
A Performance Evaluation of Hypervisor, Unikernel, and
Container Network I/O Virtualization

Pekka Enberg

Master’s Thesis
University of Helsinki
Department of Computer Science

Helsinki, May 17, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/78561456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Pekka Enberg

A Performance Evaluation of Hypervisor, Unikernel, and Container Network I/O Virtualization

Computer Science

Master’s Thesis May 17, 2016 64

virtualization, performance, unikernels, library os

Kumpula Science Library

Hypervisors and containers are the two main virtualization techniques that enable cloud
computing. Both techniques have performance overheads on CPU, memory, networking, and
disk performance compared to bare metal. Unikernels have recently been proposed as an
optimization for hypervisor-based virtualization to reduce performance overheads. In this
thesis, we evaluate network I/O performance overheads for hypervisor-based virtualization
using Kernel-based Virtual Machine (KVM) and the OSv unikernel and for container-based
virtualization using Docker comparing the different configurations and optimizations. We
measure the raw networking latency and throughput and CPU utilization by using the
Netperf benchmarking tool and measure network intensive application performance using the
Memcached key-value store and the Mutilate benchmarking tool. We show that compared to
bare metal Linux, Docker with bridged networking has the least performance overhead with
OSv using vhost-net coming a close second.

ACM Computing Classification System (CCS):
Networks → Cloud Computing

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

1.1 Virtualization Techniques . 2
1.2 Virtualization Overheads . 2
1.3 Contributions . 3
1.4 Roadmap . 4

2 Background on Virtualization Techniques 5
2.1 Hypervisor-Based Virtualization 5

2.1.1 Full Virtualization . 7
2.1.2 Paravirtualization . 8
2.1.3 Hardware-Assisted Virtualization 10
2.1.4 Nested Virtualization 11

2.2 I/O Virtualization . 11
2.2.1 Full Device Emulation 11
2.2.2 Paravirtualization . 12
2.2.3 Direct I/O . 13

2.3 Unikernels . 13
2.3.1 Arrakis . 15
2.3.2 ClickOS . 16
2.3.3 OSv . 17

2.4 Container-Based Virtualization 18
2.4.1 Docker . 18
2.4.2 Kubernetes . 19

2.5 Summary . 19

3 Virtualization Overheads 21
3.1 CPU . 21

3.1.1 Double Scheduling . 22
3.1.2 Scheduling Fairness 22
3.1.3 Asymmetric CPUs . 23
3.1.4 Interrupts . 23

3.2 Memory . 24
3.2.1 Memory Reclamation 24
3.2.2 Memory Duplication 25

3.3 Networking . 26
3.3.1 Packet Processing . 26
3.3.2 Network Address Translation (NAT) 27
3.3.3 Unstable Network . 27

3.4 Disk . 27
3.4.1 I/O Scheduling . 28
3.4.2 Layered Filesystems 28

3.5 Summary . 28

ii

4 Methodology 30
4.1 Evaluation Setup . 30
4.2 Netperf . 31
4.3 Memcached and Mutilate . 34
4.4 Summary . 35

5 Evaluation Using Netperf 36
5.1 TCP Stream . 37
5.2 TCP Reverse Stream (TCP_MAERTS) 38
5.3 TCP Request/Response (TCP_RR) 39
5.4 TCP Connect/Request/Response (TCP_CRR) 40
5.5 UDP Stream (UDP_STREAM) 43
5.6 UDP Request/Response (UDP_RR) 43
5.7 Summary and Discussion . 45

6 Evaluation Using Memcached 47
6.1 Update Operations . 48
6.2 Read Operations . 48
6.3 Mixed Read and Write Operations 50
6.4 Summary and Discussion . 51

7 Related Work 52
7.1 Evaluations . 52
7.2 Netmap . 55

8 Conclusions 57

References 58

iii

1 Introduction
Virtualization is the main technology that powers today’s cloud computing
systems. It is used in public clouds, such as Amazon Web Services (AWS) [8],
Google Compute Engine (GCE) [14], and Microsoft Azure [12], and in pri-
vate clouds that are provisioned, orchestrated, and managed by tools such
as OpenStack [13] and Docker [16]. Virtualization provides isolation and
resource control, which enables multiple workloads to run efficiently on a
single shared machine [37] and thus allows servers that traditionally require
multiple physical machines to be consolidated to a single cost effective phys-
ical machine using virtual machines or containers [60]. Virtualization is
also proposed to be used in networking infrastructure for network function
virtualization (NFV). Network appliances, or middleboxes, are traditionally
implemented as hardware appliances. Deploying new functionality typically
also requires deploying new hardware, which takes a long time and is expen-
sive. NFV replaces hardware-based middleboxes with software-based systems
that are less expensive and allow deploying new functionality as software
updates. As a consequence, NFV reduces deployment time significantly [49].

While virtualization has many benefits, the performance overhead of
virtualization compared to bare metal is still an open topic [50][37]. Both
hypervisors and containers, two of the most popular virtualization techniques,
have performance overhead in areas of CPU, memory management, and
I/O, which all contribute to the performance penalty of network intensive
applications under virtualization. Networking performance is particularly
important for both cloud computing and NFV workloads. Cloud computing
workloads like Memcached depend heavily on TCP/IP performance. NFV
workloads involve very high packet rates, which makes them sensitive to
latency introduced by any part of the system [57]. Various optimization
and variations are proposed to minimize virtualization overheads but their
effectiveness is still largely mystified.

In this thesis, we present our attempt to demystify virtualization over-
heads. We first provide an overview on hypervisors, containers, I/O virtualiza-
tion, and unikernels to understand all the components that affect virtualiza-
tion performance. We then detail known virtualization related performance
issues and suggested solutions that are presented in literature. Finally, we
evaluate the performance of networking I/O for latency and throughput
using Netperf and Memcached for different combinations of virtualization
techniques and compare them to baseline bare metal performance. The main
difference to previous virtualization performance comparisons [50] [37] [42]
is that we focus on networking performance across both hypervisors and
containers by measuring the network processing latency distribution. This
gives us more detailed understanding of the performance characteristics
across various virtualization techniques.

1

1.1 Virtualization Techniques

The two main virtualization techniques that provide multitenancy on a
single host machine are hypervisor-based virtualization and container-based
virtualization. For hypervisor-based virtualization, I/O virtualization and
unikernels are two important optimizations for achieving high performance.
These virtualization techniques are detailed in Section 2.

Hypervisor-based virtualization lets you run multiple operating systems
on a single host machine by creating isolated virtual machines (VMs) that
each have a set of virtualized CPUs, memory, and I/O devices such as
networking and storage devices. The virtualized resources are mapped to
physical hardware resources either by sharing a physical resource between
multiple VMs or by assigning a physical resource to a specific VM. As
presented in Section 2, hypervisors can be broadly categorized into Type-1
and Type-2 depending on whether the hypervisor runs directly on top of the
hardware or under a host operating system, respectively. The Xen hypervisor
is an example of a Type-1 hypervisor whereas KVM-based hypervisors such
as QEMU/KVM are typically categorized as Type-2 hypervisors.

Container-based virtualization lets you run multiple independent userspaces
on a single host machine on a shared kernel image. On Linux, containers
provide multitenancy by utilizing operating system kernel namespaces and
control groups. Namespaces enable a process or a process group to see
a virtualized view of the filesystem, processes, network stack, and other
parts of the system. Control groups provide support for accounting and
limiting resource usage for a process group. Docker is a high level tool that
simplifies creation and management of Linux containers but still use the
same namespace and cgroup mechanisms under the hood.

Unikernels are a light-weight alternative to general purpose operating
system kernels such as Linux. They are optimized for running a single
application per virtual machine. Unikernels follow the library OS model
that structures operating system services such as memory management,
scheduling, and networking as libraries that the application program links
against. There is no split between kernel-space and userspace but rather all
code runs in a single address space, which reduces guest operating system
overhead by being more memory efficient and reducing context switch times.
Various unikernel designs have been proposed in literature. We focus on OSv,
a Linux compatible unikernel, Arrakis, an unikernel for SR-IOV capable
systems, and ClickOS, a minimal unikernel for NFV middleboxes.

1.2 Virtualization Overheads

Virtualization imposes overhead on CPU, memory, networking and disk
performance. These overheads are detailed in Section 3.

Hypervisors have CPU performance overheads from double scheduling [61]

2

(hypervisors and guest OSes are unaware of each other’s scheduling decisions),
scheduler unfairness between VMs [55], asymmetric CPU speeds because
virtual CPUs (vCPUs) run on shared physical CPUs [63], and interrupt
handling [32]. Hypervisors also have memory performance overheads from
memory reclamation and memory duplication. Memory reclamation over-
heads are caused by the hypervisor having limited information on what guest
pages are good candidates for eviction, which can cause the hypervisor and
the guest operating system to make bad paging decisions [64]. Memory
duplication overheads come from each virtual machine having its own copy of
the full operating system because of isolation requirements [64]. Networking
performance has overheads from packet processing [57] and unstable net-
work [66]. Storage performance has overheads from disk I/O scheduling [29].
Many of the overheads are amplified because guest operating systems are
not fully aware that they are running in a virtualized environment or they
have not been optimized to work with virtualized I/O access costs that are
much higher than with real hardware.

Containers do not have the same kind of CPU performance overheads
as hypervisors do because all applications run on the same host kernel.
However, containers are affected by memory duplication problems – although
to a lesser degree as executables and libraries can shared across containers.
Container networking performance has overheads from the host operating
system network stack performance because NICs are not virtualized and
from network address translation (NAT) [37]. Container implementations
like Docker also have disk performance overheads from layered filesystems
that copy-on-write semantic by default [37].

1.3 Contributions

In this thesis, we evaluate the performance of different virtualization tech-
niques compared to bare metal and show that:

• Containers have virtually no performance overhead compared to bare
metal for network intensive applications when containers are configured
appropriately.

• Unikernels are a promising optimization to hypervisor-based virtual-
ization that reduces virtualization overhead and bringing performance
close to containers.

We evaluate raw networking performance using the Netperf benchmarking
tool [43] and network intensive application performance using the Memcached
key-value store [7] and the Mutilate [15] benchmarking tool. The evaluation
is run on Intel-based commodity hardware with a 1 Gigabit NIC using Linux
as the host operating system. For hypervisor-based virtualization, we use
KVM/QEMU [4] as the hypervisor using both virtio [58] and vhost [40] for

3

networking and run Linux and OSv [46] as the guest operating system. For
container-based virtualization, we use the Docker tool to provision Linux
namespaces and cgroups-based containers.

1.4 Roadmap

The rest of this thesis is organized as follows. In Section 2, we detail
virtualization techniques and their various optimizations, including I/O
virtualization and unikernel design. In Section 3, we detail problems in
virtualization techniques that impose performance overhead on CPU, memory,
storage, and networking. In Section 4, we detail the evaluation methodology
used to evaluate the effectiveness of various virtualization techniques for
performance. In Section 5, we evaluate the performance of Netperf for bare
metal, Docker, and Linux and OSv running on QEMU/KVM using both
vhost and virtio and with TCP offload enabled and disabled. In Section 6,
we evaluate the performance of Memcached also for bare metal, Docker,
and Linux and OSv running on QEMU/KVM using just vhost with offload
enabled. In Section 7, we present related work, and finally, we conclude in
Section 8.

4

2 Background on Virtualization Techniques
In this section, we present background on virtualization techniques. We detail
hypervisor-based virtualization that lets you create multiple isolated virtual
machines on a single physical machine and I/O virtualization techniques
for hypervisors. We also detail unikernels that are an operating system
design approach that attempt to mitigate performance inefficiencies caused
by hypervisors by eliminating the traditional kernelspace and userspace
separation from the guest OS. Finally, we detail container-based virtualization
lets you run multiple operating system userspaces on the same physical
machine sharing a single kernel.

2.1 Hypervisor-Based Virtualization

In this section, we present an overview on hypervisor-based virtualization
techniques: full virtualization, paravirtualization, and hardware-assisted
virtualization. We also present a brief overview on nested virtualization for
completeness.

A hypervisor1 is a system software component that lets you run guest operat-
ing systems on a host machine in efficient and isolated virtual machines [52].
A hypervisor must exhibit the following three properties: the equivalence
property, the efficiency property, and the the resource control property.

Equivalence property states that program execution has identical observ-
able behavior on real hardware and under virtualization, except for differences
caused by timing or resource availability. The exception is needed because
virtual machines typically share the same physical resources. For example,
multiple virtual CPUs that share the same physical CPU make it impossible
to have the exact same timing on bare metal and under virtualization because
thread execution is interleaved on the physical CPU.

Efficiency property states that the majority of virtual CPU machine
instructions are executed directly by a physical CPU without interference
from the hypervisor. This property separates hypervisors from emulators and
interpreters that execute no virtual CPU instructions directly on physical
CPU.

Resource control property states that the hypervisor manages all hard-
ware resources. It must be impossible for an arbitrary program in a virtual
machine to directly access hardware without permission from the hypervisor.

The architecture of a hypervisor be broadly categorized into two classes
as illustrated in Figure 1: Type 1 and Type 2 hypervisors [38]. The main

1Hypervisor is also known as a virtual machine monitor (VMM).

5

Hardware

Hypervisor

Virtual
Machine

Virtual
Machine

(a) Type-1 hypervisor runs directly
on top of the hardware and manages
hardware resources by itself. The
direct hardware access gives Type-1
hypervisors a performance edge over
Type-2 hypervisors.

Hardware

Operating System

Hypervisor Hypervisor

Virtual
Machine

Virtual
Machine

(b) Type-2 hypervisor runs on top of
a host operating system that manages
hardware resources. The decoupling
of host operating system and hyper-
visor give Type-2 more flexibility and
allows running and managing multi-
ple versions of the hypervisor, which
simplifies deployment.

Figure 1: Hypervisor architecture classification.

difference between Type-1 and Type-2 hypervisors is that a Type-1 hypervisor
runs directly on the hardware and manages hardware sources by itself. Type-
2 hypervisor runs on top of a host operating system and lets the OS manage
hardware resources. The direct hardware access gives Type-1 hypervisors
a performance edge over Type-2 hypervisors. However, the decoupling
of host operating system and hypervisor give Type-2 more flexibility and
allows running and managing multiple versions of the hypervisor, which
simplifies deployment. Popular examples of Type-1 hypervisors are Xen [24]
and VMware ESXi [1], while QEMU [26] and VirtualBox [10] are popular
examples of Type-2 hypervisors.

Hypervisors can be implemented using different techniques that are
summarized in Table 1. Full virtualization requires neither guest OS mod-
ifications or hardware support. However, hypervisors implemented using
full virtualization are complex and require advanced techniques like binary
translation for high performance [20]. Paravirtualization provides high perfor-
mance by requiring the guest OS to be modified to to run on the hypervisor.
Hardware-assisted virtualization is essentially full virtualization that utilize

6

Virtualization Guest OS Hardware High
Technique Modifications Support Performance

Full virtualization − − −
Paravirtualization X − X
Hardware-assisted − X X

Nested virtualization − − −

Table 1: Summary of hypervisor-based virtualization techniques.
Full virtualization requires neither guest OS modifications or hardware
support. Paravirtualization requires the guest OS to be modified to run on the
hypervisor. Hardware-assisted virtualization is similar to full virtualization
but requires hardware support. Nested virtualization does not require either
guest OS modifications or hardware support. A checkmark (X) indicates
that feature applies to the virtualization technique. A dash (−) indicates
that the feature does not apply to the virtualization technique.

hardware virtualization capabilities. Nested virtualization does not require
guest modifications or hardware support.2

2.1.1 Full Virtualization

Full virtualization is a virtualization technique that requires the guest op-
erating system to trap to the hypervisor for instructions that access CPU
privileged state or issue I/O so that the hypervisor can emulate those in-
structions [20]. This trap-and-emulate approach is sometimes called classical
virtualization because it has been such a prevalent implementation technique
since it was first proposed [52]. The x86 architecture, however, has not
been classically virtualizable until the introduction of virtualization hard-
ware extensions [20] so full virtualization approaches have relied on binary
translation to detect and trap non-virtualizable instructions. Hypervisors
that implement full virtualization are able to run unmodified guest operating
systems, which makes them a very practical virtualization technique.

In full virtualization, the guest operating system runs in unprivileged
mode and each access to privileged state is trapped and emulated by the
hypervisor [20]. As the physical hardware privileged state and the virtual
machine privileged state differ from each other, the hypervisor maintains
shadow structures that are based on guest-level primary structures. CPU
data structures such as page table pointer or processor status word are
maintained as a shadow copy of the guest registers that are accessed by the
hypervisor when instructions are emulated. To maintain coherency of data
structures like page tables that are stored in memory, the hypervisor uses
MMU protection capabilities to trace memory accesses and update shadow

2Hardware support is required for high performance nested virtualization.

7

structures accordingly.
The trap-and-emulate approach presents a problem for traditional x86

architecture because of two main issues: privileged state visibility and lack
of traps for privileged instructions that run in userspace [20]. The first
problem is that the guest OS sees that it is running in state by reading
its code segment selector (CS) register that has the current privilege level
(CPL) encoded in the low two bits. This means that the hypervisor is
unable to virtualize privileged state for the guest OS. The second problem
is that instructions such as popf (pop flags) that modify both ALU flags
and processor flags do not cause a trap in unprivileged mode and simply
ignore the changes to the processor flags. The guest OS runs in unprivileged
state and is therefore unable to catch access to processor flags such as the
interrupt flag (IF) that controls interrupt delivery for such instructions to
update the shadow processor flags accordingly.

To solve these issues on traditional x86 architecture, hypervisors use
dynamic binary translation to replace privileged instructions with explicit hy-
pervisor traps for instructions that are running in a VM [20]. Non-privileged
instructions require no translation and can be translated to the original
instruction. The binary translation approach to full virtualization outper-
formed hardware-assisted virtualization for the first generation hardware [20]
but is no longer able to do so with newer hardware generations [21].

2.1.2 Paravirtualization

Paravirtualization is a virtualization technique that requires the guest OS
to be modified to call hypervisor services instead of executing privileged
hardware instructions [24]. The technique is particularly effective for archi-
tectures that are not classically virtualizable like traditional x86 for high
performance virtualization. Paravirtualization does not require changes in
applications that run fully unmodified in the virtual machines under the
modified guest OS. The paravirtualization technique was popularized by
the Xen hypervisor [24] that was first developed for the traditional x86
architecture to avoid binary translation and to efficiently virtualize the x86
MMU.

Xen is a hypervisor that supports both paravirtualization [24] and hardware-
assisted virtualization [54]. Xen runs directly above the hardware and
provides a minimal set of hypervisor services to virtual machines called
domains as illustrated in Figure 2. Domain 0 is the initial domain that
runs hypervisor management software that provides control interfaces for
processors, memory, virtual network devices, and virtual block devices. Other
domains are known as user domains and run operating systems that have been
ported to Xen in unprivileged mode. The Xen hypervisor and domains have
two mechanisms for communicating with each other: hypercalls and events.

8

Hypercalls allows domains to trap into the hypervisor synchronously to allow
the hypervisor perform privileged operation for them, which resembles the
mechanism of OS system calls. Events are a mechanism that allows the Xen
hypervisor to asynchronously notify the domains in light-weight manner,
replacing device interrupts. Data is transferred between domains and the
Xen hypervisor using I/O rings that only contain descriptors to the data.
The use of I/O rings allows efficient data transfer because data is not copied
between the hypervisor and the domains.

Hardware

Xen hypervisor

Dom0 DomU DomU

Figure 2: The Xen hypervisor architecture. The Xen hypervisor runs
directly on top of hardware and manages multiple domains. Domain 0 is a
special domain that runs Xen control software. Other domains are known as
user domains and run operating systems that have been ported to Xen in
unprivileged mode.

The x86 paravirtualization interface in Xen has interfaces for memory
management, CPU, and device I/O [24]. In Xen, the guest OS is responsible
for page table management. The Xen hypervisor updates hardware page
tables but only on behalf of the guest OS when it calls the paravirtualization
interfaces. Xen validates the page table updates to make sure that domains
are isolated from each other. CPU privilege level virtualization on x86 is
achieved by changing the guest OS to run on ring 1 instead of the usual ring
0 that prevents the guest OS from executing privileged instructions directly.
CPU exception virtualization follows the x86 hardware model closely. The
only interrupt related modification in the guest OS is in the page fault

9

handler that needs to be modified to query for the faulting page address
using Xen paravirtualization interface instead of reading the hardware cr2
register. Device I/O virtualization is based on Xen specific device model
with its own event notification mechanism that replaces hardware interrupts.

The Xen hypervisor was initially developed for the traditional x86 archi-
tecture but has since been ported to the x86-64, IA-64, and the PowerPC
machine architectures [54].

2.1.3 Hardware-Assisted Virtualization

Hardware-assisted virtualization is essentially the same as full virtualization
detailed in Section 2.1.1 when trap-and-emulate virtualization technique is
supported directly by the hardware. This virtualization technique became
possible on the x86 architecture with the introduction of CPU virtualization
extensions [20].

The virtualization extensions on Intel CPUs introduce a new in-memory
data structure called the virtual machine control block (VMCB) that main-
tains a subset state of a guest virtual CPU [20]. The extensions also introduce
a new execution mode, guest mode, that supports execution of both unprivi-
leged and privileged instructions. A new vmrun instruction transfers control
from host mode to guest mode by loading guest state from the VMCB and
resuming execution in the guest. Execution continues in the guest until
some condition expressed as a control bit in the VMCB indicates a VM exit.
The hardware then saves the guest state in VMCB, loads state provided
by the hypervisor, and resumes execution in host mode. The VMCB also
provides diagnostic fields to assist the hypervisor for indicating why the
VM exit happened. For example, if the guest issued an I/O instruction,
the port, width, and the direction of the I/O operation is available from
VMCB. The hardware virtualization extensions did not support explicit
MMU virtualization in the first generation hardware [20] but support for
that has since been added.

The performance of hardware virtualization depends on the frequency of
VM exits that the guest operating system issues [21]. A guest application
that does not issue any I/O runs effectively at native speed. However, as
I/O requires some amount of VM exists, the most important optimization
for hardware-assisted virtualization is reducing them. Strategies for reducing
VM exits for I/O are discussed for I/O virtualization techniques in Section 2.2.
One further optimization to reduce VM exits is using binary translation
technique to dynamically detect back-to-back instructions that both cause a
VM exit and fuse the instructions [21].

Kernel-based Virtual Machine (KVM) is an operating system module
that provides an abstraction of hardware virtualization extensions and exposes
an ABI to userspace that can be used as a building block for implementing a

10

Type-2 hypervisor [45]. It abstracts the virtualization extension differences
between machine architectures and CPUs. KVM is typically used in tandem
with QEMU, which provides I/O device emulation for a variety of hardware,
including paravirtualized virtio-based devices that are optimized for virtual
machines [58]. KVM was originally developed as a Linux subsystem for
Intel and AMD x86 virtualization extensions but has since then been ported
to other machine architectures and operating systems [31]. In KVM, new
virtual machines are created via a /dev/kvm device file. Each guest has its
own memory that is separate from the userspace process that created the
VM but vCPUs require a userspace thread for execution.

The Xen hypervisor also supports hardware-assisted virtualization with the
introduction of the HVM mode [54]. The HVM mode allows users to create
fully virtualized domains that support running an unmodified guest OS.
In HVM mode, the hypervisor emulates x86 architecture services and I/O
devices using QEMU [34].

2.1.4 Nested Virtualization

Nested virtualization is an extension to hypervisor-based virtualization that
allows hypervisors to run other hypervisors and their virtual machines inside
them [27]. Nested virtualization has become important as commodity operat-
ing system such as Linux and Windows 7 that are being used as guest OS’es
have also gained hypervisor functionality. As there is no hardware support
in x86 for nested virtualization, various optimizations have been proposed
to implement nested virtualization efficiently. In the nested virtualization
implementation of the Turtles project [27], the lowest hypervisor inspects VM
exits and forwards them to hypervisors above it for emulation. For memory
virtualization, a multi-dimensional paging approach is used that collapses
the various page tables into one or two MMU-based page tables. For I/O
virtualization, multilevel device assignment is used to bypass multiple levels
of hypervisors.

2.2 I/O Virtualization

In this section, we give an overview on I/O virtualization techniques. We
detail full device emulation, paravirtualization, and direct I/O (device as-
signment).

2.2.1 Full Device Emulation

In full device emulation, the hypervisor emulates the I/O registers and mem-
ory of a real hardware device I/O in full or in part [33]. The guest OS device
driver I/O accesses are trapped to the hypervisor and emulated by it. Full
device emulation lets a single physical I/O device be shared across multiple

11

virtual machines without having to modify the guest OS device drivers. In
full device emulation, every I/O access translates to a costly VM exit and the
hardware emulation layer does not always implement all the functionality of
physical devices, which can be a significant performance overhead. However,
some I/O devices like modern NICs have similar capabilities as paravirtual-
ized devices, which makes it is possible to implement device emulation to
reduce VM exits and approach near native performance [57].

2.2.2 Paravirtualization

In paravirtualization, the hypervisor emulates an I/O device that is optimized
for virtualization [57]. The guest OS requires custom device drivers to interact
with the virtual I/O device, which makes it impossible to run unmodified
guest operating systems. However, paravirtualization reduces performance
overhead by reducing VM exits that are caused by I/O accesses by using
shared memory between the hypervisor and the guest OS for communication.
The performance of paravirtualization I/O is still worse than the performance
of state-of-the-art I/O virtualization techniques such as SR-IOV [41].

Virtio is the native KVM/QEMU hypervisor paravirtualized I/O model [58].
It was originally developed for Linux to unify its various virtual I/O device
models. The virtio model provides support for device probing, configuration,
and I/O transport via the virtqueue API. A virtqueue is a queue that is
shared by both the hypervisor and the guest OS. The guest OS posts buffers
(scatter-gather arrays that have a readable and a writable part) that are
consumed by the hypervisor. The hypervisor is notified about new buffers in
the queue via a kick operation that typically requires an expensive VM exit.
However, the guest OS is free to add new buffers in a batch and issue a kick
operation for all of them to amortize VM exit cost. The hypervisor notifies
the guest via a per-queue callback when buffers have been consumed but the
guest OS can disable this callback notification if necessary (similar to OS
disabling device hardware interrupts). Device probing and configuration are
implemented using PCI [3] that is emulated by the hypervisor.

The main virtio transport implementation in Linux is called virtio_ring
that consists of three parts: a descriptor array, an available ring, and an
used ring [58]. The descriptor array contains buffer descriptors that contain
a guest-physical address, length of the buffer, an optional next descriptor
pointer, and flags that specify whether the buffer is for reading or writing, and
whether the next descriptor is set. The available ring contains information
of what descriptors are available. Every element in the available ring has a
free-running index, a flag for suppressing interrupts, and an array of indices
to the descriptor array to advertise unused entries. The available ring is
separated from the descriptor array to make sure slow I/O operations that
are waiting for completion do not block new operations when the ring is

12

circled. The used ring is similar to the available ring but it is managed by
the host when descriptors are consumed. Virtio device drivers like block
device and network device are layered on top of virtio_ring by including a
device specific header in the generic virtio_ring buffers.

Virtio-net is a paravirtualized network device that is implemented using the
virtio device model. The architecture of virtio-net is illustrated in Figure 3a.
In virtio-net, packets that arrive on the hardware NIC travel to the guest
OS virtio queue through the host OS networking stack and QEMU device
emulation layer. Packets that are transmitted from the guest OS are handled
over to the QEMU device emulation layer via a virtqueue. QEMU then
forwards the packets to host OS network stack from where they end up on
the hardware NIC.

Vhost-net is an optimization that moves the virtio device emulation to the
host kernel by-passing QEMU userspace process for the data plane. Vhost
emulation is restricted to virtqueue operations and thus relies on QEMU
userspace process to handle control plane operations such as virtio feature
negotiation and live migration [40]. The vhost-net architecture is illustrated
in Figure 3b.

2.2.3 Direct I/O

Single root I/O virtualization (SR-IOV) standard allows an I/O device
to be efficiently shared by multiple VMs. SR-IOV is a PCIe specification
extension that allows a PCIe device to separate physical functions from virtual
functions. Physical functions are full-featured PCIe device functions whereas
virtual functions only support data plane operations. Virtual functions
can be assigned to specific VM to offer direct I/O access in a virtualized
environment. SR-IOV is able to reach network line rate and scale up to tens
of VMs with few percent additional per-VM CPU overhead [47] [35].

2.3 Unikernels

Unikernels are a new approach to operating system design that eliminates
the traditional kernel and userspace split to improve the performance and
manageability of applications that are deployed to cloud platforms [48]. Ap-
plications are linked against a unikernel core and the combination is packaged
as a single application VM image. The unikernel concept builds upon library
OS concept that structures OS services as libraries that applications link
against [53] [36]. Previous library OS proposals have been impractical be-
cause they require a lot of device drivers to be implemented to support all
the hardware devices that are in use. Hypervisors like KVM and Xen have a
much limited device model, which makes unikernels a much more practical
approach [48].

13

Linux

NIC

QEMU

Linux

Bridge

TAP

Virtio
Guest

Host

Virtio

(a) Virtio-net

Linux

Bridge

QEMU

Linux

TAP

vhost

Virtio
Guest

Host

NIC

(b) Vhost-net

Figure 3: Virtio and vhost network I/O virtualization architectures.
The vhost architecture moves virtio implementation to host kernel allowing
I/O to by-pass the device emulation layer in QEMU.

14

In this section, we will detail three unikernel designs: Arrakis, an uniker-
nel for SR-IOV capable systems, ClickOS, a minimal unikernel for NFV
middleboxes, and OSv, a Linux compatible unikernel.

2.3.1 Arrakis

Arrakis is an unikernel that allows applications to by-pass the kernel for most
I/O operations while providing process isolation by utilizing I/O hardware
virtualization such as SR-IOV [51]. For packet processing, Linux has four
sources of overhead: network stack costs, scheduler overhead, kernel crossings,
and copying of packet data. In Linux, 70% of packet processing overhead
is spent in the network stack demultiplexing, security checks, and overhead
caused by indirection between various layers. Scheduler overhead is 5% if
the receiving process is already running but if it’s not, the the extra context
switch adds 2.2 µs overhead and a 0.6 µs slowdown in the network stack.
On SMP, cache and lock contention issues can cause further slowdowns,
especially as packets can arrive in different CPU core where the receiving
server thread is currently running on. In Arrakis, packets are delivered
directly to userspace that eliminates scheduling and kernel crossing overhead
completely. Cache and lock contention overhead is also reduced because each
application has its own network stack and thus each packet is delivered to the
CPU core where application is running. By applying all these optimizations,
Arrakis is able to achieve 2 times better read latency, 5 times better write
latency, and 9 times better write throughput than Linux for Redis, a popular
NoSQL store – a significant performance improvement.

Arrakis takes full advantage of SR-IOV to implement safe application-
level access to I/O devices as illustrated in Figure 4. SR-IOV is a PCIe
standard extension that allows multiple virtual machines to share the same
physical device by letting the operating system dynamically create virtual
PCI functions that are assigned to individual virtual machines. Access to
these virtual functions can be protected using the hardware IOMMU. The
device drivers in guest operating systems are then able to treat these virtual
NICs as if they were physical NICs exclusively assigned to them. The host
kernel still implements control plane functionality to configure the virtual
NICs but does not participate in data plane operations.

Arrakis supports two sets of APIs: POSIX compatible socket API and
Arrakis’ own zero-copy API that eliminates the overhead from copying packet
data from and to userspace that’s required by POSIX. The POSIX APIs are
designed to improve performance without requiring existing applications to
be modified. However, further performance improvements are available if an
application is ported to use Arrakis’ native APIs that supports zero-copy
I/O. The implementation of Arrakis is based on a fork of the Barrelfish, a
SMP capable OS, which is extended to support SR-IOV, many POSIX socket
APIs, and Linux epoll() interface that’s used to poll large number of file

15

VNIC VNIC

Switch

NIC

VNIC

Userspace

libos

App

libos

App

libos

App

Kernel Control
Plane

Figure 4: Arrakis architecture. Hardware NIC provides virtual NICs via
SR-IOV that are mapped directly to application address space.

descriptors efficiently. Arrakis also implements its own user-level network
stack, which leverages the packet processing core from the lwIP network
stack. Barrelfish already provides a library OS that makes it easy to link it
directly to Arrakis-based applications.

2.3.2 ClickOS

ClickOS is an unikernel optimized for middleboxes that runs exclusively on
the Xen hypervisor with small virtual machine memory footprint overhead
(5 MB), fast boot times (under 30 milliseconds), and high performance
networking capabilities [49]. ClickOS-based middleboxes are capable of
processing millions of packets per second and are able to saturate a 10
Gigabit hardware NIC while running 100 virtual machines on a single CPU
core. The packet processing in ClickOS is designed for low latency and
measurements show that ClickOS adds only a 45 microsecond delay per
packet. When compared to a general purpose Linux also running on Xen,
ClickOS network throughput is up to 1.5x times higher for MTU-sized packets
and as much as 13.6x times higher for minimum-sized packets. ClickOS
can run either as Linux kernel module at full performance or as a regular
userspace process with less performance for debuggability.

ClickOS uses MiniOS, a tiny operating system that comes with Xen, as its
basis that provides minimal set of operating system service: memory manager
and a scheduler. Memory management is only needed for dynamic allocation
of operating system data structures such as packet descriptors and there

16

is no support for more complex memory management services like memory
mapping or protection provided by the MMU. The scheduler only needs to
switch between running middlebox application code and servicing interrupts
and thus does not require complex features like preemptive scheduling or
multithreading. MiniOS also has a Xen netfront driver that provides access to
paravirtualized Xen network devices but it’s performance is poor, especially
for receive where MiniOS is barely able process 8K packets/second.

For high performance networking, ClickOS overhauls the Xen network
I/O subsystem extensively by eliminating layers that are not essential to
moving packets in and out of a VM. At the lowest level, ClickOS replaces
the standard Open vSwitch back-end that is used by Xen with a high-speed
switch, VALE, which allows mapping per-port ring buffers directly to the
VM memory address space. ClickOS also improves upon VALE by adding
support for connecting physical NICs directly to the switch, increasing
maximum number of ports from 64 to 256, and adds support for per-VM
configuration of packet ring buffer size up to 2048 slots. One layer above,
ClickOS redesigns the Xen netback driver to function as primarily a control-
plane driver that is only responsible for allocating memory for receive and
transmit ring buffers, setting up memory grants so that the ring buffers
can be mapped directly into VM memory address space, and setting up
kernel threads for transferring packages between the switch and the netfront
driver. Finally, the netfront driver is modified to map the switch ring buffers,
support asynchronous transmit, enable re-use of memory grants, and MiniOS
is extended to support the Netmap API [56] used by VALE switch. As the
Xen network I/O modifications break non-MiniOS guests, a Linux driver has
also been implemented that runs on the modified Xen hypervisor.

2.3.3 OSv

OSv is an unikernel that runs existing Linux cloud applications on various hy-
pervisors and machine architectures [46]. Current OSv runs on 64-bit x86 and
ARM architectures and supports the KVM/QEMU [4], Xen, VMware [1], and
VirtualBox [10] hypervisors, and on Amazon EC2 [8] and Google Compute
Engine (GCE) [14] platforms. OSv is able to improve network throughput
up to 25% and decrease latency by 47% for unmodified applications and
improve throughput up to 290% for memcached by using special purpose
OSv APIs. OSv is heavily optimized to run Java Virtual Machine (JVM) [11]
based applications fast on virtual machines.

OSv is designed as a drop-in replacement for applications that use a
supported subset of the Linux application binary interface (ABI). The core
of OSv implements an ELF loader and a dynamic linker, memory manager,
thread scheduler, virtual filesystem (VFS) synchronization mechanisms (e.g.
pthread mutexes and RCU), and device drivers for various hardware and
virtual devices. The ELF dynamic linker makes it possible to run existing

17

Linux binaries. Linux system calls are translated into function calls to APIs
that are implemented by OSv. The main limitation of the Linux ABI in OSv
is lack of support for the fork() and exec() system calls, which are hard
to implement with a single address space. OSv has adopted ZFS [5] as its
primary filesystem but has since gained support also for the Network File
System (NFS) [59] that is popular for HPC workloads [30]. The memory
manager in OSv supports demand paging, the mmap() interface for memory
mapping, and transparent huge pages for large memory mappings. OSv
also implements a set of special purpose APIs, like memory shrinker API
and a JVM balloon, that can be used by applications to further improve
performance.

The network stack in OSv is optimized for network intensive applications.
The stack is based on FreeBSD but is redesigned to follow a network channel
design that reduces locking overhead. The network channel design is based
on an observation that packets traverse the networking stack from different
directions, top-down and bottom-up, causing lock contention on shared locks.
The send() and recv() system calls traverse the network stack top-down
from socket layer down to TCP/IP and packet layers at the NIC level. The
NIC device drivers traverse the network stack in the reverse direction when
packets are received starting from the NIC level and going up through the
TCP/IP layer to the socket layer. In OSv, applications are able to perform
almost all packet processing in their own threads because the receive path is
handled separately using a network channel that has its own locking. When
a packet arrives, a classifier is used to direct the network channel to a specific
socket.

2.4 Container-Based Virtualization

Containers are a virtualization approach that does not involve a hypervisor.
Instead, a machine runs only one kernel that is shared by all the guests. Virtu-
alization is achieved with host operating system features such as namespaces
and control groups [60].

2.4.1 Docker

Docker has emerged as the de facto standard runtime, image format, and
build system for container-based virtualization on Linux [37]. Docker consists
of two major components: Docker, the container platform, and Docker Hub,
a software as a service (SaaS) that allows people to share and manage Docker
containers [19]. Docker follows the client-server architecture where the Docker
client (i.e. the docker command line tool) talks to a Docker daemon that
is responsible for building, running, and distributing the containers. Both
the client and the daemon can run on the same machine or the Docker
client can connect to a remote node running the Docker daemon. Docker

18

is further divided into three components internally: images, registries, and
containers. Images are read-only templates for containers that contain
detailed instructions how to build a container. For example, an image might
contain instructions how to install an Ubuntu Linux operating system with
the Apache HTTP server with a web application installed to it. Registries
are managed by Docker Hub and are used for storing images so that they can
be distributed among users. Containers are similar to directories and hold
all the files needed to run an application and they can be started, stopped,
moved, and deleted.

The container-based virtualization technique Docker uses on Linux is
built on kernel namespaces and control groups (cgroups) [37]. Namespaces is
a kernel feature that allows the creation of isolated namespaces for filesystem,
PID, network, user, IPC, and host name via the clone() system call [28].
Namespaces are similar to chroot() but they are more powerful and allow
full isolation. Cgroups are a feature that groups a set of processes and allows
the kernel to manage and enforce resource limits on the group. They are
typically used to limit the amount of CPUs and memory a container has
access to.

2.4.2 Kubernetes

Kubernetes is an open source platform for deploying, scaling, and operating
a cluster of containers, originally developed by Google [18]. It uses Docker
under the hood to manage individual containers and provides support for
managing a cluster of nodes. A node in a Kubernetes cluster is either a
physical or a virtual machine that runs a kubelet node agent. The node agent
manages pods, which are a set of closely related containers that are managed
as a single unit that share the same storage volumes and IP address space.
The control plane in Kubernetes consists of etcd, API server, scheduler, and
a controller manager. Etcd [17] is a reliable distributed key-value store that
Kubernetes uses to store all persistent configuration. The API server is the
the main entry point to manage a cluster and allows users to configure and
manage Kubernetes work units. The scheduler assigns workloads to nodes in
the cluster, tracks resource utilization, and load balances the nodes when
needed. The controller manager is an agent that controls the state of the
system by watching cluster shared state and updating the cluster if needed.

2.5 Summary

Hypervisor-based virtualization and container-based virtualization provide
isolation and resource control and let physical resources to be efficiently
shared across multiple virtualized environments. Hypervisors can be im-
plemented using different techniques: full virtualization, paravirtualization
and hardware-assisted virtualization. Unikernels are an optimization for

19

hypervisor-based virtualization, which reduces the overhead of the guest OS
that runs in a VM. Containers provide isolation at the host operating system
level and do not involve a hypervisor or a separate guest OS. Instead, all
containers on a host machine run on the same host kernel in an isolated
namespace with physical resources shared by a resource controller. The
virtualization techniques have performance overheads, which are discussed
in detail in Section 3.

20

3 Virtualization Overheads
In this section, we detail problems in virtualization techniques that impose
performance overheads on CPU, memory, networking, and disk. The different
overheads are summarized in Table 2 by system component and virtualization
technique.

Containers are a relatively new virtualization technique compared to
hypervisors. Although they have received widespread adoption in industry,
they have not received significant research attention until recently. Therefore
most of the overheads discussed in this section are focused on hypervisor-
based virtualization.

System Overhead Virtualization Technique
Component Source HV Unikernel Container

CPU
Double Scheduling X − −
Scheduling Fairness X X −
Asymmetric CPUs X X −

Interrupts X X −

Memory
Memory Reclamation X X −
Memory Duplication X X X

Networking
Packet Processing X X −

NAT − − −
Unstable Network − − X

Disk
I/O Scheduling X X −

Layered filesystems − − X

Table 2: Summary of virtualization overheads by virtualization
technique. Overhead sources are grouped by system component (CPU,
memory, networking, disk) and virtualization technique (hypervisor (HV),
unikernel, container). A checkmark (X) indicates that the overhead is appli-
cable to the virtualization technique. A dash (−) indicates that the overhead
is not applicable to the virtualization technique. For example, containers
have performance overhead from memory duplication, NAT, and layered
filesystems.

3.1 CPU

As summarized in Table 2, virtualization causes performance overheads on
CPU due to double scheduling, scheduler fairness, asymmetric CPUs, and
interrupts. We now detail each of the causes for CPU overheads.

21

3.1.1 Double Scheduling

In hypervisor-based virtualization, there are two levels of scheduling: the
guest operating system schedules process to virtual CPUs (vCPUs) that are
implemented in the hypervisor as threads and the hypervisor schedules the
vCPU threads to physical CPUs. Current hypervisor-level schedulers in both
KVM and Xen are unaware of the second level of scheduling in the guest OS
which can cause significant performance degradation for parallel applications
running in a VM [61]. Two main issues with current hypervisor schedulers
are vCPU preemption and vCPU stacking.

A vCPU preemption occurs when the hypervisor preempts a vCPU that
is holding to a lock and then switches to another vCPU. The preemption
extends vCPU synchronization time of significantly because the vCPU that
is waiting for the lock is waiting for the lock to be released but the vCPU
that is holding the lock is waiting to run. The problem is also known as
lock holder preemption and is especially bad for spin-locks which are often
used to protect data structures from concurrent access on multi-processor
systems when a lock is needed for a short period of time. This type of locking
works well on hardware but suffers from lock holder preemption problem
on virtual machines: if a virtual machine is interrupted in the middle of a
critical section, it can hold on to a spin-lock for a very long time which is a
significant performance problem [63].

vCPU stacking happens because the hypervisor scheduler is allowed to
schedule a vCPU on any physical CPU which can cause a lock waiter vCPU
N to to be scheduled before a lock holder vCPU M on the same physical
CPU which increases synchronization time on both vCPUs.

3.1.2 Scheduling Fairness

The double scheduling at hypervisor and guest OS level makes it difficult
to achieve scheduling fairness for symmetric multiprocessing (SMP) virtual
machines which have two or more vCPUs [55]. For example, one virtual
machine may have all of its vCPU run on dedicated physical CPUs but
another virtual machine may have all of its vCPUs multiplexed on the
same physical CPU. Hypervisors attempt to enforce scheduling fairness
by assigning equal number of physical CPU shares (amount of physical
CPU time received by a vCPU) to each virtual machine. Virtual machines
then distribute their physical shares among their own vCPUs. VMs with
large number of vCPUs thus have a smaller portion of the physical CPUs
assigned per vCPU than VMs with smaller amount of vCPUs. Hypervisors
also attempt to prevent virtual machines from monopolizing the system by
limiting the use of physical CPU even if the system is otherwise idle. In
SMP configurations, CPUs are load balanced to improve throughput and
responsiveness by distributing vCPUs evenly onto physical CPUs by using

22

push and pull migration strategies. In push migration, the load balancer
periodically pushes vCPUs away from busy physical CPUs. In pull migration,
vCPUs that a ready to run are migrated from busy physical CPUs when a
physical CPU is about to become idle.

Flex [55] is one proposed scheduling scheme that enforces fairness between
VMs by dynamically adjusting vCPU weights and minimizing vCPU busy-
waiting time that is able to reach CPU allocation that is no more than 5% in
error of ideal fair allocation and outperforms standard Xen credit scheduler
by 10x for parallel applications.

3.1.3 Asymmetric CPUs

The OS scheduling algorithm attempts to distribute work across CPUs
to optimize overall system performance by exploiting information about
CPU speed, cache sizes, and cache line migration costs to predict future
performance based on past workload performance. However, in a virtualized
environment where vCPUs is multiplexed on a physical CPU, the assumption
that every CPU is identical to each other no longer holds. This leads the
guest OS scheduler to distribute work across vCPUs in sub-optimal way
which can lead to overcommitment or under utilization of CPUs. For the
guest OS to make correct scheduling decisions, it must be able to distribute
work equally based on physical CPU allocation [63].

Similar to the memory ballooning technique detailed in Section 3.2.1,
time ballooning lets the hypervisor participate in load balancing decisions
without changing the guest OS scheduling algorithm. A time balloon module
is loaded into the guest OS as a pseudo device that periodically polls the
hypervisor to determine how much physical CPU time the VM has received
from the hypervisor and generates virtual workload so that the guest OS
thinks it’s busy executing a process when it has no physical CPU time which
solves the imbalance caused by physical CPU allocation [63].

3.1.4 Interrupts

There are three main differences between interrupt handling on physical and
virtual machines:

1. Interrupts received by the local APIC can be handled almost imme-
diately in an interrupt handler on a CPU in a physical machine. In
a virtual machine, the interrupt handler won’t be executed until the
hypervisor schedules the vCPU to run, which can introduce significant
delays.

2. Most IO-APIC chips can route an interrupt to multiple CPUs in physi-
cal machines which makes interrupt delivery more flexible. Hypervisors

23

like Xen are, unfortunately, limited to delivering an interrupt to a
specific CPU.

3. The OS idle process consumes all of the available CPU cycles in physical
machines. In virtual machines, the guest OS can yield its CPU to the
hypervisor which can cause delays in interrupt handling.

The above three differences can cause I/O virtualization techniques to
have poor performance under I/O intensive workloads [32]. There have
been recent hardware improvements to improve interrupt performance for
hypervisors. For example, APICv is a new feature in the latest generation of
Intel CPUs (the Broadwell microarchitecture) that supports posted interrupt
mechanism that lets the hypervisor to inject virtual interrupts directly to
the guest without involving a VM exit which reduces interrupt delivery
overhead [62].

3.2 Memory

As summarized in Table 2, virtualization causes performance overheads on
memory due to memory reclamation and memory duplication. We now detail
each of the causes for memory overheads.

3.2.1 Memory Reclamation

When physical memory is overcommitted, the hypervisor needs reclaim
memory from the virtual machines it manages and evict pages to physical
storage. However, the hypervisor does not have a lot of information about
which guest pages are good candidates for eviction because those pages are
managed by the guest operating systems [64]. Furthermore, as the guest
operating system also has a memory reclamation policy, a double paging
problem is possible where under memory pressure, the guest operating system
first evicts a page to its virtual backing storage only to have the hypervisor
also evict the same page to a physical storage. One solution to the problem
is to have the hypervisor communicate with the guest operating systems
via a balloon process [64]. The balloon is a special device driver that runs
in the guest operating system that allocates guest pages and pins them to
memory by making them unusable to the guest operating system. These
pages can be reclaimed by the hypervisor by inflating the balloon which
increases memory pressure and forces the guest operating system to page
out to its virtual storage. The hypervisor can decrease memory pressure
by deflating the balloon which allows the guest to page in previously used
pages. To track idle memory in in a guest VM, the hypervisor uses statistical
sampling by invalidating the TLB entry for randomly selected pages. Access
to invalidated pages increase their usage count which allows the hypervisor

24

to estimate how many pages are currently in use and how many can be
considered idle.

TLB invalidation comes with a significant performance penalty in a
virtualized environment because it forces a context switch and requires
multiple memory accesses to re-fill the TLB entries. To solve the TLB
invalidation issue, Memory Pressure Aware (MPA) ballooning is proposed [44].
MPA ballooning compares the sum of anonymous pages across all VMs and
the sum of file pages also across all VMs to the total available system memory
and classifies system memory pressure to three regimes: low pressure, mild
pressure, and heavy pressure. The low pressure regime occurs when the total
memory demand is less than the total amount of available memory. No file
pages need to be evicted because there is enough available memory to satisfy
the memory demand. The mild pressure regime occurs when total memory
demand exceeds the total amount of available memory. The hypervisor
must have a paging policy because there is not enough memory for all the
anonymous and file pages used by all the running VMs. Finally, the heavy
pressure regime occurs when anonymous pages exceed the total amount of
available memory which means that there’s not enough memory to satisfy
all anonymous pages used by running VMs which means guest OSes must
swap pages to disk. The MPA balloon applies different memory management
policy depending on memory pressure regime by implementing an adaptive
memory cushion and an instant response mechanism that reacts to memory
pressure changes via memory reclamation and reallocation. MPA ballooning
improves performance by 18.2% when multiple VMs are running the same
application and 13.2% when multiple VMs are running different applications
in random order.

3.2.2 Memory Duplication

A general purpose operating system consists of a kernel image, shared libraries,
and various OS services that have an overhead on memory footprint. As
virtual machines are isolated from each other, every VM has a separate
memory copy of the OS, even if two VMs are running the exact same version.

The hypervisor has two strategies for deduplicate memory: transparent
page sharing and content-based page sharing [64]. Transparent page sharing
eliminates duplicate memory such as executable code and read-only data by
identifying copies and mapping guest pages to the same physical page and
following copy-on-write semantics. This requires the guest operating system
to be changed so that it is able to identify duplicate copies. Content-based
page sharing on the other hand identifies copies based on page contents
and does not therefore require changes to the guest operating system. The
VMware ESX server uses content-based page sharing by using a hash value
of page contents to look up pages that have been marked as copy-on-write
in other virtual machines. If such a match is found, the full page contents

25

are compared to ensure that the pages really are identical and then mapped
to the guest address space as copy-on-write page.

Kernel Samepage Merging (KSM) in the Linux kernel is an implementa-
tion of content-based page sharing that lets applications flag memory regions
to be scanned and deduplicated using the MADV_MERGEABLE of the madvise()
system call. The KVM/QEMU hypervisor uses that capability to dedupli-
cate memory between virtual machines [22]. The Xen hypervisor also has a
memory deduplication called the Difference Engine which uses page sharing,
patching, and compression to improve memory sharing between VMs [39].

An experiment by Waldspurger et al using identical Linux VMs that
were running SPEC95 benchmarks demonstrated that up to 67% of memory
is shared between virtual machines [64]. However, a more recent study by
Barker et al show that absolute sharing sharing levels (which does not include
zero pages) remains under 15% for real-world workloads which suggests that
memory deduplication is not an effective optimization in many scenarios [25].

3.3 Networking

As summarized in Table 2, virtualization causes performance overheads on
networking due to packet processing, NAT, and unstable network. We now
detail each of the causes for networking.

3.3.1 Packet Processing

Hypervisor network I/O performance work has focused on making TCP/IP
throughput as fast as possible but latency and per-packet overhead are largely
unaddressed issues [57]. This is sufficient for traditional server-side network
intensive applications but problematic for workloads introduced by NFV
that involve very high packet rates. I/O at hypervisor level is implemented
in two parts: there’s a frontend component that exposes an device interface
and a backend component that ties the frontend to an actual physical device.
The guest operating system interacts with the frontend via device drivers
to perform I/O. The frontend can either provide an interface that matches
a hardware device or provide a paravirtualized device interface that’s more
efficient for virtualization. For networking I/O, the backend component
can be implemented in various ways ranging from POSIX socket APIs to
kernel-by-pass.

To perform I/O, the guest OS traps to the hypervisor via an VM exit
by issuing an I/O request to a virtual I/O register. The hypervisor then
interprets the I/O request, performs I/O as per device model semantics
either in synchronous or asynchronous manner, and finally resumes execution
in the guest OS. VM exit can be very expensive because the vCPU that’s
performing I/O may be descheduled, it may block on I/O, or may experience
lock contention in device emulation while performing the I/O. On a modern

26

CPU, accessing an I/O register on bare metal takes 100ns to 200ns but in a
virtualized environment, I/O register access can take up to 3 µs to 10 µs – a
50 fold increase in access time! As the cost of accessing an I/O register are
completely different, OS device drivers need to take this into account when
running in a virtualized environment. The NIC notifies the operating system
on transmission completion and upon receiving a packet using interrupts.
Interrupts are another source of VM exits and must be avoided as much as
possible.

3.3.2 Network Address Translation (NAT)

Containers run in the same host machine behind a shared NIC which means
the virtualization tool needs to virtualize network addresses. Docker uses
network address translation (NAT) by default to provide an externally
visible IP address and port to a container but it also supports networking
by binding to a virtual Ethernet bridge on the host. NAT introduces a
performance overhead because address translation consumes CPU cycles
which increases packet round-trip latency as the number of connections
increases. A study by Felter at al [37] shows that Docker’s NAT significantly
reduces the performance of Redis, a popular key-value store, and prevents
its from reaching native peak performance.

3.3.3 Unstable Network

A performance evaluation on Amazon EC2 cloud service shows that CPU
sharing can cause very unstable TCP and UDP throughput that jumps back
and forth between zero and 1 GB/second on small instance types which
receive only 40% to 50% of physical CPU time [65]. Furthermore, even when
the data center network is not congested, packet delays in different EC2
instances can be hundreds of times larger than packet delays between two
hosts which suggests that the Xen hypervisor on EC2 can have very large
queues in the virtualized network. The abnormal variance in throughput
and packet delays has significant effect on network performance. In a study
by Whiteaker, high network utilization from virtual machines that compete
on network resources is shown to increase RTT as much as 100 ms [66].

3.4 Disk

As summarized in Table 2, virtualization causes performance overheads on
disk due to I/O scheduling and layered filesystems. We now detail each of
the causes for disk.

27

3.4.1 I/O Scheduling

Disk I/O scheduling implemented as part of the operating system kernel has
traditionally focused on optimizing throughput of rotational devices by re-
ordering I/O requests to minimize seeks which reduces the time needed to wait
for the disk head to rotate. As I/O patterns are very workload specific, there
is no I/O scheduling policy that is best for all types of workloads. Various
I/O scheduling policies have thus been proposed and implemented. Linux,
for example, supports four different schedulers with different properties. I/O
scheduling has recently been considered less important because seeks are
not as expensive on non-rotating devices such as SSD and NVRAM. I/O
scheduling is, however, still very relevant for obtaining maximum throughput
with hypervisor-based virtualization [29]. With the layered approach of
hypervisors, multiple tenants typically share the same physical disk and
there are actually multiple parallel I/O scheduling policies at work: one at
the hypervisor or host operating system level and one in the guest operating
system of each virtual machine. If the I/O schedulers are incompatible with
each other, I/O requests may be re-ordered in a way that actually reduces
performance. For example, if both the host and guest operating systems
are both using an elevator I/O scheduling algorithm, it is estimated that
approximately 50% of the time, the two will schedule I/O in opposite order
which has significant reduction on application performance. A study by
Boutcher and Chandra [29] suggests that using a minimal scheduler at the
hypervisor level and a workload specific I/O scheduler at the guest operating
system level yields up to 72% I/O throughput improvement over default
Linux I/O schedulers.

3.4.2 Layered Filesystems

Docker supports layered filesystems which allows users to stack filesystems
on top of each other and reusing the layers to reduce storage space usage
and simplify container filesystem management [37]. For example, the same
operating system files can be used as the base for multiple application images
which significantly reduces container image size compared to images which
always contain a full copy of the operating system. Docker usually implements
layered filesystem using Another UnionFS (AUFS) which unfortunately
introduces a significant overhead on storage because filesystem operations
have to travel through many layers [37]. Docker also supports mounting host
filesystems directly to avoid layered filesystem performance penalty.

3.5 Summary

As summarized in Table 2, containers do not have CPU overheads but
have both networking and disk overheads if NAT and layered filesystems
are enabled, respectively. However, both NAT and layered filesystems can

28

be disabled from container configuration which allows native performance.
Unikernels are able to reduce some of the CPU overheads compared to
running general purpose OS in a hypervisors but are they are still expected
to perform worse than containers because of expensive VM exits that are
not fully eliminated.

In this thesis, we quantify the impact of CPU and network overheads for
hypervisors, unikernels, and containers in an experimental evaluation that is
described in detail in Section 4.

29

4 Methodology
In this section, we detail our methodology for evaluating the overhead
of hypervisor-based and container-based virtualization techniques for raw
networking and network intensive applications. The overheads are measured
in an experimental evaluation in a controlled testbed, which is detailed
in Section 4.1. The focus of the evaluation is on CPU and networking
virtualization overheads because they are critical for applications that are
deployed on the cloud and for network function virtualization (NFV) that
deals with very high packet rates [57]. For raw networking performance,
we evaluate the latency of network packets traversing across the network
stack using Netperf [43]. For network intensive application performance, we
use a popular in-memory key-value store, Memcached [7], and measure its
per-request latency using the Mutilate benchmarking tool [15]. The Netperf
and Memcached test scenarios are outlined in Section 4.2 and Section 4.3,
respectively.

4.1 Evaluation Setup

Our controlled testbed consists of two machines that have their NICs con-
nected back-to back as illustrated in Figure 5, which eliminates the overhead
from network switches. Firewall is disabled both in the virtualized environ-
ments, the host server, and the load generating client. The machines have no
other load on them, which allows us to measure the lowest possible latency
and isolate the measurement to virtualization overhead. We use commodity
desktop class hardware (circa 2014) and Fedora 21 Linux distribution soft-
ware. The host hardware configuration is enumerated in Table 3 and the
software configuration is enumerated in Table 4. On the host, we run a single
virtualized environment (a virtual machine or a container) so that we do
not introduce noise to the measurements from multiple virtual environments
competing from the same physical hardware resources.

Client Server

Figure 5: Evaluation setup. The system under test (server) is connected
back-to-back to the load generating client to eliminate overhead from a
network switch. There are no other processes running on the system and the
goal is to obtain lowest possible latency.

30

Component Description
CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (Haswell)

Memory 8 GiB
NIC Intel Ethernet Connection I218-V (1 Gigabit)

Table 3: Host hardware configuration. The host server that runs Netperf
and Memcached is a commodity desktop class machine circa 2014 that has a
Intel Haswell CPU, 8 GiB of system memory, and an embedded 1 Gigabit
Intel I218-V NIC. The author had complete control over all the processes
running on system at all times.

Component Version
OS Fedora 21

Kernel Linux 4.0.8-200.fc21.x86_64
Hypervisor QEMU 2.1.3
Container Docker version 1.6.2.fc21, build c3ca5bb/1.6.2
Netperf 2.6.0 (with modifications)
Mutilate commit d65c6ef (with modifications)

Table 4: Host software configuration. Fedora 21 is selected as the op-
erating system because it was the latest stable version when preliminary
evaluation work started in May 2015. The Linux kernel, QEMU, and Docker
versions were the latest versions packaged in Fedora 21 at the time. Netperf
2.6.0 is selected because it’s the version OSv supported at the time. The Mu-
tilate tool was cloned from the latest git repository HEAD when Memcached
evaluation started in August 2015.

4.2 Netperf

Netperf is a benchmarking tool that is able to measure various aspects of
networking performance for both UDP and TCP [43]. We use Netperf to
measure the effect of different virtualization techniques for network through-
put and latency as well as CPU utilization. We select Netperf over another
popular network performance benchmarking tools such as iPerf [2] because
the former is known to run on OSv, an unikernel that is one of the virtual-
ization techniques we are interested in. For network latency, Netperf reports
the minimum, maximum, and average latency, including standard deviation,
and latency percentiles. Netperf reports the 50th, 90th, and 99th percentiles
by default. We modified Netperf to also report the 1st, 5th, 10th, and 95th

percentiles to obtain the full latency distribution.
Netperf follows a traditional client-server design as illustrated in Figure 6.

There are two independent processes: Netserver that runs on the system
under test (also known as remote system) and Netperf that runs as the load

31

generating client (also known as local system). Netserver and Netperf can
both act as transmitters or receivers depending on the test scenario. At
startup, the Netperf process establishes a control connection to the Netserver
process that is used to exchange information about the remote system as
well as configure the remote process for a specific test scenario.

Netserver Netperf

ClientServer

Figure 6: Netserver and Netperf deployment.The system under test
(server) runs the Netserver application and the load generating client runs
the Netperf tool.

Netperf supports measuring network throughput via bulk data transfer
tests and latency via request/response tests. The Netperf test scenarios that
we execute are summarized in Table 5.

Scenario Type Connect RX TX
TCP Stream throughput − X −
TCP Reverse Stream throughput − − X
TCP Request/Response latency − X X
TCP Connect/Request/Response latency X X X
UDP Stream throughput − X −
UDP Request/Response latency − X X

Table 5: Netperf test scenarios. Netperf test scenarios measure either
throughput or latency in different components of the networking stack:
connection time (Connect), receive path (RX), and transmission path (TX).
A checkmark (X) indicates that the test scenario measures the component.
A dash (−) indicates that the test scenario does not measure the component.
Stream test scenarios measure throughput and request/response scenarios
measure latency. The only scenario that measures connection establishment
and teardown is TCP Connect/Request/Response. Please note that Netperf
does not support a UDP Reverse Stream test scenario.

TCP stream test measures the efficiency of the OS TCP receive path [43].
The test case sends a stream of data from a client running Netperf to a
server running Netserver in a single TCP connection. The time to establish
the initial connection is not included in the test time but the test waits for

32

all data to reach the server before finishing. TCP stream test simulates a
real-world scenario where a client is uploading a large file over TCP.

TCP reverse stream test measures the efficiency of the OS TCP trans-
mission path [43]. The test case is similar to TCP stream except that the
flow of data is reverse. The test case sends a stream of data from a server
running Netserver to a client running Netperf to in a single TCP connection.
The time to establish the initial connection is not included in the test time
but the test waits for all data to reach the server before finishing. TCP
stream test simulates a real-world scenario where a client is downloading a
large file over TCP.

TCP request/response test measures the efficiency of both OS TCP
transmission and receive paths [43]. The test case sends one request at
a time from a client running Netperf to a server running Netserver and
waits synchronously for the server to respond in a single connection. The
time to establish a TCP connection is not included in the result. Both the
request and response message payloads are 1 byte long in the test case. TCP
request/response test simulates a real-world scenario where a client and a
server are exchanging short messages.

TCP connect/request/response test measures the efficiency of both OS
TCP transmission and receive paths as well as TCP connection establish-
ment [43]. The test case opens a new connection, sends a request from a
client running Netperf to a server running Netserver, waits synchronously
for the server to respond, and finally closes the connection. Both the request
and response message payloads are 1 byte long in the test case. TCP con-
nect/request/response test simulates a real-world scenario where a client is
sending HTTP requests to a server.

UDP stream test measures the efficiency of the OS UDP receive path [43].
The test case sends a stream of data from a client running Netperf to a
server running Netserver in a single UDP connection. The time to establish
the initial connection is not included in the test time but the test waits for
all data to reach the server before finishing. UDP stream test simulates a
real-world scenario where a client is streaming a large file over UDP.

UDP request/response test measures the efficiency of both OS UDP
transmission and receive paths [43]. The test case sends one request at
a time from a client running Netperf to a server running Netserver and
waits synchronously for the server to respond in a single connection. The
time to establish a TCP connection is not included in the result. Both the
request and response message payloads are 1 byte long in the test case. UDP
request/response test simulates a real-world scenario where a client and a

33

server are exchanging messages.

Every test case is run for 50 seconds and every test case is repeated 10 times.
The evaluation results of Netperf tests are presented in Section 5.

4.3 Memcached and Mutilate

Memcached is a high-performance, distributed in-memory key-value store
that is typically used as an object caching system to improve the performance
of web applications by reducing database load [7]. We use Memcached to
measure the effect of different virtualization techniques for a network intensive
application. Memcached is implemented as a client-server architecture where
the server effectively provides a distributed hash table that is populated and
queried by clients. When the memory allocated for Memcached server fills
up, least recently used data is discarded from the cache.

Mutilate is a high-performance load generator client for Memcached
that simulates realistic workloads and makes it easy to observe the request
processing latency distribution [15]. Mutilate implements the full Memcache
client-side protocol, which allows it to connect to a Memcached server and
interact with it to measure request processing latency on the client-side.
Mutilate supports multiple threads, multiple connections, request pipelining,
and remote agents. Mutilate reports the 1st, 5th, 10th, 90th, 95th, and 99th

percentiles by default. We modified Mutilate to also report the 50th percentile
to obtain the full latency distribution. The Mutilate test scenarios that we
execute are summarized in Table 6.

Scenario Key Size Value Size set:get Ratio Update Read
Update fb_key fb_value 0.0 X −
Read fb_key fb_value 1.0 − X
Mixed fb_key fb_value 0.03 X X

Table 6: Mutilate test scenarios. Mutilate test scenarios measure re-
quest/response throughput for update and read operations. A checkmark
(X) indicates that the test scenario measures operation. A dash (−) indicates
that the test scenario does not measure the operation.

Memcached is an interesting network intensive application to evaluate
because it is so widely deployed and real-world Memcached workloads are
well-documented in literature [23]. There are various server applications that
implement the Memcache protocol but the canonical Memcached server that
we test is implemented on top of an event-based, non-blocking networking
library libevent. Libevent is an abstraction over OS specific non-blocking
network interfaces like epoll on Linux and kqueue on OS X. The performance
of Memcached is highly influenced by operating system networking stack,
scheduling, threading, and memory management services. However, as

34

Memcached is an in-memory data store, it does not perform disk I/O,
which makes it a good candidate for performance evaluation in virtualized
environments.

Every test case is run for 50 seconds and every test case is repeated 10
times. The evaluation results of Memcached tests are presented in Section 6.

4.4 Summary

We evaluate the overhead of hypervisor-based and container-based virtual-
ization techniques for raw networking and network intensive applications by
conducting an experimental evaluation in a controlled testbed. We use Net-
perf to measure raw networking performance and Memcached and Mutilate
to measure network intensive application performance with focus on CPU
and networking virtualization overheads. In the evaluation setup, the system
under test is connected back-to-back to the load generating client to elimi-
nate overhead from a network switch. There are no other processes running
on the system and the goal is to obtain lowest possible latency and CPU
overhead of virtualization techniques. The host server that runs Netserver
and Memcached is a commodity desktop class machine circa 2014 that has a
Intel Haswell CPU, 8 GiB of system memory, and an embedded 1 Gigabit
Intel I218-V NIC. The author had complete control over all the processes
running on system at all times. Fedora 21 is selected as the operating system
because it was the latest stable version when preliminary evaluation work
started in May 2015. The Linux kernel, QEMU, and Docker versions were the
latest versions packaged in Fedora 21 at the time. Netperf 2.6.0 is selected
because it’s the version OSv supported at the time. The Mutilate tool was
cloned from the latest git repository HEAD when Memcached evaluation
started in August 2015.

35

5 Evaluation Using Netperf
In this section, we present the evaluation results of raw networking perfor-
mance for the different virtualization techniques enumerated in Table 7. For
our experiments, we use the Netperf benchmarking tool that was detailed in
Section 4.2. We compare hypervisor, unikernel, and container performance
to bare metal Linux performance that is used as the baseline. In all of the
combinations, hypervisor-based virtualization techniques use QEMU/KVM
as the virtualization tool and OSv as the unikernel (where applicable) and
container-based virtualization techniques use Docker as the virtualization
tool. The full host software configuration is detailed in Table 4 and VM and
container configurations in Table 8.

Virtualization Guest
Technique OS Tool Network Offload
1 Hypervisor Linux KVM virtio-net −
2 Hypervisor Linux KVM virtio-net X
3 Hypervisor + Unikernel OSv KVM virtio-net X
4 Hypervisor Linux KVM vhost-net −
5 Hypervisor Linux KVM vhost-net X
6 Hypervisor + Unikernel OSv KVM vhost-net X
7 Container Linux Docker NAT X
8 Container Linux Docker Bridged X

None (bare metal Linux) N/A N/A N/A X

Table 7: Virtualization techniques. Hypervisor-based virtualization tech-
niques (1-6) use QEMU/KVM as the virtualization tool with combinations
of Linux and OSv as the guest operating system and virtio-net and vhost-net
as the network I/O virtualization technique with (virtual) NIC offloading
capabilities enabled and disabled. Container-based virtualization techniques
(7-8) use Docker as the virtualization tool with networking configured to
either use the NAT (default configuration) and bridged mode.

For evaluation, we execute a subset of Netperf test scenarios to measure
latency and throughput for both TCP and UDP for all the different virtu-
alization scenarios. The Netperf test scenarios are enumerated in Table 5.
The Netserver server was started using its default configuration.3 Each test
case is executed 10 times and each iteration is run for 50 seconds. Processes,
interrupts and vCPUs are not bound to specific CPUs to simplify system
configuration. Although this increases noise in the results, it is a typical
configuration for real deployments.

3Nagle’s algorithm is enabled in the default Netperf configuration (i.e. TCP_NODELAY
socket option is not set), which increases request/response latency because small packets
are sent in batches.

36

Virtualization Software
Technique Component Version
Hypervisor OS Fedora 21
Hypervisor Kernel Linux 4.0.8-200.fc21.x86_64

Hypervisor + Unikernel OS OSv 41dffab (2015-09-03)
Container OS Fedora 21

All Netserver 2.6.0 (with modifications)

Table 8: Virtual machine guest and container configurations. Fedora
21 is used as the operating system for as the Linux guest OS in VMs and in
containers. OSv is used as the unikernel for hypervisor-based virtualization.
Netserver 2.6.0 (with modifications) is installed on the system under test.

The overheads for each virtualization technique are presented as per-
centage overhead to running the the same workload running on bare metal
configuration (no virtualization). The plots reports mean, median, 10th, and
the 90th percentile for latency, throughput, and CPU utilization overhead by
taking the average for each metric from the 10 test iterations.

5.1 TCP Stream

The TCP stream test (TCP_STREAM) measures the efficiency of the OS
TCP receive path [43].

The time to establish the initial connection is not included in the test
time but the test waits for all data to reach the server before finishing. TCP
stream test simulates a real-world scenario where a client is uploading a large
file over TCP.

TCP stream results are presented in Figure 7. Docker (techniques 7 and
8) has the least overhead of all the virtualization techniques. Docker using
bridged networking mode (technique 8) is the fastest having less overhead
than Docker using NAT (technique 7) as expected because Docker NAT is
known to increase virtualization overhead [37]. OSv running with vhost-
net (technique 6) has the least overhead of hypervisor-based virtualization
techniques and its performance is very close to Docker. CPU utilization
in the guests is lower for vhost-net than for virtio-net as expected because
vhost-net offloads packet processing from the guest to the host. We did not
measure host CPU utilization so the impact of vhost offloading for total
CPU utilization is unknown.

However, contrary to a previously published Netperf benchmark using
a 40 Gigabit NIC [46] that show a 25% throughput improvement for OSv,
Linux has better throughput than OSv in our tests, which suggests that
OSv’s networking stack is suboptimal for slower NICs for TCP receive.4

4Our evaluation setup uses a less powerful 1 Gigabit NIC.

37

−5

0

5

10

15

20

25

30

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●●● ● ●● ● ●

1 2 3 4 5 6 7 8

Figure 7: Netperf TCP stream results. Docker (techniques 7 and 8)
has the least overhead of all the virtualization techniques. Docker using
bridged networking mode (technique 8) is the fastest having less overhead
than Docker using NAT (technique 7) as expected because Docker NAT is
known to increase virtualization overhead [37]. OSv running with vhost-
net (technique 6) has the least overhead of hypervisor-based virtualization
techniques and its performance is very close to Docker. The error bars
indicate the minimum and maximum over the 10 iterations.

Another published Netperf benchmark using 10 Gigabit NIC [50] reports a
28% and 26% decrease in throughput in TCP stream test for both Linux and
OSv (both using virtio-net), respectively. We do not see such a performance
drop for Linux in our tests compared to bare metal Linux, which suggests
faster 10 Gigabit NICs suffer more from virtualization than the slower 1
Gigabit NICs.

5.2 TCP Reverse Stream (TCP_MAERTS)

The TCP reverse stream test (TCP_MAERTS) measures the efficiency of
the OS TCP transmission path [43]. The test case is similar to TCP stream
except that the data flows in the reverse direction. In this test case, the
server sends a stream of data from a server running Netserver to a client
running Netperf to in a single TCP connection. The time to establish the
initial connection is not included in the test time but the test waits for

38

−5

0

5

10

15

20

25

30

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●●● ● ●● ● ●

1 2 3 4 5 6 7 8

Figure 8: Netperf TCP reverse stream results. OSv (techniques 3 and
6) has the least overhead of all the virtualization techniques. Docker and
Linux running on QEMU/KVM do not have significant differences in overhead
when offloading is enabled. Surprisingly, when offloading is enabled, Linux
with virtio-net (technique 2) has less overhead than vhost-net (technique 5).
The error bars indicate the minimum and maximum over the 10 iterations.

all data to reach the server before finishing. TCP stream test simulates a
real-world scenario where a client is downloading a large file over TCP.

TCP reverse stream results are presented in Figure 8. OSv (techniques 3
and 6) has the least overhead of all virtualization techniques for this test.
Docker and Linux running on QEMU/KVM do not have significant differences
in overhead when offloading is enabled. Surprisingly, when offloading is
enabled, Linux with virtio-net (technique 2) has less overhead than vhost-net
(technique 5), which suggests that there is an inefficiency in Linux vhost-net
driver for offloading. Overall, TCP reverse stream tests have less performance
differences across all the virtualization techniques than TCP stream test
has, which suggests that TCP transmission does not suffer as much from
virtualization as TCP receive does.

5.3 TCP Request/Response (TCP_RR)

The TCP request/response test (TCP_RR) measures the efficiency of both
OS TCP transmission and receive paths [43]. The test case sends one request

39

at a time from a client running Netperf to a server running Netserver and
waits synchronously for the server to respond in a single connection. The
time to establish a TCP connection is not included in the result. Both the
request and response message payloads are 1 byte long in the test case. TCP
request/response test simulates a real-world scenario where a client and a
server are exchanging short messages.

TCP request/response results are presented in Figure 9. Docker using
bridged networking (technique 8) has the least overhead and OSv with
vhost-net (technique 6) comes to a close second beating Docker using NAT
networking (technique 7). OSv with vhost-net (technique 6) has less overhead
than Linux with vhost-net (technique 5), which is consistent with a previously
published benchmarks using a 40 Gigabit NIC [46] that shows a 37%-47%
reduction in latency. Surprisingly, OSv with virtio-net is slowest of all the
virtualization techniques, which suggests an inefficiency in the virtio-net
driver for TCP request/response. The results are similar to a previously
published benchmark using 10 Gigabit NIC [50] that reports 10%, 47% and
43% decrease in throughput in TCP_RR for Docker, Linux and OSv (both
using virtio-net), respectively, compared to bare metal Linux. Felter et al [37]
report a 100% increase in request/response latency for Docker NAT and 80%
increase for KVM/QEMU running Linux using a 10 Gigabit NIC. The results
are inline with our evaluation results, although the overhead we observe is
not as high.

5.4 TCP Connect/Request/Response (TCP_CRR)

The TCP connect/request/response test (TCP_CRR) measures the effi-
ciency of both OS TCP transmission and receive paths as well as TCP
connection establishment [43]. The test case opens a new connection, sends
a request from a client running Netperf to a server running Netserver, waits
synchronously for the server to respond, and finally closes the connection.
Both the request and response message payloads are 1 byte long in the test
case. TCP connect/request/response test simulates a real-world scenario
where a client is sending HTTP requests to a server.

TCP connect/request/response results are presented in Figure 10. Docker
(techniques 7 and 8) has the least overhead of all virtualization techniques.
Surprisingly, Linux with offloading enabled has less overhead than OSv for
virtio-net (technique 2 vs technique 3) and vhost-net (technique 5 vs technique
6), which suggests an inefficiency in OSv’s TCP connection establishment
because we do not see the same overhead in the TCP request/response test.
We are unable to identify the exact source of the inefficiency but it is worth
noting that because TCP request/receive does not have the inefficiency the
overhead is unlikely to be in the virtio drivers and more likely to be in the
TCP/IP stack, the network channel architecture, or the scheduler.

40

−5

0

5

10

15

20

25

30

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●
●● ●

●

●

●

●

1 2 3 4 5 6 7 8

●

Latency (90th Perc.)
Latency (Median)
Latency (Mean)
Latency (10th Perc.)
Throughput
CPU (sys)
CPU (user)

Figure 9: Netperf TCP request/response results. Docker using bridged
networking (technique 8) has the least overhead and OSv with vhost-net
(technique 6) comes to a close second beating Docker using NAT networking
(technique 7). OSv with vhost-net (technique 6) has less overhead than
Linux with vhost-net (technique 5). The error bars indicate the minimum
and maximum over the 10 iterations.

41

−5

0

5

10

15

20

25

30

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●
●

●
●

●

●

●

●

1 2 3 4 5 6 7 8

Figure 10: Netperf TCP connect/request/response results. Docker
(techniques 7 and 8) has the least overhead of all virtualization techniques.
Surprisingly, Linux with offloading enabled has less overhead than OSv for
virtio-net (technique 2 vs technique 3) and vhost-net (technique 5 vs technique
6), which suggests an inefficiency in OSv’s TCP connection establishment.
The error bars indicate the minimum and maximum over the 10 iterations.

42

5.5 UDP Stream (UDP_STREAM)

The UDP stream test (UDP_STREAM) measures the efficiency of the OS
UDP receive path [43]. The test case sends a stream of data from a client
running Netperf to a server running Netserver in a single UDP connection.
The time to establish the initial connection is not included in the test time
but the test waits for all data to reach the server before finishing. UDP
stream test simulates a real-world scenario where a client is streaming a large
file over UDP.

UDP stream results are presented in Figure 11. Docker (techniques 7 and
8) has the least overhead of all virtualization techniques. Linux (technique
2) and OSv (technique 3) with virtio-net and Linux (technique 5) and OSv
(technique 6) do not have significant differences, respectively. However,
offloading increases overhead for both virtio-net (techniques 1 and 2) and
vhost-net (techniques 4 and 5). The throughput numbers for OSv are missing,
which suggests a bug in OSv in data gathering.

Contrary to a previously published Netperf benchmark using 10 Gigabit
NIC [50] that reports 42%, 54% and 57% decrease in throughput for Docker,
Linux and OSv (both using virtio-net) in UDP stream test, respectively, we
do not see such a performance drop in our tests compared to bare metal
Linux, which suggests faster 10 Gigabit NICs suffer more from virtualization
than the slower 1 Gigabit NICs.

5.6 UDP Request/Response (UDP_RR)

The UDP request/response test (UDP_RR) measures the efficiency of both
OS UDP transmission and receive paths [43]. The test case sends one request
at a time from a client running Netperf to a server running Netserver and
waits synchronously for the server to respond in a single connection. The
time to establish a TCP connection is not included in the result. Both the
request and response message payloads are 1 byte long in the test case. UDP
request/response test simulates a real-world scenario where a client and a
server are exchanging messages.

Docker using bridged networking (technique 8) has the least overhead
and OSv with vhost-net (technique 6) comes to a close second. Docker using
NAT networking (technique 7) has more overhead than Linux using vhost-net
(techniques 4 and 5). It is worth nothing that OSv with vhost-net (technique
6) has the largest improvement to Linux with vhost-net (technique 5) over
all the different Netperf test scenarios.

Our results are similar to another previously published benchmark using
40 Gigabit NIC [46] that reports a 47% reduction in latency for UDP
request/response test for OSv compared to Linux. However, contrary to
a previously published Netperf benchmark using 10 Gigabit NIC [50] that
reports 12%, 45% and 43% increase in latency for Docker, Linux and OSv

43

−5

0

5

10

15

20

25

30

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●

●

●
●

●

●

● ●

1 2 3 4 5 6 7 8

Figure 11: Netperf UDP stream results. Docker (techniques 7 and 8)
has the least overhead of all virtualization techniques. Linux (technique 2)
and OSv (technique 3) with virtio-net and Linux (technique 5) and OSv
(technique 6) with vhost-net do not have significant differences, respectively.
However, offloading increases overhead for both virtio-net (techniques 1 and
2) and vhost-net (techniques 4 and 5). The throughput numbers for OSv
are missing, which suggests a bug in OSv in data gathering. The error bars
indicate the minimum and maximum over the 10 iterations.

44

−5

0

5

10

15

20

25

30

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●
●● ●

●

●

●
●

1 2 3 4 5 6 7 8

Figure 12: Netperf UDP request/response results. Docker using
bridged networking (technique 8) has the least overhead and OSv with
vhost-net (technique 6) comes to a close second. Docker using NAT network-
ing (technique 7) has more overhead than Linux using vhost-net (techniques
4 and 5). The error bars indicate the minimum and maximum over the 10
iterations.

(both using virtio-net) in UDP stream test, respectively, we do not see such
a performance drop in our tests compared to bare metal Linux. Felter et
al [37] report a 100% increase in request/response latency for Docker NAT
and 80% increase for Linux running on KVM/QEMU using a 10 Gigabit NIC.
The results are inline with our evaluation results, although the overhead we
observe is not as high.

5.7 Summary and Discussion

Container-based virtualization techniques appear to have less overhead than
hypervisor-based techniques for raw networking performance. Docker us-
ing bridged networking (technique 8) has the least overhead in all the
Netperf test scenarios except for TCP reverse stream test (that measures
TCP transmission performance) in which OSv has the least overhead. OSv
with vhost-net (technique 6) has the least overhead of hypervisor-based
virtualization technique in all the Netperf test scenarios except for TCP con-
nect/request/response test, which suggests an inefficiency in OSv’s TCP/IP

45

stack or the scheduler for TCP connection establishment. Overall, unikernels
are a very promising optimization for hypervisor-based virtualization for raw
networking performance but the technology needs to mature to really deliver
the performance potential.

46

6 Evaluation Using Memcached
In this section, we present the performance evaluation results of network
intensive application performance for the different virtualization techniques
enumerated in Table 9. For our experiments, we use the Memcached key-value
store and Mutilate benchmarking tool, which are detailed in Section 4.3. We
selected virtualization techniques that performed the best for raw networking
performance in Section 5 excluding configurations with offloading disabled
and virtio-net to reduce the scope of the experimental evaluation. The full
host software configuration is detailed in Table 4 and VM and container
configurations in Table 10.

Virtualization Guest
Technique OS Tool Network Offload
5 Hypervisor Linux KVM vhost-net X
6 Hypervisor + Unikernel OSv KVM vhost-net X
7 Container Linux Docker NAT X
8 Container Linux Docker Bridged X

- None (bare metal Linux) N/A N/A N/A X

Table 9: Virtualization techniques. Hypervisor-based virtualization tech-
niques (5-6) use QEMU/KVM as the virtualization tool with combinations
of Linux and OSv as the guest operating system using vhost-net as the net-
work I/O virtualization technique with (virtual) NIC offloading capabilities
enabled. Container-based virtualization techniques (7-8) use Docker as the
virtualization tool with networking configured to either use the NAT (default
configuration) and bridged mode.

Virtualization Software
Technique Component Version
Hypervisor OS Fedora 21
Hypervisor Kernel Linux 4.0.8-200.fc21.x86_64

Hypervisor + Unikernel OS OSv git commit 41dffab (2015-09-03)
Container OS Fedora 21

All Memcached 1.4.17

Table 10: Virtual machine guest and container configurations.

For evaluation, we execute Mutilate test scenarios enumerated in Table 6
to measure latency of TCP request/response for all the different virtualization
scenarios. The Mutilate tool does not support UDP so that was excluded from
the tests. The Memcached server was started using its default configuration:
1024 maximum simultaneous connections, 64 MB of memory to be used for

47

items, and one thread per CPU. Mutilate was also started using its default
configuration: 1 connection, no request pipelining, and TCP_NODELAY enabled.
Each test case is executed 10 times and each iteration is run for 50 seconds.
Furthermore, processes, interrupts and vCPUs are not bound to specific
CPUs to simplify system configuration. Although this increases noise in the
results, it is a typical configuration for real deployments. The key and value
sizes are configured to follow Facebook’s ETC workload distribution [23].
ETC workload was selected because it’s a documented real-world workload
and the largest Memcached workload type at Facebook.

6.1 Update Operations

The Mutilate update scenario measures OS TCP/IP stack and Memcached
LRU cache performance. Mutilate is configured to only send update opera-
tions using key and value sizes that are generated using Facebook’s ETC key
and value distributions [23]. The total amount of key-value pairs transmitted
during the test is approximately 70 MiB that exceeds the 64 MiB that is
reserved for the Memcached in-memory store and therefore causes LRU
cache evictions during the test. The response message payload generated by
Memcache is approximately 6 bytes long so TCP receive is dominant in the
test for OS overhead.

Mutilate update scenario results are presented in Figure 13. Docker using
bridged networking (technique 8) has least overhead as expected and Docker
using NAT networking (technique 7) is the second fastest technique. OSv
(technique 6) has the least overhead of the two hypervisor-based virtualization
techniques beating Linux (technique 5). The results are surprising as OSv
(technique 6) has less overhead than Docker using NAT (technique 7) in the
Netperf TCP request/response test detailed in Section 5.3. We speculate that
this is a weakness in OSv’s pthread mutex implementation that Memcached
uses for synchronizing data structure updates between multiple threads. The
results are similar to a previously published Memcached benchmark using
a 40 Gigabit NIC [46] that show 22% throughput improvement for OSv
compared to Linux using Memaslap [9], another Memcached benchmarking
tool.

6.2 Read Operations

The Mutilate update scenario measures OS TCP/IP stack and Memcached
LRU cache performance. The Memcached server is populated with data
using key and value sizes that are generated using Facebook’s ETC key
and value distributions [23] and Mutilate is configured to only send read
operations to the server. The total amount of keys sent during the test
is approximately 12 MiB and the amount key-value pairs received during
the test is approximately 70 MiB, which means that TCP transmission is

48

−5

0

5

10

15

20

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●

●

●

●

5 6 7 8

●

Latency (90th Perc.)
Latency (Median)
Latency (Mean)
Latency (10th Perc.)
QPS

Figure 13: Mutilate update scenario request/response latency.
Docker using bridged networking (technique 8) has least overhead as expected
and Docker using NAT networking (technique 7) is the second fastest tech-
nique. OSv (technique 6) has the least overhead of the two hypervisor-based
virtualization techniques beating Linux (technique 5). The error bars indicate
the minimum and maximum over the 10 iterations.

49

−5

0

5

10

15

20

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●

●

●

●

5 6 7 8

●

Latency (90th Perc.)
Latency (Median)
Latency (Mean)
Latency (10th Perc.)
QPS

Figure 14: Mutilate read scenario request/response latency. Docker
using bridged networking (technique 8) has least overhead as expected and
Docker using NAT networking (technique 7) is the second fastest technique.
OSv (technique 6) has the least overhead of the two hypervisor-based virtu-
alization techniques beating Linux (technique 5). The error bars indicate the
minimum and maximum over the 10 iterations.

dominant in the test for OS overhead.
Mutilate read scenario results are presented in Figure 14. Docker using

bridged networking (technique 8) has least overhead as expected and Docker
using NAT networking (technique 7) is the second fastest technique. OSv
(technique 6) has the least overhead of the two hypervisor-based virtualization
techniques beating Linux (technique 5). The results are similar to Mutilate
update scenario detailed in Section 6.1.

6.3 Mixed Read and Write Operations

The Mutilate mixed scenario measures OS TCP/IP stack and Memcached
LRU cache performance. Mutilate is configured to send both update and read
operations in ratio of 1:30 and using key and value sizes that are generated
using Facebook’s ETC key and value distributions [23]. The total amount of
key-value pairs transmitted during the test is approximately 12 MiB and the
amount of key-values received during the test is approximately 70 MiB so
TCP transmission is dominant in the test for OS overhead.

50

−5

0

5

10

15

20

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●

●

●

●

5 6 7 8

●

Latency (90th Perc.)
Latency (Median)
Latency (Mean)
Latency (10th Perc.)
QPS

(a) Update latency.

−5

0

5

10

15

20

Virtualization Technique

O
ve

rh
ea

d
to

 b
ar

e
m

et
al

 (
%

)

●

●

●

●

5 6 7 8

●

Latency (90th Perc.)
Latency (Median)
Latency (Mean)
Latency (10th Perc.)
QPS

(b) Read latency.

Figure 15: Memcached mixed workload (update and write). Docker
using bridged networking (technique 8) has least overhead as expected and
Docker using NAT networking (technique 7) is the second fastest technique.
OSv (technique 6) has the least overhead of the two hypervisor-based virtu-
alization techniques beating Linux (technique 5). The error bars indicate the
minimum and maximum over the 10 iterations.

Mutilate mixed scenario results are presented in Figure 15. Docker using
bridged networking (technique 8) has least overhead as expected and Docker
using NAT networking (technique 7) is the second fastest technique. OSv
(technique 6) has the least overhead of the two hypervisor-based virtual-
ization techniques beating Linux (technique 5). The results are similar to
Mutilate update scenario detailed in Section 6.1 and read scenario detailed
in Section 6.2.

6.4 Summary and Discussion

Container-based virtualization techniques appear to have less overhead than
hypervisor-based techniques for network intensive application performance.
Docker using bridged networking (technique 8) has the least overhead in all
the Mutilate test scenarios with Docker using NAT (technique 7) coming to a
close second. OSv (technique 6) has the least overhead of the two hypervisor-
based virtualization techniques beating Linux (technique 5) but it’s still
ahead of Docker in performance. The results are surprising because OSv
beats Docker NAT in raw networking performance as detailed in Section 5,
which suggests that while networking in OSv, other components in the system
are slowing down request/response processing in Memcached. More research
is needed to understand where the overhead is and how to reduce it in OSv.

51

7 Related Work
In this section, we discuss three related studies that evaluate virtualization
overheads by Morabito et al [50], Felter et al [37], and Hwang et al [42].
We also detail Netmap, a packet I/O framework for by-passing the host OS
kernel [56], that significantly reduces networking overhead for bare metal
performance.

7.1 Evaluations

Morabito et al [50] compare the performance of hypervisors, unikernels,
and containers in an experimental evaluation that is similar to ours. They
compare the performance of two container tools, LXC, and Docker, to the
KVM/QEMU hypervisor running Linux and OSv as the guest OS. Both
LXC and Docker are are based on Linux control groups (cgroups) and
namespaces. The use several benchmarks to measure the performance of for
CPU processing, memory, storage, and network for the various virtualization
techniques and show that containers are able to achieve higher performance
than virtual machines.

CPU processing performance is evaluated using the Y-cruncher, NBENCH,
Geekbench, and Linpack benchmarks. Y-cruncher is a multi-threaded CPU
benchmark that shows containers performing better than Linux running on
KVM/QEMU. The NBENCH and Geekbench benchmarks show similar per-
formance across all techniques except for memory performance that has 30%
worse performance for KVM/QEMU than for other scenarios. Y-cruncher
NBENCH, and Geekbench were not run on OSv because of benchmark
application portability issues. Linpack, which was also run on OSv, had
almost no difference in terms of performance across any of the techniques.

Memory performance is evaluated using the STREAM benchmark. The
results show nearly identical performance across all configurations except
for OSv, which shows half the performance compared to the rest. There
is no architectural reason for OSv to be slower for such a simple bench-
mark, which suggests an issue in the benchmark while running on OSv (e.g.
implementation bug in the timekeeping functionality of OSv used by the
benchmark).

Storage performance is evaluated using the Bonnie++ benchmark. Their
evaluation shows that both container-based tools have similar performance
characteristics and are both close to bare metal performance. The storage
performance of KVM/QEMU is the slowest with write throughput only 30%
and read throughput only 20% of bare metal performance. However, The
Bonnie++ results are inconclusive because they were not reproducible with
two other storage benchmarks, Sysbench and IOzone. This highlights the
fact that disk I/O performance measurement for virtualized environments is

52

difficult. The Bonnie++ benchmark was not run on OSv because Bonnie++
requires the fork() system call that OSv does not support.

Network performance is evaluated using the Netperf benchmark. The
results show TCP performance of container-based solutions and bare metal
to be almost equal but 28% worse for Linux running on KVM/QEMU and
26% worse for OSv running on KVM/QEMU compared to bare metal. The
authors do not specify what KVM/QEMU networking options are used so we
do not know if vhost is enabled or not that makes a big difference according
to our tests. UDP throughput was found to be 42.97% worse for Docker,
54.35% worse for KVM, and 46.88% worse for OSv compared to bare metal.
For request-response netperf benchmarks, LXC and Docker were fastest of
the virtualized configurations with 17.35% and 19.36% worse performance
than bare metal, respectively. For the same benchmark, OSv shows an
improvement over Linux as the guest OS with 43.11% worse performance to
bare metal compared to 47.34% for Linux. It is important to note that their
networking tests were run on 10 Gigabit NIC whereas our experiments were
run on 1 Gigabit NIC.

The evaluated virtualization techniques in Morabito et al [50] are similar
to ours but they do not specify whether they are using virtio or vhost and do
not test Docker using bridged networking. However, they also evaluate CPU,
memory, and disk I/O performance in isolation whereas we focus on combined
CPU and networking performance for network intensive applications. Their
Netperf evaluation results show increase in latency and decrease in throughput
for both Docker and KVM/QEMU in TCP stream, and UDP stream, and
UDP request/response. The results for TCP request/response are similar to
ours.

Felter et al [37] have also compared the performance of containers and
virtual machines to bare metal using Docker and KVM/QEMU.

CPU processing performance is evaluated using PXZ, a multi-threaded
LZMA-based data compression utility, and Linpack, a HPC benchmark that
that solves a dense system of linear equations. In their experiments, they
found KVM/QEMU to be 22% slower than Docker for the PXZ compression
benchmark even after tuning KVM by pining vCPUs to physical CPUs and
exposing cache topology. They did not investigate the problem further but
speculate that the performance difference might be caused by extra TLB
pressure from nested paging on KVM/QEMU. Linpack performance is almost
identical on both KVM/QEMU and Docker but they note that KVM/QEMU
that has not been tuned properly shows a significant performance degradation.
Memory performance is evaluated using the STREAM benchmark that shows
nearly identical performance across bare metal, Docker, and KVM. Random
memory access performance is also identical across configurations.

Block I/O performance is evaluated using the fio benchmark tool. Their
results show that Docker and KVM/QEMU have almost no overhead com-

53

pared to bare metal for sequential access. However, for random read, write,
and mixed workloads, KVM/QEMU is only able to deliver half of the IOPS
compared to bare metal and Docker.

Network throughput performance is measured using the nuttcp [6] tool.
They use the tool to measure only TCP throughput and do not measure UDP
throughput at all. This is different from our experiment that measures both
TCP and UDP throughput using Netperf. Their results shows that bare metal,
Docker, and KVM/QEMU all are able to reach 9.3 Gbps TCP throughput for
receive and transmit, which is close to theoretical limit of the 10 Gigabit NIC.
Docker NAT and KVM/QEMU have higher CPU overhead than bare metal.
They also measure network latency using Netperf TCP request/response
and UDP request/response tests and observe a 100% increase in latency for
Docker NAT and 80% increase in latency for KVM/QEMU compared to the
bare metal latency.

They also tested the performance of two database systems: Redis and
MySQL. Redis is very network intensive so the higher network latency of
Docker NAT and KVM hurt performance. However, as the number of clients
increase, throughput approaches native performance as per Little’s Law.
For MySQL performance, KVM is shown to have 40% higher overhead in
all measured cases. Docker’s performance with AUFS enabled also shows
significant overhead.

Hwang et al [42] compared the performance of four hardware-assisted
hypervisors, Hyper-V, KVM, vSphere, and Xen, and found out that while
there are significant differences across hypervisor performance, no single
hypervisor was able to consistently outperform the others.

CPU processing performance is evaluated using the Bytemark benchmark.
Their results show that all hypervisors were almost no overhead compared
to bare metal because the benchmark itself does not trap to the hypervisor.
Memory performance is evaluated using the Ramspeed benchmark that mea-
sures cache and memory bandwidth Their results show that all hypervisors
have almost no overhead compared to bare metal for single vCPU scenario.
However, for 4 vCPU scenario, KVM/QEMU performs worse than other
hypervisors and is not able to utilize the available vCPUs completely.

Disk I/O performance is evaluated using the Bonnie++ benchmark. Their
results show that every hypervisor performs similarly to each other, except
for Xen that has 40% worse performance than other hypervisors. They
also used the FileBench benchmark to confirm the results gathered from
Bonnie++.

Network throughput performance is evaluated using the Netperf. Their
results show that vSphere is the fastest hypervisor with 22% better through-
put than Xen. Both KVM/QEMU and Hyper-V are close to vSphere in
performance.

54

7.2 Netmap

Netmap is a packet I/O API for that allows applications to directly map NIC
queues in a safe manner in their address space and perform I/O on them,
by-passing the kernel completely for networking [56]. It solves the problem of
high overhead from operating system networking stack for applications that
deal with very high rate of packets. Netmap architecture reduces the cost
of moving packets between hardware and the operating system networking
stack and is orthogonal to virtualization networking techniques such as
paravirtualization and SR-IOV and bare metal performance optimizations
such as hardware checksumming, TCP segmentation offloading (TSO), and
large receive offloading (LRO).

Netmap exposes hardware NIC receive and transmit queues as netmap
rings that are memory mapped to userspace application virtual memory
address space as illustrated in Figure 16. These netmap rings are circular
queues of packet buffers where each queue entry represents a packet specified
by a virtual address of the packet data start, lento of the packet, and special
netmap flags. The shared memory accessible by userspace is always validated
and the application is not able to directly access NIC hardware registers.
An application is, however, able to corrupt the state of a netmap ring that’s
used by other applications.

To use Netmap, an application requests the operating system to put a
NIC in netmap mode, which detaches the interface from the host networking
stack. Applications are able to also communicate with the host TCP/IP
stack via two special netmap rings that map to the host stack. Netmap does
not require specific network hardware and is fully integrated to FreeBSD
and Linux kernels with minimal modifications. Netmap reduces per-packet
processing overhead significantly. A Netmap-based application that forwards
packets between NICs is able send and receive at peak packet rate of 14.88
Mpps on a 10 Gigabit NIC running on a single CPU core that is 20 times
higher than what POSIX APIs are able to achieve. For pktgen, a in-kernel
Linux packet generator, the per packet cost is reduced from 250ns needed by
the skbuf/mbuf-based API to 20 ns to 30 ns when Netmap is used. Netmap
achieves this improvement eliminating per-packet dynamic memory allocation,
reducing system call overhead with batching, and eliminating copying by
sharing buffers and metadata between kernel and userspace. Dynamic
memory allocation is eliminated by preallocating linear fixed-size packet
buffers when a device is moved to netmap mode. System call overhead is
reduced by issuing netmap system calls for large batches of packets. Data
copying is eliminated by allowing applications to directly access packet buffers
via memory mapping.

55

Hardware NIC

Kernel

Application

NIC
Queues

Netmap
Rings

Netmap
Ring

Netmap
Ring

TCP/IP
Stack

Figure 16: Netmap architecture. Hardware NIC queues are mapped
directly to application address space as netmap rings. Netmap exposes two
additional rings to communicate with the host operating system TCP/IP
stack.

56

8 Conclusions
Containers have become a viable light-weight alternative to hypervisors for
virtualizing applications over the past years, especially with the rise of Docker.
As we can see from our experimental evaluation results, Docker has the least
overhead of all virtualization techniques when configured to use bridged
networking. Hypervisor I/O virtualization techniques have also improved
over the years and the performance gap to bare metal and Docker is small
on KVM/QEMU with vhost-net. Unikernels like OSv are able to reduce the
performance gap even further making OSv running on KVM/QEMU the
second fastest virtualization technique after Docker. However, as we can see
from our OSv experimental evaluation results, unikernels are not mature
enough and have more performance overheads for some TCP workloads.
Deciding upon a virtualization technique depends on the application and
deployment requirements. If the inflexibility of running a single shared kernel
version is not an issue, containers are the fastest virtualization technique
for network intensive applications. For hypervisor-based virtualization, the
fastest technique for network intensive applications are unikernels.

Future work We would like to repeat the experiments on a 10 Gigabit NIC
to measure how virtualization technique overheads change when the NIC
performance improves. We also want to include a SR-IOV capable NIC as part
of the test scenarios to see how hardware virtualization techniques compare
to software virtualization techniques. It would also be interesting to compare
virtualization overheads on current generation of ARM CPUs that support
virtualization to see how machine architecture affect the overheads. We do
not expect big differences in overheads for the Xen hypervisor compared
to KVM/QEMU but it would be interesting to run the experiments also
on Xen for completeness. To make reproducing our experiments easier, we
are making the test scripts available in public at https://github.com/
penberg/virt-net-perf.

57

https://github.com/penberg/virt-net-perf
https://github.com/penberg/virt-net-perf

References
[1] VMware ESXi. www.vmware.com/products/esxi-and-esx/, 2002 (ac-

cessed May 13, 2016).

[2] iPerf - The TCP, UDP and SCTP network bandwidth measurement tool.
iperf.fr, 2003 (accessed May 13, 2016).

[3] PCI-SIG: Specifications. pcisig.com/specifications, 2004 (accessed
May 13, 2016).

[4] QEMU. www.qemu.org, 2005 (accessed May 13, 2016).

[5] OpenZFS. open-zfs.org/wiki/Main_Page, 2005 (accessed May 17,
2016).

[6] The "nuttcp" Network Performance Benchmark. www.nuttcp.net, 2005
(accessed May 17, 2016).

[7] memcached - a distributed memory object caching system. memcached.
org, 2005 (accessed October 7, 2015).

[8] Amazon Web Services (AWS) - Cloud Computing Services. aws.amazon.
com, 2006 (accessed May 13, 2016).

[9] memaslap: Load testing and benchmarking a server. docs.
libmemcached.org/bin/memaslap.html, 2007 (accessed May 13,
2016).

[10] VirtualBox. www.virtualbox.org, 2007 (accessed May 13, 2016).

[11] OpenJDK. openjdk.java.net, 2007 (accessed May 17, 2016).

[12] Microsoft Azure: Cloud Computing Platform & Services. azure.
microsoft.com, 2010 (accessed May 13, 2016).

[13] OpenStack Open Source Cloud Computing Software. www.openstack.
org, 2010 (accessed May 17, 2016).

[14] Compute Engine - IaaS - Google Cloud Platform. cloud.google.com/
compute/, 2012 (accessed May 13, 2016).

[15] Mutilate: high-performance memcached load generator. github.com/
leverich/mutilate, 2012 (accessed September 25, 2015).

[16] Docker - Build, Ship, and Run Any App, Anywhere. www.docker.com,
2013 (accessed May 17, 2016).

[17] etcd. coreos.com/etcd/, 2013 (accessed May 17, 2016).

58

www.vmware.com/products/esxi-and-esx/
iperf.fr
pcisig.com/specifications
www.qemu.org
open-zfs.org/wiki/Main_Page
www.nuttcp.net
memcached.org
memcached.org
aws.amazon.com
aws.amazon.com
docs.libmemcached.org/bin/memaslap.html
docs.libmemcached.org/bin/memaslap.html
www.virtualbox.org
openjdk.java.net
azure.microsoft.com
azure.microsoft.com
www.openstack.org
www.openstack.org
cloud.google.com/compute/
cloud.google.com/compute/
github.com/leverich/mutilate
github.com/leverich/mutilate
www.docker.com
coreos.com/etcd/

[18] Kubernetes - Accelerate Your Delivery. kubernetes.io, 2014 (accessed
May 17, 2016).

[19] Docker: Understand the architecture. docs.docker.com/engine/
understanding-docker/, 2016 (accessed May 13, 2016).

[20] Adams, Keith and Agesen, Ole: A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th international
conference on Architectural support for programming languages and
operating systems - ASPLOS-XII. Association for Computing Machinery
(ACM), 2006. http://dx.doi.org/10.1145/1168857.1168860.

[21] Agesen, Ole, Mattson, Jim, Rugina, Radu, and Sheldon, Jef-
frey: Software techniques for avoiding hardware virtualization ex-
its. In Presented as part of the 2012 USENIX Annual Techni-
cal Conference (USENIX ATC 12), pages 373–385, Boston, MA,
2012. USENIX, ISBN 978-931971-93-5. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/agesen.

[22] Arcangeli, Andrea, Eidus, Izik, and Wright, Chris: Increasing mem-
ory density by using ksm. In Proceedings of the 2009 Ottawa Linux
Symposium, pages 19–28. OLS, 2009.

[23] Atikoglu, Berk, Xu, Yuehai, Frachtenberg, Eitan, Jiang, Song, and
Paleczny, Mike: Workload analysis of a large-scale key-value store. Vol-
ume 40, page 53. Association for Computing Machinery (ACM), jun
2012. http://dx.doi.org/10.1145/2318857.2254766.

[24] Barham, Paul, Dragovic, Boris, Fraser, Keir, Hand, Steven, Harris, Tim,
Ho, Alex, Neugebauer, Rolf, Pratt, Ian, and Warfield, Andrew: Xen and
the art of virtualization. 2003. http://dx.doi.org/10.1145/945445.
945462.

[25] Barker, Sean, Wood, Timothy, Shenoy, Prashant, and Sitaraman,
Ramesh: An empirical study of memory sharing in virtual ma-
chines. In Presented as part of the 2012 USENIX Annual Tech-
nical Conference (USENIX ATC 12), pages 273–284, Boston, MA,
2012. USENIX, ISBN 978-931971-93-5. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/barker.

[26] Bellard, Fabrice: Qemu, a fast and portable dynamic translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Con-
ference, ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX As-
sociation. http://dl.acm.org/citation.cfm?id=1247360.1247401.

[27] Ben-Yehuda, Muli, Day, Michael D., Dubitzky, Zvi, Factor, Michael,
Har’El, Nadav, Gordon, Abel, Liguori, Anthony, Wasserman, Orit, and

59

kubernetes.io
docs.docker.com/engine/understanding-docker/
docs.docker.com/engine/understanding-docker/
http://dx.doi.org/10.1145/1168857.1168860
https://www.usenix.org/conference/atc12/technical-sessions/presentation/agesen
https://www.usenix.org/conference/atc12/technical-sessions/presentation/agesen
http://dx.doi.org/10.1145/2318857.2254766
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1145/945445.945462
https://www.usenix.org/conference/atc12/technical-sessions/presentation/barker
https://www.usenix.org/conference/atc12/technical-sessions/presentation/barker
http://dl.acm.org/citation.cfm?id=1247360.1247401

Yassour, Ben Ami: The turtles project: Design and implementation of
nested virtualization. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, pages 423–436,
Berkeley, CA, USA, 2010. USENIX Association. http://dl.acm.org/
citation.cfm?id=1924943.1924973.

[28] Biederman, Eric W and Networx, Linux: Multiple instances of the global
linux namespaces. In Proceedings of the 2006 Ottawa Linux Symposium,
volume 1, pages 101–112. OLS, 2006.

[29] Boutcher, David and Chandra, Abhishek: Does virtualization make disk
scheduling passé? ACM SIGOPS Operating Systems Review, 44(1):20,
mar 2010. http://dx.doi.org/10.1145/1740390.1740396.

[30] Canet, Benoît and Marti, Don: NFS on OSv or "How I Learned to
Stop Worrying About Memory Allocations and Love the Unikernel".
osv.io/blog/blog/2016/04/21/nfs-on-osv/, 2016 (accessed May 17,
2016).

[31] Cantrill, Bryan: KVM on illumos. http://dtrace.org/blogs/bmc/
2011/08/15/kvm-on-illumos/, 2011 (accessed May 13, 2016).

[32] Cheng, Luwei and Wang, Cho Li: vBalance. In Proceedings of the
Third ACM Symposium on Cloud Computing - SoCC 12. Association for
Computing Machinery (ACM), 2012. http://dx.doi.org/10.1145/
2391229.2391231.

[33] Dong, Yaozu, Dai, Jinquan, Huang, Zhiteng, Guan, Haibing, Tian,
Kevin, and Jiang, Yunhong: Towards high-quality I/O virtualization.
In Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference on - SYSTOR 09. Association for Computing Machinery
(ACM), 2009. http://dx.doi.org/10.1145/1534530.1534547.

[34] Dong, Yaozu, Li, Shaofan, Mallick, Asit, Nakajima, Jun, Tian, Kun,
Xu, Xuefei, Yang, Fred, and Yu, Wilfred: Extending xen with intel
virtualization technology. Intel Technology Journal, 10(3), 2006.

[35] Dong, Yaozu, Yang, Xiaowei, Li, Xiaoyong, Li, Jianhui, Tian, Kun, and
Guan, Haibing: High performance network virtualization with SR-IOV.
In HPCA - 16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture. Institute of Electrical & Electronics
Engineers (IEEE), jan 2010. http://dx.doi.org/10.1109/HPCA.2010.
5416637.

[36] Engler, D. R., Kaashoek, M. F., and OToole, J.: Exokernel: An op-
erating system architecture for application-level resource management.
In Proceedings of the fifteenth ACM symposium on Operating systems

60

http://dl.acm.org/citation.cfm?id=1924943.1924973
http://dl.acm.org/citation.cfm?id=1924943.1924973
http://dx.doi.org/10.1145/1740390.1740396
osv.io/blog/blog/2016/04/21/nfs-on-osv/
http://dtrace.org/blogs/bmc/2011/08/15/kvm-on-illumos/
http://dtrace.org/blogs/bmc/2011/08/15/kvm-on-illumos/
http://dx.doi.org/10.1145/2391229.2391231
http://dx.doi.org/10.1145/2391229.2391231
http://dx.doi.org/10.1145/1534530.1534547
http://dx.doi.org/10.1109/HPCA.2010.5416637
http://dx.doi.org/10.1109/HPCA.2010.5416637

principles - SOSP 95. Association for Computing Machinery (ACM),
1995. http://dx.doi.org/10.1145/224056.224076.

[37] Felter, Wes, Ferreira, Alexandre, Rajamony, Ram, and Rubio, Juan: An
updated performance comparison of virtual machines and linux contain-
ers. In 2015 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). Institute of Electrical & Electronics
Engineers (IEEE), mar 2015. http://dx.doi.org/10.1109/ISPASS.
2015.7095802.

[38] Goldberg, Robert P: Architectural principles for virtual computer sys-
tems. PhD thesis, Harvard University, 1973.

[39] Gupta, Diwaker, Lee, Sangmin, Vrable, Michael, Savage, Stefan, Snoeren,
Alex C., Varghese, George, Voelker, Geoffrey M., and Vahdat, Amin:
Difference engine: Harnessing memory redundancy in virtual machines.
Communications of the ACM, 53(10):85, oct 2010. http://dx.doi.
org/10.1145/1831407.1831429.

[40] Hajnoczi, Stefan: QEMU Internals: vhost architecture. http://blog.
vmsplice.net/2011/09/qemu-internals-vhost-architecture.
html, 2011 (accessed May 13, 2016).

[41] Har’El, Nadav, Gordon, Abel, Landau, Alex, Ben-Yehuda, Muli, Traeger,
Avishay, and Ladelsky, Razya: Efficient and scalable paravirtual i/o
system. In Presented as part of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 231–242, San Jose, CA,
2013. USENIX, ISBN 978-1-931971-01-0. https://www.usenix.org/
conference/atc13/technical-sessions/presentation/har’el.

[42] Hwang, Jinho, Zeng, Sai, Wu, Frederick, and Wood, Timothy: A
component-based performance comparison of four hypervisors. In 2013
IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM 2013), Ghent, Belgium, May 27-31, 2013, pages 269–
276, 2013. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?
arnumber=6572995.

[43] Jones, Rick: Care and Feeding of Netperf 2.6.X. www.netperf.org/svn/
netperf2/tags/netperf-2.6.0/doc/netperf.html, 2012 (accessed
July 30, 2015).

[44] Kim, Jinchun, Fedorov, Viacheslav, Gratz, Paul V., and Reddy, A. L.
Narasimha: Dynamic memory pressure aware ballooning. In Proceedings
of the 2015 International Symposium on Memory Systems - MEMSYS
15. Association for Computing Machinery (ACM), 2015. http://dx.
doi.org/10.1145/2818950.2818967.

61

http://dx.doi.org/10.1145/224056.224076
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1145/1831407.1831429
http://dx.doi.org/10.1145/1831407.1831429
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html
https://www.usenix.org/conference/atc13/technical-sessions/presentation/har'el
https://www.usenix.org/conference/atc13/technical-sessions/presentation/har'el
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6572995
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6572995
www.netperf.org/svn/netperf2/tags/netperf-2.6.0/doc/netperf.html
www.netperf.org/svn/netperf2/tags/netperf-2.6.0/doc/netperf.html
http://dx.doi.org/10.1145/2818950.2818967
http://dx.doi.org/10.1145/2818950.2818967

[45] Kivity, Avi, Kamay, Yaniv, Laor, Dor, Lublin, Uri, and Liguori, Anthony:
kvm: the linux virtual machine monitor. In Proceedings of the 2005
Ottawa Linux Symposium, volume 1, pages 225–230, 2007.

[46] Kivity, Avi, Laor, Dor, Costa, Glauber, Enberg, Pekka, Har’El, Nadav,
Marti, Don, and Zolotarov, Vlad: Osv—optimizing the operating system
for virtual machines. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 61–72, Philadelphia, PA, June 2014. USENIX
Association, ISBN 978-1-931971-10-2. https://www.usenix.org/
conference/atc14/technical-sessions/presentation/kivity.

[47] Liu, Jiuxing: Evaluating standard-based self-virtualizing devices: A
performance study on 10 GbE NICs with SR-IOV support. In 2010
IEEE International Symposium on Parallel & Distributed Processing
(IPDPS). Institute of Electrical & Electronics Engineers (IEEE), 2010.
http://dx.doi.org/10.1109/IPDPS.2010.5470365.

[48] Madhavapeddy, Anil, Mortier, Richard, Rotsos, Charalampos, Scott,
David, Singh, Balraj, Gazagnaire, Thomas, Smith, Steven, Hand, Steven,
and Crowcroft, Jon: Unikernels: Library operating systems for the cloud.
ACM SIGPLAN Notices, 48(4):461, apr 2013. http://dx.doi.org/10.
1145/2499368.2451167.

[49] Martins, Joao, Ahmed, Mohamed, Raiciu, Costin, Olteanu, Vladimir,
Honda, Michio, Bifulco, Roberto, and Huici, Felipe: Clickos and the art
of network function virtualization. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), pages 459–473,
Seattle, WA, April 2014. USENIX Association, ISBN 978-1-931971-09-6.

[50] Morabito, Roberto, Kjällman, Jimmy, and Komu, Miika: Hypervisors
vs. lightweight virtualization: A performance comparison. In Proceedings
of the 2015 IEEE International Conference on Cloud Engineering, IC2E
’15, pages 386–393, Washington, DC, USA, 2015. IEEE Computer
Society, ISBN 978-1-4799-8218-9. http://dx.doi.org/10.1109/IC2E.
2015.74.

[51] Peter, Simon, Li, Jialin, Zhang, Irene, Ports, Dan R. K., Woos,
Doug, Krishnamurthy, Arvind, Anderson, Thomas, and Roscoe, Tim-
othy: Arrakis: The operating system is the control plane. In 11th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 14), pages 1–16, Broomfield, CO, October 2014. USENIX
Association, ISBN 978-1-931971-16-4. https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/peter.

[52] Popek, Gerald J. and Goldberg, Robert P.: Formal requirements for
virtualizable third generation architectures. Communications of the

62

https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
http://dx.doi.org/10.1109/IPDPS.2010.5470365
http://dx.doi.org/10.1145/2499368.2451167
http://dx.doi.org/10.1145/2499368.2451167
http://dx.doi.org/10.1109/IC2E.2015.74
http://dx.doi.org/10.1109/IC2E.2015.74
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter

ACM, 17(7):412–421, jul 1974. http://dx.doi.org/10.1145/361011.
361073.

[53] Porter, Donald E., Boyd-Wickizer, Silas, Howell, Jon, Olinsky, Reuben,
and Hunt, Galen C.: Rethinking the library OS from the top down.
ACM SIGARCH Computer Architecture News, 39(1):291, mar 2011.
http://dx.doi.org/10.1145/1961295.1950399.

[54] Pratt, Ian, Fraser, Keir, Hand, Steven, Limpach, Christian, Warfield,
Andrew, Magenheimer, Dan, Nakajima, Jun, and Mallick, Asit: Xen 3.0
and the art of virtualization. In Proceedings of the 2005 Ottawa Linux
Symposium, volume 2, pages 73–86. OLS, 2005.

[55] Rao, Jia and Zhou, Xiaobo: Towards fair and efficient SMP vir-
tual machine scheduling. In Proceedings of the 19th ACM SIG-
PLAN symposium on Principles and practice of parallel programming
- PPoPP 14. Association for Computing Machinery (ACM), 2014.
http://dx.doi.org/10.1145/2555243.2555246.

[56] Rizzo, Luigi: netmap: A novel framework for fast packet i/o.
In 2012 USENIX Annual Technical Conference (USENIX ATC
12), pages 101–112, Boston, MA, June 2012. USENIX Associa-
tion, ISBN 978-931971-93-5. https://www.usenix.org/conference/
atc12/technical-sessions/presentation/rizzo.

[57] Rizzo, Luigi, Lettieri, Giuseppe, and Maffione, Vincenzo: Speeding up
packet i/o in virtual machines. In Architectures for Networking and
Communications Systems. Institute of Electrical & Electronics Engineers
(IEEE), oct 2013. http://dx.doi.org/10.1109/ANCS.2013.6665175.

[58] Russell, Rusty: Virtio: Towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review, 42(5):95–103, jul
2008. http://dx.doi.org/10.1145/1400097.1400108.

[59] Sandberg, Russel, Goldberg, David, Kleiman, Steve, Walsh, Dan, and
Lyon, Bob: Design and implementation of the sun network filesystem. In
Proceedings of the Summer USENIX conference, pages 119–130, 1985.

[60] Soltesz, Stephen, Pötzl, Herbert, Fiuczynski, Marc E., Bavier, Andy,
and Peterson, Larry: Container-based operating system virtualization:
a scalable, high-performance alternative to hypervisors. Volume 41,
page 275. Association for Computing Machinery (ACM), jun 2007.
http://dx.doi.org/10.1145/1272998.1273025.

[61] Song, Xiang, Shi, Jicheng, Chen, Haibo, and Zang, Binyu: Schedule
processes, not VCPUs. In Proceedings of the 4th Asia-Pacific Workshop
on Systems - APSys 13. Association for Computing Machinery (ACM),
2013. http://dx.doi.org/10.1145/2500727.2500736.

63

http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1145/1961295.1950399
http://dx.doi.org/10.1145/2555243.2555246
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
http://dx.doi.org/10.1109/ANCS.2013.6665175
http://dx.doi.org/10.1145/1400097.1400108
http://dx.doi.org/10.1145/1272998.1273025
http://dx.doi.org/10.1145/2500727.2500736

[62] Tu, Cheng Chun, Ferdman, Michael, Lee, Chao tung, and Chiueh,
Tzi cker: A comprehensive implementation and evaluation of direct
interrupt delivery. In Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments - VEE 15.
Association for Computing Machinery (ACM), 2015. http://dx.doi.
org/10.1145/2731186.2731189.

[63] Uhlig, Volkmar, LeVasseur, Joshua, Skoglund, Espen, and Dannowski,
Uwe: Towards scalable multiprocessor virtual machines. In Proceed-
ings of the 3rd Conference on Virtual Machine Research And Technol-
ogy Symposium - Volume 3, VM’04, pages 4–4, Berkeley, CA, USA,
2004. USENIX Association. http://dl.acm.org/citation.cfm?id=
1267242.1267246.

[64] Waldspurger, Carl A.: Memory resource management in VMware ESX
server. ACM SIGOPS Operating Systems Review, 36(SI):181, dec 2002.
http://dx.doi.org/10.1145/844128.844146.

[65] Wang, Guohui and Ng, T. S. Eugene: The impact of virtualization on
network performance of amazon EC2 data center. In 2010 Proceedings
IEEE INFOCOM. Institute of Electrical & Electronics Engineers (IEEE),
mar 2010. http://dx.doi.org/10.1109/INFCOM.2010.5461931.

[66] Whiteaker, Jon, Schneider, Fabian, and Teixeira, Renata: Explaining
packet delays under virtualization. ACM SIGCOMM Computer Com-
munication Review, 41(1):38, jan 2011. http://dx.doi.org/10.1145/
1925861.1925867.

64

http://dx.doi.org/10.1145/2731186.2731189
http://dx.doi.org/10.1145/2731186.2731189
http://dl.acm.org/citation.cfm?id=1267242.1267246
http://dl.acm.org/citation.cfm?id=1267242.1267246
http://dx.doi.org/10.1145/844128.844146
http://dx.doi.org/10.1109/INFCOM.2010.5461931
http://dx.doi.org/10.1145/1925861.1925867
http://dx.doi.org/10.1145/1925861.1925867

	Introduction
	Virtualization Techniques
	Virtualization Overheads
	Contributions
	Roadmap

	Background on Virtualization Techniques
	Hypervisor-Based Virtualization
	Full Virtualization
	Paravirtualization
	Hardware-Assisted Virtualization
	Nested Virtualization

	I/O Virtualization
	Full Device Emulation
	Paravirtualization
	Direct I/O

	Unikernels
	Arrakis
	ClickOS
	OSv

	Container-Based Virtualization
	Docker
	Kubernetes

	Summary

	Virtualization Overheads
	CPU
	Double Scheduling
	Scheduling Fairness
	Asymmetric CPUs
	Interrupts

	Memory
	Memory Reclamation
	Memory Duplication

	Networking
	Packet Processing
	Network Address Translation (NAT)
	Unstable Network

	Disk
	I/O Scheduling
	Layered Filesystems

	Summary

	Methodology
	Evaluation Setup
	Netperf
	Memcached and Mutilate
	Summary

	Evaluation Using Netperf
	TCP Stream
	TCP Reverse Stream (TCP_MAERTS)
	TCP Request/Response (TCP_RR)
	TCP Connect/Request/Response (TCP_CRR)
	UDP Stream (UDP_STREAM)
	UDP Request/Response (UDP_RR)
	Summary and Discussion

	Evaluation Using Memcached
	Update Operations
	Read Operations
	Mixed Read and Write Operations
	Summary and Discussion

	Related Work
	Evaluations
	Netmap

	Conclusions
	References

