of the set dX [(g × g)(∆dY (r))].

Next, use the Property A of X with the values r′ and ε. Denote the resulting family
by {A′x}, and the bound obtained from the second condition of Property A by R′. For
every y in Y , de�ne a function ny : Y → N by

ny(y
′) =

∣∣A′g(y) ∩ (f−1{y′} × N)
∣∣ .

Since the set A′g(y) is �nite, ny is �nite-valued. Now, one may de�ne the sets Ay as follows:

Ay =
⋃
y′∈Y

{(y′, 1), (y′, 2), . . . , (y′, ny(y
′))} .

It remains to show that the family {Ay | y ∈ Y } ful�lls the conditions of Property A.
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Let y be an element of Y . Note that sets f−1{y′} are mutually disjoint and cover X.
Thanks to this, the �niteness of |Ay| can be concluded with the equation

|Ay| =
∑
y′∈Y

ny(y
′) =

∑
y′∈Y

∣∣A′g(y) ∩ (f−1{y′} × N)
∣∣ =

∣∣A′g(y)∣∣ <∞.
Next, let (y′, k) be an element of Ay. Due to the de�nition of ny, the intersection

A′g(y) ∩ (f−1{y′} × N) is nonempty. Hence, there is an element (x′, k′) of A′g(y) ful�lling

f(x′) = y′. The distance dX(x′, g(y)) is at most R′. Use of the triangle inequality yields
the bound

dY (y′, y) ≤ dY (f(x′), (f ◦ g)(y)) + dY ((f ◦ g)(y), y)

≤ dY [(f × f)(∆dX (R′))] + dY [(f ◦ g, idY )(Y )]

The resulting upper bound is �nite, since f × f maps controlled sets of X2 to controlled
sets of Y 2 and f ◦ g is close to idY . The obtained bound is therefore a suitable value of
R which satis�es the second condition of Property A for the family {Ay | y ∈ Y }.

Finally, let y1 and y2 be elements of Y . Assume that dY (y1, y2) is at most r. Due to
how r′ was de�ned, dX(g(y1), g(y2)) is at most r′. Derive a lower bound for |Ay1 ∩Ay2| as
follows:

|Ay1 ∩ Ay2| =
∑
y′∈Y

min(ny1(y
′), ny2(y

′))

=
∑
y′∈Y

min
(∣∣A′g(y1) ∩ (f−1{y′} × N)

∣∣ , ∣∣A′g(y2) ∩ (f−1{y′} × N)
∣∣)

≥
∑
y′∈Y

∣∣A′g(y1) ∩ A′g(y2) ∩ (f−1{y′} × N)
∣∣

=
∣∣A′g(y1) ∩ A′g(y2)∣∣ .

This also results in the following upper bound for |Ay1 4 Ay2|:

|Ay1 4 Ay2| = |Ay1|+ |Ay2| − 2 |Ay1 ∩ Ay2|
≤
∣∣A′g(y1)∣∣+

∣∣A′g(y2)∣∣− 2
∣∣A′g(y1) ∩ A′g(y2)∣∣

=
∣∣A′g(y1)4 A′g(y2)

∣∣ .
From this, one may conclude the inequality

|Ay1 4 Ay2|
|Ay1 ∩ Ay2 |

≤

∣∣∣A′g(y1)4 A′g(y2)

∣∣∣∣∣∣A′g(y1) ∩ A′g(y2)∣∣∣ < ε.

Hence, the family {Ay | y ∈ Y } ful�lls the �rst condition of Property A.
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Remark 4.9. Assume one has an alternate formulation of Property A given on a more
general class of metric spaces than discrete ones,and assume that the formulation coincides
with De�nition 4.4 on discrete metric spaces. If the formulation is coarsely invariant, one
can combine Proposition 4.8 with either Proposition 3.32 or Proposition 3.35 to show that
the alternate formulation is equivalent to De�nition 4.4 on all metric spaces.

Hence, Proposition 4.8 also supports the compatibility of De�nition 4.4 with non-
discrete spaces. An example of such an alternate formulation of Property A for non-
discrete spaces can be found in chapter 5 of [12].

Beyond the previous remark, Proposition 4.8 also has another useful corollary.

Corollary 4.10. All bounded metric spaces have Property A.

Proof. The singleton space {0} has Property A, as any nonempty family A0 ful�lls the
conditions of Property A for all values of r and ε. Since all bounded spaces are coarsely
equivalent and Property A is a coarse invariant, all bounded metric spaces have Property
A.

Finally, an alternate condition for Property A is given for metric spaces with bounded
geometry. Let f be a mapping between two metric spaces (X, d) and (Y, d′), and let
r, ε be positive real numbers. The mapping f is said to have a variation of (r, ε) if
d′(f(x), f(x′)) < ε holds for all x, x′ ∈ X satisfying d(x, x′) ≤ r. Furthermore, recall that
the probability space of X, denoted by P(X), is the subspace of l1(X) de�ned by

P(X) = {v ∈ l1(X) | ‖v‖l1 = 1, vx ≥ 0 for every x ∈ X}.

Proposition 4.11. Let (X, d) be a metric space. Consider the following condition:

• For every pair r, ε of positive real numbers, there is a map f : X → P(X) with

a variation of (r, ε), and there is a constant R for which the support of f(x) is

contained within BX(x,R).

If (X, d) has Property A, then (X, d) has the above condition. Furthermore, if (X, d) has

both bounded geometry and the above condition, (X, d) has Property A.

Proof. The proof follows the methods used in article [12]. Assume that (X, d) has Property
A. Fix a pair r, ε, and use property A to select the corresponding sets Ax and bound R.
De�ne a map fr,ε from X to l1(X) as follows:

(f(x))y =
|Ax ∩ {y} × N|

|Ax|
.
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Directly from the de�nition, one sees that the l1-norm of f(x) is 1, and the image of f
is therefore contained in P(X). Furthermore, the second condition of Property A implies
that (f(x))y is nonzero only if y is in BX(x,R).

Next, assume that x and x′ are elements of X with d(x, x′) at most r. Note that for
any two sets A and B, the following inequality holds:

|A| − |B| ≤ |A \B| ≤ |A4B|.

By switching A and B with each other, one concludes the inequality∣∣|A| − |B|∣∣ ≤ |A4B| .

Applying this inequality, one obtains a bound for the numerator of |(f(x)− f(x′))y|:∣∣|Ax ∩ {y} × N| − |Ax′ ∩ {y} × N|
∣∣ ≤ ∣∣(Ax ∩ {y} × N)4 (Ax′ ∩ {y} × N)

∣∣
=
∣∣(Ax4 Ax′) ∩ ({y} × N)

∣∣.
Using this bound and the �rst condition of Property A results in the following bound for
‖f(x)− f(x′)‖l1:

‖f(x)− f(x′)‖l1≤
∥∥∥∥f(x)− |Ax

′ |
|Ax|

f(x′)

∥∥∥∥
l1

+

∥∥∥∥ |Ax′ ||Ax|
f(x′)− f(x′)

∥∥∥∥
l1

=

∥∥|Ax|f(x)− |Ax′ |f(x′)
∥∥
l1

|Ax|
+

∣∣|Ax′| − |Ax|∣∣
|Ax|

‖f(x′)‖l1

≤ |Ax4 Ax′|
|Ax ∩ Ax′ |

+
|Ax′ 4 Ax|
|Ax′ ∩ Ax|

< 2ε.

Hence, f has a variation of (r, 2ε). Since the chosen r and ε were arbitrary positive reals,
(X, d) satis�es the desired condition.

For the other direction, assume that (X, d) has bounded geometry, and assume that
(X, d) ful�lls the condition of the alternate condition given in the Proposition. Fix a pair
(r, ε) ful�lling ε ≤ 1/3, and denote the resulting map and constant by f and R. Since X
has bounded geometry, there is an upper bound to the number of elements in an arbitrary
R-sphere BX(x,R). Denote this bound by N .

Select an integer S for which S−1 is less than ε/N . Now, there is a function g : X →
P(X) for which (g(x))y = ax,y/S with some integers ax,y ∈ N, the value of (g(x))y is zero
whenever (f(x))y equals zero, and |(g(x)− f(x))y| ≤ S−1 for all elements x, y ∈ X. Note
that when x is �xed, (g(x) − f(x))y is nonzero for at most N values of y, and therefore
the inequality ‖f(x)− g(x)‖l1< NS < ε holds for every x ∈ X.
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Using the function g, one can de�ne the sets Ax ⊂ X × N via

Ax = {(y, n) ∈ X × N | y < ax,y = (Sg(x))y} .

Note that every Ax has exactly S elements, since the norm ‖g(x)‖l1 equals 1. Since
(g(x))y is nonzero only for elements y in BX(x,R), the sets Ax are contained within the
sets BX(x,R)× N.

Next, assume that the distance d(x, x′) is at most r. In this case, one obtains the
bound

‖g(x)− g(x′)‖l1≤ ‖g(x)− f(x)‖l1 + ‖f(x)− f(x′)‖l1 + ‖f(x′)− g(x′)‖l1
< 3ε.

Note that for a �xed y, the amount of elements in the set (Ax4 Ax′) ∩ {y} × N is
|ax,y − ax′,y|. Hence, |Ax4 Ax′ | has the following bound:

|Ax4 Ax′ | = ‖Sg(x)− Sg(x′)‖l1< 3Sε.

Furthermore, due to the selected upper bound of 1/3 on ε, the size of the set Ax ∩ Ax′
also has the lower bound

|Ax ∩ Ax′ | =
|Ax|+ |Ax′| − |Ax4 Ax′ |

2
>

2S − 3Sε

2
≥ S

2

Due to this, the set Ax ∩ Ax′ is nonempty. Furthermore, the obtained bounds yield the
inequality

|Ax4 Ax′|
|Ax ∩ Ax′ |

< 6ε.

Since the selected r and ε were arbitrarily large and small respectively, X has Property
A.

As a �nal remark, it has been shown in [9] that Property A is a stronger condition
than coarse embeddability into Hilbert spaces.
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Chapter 5

Asymptotic dimension

In this chapter, the concept of asymptotic dimension is introduced. Asymptotic dimension
is the coarse counterpart of the Lebesgue covering dimension, also known as the topological
dimension, of a space. Afterwards, several properties of asymptotic dimension are derived,
and the dimensions of several example spaces are presented. Finally, connections are
derived between a �nite asymptotic dimension and the concepts of Chapter 4.

5.1 Background

In order to de�ne the topological and asymptotic dimensions of a space, it is convenient
to �rst introduce some covering-related terminology.

De�nition 5.1. Let X be a set, and let V be a cover of X. The order of V is de�ned by

ordV = sup
x∈X
|{V ∈ V | x ∈ V }| .

Let U be another cover of X. The cover U is a re�nement V if every U in U is contained
in some element V of V .

De�nition 5.2. Let X be a topological space. The Lebesgue covering dimension of X,
denoted by dimX, is at most n, if the following condition is true: For every open cover
V of X, there is an open re�nement U of V which has an order of at most n+ 1.

The covering dimension dimX is the smallest nonnegative integer for which dimX ≤ n
holds. If no nonnegative integer ful�lls said inequality, dimX is in�nite.

The Lebesgue covering dimension is a way of assigning a space a dimension based
solely on its topological properties. For vector spaces such as Rn, the Lebesgue covering
dimension coincides with the standard concept of dimension for vector spaces. As the
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Lebesgue dimension is de�ned with topological properties, homeomorphic spaces end up
having the same dimension, making the Lebesgue dimension a topological invariant.

Asymptotic dimension provides a similar concept of dimension for coarse spaces. As
has been previously seen, coarse invariants are capable of classifying discrete spaces. The
Lebesgue covering dimension of every discrete space is zero. This can be easily seen by
selecting U to be the cover of singletons for every cover V . Asymptotic dimension, on the
other hand, yields di�ering values for spaces such as Zn for di�erent values of n.

5.2 De�nitions of asymptotic dimension

De�nition 5.3. Let (X, d) be a metric space, and let U be a collection of subsets of X.
The collection U is uniformly bounded, if supU∈U d(U) is �nite.

This de�nition can be extended to coarse spaces as follows: Let X be a coarse space,
and let U be a collection of subsets of X. The collection U is uniformly bounded if the
set
⋃
U∈U U

2 is controlled. The aforementioned set will be called the bounding set of U .

Asymptotic dimension has many equivalent de�nitions. As the initial de�nition, the
most clear counterpart to De�nition 5.2 is used.

De�nition 5.4. Let X be a metric space or a coarse space. The asymptotic dimension

of X, denoted by asdimX, is at most n, if the following condition is true: For every
uniformly bounded cover U of X, there is a uniformly bounded cover V with an order of
at most n+ 1, and the initial cover U is a re�nement of V .

The asymptotic dimension asdimX is the smallest nonnegative integer for which
asdimX ≤ n holds. If no nonnegative integer ful�lls said inequality, asdimX is in�-
nite.

The following Proposition yields a convenient reformulation for the asymptotic dimen-
sion of metric spaces. Recall that a cover U of a metric space X has a Lebesgue number

of λ, if for every element x of X, the open ball BX(x, λ) is contained within some set of
U .

Proposition 5.5. Let X be a metric space, and let n be a nonnegative integer. The

following conditions are equivalent:

1. The asymptotic dimension of X is at most n.

2. For every positive real number λ, there exists a uniformly bounded cover V of X
with Lebesgue number λ and an order of at most n+ 1.
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Proof. Assume that asdimX is at most n, and �x a positive real number λ. Let U be the
cover of X consisting of all open balls of radius λ. Hence, U is a re�nement of a uniformly
bounded cover V with an order of at most n + 1. Since every open ball of radius λ is
contained in a re�nement of V , the cover V has a Lebesgue number of λ. Hence, the �rst
condition implies the second one.

Next, assume that the second condition holds, and �x a uniformly bounded cover U
of X. One may assume that U does not contain the empty set. Denote by R the value of
the �nite bound supU∈U d(U). Using the second condition, select a cover V with the value
λ = R+1. Note that V is uniformly bounded and has an order of at most n+1. For every
set U in the cover U , select an element xu from U . Now, since d(U) is less than R+ 1, U
is contained within the open ball BX(xu, R + 1), which in turn is contained within some
set of V . Due to this, U is a re�nement of V . Therefore, the second condition implies the
�rst one.

Next, the main alternate de�nition of asymptotic dimension is formulated. The de�-
nition is based on uniformly bounded families where all sets are su�ciently far from each
other. This is formalized by the following de�nition.

De�nition 5.6. Let (X, d) be a metric space, and �x a positive real number r. Let U
be a family of subsets of X. The family U is r-disjoint if, for every pair U1, U2 of two
di�erent elements of U , the inequality d(U1, U2) > r holds.

Alternatively, let (X, E) be a coarse space, and �x a controlled set E. Let U be a
family of subsets of X. The family U is E-disjoint if, for every pair U1, U2 of two di�erent
elements of U , the intersection E ∩ (U1 × U2) is empty.

For a metric space X, denote by Er the controlled set {(x, y) ∈ X2 | d(x, y) ≤ r}.
In this case, r-disjointness is equivalent to Er-disjointness. If r and r′ are two positive
reals ful�lling r′ ≤ r, r-disjointness implies r′-disjointness. Similarly, if E and E ′ are two
controlled sets ful�lling E ′ ⊂ E, E-disjointness implies E ′-disjointness.

Proposition 5.7. Let X be a coarse space, and let n be a nonnegative integer. The

following conditions are equivalent:

1. The asymptotic dimension of X is at most n.

2. For every controlled set E, there exist n+ 1 uniformly bounded families U0, . . . ,Un,
where every family Ui is E-disjoint, and the union

⋃n
i=0 Ui is a cover of X.

Furthermore, if X is a metric space, the following condition is also equivalent with the

above:
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3. For every positive real number r, there exist n + 1 uniformly bounded families

U0, . . . ,Un, where every family Ui is r-disjoint, and the union
⋃n
i=0 Ui is a cover

of X.

Proof. LetX be a metric space, and again denote the controlled set {(x, y) ∈ X2|d(x, y) ≤
r} by Er. Since r-disjointness and Er-disjointness are equivalent, condition 2 implies
condition 3. Furthermore, every controlled set E is contained in the set Er for some r,
and in this case, an r-disjoint family is also E-disjoint. Therefore, conditions 2 and 3 are
equivalent for metric spaces.

Next, condition 1 is proven from condition 2. Let X be a coarse space, and assume the
second condition. Let U be a uniformly bounded cover of X, and let E be the bounding
set of U . Use condition 2 to select uniformly bounded (E ◦E)-disjoint families V ′0, . . .V ′n.
Denote by Fi the bounding sets of the covers V ′i, and let F be the union

⋃n
i=0 Fi of

bounding sets. The union V ′ =
⋃n
i=0 V ′i is a uniformly bounded cover with bounding set

F . De�ne the sets Vi and the cover V as follows:

VV ′ =
{
U ∈ U

∣∣ U ∩ V ′ 6= ∅} for each V ′ ∈ V ′,
Vi =

{
∪VV ′

∣∣ V ′ ∈ V ′i} for each i ∈ {0, . . . , n}, and

V =
n⋃
i=0

Vi.

If x is an element of X, it is contained in some Ux ∈ U and some V ′x ∈ V ′. Hence, the
intersection V ′x ∩ Ux is nonempty, and due to this, x is an element of ∪VV ′x . Therefore, V
is a cover. Since V ′ is a cover, every element U of U intersects some V ′U of V ′. Due to this,
U is a re�nement of V .

Let V = ∪VV ′ be an element of V , and let (x, y) be an element of V 2. There exist sets
Ux and Uy of U which intersect V ′ and contain x and y respectively. Let v′x and v′y be
elements of the respective nonempty intersections Ux ∩ V ′ and Uy ∩ V ′. Since the sets Ux
and Uy are elements of U which has the bounding set E, the pairs (x, v′x) and (v′y, y) are
elements of E. Similarly, since V ′ is an element of the cover V ′ with the bounding set F ,
the pair (v′x, v

′
y) is an element of F . Using this, one can conclude that⋃

V ∈V

V 2 ⊂ E ◦ F ◦ E,

and therefore the cover V is uniformly bounded.
It remains to verify that V has an order of at most n + 1. The claim follows from

showing that the families Vi are disjoint. Let x be an element of X, and let V1 = ∪VV ′1
and V2 = ∪VV ′2 be two di�erent elements of a given Vi. Assume to the contrary that x

34



is contained in both V1 and V2. Hence, there exist sets U1 and U2 which contain X and
intersect V ′1 and V ′2 respectively. Choose points u1 and u2 from these intersections. Now
(u1, x) and (x, u2) are elements of E. Therefore, (u1, u2) is contained in both E ◦ E and
V ′1 × V ′2 . This is a contradiction, since the family V ′i was selected to be (E ◦ E)-disjoint.
The proof that condition 2 implies condition 1 is now �nished.

Finally, condition 2 is proven from condition 1. This proof follows the one presented
in the article [6]. For a given controlled set E of E , point x of X, and subset A of X,
de�ne the E-ball at x and the E-interior of A as follows:

BE(x,E) = {x′ ∈ X | (x, x′) ∈ E}
intE(A) = {a ∈ A |BE(a,E) ⊂ A} .

Let E be a controlled set, and denote by F the set E ∪E−1 ∪∆X . In this case, F is a
controlled symmetric set containing the diagonal. De�ne the sets Fi for positive natural
numbers i as follows:

Fi = F ◦ F ◦ . . . ◦ F︸ ︷︷ ︸
i copies

.

The sets Fi are symmetric and contain ∆X . Next, let V ′ be the family of Fn+1-balls
{BE(x, Fn+1) | x ∈ X}. Since Fn+1 contains the diagonal ∆X , V ′ is a cover. Further-
more, if x is an element of X, using the fact that Fn+1 is symmetric, one concludes that
(BE(x, Fn+1))

2 is contained within Fn+1 ◦ Fn+1. Hence, V ′ is a uniformly bounded cover.
By the de�nition of asymptotic dimension, one may select a uniformly bounded cover V
which V ′ re�nes and which has an order of at most n+ 1.

Using the previously de�ned cover V , one can de�ne for values i = 0, . . . , n the collec-
tions

Vi = {V0 ∩ . . . ∩ Vi | Vj ∈ V , Vj 6= Vk for j 6= k} ,
Wi =

{
intFn+1−i

(V ) | V ∈ Vi
}
, and

Ui = {W \ ∪Wi+1 |W ∈ Wi} , where Wn+1 = {∅}.

Note that every set U ∈ Ui is a subset of some V ∈ V . Hence, the collections Ui are
uniformly bounded. Let x be an element of X. There is a set V ∈ V for which BE(x, Fn+1)
is contained in V . This, on the other hand, means that x is an element of intFn+1(V ),
which is a set of W0. Hence, x is an element of Ui, where i is the largest integer for which
x is an element of a set of Wi. In conclusion, U =

⋃n
i=0 Ui is a uniformly bounded cover

of X.
It remains to check that the collections Ui are E-disjoint. For this, it is enough to show

that they are F -disjoint. Assume to the contrary that U1 and U2 are distinct elements of
Ui, and (x, y) is an element of (U1×U2)∩F . Then there exist distinct intersections of V-sets
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V1,0∩ . . .∩V1,i and V2,0∩ . . .∩V2,i containing BE(x, Fn+1−i) and BE(y, Fn+1−i) respectively.
Note that there are at least i + 2 di�erent Vj,k sets in total, since the intersections are
distinct.

Because (x, y) is in F , BE(x, F ) contains y. In the case where i equals n, this means
that the sets V1,j all contain y. This is a contradiction, since y would be contained in an
intersection of n + 2 di�erent sets of V . On the other hand, if i is less than n, the ball
BE(x, Fn+1−i) contains the ball BE(y, Fn−i). Hence, the ball BE(y, Fn−i) is contained in
all sets Vj,k. This implies that y is an element of ∪Wi+1, which is also a contradiction.
Hence, the families Ui are F -disjoint, which concludes the proof.

5.3 Properties and examples

In this section, a few properties of asymptotic dimension are derived, and afterwards the
asymptotic dimensions of several important spaces are computed. Further information
beyond the contents of this chapter can be found for example in [2].

Proposition 5.8. Let X and Y be coarse spaces. If X is coarsely embeddable into Y , the
inequality asdimX ≤ asdimY holds.

Proof. Let f be a coarse embedding from X to Y . Assume that asdimY is at most n.
The claim follows by showing that asdimX is also at most n. The alternate de�nition
from Proposition 5.7 will be used for this.

Let E be a controlled set of X. Due to Proposition 3.22, the set E ′ = (f × f)(E)
is controlled. Using Proposition 5.7, there are n + 1 uniformly bounded E ′-disjoint
families V0, . . . ,Vn, the union of which covers Y . De�ne the families U0, . . . ,Un via
Ui = {f−1V | V ∈ Vi}.

The union of the families Ui is a cover of X. Fix an index i, and denote by B′i the
bounding set of the cover Vi. If U is an element of a cover Ui, U is of the form f−1V ,
where V 2 is contained in B′i. Hence, U

2 is contained within the controlled set (f×f)−1B′i,
which shows the uniform boundedness of the families Ui.

Finally, the E-disjointness of the families Ui is shown. Let U1 and U2 be two di�erent
sets of a given Ui, and denote by V1 and V2 the corresponding sets of Vi which ful�ll
Uj = f−1Vj for the values j = 1, 2. Assume to the contrary that (x1, x2) is an element of
E ∩ (U1×U2). The pair (f(x1), f(x2)) is an element of (f × f)(E), which was denoted by
E ′. The same pair is also an element of f(f−1V1)×f(f−1V2), which is a subset of V1×V2.
This is a contradiction, since the families Vi were selected to be E ′-disjoint. Hence, the
families Ui are E-disjoint, and consequently they ful�ll the requirements of Proposition
5.7.
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The previous Proposition immediately yields two useful results as immediate corollar-
ies.

Corollary 5.9. Asymptotic dimension is a coarse invariant.

Proof. Let X and Y be coarse spaces, and let f : X → Y be a coarse equivalence with
coarse inverse g. By Proposition 3.21, both f and g are coarse embeddings, and therefore,
Proposition 5.8 yields the inequality asdimX ≤ asdimY ≤ asdimX.

Corollary 5.10. Let X be a coarse space, and let Y be a coarse subspace of X. In this

case, the inequality asdimY ≤ asdimX holds.

Proof. Since identity maps are coarse equivalences, De�nition 3.20 shows that the inclu-
sion i : Y ↪→ X is a coarse embedding. Therefore, the claim follows from Proposition
5.8.

Next, the asymptotic dimensions of various example spaces are derived.

Proposition 5.11. The spaces R and Z equipped with the euclidean metric have an

asymptotic dimension of 1.

Proof. It has been shown in Example 3.29 that the spaces R and Z are coarsely equivalent.
Therefore, they have the same asymptotic dimension. Observe the following covers of Z,
where k takes values in positive integers:

Uk =
{
{ik, ik + 1, . . . , (i+ 2)k − 1}

∣∣ i ∈ Z
}
.

The covers Uk are totally bounded with bound 2k−1. For a given value of k, every integer
is contained in only 2 sets of Uk, and hence the covers Uk have an order of 2. Furthermore,
for every integer j ∈ Z and positive integer k, the set Ij,k = {j, j + 1, . . . , j + k − 1} is
contained within a set of Uk. Note that for odd values of k, the set Ij,k equals the
closed Euclidean ball at j + (k − 1)/2 with radius (k − 1)/2. Hence, the covers Uk attain
arbitrarily large Lebesgue numbers as k increases, and therefore by Proposition 5.5, Z has
an asymptotic dimension of at most 1.

Finally, make a counterassumption of Z having an asymptotic dimension of 0. Hence,
there is a uniformly bounded disjoint cover U of Z with Lebesgue number greater than
1. Select an element U of U . Since U is bounded, it has a greatest element u. Since the
sets of U are mutually disjoint, no set of it contains the pair {u, u+ 1}. This contradicts
U having a Lebesgue number greater than 1. In conclusion, both Z and R have an
asymptotic dimension of 1.
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Showing that asdimRn and asdimZn equal n is considerably more complicated. How-
ever, due to its importance, the key points of a proof for it will be sketched here.

A natural way of obtaining the upper bound for asdimRn and asdimZn is by proving
a product theorem for asymptotic dimension. More speci�cally, for metric spaces X and
Y , one can show that asdim(X × Y ) is at most the sum asdimX + asdimY . A proof for
this can be found in the paper [2]. As an alternate approach, one can explicitly construct
covers in Rn or Zn which ful�ll Proposition 5.5.

The lower bound for asdimRn and asdimZn, on the other hand, can be reduced to
the topological dimension of [0, 1]n via a trick outlined in [3].

Proposition 5.12. The asymptotic dimension of Rn is at least the topological dimension

of [0, 1]n.

Proof. Assume that asdimRn is k. Let U be an open cover of the space [0, 1]n. Since
[0, 1]n is compact, the cover U has a Lebesgue number ε. Let V be a uniformly bounded
cover of Rn with a Lebesgue number of 1 and an order of at most k + 1. Since V has a
positive Lebesgue number, the family

V ′ = {intRn(V ) | V ∈ V}

is an open cover of Rn. Furthermore, since V ′ is a re�nement of V , V ′ is uniformly bounded
and has an order of at most k + 1.

Denote by R the uniform bound of V ′. Let f : Rn → Rn be the map de�ned by
f(x) = εx/R. Note that f is a homeomorphism which shrinks distances by a factor of
ε/R. Therefore, the family

U ′ = {f(V ′) ∩ [0, 1]n | V ′ ∈ V ′}

is an open cover of [0, 1]n with an uniform bound of ε and an order of at most k + 1.
Since U ′ has an uniform bound of ε and U has a Lipschitz number of ε, the cover U ′ is
a re�nement of U . Hence, every open cover of [0, 1]n has an open re�nement with an
order of at most k+ 1. This results in the inequality dim [0, 1]n ≤ k, which concludes the
proof.

Proving that the topological dimension of [0, 1]n is at least n is a non-elementary
topological fact. One can see [5, Thms. 1.8.1, 1.7.9, 1.7.7] for a demonstration on how to
derive this from the general form of Brouwer's �xed point theorem.

Finally, examples are given to demonstrate some of the more unintuitive aspects of
asymptotic dimension.

38



Example 5.13. Let X be the set {2n | n ∈ N} equipped with the relative metric from R.
For every nonnegative integer n, de�ne a cover Un via

Un =
{
{20, 21, . . . , 2n}, {2n+1}, {2n+2}, . . .

}
.

For any two di�erent sets U1 and U2 of Un, the distance d(U1, U2) is at least 2n. Hence,
the cover Un is (2n − 1)-disjoint. Furthermore, the cover Un is uniformly bounded with
bounding diameter 2n. Due to Proposition 5.7, X has an asymptotic dimension of 0.

Example 5.14. Let X be the vertex set of a possibly in�nite tree graph, with root node
x0. For a given vertex x, denote the set of its descendants by D(x). One can obtain a
metric d in X by de�ning d(x, y) as the amount of vertices in the shortest path from x
to y. De�ne a map f : X → N by f(x) = d(x, x0). The value of f at x will be called the
root distance of x.

Fix a number r. By Proposition 5.11 and the subset property of asymptotic dimension,
there is a uniformly bounded cover U of N with Lebesgue number r and an order of 2.
For every set U ∈ U , denote its smallest element by nU . Now, one may de�ne a collection
V as follows:

V =
{
f−1U ∩D(x) | U ∈ U , f(x) = nU

}
.

Note that for a given U ∈ U , the sets D(x) with f(x) = nU form a mutually disjoint
cover of f−1U . Hence, V is a cover of X with an order of at most 2. The cover V is
uniformly bounded by 2R, where R is the uniform bound of U . Furthermore, it is easy
to see that V also has the Lebesgue number r. Hence, the space X has an asymptotic
dimension of at most 1.

Next, observe the case where x0 has in�nitely many descendants, and every other
element of x has exactly one descendant. Let Y be a coarse space which is coarsely
equivalent to X, and let g : X → Y be the resulting coarse equivalence. By Proposition
3.21, g is a coarse embedding, and by Corollary 3.33, Y is a metric space. Let ρ+ and ρ−
be the functions provided by Proposition 3.23 for the map g.

Select an integer k for which 2k is greater than ρ+(0). Hence, if x and x′ are two
distinct elements with root distance k, g maps them into distinct elements. Now select
an s ∈ R ful�lling ρ−(s) > k. In this case, there are in�nitely many distinct elements
y in Y ful�lling d(y, g(x0)) < s. As a result, the coarse equivalence class of the given
space X contains no spaces with bounded geometry, despite X having a �nite asymptotic
dimension.

5.4 Asymptotic dimension and coarse embeddings

This section explores the connections of asymptotic dimension to coarse embeddability
into Hilbert spaces. In the paper [13], it was originally proven that a �nite asymptotic
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dimension implies the coarse Baum-Connes conjecture for proper metric spaces. It turns
out that this is related to the result from paper [14], as a �nite asymptotic dimension
implies coarse embeddability into a Hilbert space.

The proofs of the main results use a speci�c class of functions, which are derived from
the covers given by Proposition 5.5. The following lemma proves the main properties
of these functions. The proof of the lemma uses ideas from the proof of a common
reformulation of asymptotic dimension in terms of simplicial complexes. This proof can
be found from [3].

Lemma 5.15. Let (X, d) be an unbounded metric space, and �x a positive real number λ.
Let V be a uniformly bounded cover of X with Lebesgue number λ and a �nite order of at

most n. One may de�ne a map f : X → RV as follows:

(f(x))V =
d(x,X \ V )∑

V ′∈V d(x,X \ V ′)
.

The map f is well de�ned, and ful�lls the following conditions:

• The image set f(X) is contained within the probability space P(V).

• The image set f(X) is contained within the space l2(V).

• The inequality ‖f(x)− f(y)‖l1≤ (2n+ 1)2λ−1d(x, y) holds for all x, y ∈ X.

• The inequality ‖f(x)− f(y)‖l2≤ (2n+ 1)2λ−1d(x, y) holds for all x, y ∈ X.

• There is a constant Rf for which, whenever d(x, y) is greater than Rf , the inequality

‖f(x)− f(y)‖l2≥
√

2/n holds.

Proof. Since X is unbounded, it isn't an element of V . Hence, the distances used to de�ne
f are well de�ned and �nite. Note that if V is an element of V , d(x,X \ V ) is positive
only if x is an element of V . Furthermore, since V has an order of at most n, every x is
an element of at most n sets V ∈ V . Hence, for every x ∈ X, f(x) has at most n nonzero
coordinates, and the sum

∑
V ′∈V d(x,X \ V ′) is �nite.

The �nal requirement for the well-de�nedness of f is that the sum
∑

V ′∈V d(x,X \V ′)
is nonzero. This follows from the fact that Bd(x, λ) is contained in some set V ∈ V , which
implies the inequality ∑

V ′∈V

d(x,X \ V ′) ≥ λ.

As previously noted, f(x) has at most n nonzero coordinates for every x ∈ X. Hence,
the image set f(X) is contained in both l2(V) and l1(V). To further see that the image
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is in P(V), note that for a �xed x ∈ X, every coordinate of f(x) is nonnegative, and the
L1-norm of f(x) is

‖f(x)‖l1 =

∑
V ∈V d(x,X \ V )∑
V ′∈V d(x,X \ V ′)

= 1.

Next, the Lipschitz bounds of f are proven. Using the triangle inequality, one con-
cludes for any set A ⊂ X the inequality

d(x,A)− d(y, A) ≤ (d(x, y) + d(y, A))− d(y, A) = d(x, y).

Since the estimate is symmetric with respect to x and y, one obtains the inequality
|d(x,A)− d(y, A)| ≤ d(x, y). Fix a set V ∈ V , and compute an upper bound for
|(f(x)− f(y))V | as follows:

|(f(x)− f(y))V |

=

∣∣∣∣ d(x,X \ V )∑
V ′∈V d(x,X \ V ′)

− d(y,X \ V )∑
V ′∈V d(y,X \ V ′)

∣∣∣∣
≤
∣∣∣∣d(x,X \ V )− d(y,X \ V )∑

V ′∈V d(x,X \ V ′)

∣∣∣∣+

∣∣∣∣ d(y,X \ V )∑
V ′∈V d(x,X \ V ′)

− d(y,X \ V )∑
V ′∈V d(y,X \ V ′)

∣∣∣∣
≤ d(x, y)

λ
+

d(y,X \ V )∑
V ′∈V d(y,X \ V ′)

·
∑

V ′∈V |d(x,X \ V ′)− d(y,X \ V ′)|∑
V ′∈V d(x,X \ V ′)

≤ d(x, y)

λ
+ 1 · 2n · d(x, y)

λ

=
2n+ 1

λ
d(x, y).

Since f(x) and f(y) have at most n nonzero coordinates, |(fλ(x)− fλ(y))V | is nonzero
for at most 2n di�erent elements V of V . This yields the following Lipschitz bounds for
f :

‖fλ(x)− fλ(y)‖l1 ≤ 2n ·
(

2n+ 1

λ
d(x, y)

)
≤ (2n+ 1)2

λ
d(x, y),

‖fλ(x)− fλ(y)‖l2 ≤
√

2n

(
2n+ 1

λ
d(x, y)

)
≤ (2n+ 1)2

λ
d(x, y).

Finally, denote by Rf the uniform bound on the family V . For any element x of X,
de�ne the vectors ax, bx ∈ l2(V) as follows:

(ax)V = d(x,X \ V )

(bx)V =

{
1, d(x,X \ V ) > 0

0, d(x,X \ V ) = 0

41



Since d(x,X \ V ) is positive only for at most n sets v ∈ V , both ax and bx are clearly in
l2(V). Using these vectors, one can write f(x) in the form

f(x) =
ax

〈ax, bx〉
.

Hence, the Cauchy-Schwarz inequality yields a lower bound on the L2-norm of f(x):

‖f(x)‖l2 =
‖ax‖l2
〈ax, bx〉

≥ 1

‖bx‖l2
≥ 1√

n
.

Assume that x and y are two elements of X and the distance d(x, y) is greater than Rf .
Due to Rf being the uniform bound on V , no set V ∈ V contains both x and y. Hence,
f(x) and f(y) are orthogonal, which yields the lower bound

‖f(x)− f(y)‖l2 =

√
‖f(x)‖2l2 + ‖f(y)‖2l2≥

√
2

n
.

Theorem 5.16. Let (X, d) be a metric space with a �nite asymptotic dimension of n.
Then there exists a coarse embedding from X into a Hilbert space.

Proof. If X is bounded, it has a trivial coarse embedding into a Hilbert space in the form
of a constant mapping. One may therefore assume that X is unbounded.

For every i ∈ Z+, Proposition 5.5 gives a uniformly bounded cover Vi with Lebesgue
number 2−i/(2n + 3)2 and an order of at most n + 1. Using the covers Vi, Lemma 5.15
yields 2−i-Lipschitz maps fi : X → Hi, where the spaces Hi = l2(Vi) are Hilbert spaces.
Denote the corresponding constants Rfi by Ri. Now, �x an element x0 ∈ X, and de�ne
the map f : X →

⊕∞
i=1Hi by

(f(x))i = fi(x)− fi(x0).

What remains is checking that f is well de�ned and �nding the functions ρ+ and ρ− of
Proposition 3.23 for f .

Let x and y be two elements of X. Since the maps fi are 2−i-Lipschitz, one obtains
the bound

‖f(x)− f(y)‖l2≤

√√√√( ∞∑
i=1

2−i

)
(d(x, y))2 = d(x, y).

By the de�nition of f , f(x0) is zero. Hence, a selection of y = x0 proves the well-
de�nedness of f . Furthermore, the above bound permits the selection of ρ+(t) = t.
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Next, denote by 1Ri
the characteristic function of the set {t ∈ R | t > Ri}. De�ne the

function g : R0 → R0 ∪ {∞} as follows:

g =
∞∑
i=1

1Ri
.

As of now g may assume the value ∞, but it will be shown that g is in fact �nite valued.
Clearly g is increasing and tends to in�nity. By the �nal condition of Lemma 5.15, one
obtains the bound

‖fi(x)− fi(y)‖l2≥

(√
2

n+ 1

)
1Ri

(d(x, y)).

Using this bound, the following lower bound for ‖f(x)− f(y)‖ is obtained:

‖f(x)− f(y)‖l2≥
√

2

n+ 1
g(d(x, y)) .

Since X is unbounded and f is well-de�ned, the estimate obtained shows the �nite-
valuedness of g. Hence, one can make the selection ρ−(t) =

√
2g(t)/(n+ 1). The selected

ρ− and ρ+ ful�ll the conditions of Proposition 3.23. Therefore, f is a coarse embedding
from X into a Hilbert space.

Theorem 5.17. Let (X, d) be a metric space with bounded geometry. If the space X has

a �nite asymptotic dimension of n, the space X has Property A.

Proof. The proof is based on Proposition 4.11 and Lemma 5.15. Let λ be a positive real
number. Due to Corollary 4.10, one may assume that X is unbounded.

Proposition 5.5 yields a uniformly bounded family Vλ with Lebesgue number λ and
an order of at most n + 1. For every x in X, select a set Vx ∈ Vλ for which BX(x, λ) is
contained within Vx. Now, de�ne a cover Uλ via

Uλ = {Vx | x ∈ X} .

The cover Uλ retains the Lebesgue number of λ, is uniformly bounded, and has an
order of at most n + 1. However, the crucial di�erence with Vλ is that the cardinality of
Uλ cannot exceed the cardinality of X. In order to see this, select for every U ∈ Uλ a
point xU for which U is the set VxU . In this case, the map h : U 7→ xU is injective, which
shows that |Uλ| is at most |X|.

Using the �xed λ and the selected Uλ, Lemma 5.15 yields a ((2n+ 3)2/λ)-Lipschitz
map fλ : X → P(Uλ). By identifying every coordinate U with the coordinate h(U), the
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space P(Uλ) can be considered to be a subspace of P(X). Hence, fλ de�nes a map from
X into P(X).

Now, if given a pair (r, ε), one may select λ to be (2n + 3)2ε/(2r). In this case, fλ is
(ε/(2r))-Lipschitz. Hence, if x and x′ are elements of X ful�lling d(x, x′) ≤ r, one obtains
the bound

‖f(x)− f(x′)‖l1≤
ε

2r
d(x, x′) ≤ ε

2
< ε.

Furthermore, denote by R the uniform bound on Uλ. In this case, if x and x′ are
elements of X ful�lling d(x, y) ≥ R + 1, x is not contained within Vy. Due to this,
d(x,X \ Vy) is zero, and therefore, (fλ(x))y = (fλ(x))Vy is zero. In conclusion, X ful�lls
the condition of Proposition 4.11, which combined with the bounded geometry of X
implies that X has Property A.

44



Bibliography

[1] G. Bachman and L. Narici. Functional Analysis. Academic Press textbooks in math-
ematics. Dover Publications, 1966.

[2] Greg Bell and Alexander Dranishnikov. Asymptotic dimension. Topology and its

Applications, 155(12):1265�1296, 2008.

[3] Greg Bell and Alexander Dranishnikov. Asymptotic dimension in B¦dlewo. In Topol-

ogy Proceedings, volume 38, pages 209�236, 2011.

[4] Nicolas Bourbaki. General topology, parts 1-2. Hermann and Addison-Wesley, 1969.

[5] Ryszard Engelking. Dimension theory. North-Holland Publishing Company Amster-
dam, 1978.

[6] Bernd Grave. Coarse geometry and asymptotic dimension. PhD thesis, University of
Göttingen, 2005.

[7] Nigel Higson and John Roe. On the coarse Baum�Connes conjecture. In Novikov con-

jectures, index theorems and rigidity, volume 2, pages 227�254. Cambridge University
Press, 1995.

[8] Gennadi Kasparov and Guoliang Yu. The coarse geometric Novikov conjecture and
uniform convexity. Advances in Mathematics, 206(1):1�56, 2006.

[9] Piotr W Nowak. Coarsely embeddable metric spaces without Property A. Journal

of Functional Analysis, 252(1):126�136, 2007.

[10] John Roe. Lectures on coarse geometry, volume 31. American Mathematical Soc.,
2003.

[11] Alain Valette. Introduction to the Baum�Connes conjecture. Birkhäuser, 2012.

[12] Rufus Willett. Some notes on property A. In Limits of graphs in group theory and

computer science, volume 519, pages 191�281. EPFL Press, Lausanne, 2009.

45



[13] Guoliang Yu. The Novikov conjecture for groups with �nite asymptotic dimension.
Annals of Mathematics, 147(2):325�355, 1998.

[14] Guoliang Yu. The coarse Baum�Connes conjecture for spaces which admit a uniform
embedding into Hilbert space. Inventiones Mathematicae, 139(1):201�240, 2000.

46


