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Abstract

Wind-induced operational variability is one of the major challenges for structural health moni-
toring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive
features often show an even bigger sensitivity to operational variability. In this study a composite
cantilever was subjected to multiple mass configurations, velocities and angles of attack in a con-
trolled wind tunnel environment. A small-scale impact damage was introduced to the specimen and
the structural response measurements were repeated. The proposed damage detection methodology is
based on automated operational modal analysis. A novel baseline preparation procedure is described
that reduces the amount of user interaction to the provision of a single consistency threshold. The pro-
cedure starts with an indeterminate number of operational modal analysis identifications from a large
number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios
that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is
then applied to successfully detect the damage under varying severities of operational variability and
with various degrees of knowledge about the present operational conditions. The damage detection
capabilities of the proposed methodology were found to be excellent under varying velocities and an-
gles of attack. Damage detection was less successful under joint mass and wind variability but could
be significantly improved through the provision of the currently encountered operational conditions.

Keywords— structural health monitoring; baseline; training set; wind; environmental and operational
variability; operational modal analysis

1 Introduction

Modal parameters have several unique properties that make them excellent damage-sensitive feature
candidates for Structural Health Monitoring (SHM). They are by far the single best investigated and
understood dynamic system property. Their sensitivity to damage was proven in a myriad of analytical,
numerical and experimental studies [1, 2, 3, 4]. They can be used to tune numerical models from experi-
mental data and in the opposite direction to test experimentally-trained SHM systems with numerically
generated damage scenarios. The major disadvantage of using modal parameters as damage-sensitive
features is the non-trivial and sometimes unreliable automated modal parameter identification process.
Until recently no robust automatic modal parameter extraction techniques existed and modal parameters
were manually selected by experienced users. Over the last decade the automated extraction of modal
properties from ambiently excited structures has received significantly more attention and a number of
Automated Operational Modal Analysis (AOMA) methodologies have been proposed [5, 6, 7, 8]. How-
ever, only a small number of studies were published were AOMA was integrated into a fully functional
SHM system and tested with experimental data [9, 10, 11, 12]. All hitherto proposed full SHM method-
ologies that are based on AOMA rely on manual user interaction and on manually tuned parameters.
The setup process heavily relies on user experience and expert knowledge. Furthermore, consideration of
Operational and Environmental Variability (OEV) remains a challenging task, especially when neither
explicit measurements of the OEV nor representative samples of the outlier class are available.
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The success of a SHM system strongly depends, among other things, on the careful preparation of
the training data. General AOMA algorithms return an indeterminate number of modes from each
dataset. These have to be sorted into coherent groups and filtered for consistency. Pre-processing for
AOMA-based SHM usually involves iterative data processing and manual user interaction. The exact
procedure is rarely described since it involves manual parameter tuning, repetitive visualisation and
re-partitioning and sometimes even the manual assignment of observations into clusters based on expert
judgement. The handling of closely spaced natural frequencies is especially challenging. Deraemaeker
et al. [13] investigated a vibration-based SHM methodology using a numerical bridge model. They
manually selected the initial set of baseline modes from a single dataset using manual Operational Modal
Analysis (OMA) and determined appertaining modes from other datasets through a frequency-based
modal tracking procedure. Devriendt et al. [7] investigated a parked wind turbine and manually selected
the modes of interest from a single reference dataset as well. They introduced a two-stage tracking
procedure based on frequency distances and Modal Assurance Criterion (MAC). The procedure limits
the maximum MAC and frequency shifts between the reference modes and the modes obtained through
tracking to 0.8 and 5% respectively. Schwochow and Jelicic [14] proposed a pole-weighted MAC for
tracking in the context of in-flight flutter detection. Again, modes were only tracked within an arbitrary
chosen but not further specified region around the manually chosen reference modes. Magalhães et al. [11]
showed results of a 2 year arch bridge monitoring campaign but did not describe the baseline preparation
or tracking procedure used. Reynders et al. [15] used AOMA to extract four natural frequencies that
were used as features in a damage detection study on a three-span concrete bridge. Again, no details
were given on training set preparation. All the listed studies have in common that substantial manual
effort is required or that a number of case-dependent parameters have to be selected during the setup
procedure before the AOMA identifications are transformed into a form that is suitable for statistical
data modelling.

OEV is one of the major obstacles to the comprehensive introduction of continuous vibration-based
SHM. Multiple approaches have been proposed to account for OEV. The most straightforward approach
is the direct measurement of the dependent variables (e.g. natural frequencies, damping ratios, mode
shapes) and independent operational and environmental variables (e.g. temperature, wind velocity, wind
direction). A (static) regression model can then be used to remove the OEV, effectively creating new,
OEV-normalised features [16]. Regression models with temporal terms can be used to capture dynamic
interactions. Peeters and de Roeck [9] used an Autoregressive Exogenous (ARX) model to capture the
dynamics between temperature and natural frequency shifts. These or similar approaches can be used to
model and monitor operation points that were not present in the original training set, as long as they can
be represented by the regression model. However, direct and thorough measurement of all relevant OEV
is seldom possible. Another approach is to get sufficient samples under all encounterable operational and
environmental conditions. In the context of SHM a number of dimensionality reduction or decomposition
techniques like Factor Analysis (FA), Principal Component Analysis (PCA) or Singular Value Decom-
position (SVD) were proposed to identify the OEV from the baseline and distinguish these changes from
damage-induced changes [13, 17]. The problem can also be stated as a data domain description or one-
class classification problem [18]. Partial measurements of the OEV can be incorporated into the domain
description approach by appending the Operational and Environmental Conditions (OEC) measure-
ments to the feature vector. The vast majority of SHM studies under OEV concentrate on temperature
variability [11, 15, 9]. Devriendt et al. [7] also investigated the influence of tidal levels. In laboratory
studies OEV is often simulated through mass and/or stiffness modifications [16, 19]. Damage detection
under wind-induced operational variability was not thoroughly investigated yet. Specifically, limited
publications have considered the effect of wind velocity, and no publications to date have considered the
effect of Angle Of Attack (AOA), which are both critical to understand for aircraft and wind turbine
blade applications. Peeters and de Roeck [9] found no relationship between the four extracted natural
frequencies of a concrete bridge and the measured wind characteristics. However, it is well known that
wind characteristics have a substantial influence on modal properties, especially if the structure under
consideration is a slender cantilever [20, 21, 22, 23].

This study introduces two novel contributions. First, a fully automated baseline preparation methodol-
ogy is described that starts with individual AOMA identifications from a large number of datasets M .
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The number of modes identified from each of these datasets is indeterminate and they are not grouped in
any way. The goal of the automated baseline generation procedure is to single out consistently identified
modes and order them into cohesive sets. The end product of the procedure is the N × p matrix X,
where each row of X represents one measurement of the feature vector xT

i . p is the number of features
extracted from the selected modal properties. The only user-defined parameter of the procedure is the
desired consistency ratio N/M , which can be directly related to the anticipated false alarm rate. The pro-
cedure does not include any arbitrarily chosen thresholds. Instead, clustering and statistical modelling
is used to derive any necessary thresholds from the actual data. This, in principle, allows the procedure
to automatically adapt to different sensor numbers and types, OEV intensities and inter-frequency dis-
tances. Second, the aforementioned baseline preparation method is integrated into a full SHM system
to detect an impact damage on a composite cantilever. The cantilever was subjected to varying wind
velocities and angles of attack in a wind tunnel. Furthermore, the mass of the specimen was slightly
modified in two steps to introduce a third operational variability. The specimen was then subjected to
an impact damage and all measurements were repeated. The damage-induced modal parameter changes
are significantly smaller than the variability introduced by the OEV. Damage detection is investigated
under different severities of operational variability as well as with and without explicit measurements of
the OEC.

2 Methodology

2.1 Experimental setup and data

To assess the performance of the proposed SHM methodology under varying wind excitation experimental
data from a wind tunnel study are used. The experimental setup is shown in figure 1. The investigation
was conducted in a closed-loop wind tunnel with an open test section. The investigated specimen was
a glass fiber-reinforced polymer plate (500 mm × 90 mm × 4 mm), which was subjected to different
flow conditions. The structural response of the specimen was measured using three sensor types: Fiber
Bragg Grating Sensorss (FBGSs), a unidirectional piezoelectric (PZT) accelerometer and a piezoelectric
strain sensor. Only measurements from the two piezoelectric sensors are used in this study. These were
recorded at a sampling rate of 1600 Hz. The dynamic properties of the inflowing wind were measured
using a hot-wire anemometer. Three angles of attack α1...3 = 0°, 1°, 2° and three inflow velocities v1...3 =
70 km/h, 100 km/h, 130 km/h were investigated. The dynamic pressure is doubled at every velocity
step. Three mass configurations were investigated: The 390 g specimen without additional mass (m0),
an additional 16 g mass at the upper attachment point (m1), a second additional 16 g mass at the lower
attachment point (m2). The two mass attachment points are shown in figure 1. All measurements were
repeated after damage was introduced to the specimen. In total 54 individual operation points were
measured. Measurements were conducted for approximately 40 minutes at every operation point and
split into 64 equally sized datasets per operation point. Further information about the experimental
setup were published in [22].

The result of the impact damage is shown in figure 2. The damage was created with a drop test rig.
A damage scenario was chosen through pre-testing that created a modal parameter shift in the same
range as the investigated OEV. The dimensions of the final damage are approximately 20 mm × 20 mm.
The 20 J impact resulted in a palpable dent on the impact side and clearly visible fiber breakage on the
opposite side. The damage was introduced at the symmetry plane of the specimen, placed at the height
of the piezoelectric strain sensor. The former location of the piezoelectric sensor is indicated with red
color in figure 2.

2.2 Definitions

The relative difference between scalar (real or complex) values Xi and Xj is calculated using the formu-
lation in equation (1) throughout this text.
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Figure 1: Wind tunnel setup.

Figure 2: Impact damage (white cross).

dXi,j = |Xi − Xj |
max(|Xi|, |Xj |) (1)

Equation (1) is used to measure the relative natural frequency distance dfu, the relative damping distance
dξ, the relative pole distance dλ and the relative mean phase deviation dMPD. The Modal Assurance
Criterion (MAC), which defines a relative correlation between two modes, is defined according to Eq.
(2).
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MACi,j =

∣∣∣φT
i · φ∗

j

∣∣∣2(
φT

i · φ∗
i

) (
φT

j · φ∗
j

) (2)

where φi and φj are mode shapes, which can be either real or complex. The Mean Phase Deviation
(MPD) is a measure of mode shape complexity. It describes the mean phase angle deviation of the
individual mode shape components from a straight line in the complex plane. It is calculated using a
total least squares fit of the mode shape in the complex plane (Eq. (3)) and a weighted sum of phase
angle deviations (Eq. (4)) [6].

USVT = [Re(φi) Im(φi)] (3)

MPDi =

∑Nφ

n=1 wn arccos
∣∣∣∣Re(φjn)V22−Im(φin)V12√

V 2
12+V 2

22|φin|

∣∣∣∣∑Nφ

n=1 wn

(4)

where V12 and V22 are the individual components of the right singular matrix of the singular value
decomposition USVT . Nφ is the number of mode shape components, wn are weighting factors that are
chosen as |φin| in this work.

2.3 Automatic preparation of the baseline dataset

The automated baseline preparation procedure described in this section is one of the major contributions
of this study. The goal is to significantly reduce user interaction and to automatically derive necessary
parameters from the statistical properties of the actual data.

2.3.1 Automated operational modal analysis input data

The procedure starts with AOMA identifications from a large number of baseline datasets M , where
m = 1, 2, . . . , M . Each AOMA baseline dataset consists of Km poles λ1 . . . λKm and Km unscaled mode
shapes φ1 . . .φKm . The number of modes Km identified with AOMA may vary from dataset to dataset.
The algorithm will work with any general AOMA procedure. Here we use a data-driven Stochastic
Subspace Identification (SSI) method together with a fully automated stabilisation-based procedure
similar to the one proposed by Reynders et al. [6].

Before the AOMA data are processed they have to be randomly shuffled on the dataset scale. This will
allow to account for sudden changes of OEC which otherwise may be identified as separate modes. In the
case of the present dataset shuffling is required since only stepwise operational changes were measured.
For datasets with only continuous OEV shuffling is not required.

2.3.2 Find nearest neighbours from consecutive datasets

Start with the first baseline dataset and calculate the distances between each mode λm,i,φm,i in the
current dataset and all modes in the subsequent dataset λm+1,j ,φm+1,j . The distance between two
modes can be measured in a variety of ways, here the sum of normalized pole distance and MAC is
used:

dpMACi,j = |λi − λj |
max(|λi|, |λj |) + (1 − MACi,j) (5)
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The goal in this step is to find the nearest neighbour from dataset m + 1 for each mode in dataset
m. The neighbours for the last dataset M are found from the first dataset. Hence, the final result of
the procedure is a single nearest neighbour for each mode from each dataset and the dpMAC distance
between the two.

Consistently identified modes will have nearest neighbours in near proximity to them, whereas modes
that are not consistently identified, false identifications or modes that are only identified at certain OEC
will tend to have significantly larger distances to the nearest neighbour.

To achieve finer separation of the modes for subsequent analysis a vector of multiple distance measures
between the nearest neighbours according to Eq. (5) is created:

pi = [ dλi,j dfui,j dξi,j (1−MACi,j) dMP Di,j ]T (6)

The mode distance vector p consists of the relative eigenvalue difference dλ, the relative natural frequency
difference df , the relative damping ratio difference dξ, the Modal Assurance Criterion MAC and the
Mean Phase Deviation MPD. These properties were chosen since they all represent relative distance
measures between modes from consecutive datasets. Together they include information from all extracted
modal properties (natural frequencies, damping ratios and mode shapes). The individual features in Eq.
(6) all resemble similar probability distributions driven by the nearest-neighbour detection procedure.
Similar probability distributions are important for the subsequent feature transformation described in
the next section.

2.3.3 Separate observations into a low-distance and large-distance neighbours

The nearest-neighbour distances in Eq. (6) can be used to separate all baseline modal observations
into a small-distances and a large-distances cluster. The small-distances cluster congregates modes
which are consistently identified throughout the whole baseline dataset. To separate the modes into
these two sets two challenges have to be overcome: First, the nearest-neighbor detection process results
in heavily skewed feature distributions. Classic clustering methods like k-means or Gaussian Mixture
Model (GMM) expect the data to be normally distributed. Second, the procedure must be able to adapt
in case that the small-distances cluster is significantly larger than the large-distances cluster.

The first challenge can be overcome by proper transformation and normalisation of the distance vector
p. Therefore, the distance vector (Eq. (6)) is transformed into a shape that more resembles a normal
distribution. The power transformation is done according to Eq. (7) using the approach described by
Box and Cox [24].

hT,i(m) =
{

(pγm
i (m) − 1) · γ−1

m , γm 6= 0
ln (pi(m)) , γm = 0

(7)

The optimal transformation parameter γm for each individual feature variable pi(m) is found by a profile
log-likelihood maximisation.

Features with large dispersion will dominate the clustering process [25]. To give every variable equal
weight the distance vector is normalized to standard scores using the standard deviation σ (hT,i(m)) and
the mean h̄T,i(m) of the individual (transformed) features:

hN,i(m) =
(
hT,i(m) − h̄T,i(m)

)
/σ (hT,i(m)) (8)

Equation (8) shows the final form of the transformed and normalised distance vector hN . To overcome
the challenge of dissimilar size clusters the two-cluster GMM model shown in Eq. (9) is fit to the data
using Expectation-Maximization (EM) [26].
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p(hN ) =
2∑

k=1
πkN (hN |µk,Σk) (9)

where 0 < πk < 1,
2∑

k=1
πk = 1

The distance vector hN is normalised to standard scores and it is assumed that that there are significantly
more low-distance neighbours than large-distance neighbours. Therefore, the cluster centroids µ1 and
µ2 are initialized with −1 and +2 respectively. Furthermore, π1 = 0.9 and π2 = 0.1 are used as initial
weights. The transformation according to Eq. (7) will stretch the low-distance range and compress the
large-distance range. Hence, the covariance matrices Σ1 and Σ2 are initialized using I and 0.1 · I
respectively, where I is the identity matrix. The result of the clustering procedure will be two sets S1
and S2 that contain the modes with low-distance neighbours and large-distance neighbours.

2.3.4 Separate observations into consistent sets using hierarchical clustering

The next step is to separate the individual modes from all baseline datasets into consistent clusters that
each represent one physical mode of the system. Agglomerative hierarchical clustering is the most popular
approach for tasks where the final number of clusters is not known beforehand [25]. All agglomerative
hierarchical clustering procedures can be described in three steps:

1. Each observation starts in its own cluster.

2. The two nearest clusters are combined into a new cluster.

3. The procedure is repeated until all observations are contained in a single cluster.

For the issue at hand the procedure is stopped when the inter-cluster distance between two nearest
clusters exceeds a certain distance threshold. The distance between the clusters is measured according
to Eq. (5) and the threshold is derived from the dpMAC Probability Density Function (PDF) estimate of
the low-distance set S1. The threshold d̃dpMAC is chosen at the 99th percentile of a Weibull distribution
fitted to the S1 subset of the data:

P
(
dpMACS1 ≤ d̃dpMAC

)
= 0.99 (10)

Inter-clusters distances are calculated using average linkage

dr,s = 1
nrns

nr∑
i=1

ns∑
j=1

dist (xri, xsj) (11)

where dist is the distance function according to Eq. (5), nr and ns are the total number of individual
members xr and xs in the clusters r and s respectively. The procedure returns Mt sets Shc,1 . . . Shc,Mt

that contain varying number of observations. The observations in each individual cluster Shc,m are
homogeneous according to Eq. (5).

Hierarchical clustering in combination with a sophisticated distance measure is computationally expen-
sive. It is possible to significantly decrease the computational effort by more than an order of magnitude
without altering the outcome of the procedure. The basic idea is to pre-cluster the whole group of
baseline modes into smaller sub-clusters using a simple distance measure. The sub-clusters are then
examined individually in a subsequent clustering step using the procedure described above. We use the
pole distance dλ as the pre-cluster similarity measure and choose the cutoff distance d̃dλ to include 99.9%
of all low-distance neighbours in S1 according to the fitted probability distribution.
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2.3.5 Outlier rejection

In the next step an outlier rejection technique is used to remove observations with abnormal natural
frequencies and damping ratios from every set Shc,m. The sets Shc,m are homogeneous by means of Eq.
(5). Hence, one could argue that outliers should have been removed during the hierarchical clustering
procedure. However, the cutoff distance d̃dpMAC is derived from a mixture of nearest neighbour distances
from different physical modes. Furthermore, Eq. (5) is a sum of three properties with considerably
different identification variances. Hence, outlier in one property may be hidden within the variance of
another. This leads to unnecessarily strong variances of individual features and consequently to a lower
damage detection rate.

The outlier removal procedure used in this study is the modified Thompson Tau technique [27]. The
procedure considers only one outlier at a time and is repeated until no more outliers are found. The
algorithm first looks for the observation with the largest absolute value deviation from the mean:

δ = max
(∣∣∣Xi − X̄

∣∣∣) (12)

In our case the dummy variable X is either the natural frequency fu or the damping ratio ξ. In the next
step the modified Thompson τ is calculated from the student’s t PDF.

τ =
tα/2 · (n − 1)

√
n ·

√
n − 2 + t2

α/2

(13)

Here n is the number of observations and tα/2 is the critical student’s t value, which is a function of
the number of observations n and the significance level α. tα/2 can be calculated from the inverse of
student’s t cumulative distribution function. α is set to 0.01 to limit the removal to strong outliers. The
final step of the algorithm is to test whether the absolute value deviation is larger than τ multiplied
by the standard deviation of X, in which case the data point is rejected (Eq. (14)). The algorithm is
repeated, starting from Eq. (12), until no more outliers are found.

δ > τ · σ (X) (14)

2.3.6 Feature vector preparation

The clusters Shc,m returned after the hierarchical clustering step may contain multiple observations from
the same dataset. This can happen when e.g. the AOMA algorithm identifies two modes with nearly
identical modal properties from a single dataset. Since there cannot be two representations of the same
feature in one row of a feature vector, these duplications have to be removed. Therefore, the dpMAC
distances of all observations from a single dataset to the cluster centroid are calculated. All but the
nearest duplication are removed from the cluster. The procedure is repeated for every cluster.

The number of observations in every cluster Shc,m will vary. Some clusters will contain observations from
nearly every baseline dataset. Others will consist of very few observations. Finally, there may be modes
that are not well excited, that show a significantly higher identification variance than the remaining
modes, that are not consistently detected or that are only detected or not detected under certain OEC.
These will only be detected in a certain proportion of the baseline data. Hence, there exists a trade-off
between the number of modes that can be used for subsequent damage detection and the percentage of
baseline datasets that are feature-complete, i.e. have an observation in every cluster Shc,m. The ratio
between the number of observation Mhc,m in a cluster Shc,m and the total number of baseline datasets
M can be used as a threshold to control this trade-off.

ϑ ≤Mhc,m

M
(15)

Only the Kfc clusters with a minimum number of objects ϑ·M are retained for subsequent analysis.
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The final step of the baseline data preparation procedure is to remove all datasets that do not have a
representative in each remaining cluster. An alternative approach, which is not pursued here, would be
to reconstruct the missing mode information from datasets where these modes were identified (missing
value treatment). The number of feature-complete baseline datasets is N ≤ Mhc,m. These N datasets
are used to extract the p individual features for the feature vector X that are used for subsequent damage
detection. In this work natural frequencies and damping ratios are used as features. Hence, one row xT

i

of the feature vector X is defined as

xi =
[
fu,i,1, . . . , fu,i,Kfc

, ξu,i,1, . . . , ξu,i,Kfc

]T
(16)

where fu,i,1, . . . , fu,i,Kfc
are the Kfc natural frequencies extracted from the ith feature-complete dataset.

ξu,i,1, . . . , ξu,i,Kfc
are the damping ratios extracted from the same dataset. The individual steps of the

baseline preparation procedure are summarized in figure 3.

2.4 Modal tracking

The baseline preparation procedure returns Kfc clusters of consistently identified modes. In SHM newly
arriving measurements are compared to the baseline dataset or training model to examine whether the
dataset represents an anomaly or not. Since the number of modes identified from the newly arriving
dataset is again indeterminate and the presence of modes that were also selected for the baseline set is
not guaranteed, a procedure is needed that matches modes identified from the new dataset with modes
that were selected for the baseline dataset.

First, if the number of modes in the new dataset Mnew is smaller than the number of modes in the
baseline Kfc, the dataset is skipped. This is a rare event, since the number of modes selected for the
baseline is smaller than the mean number of identified modes. In the next step the distance according
to Eq. (5) between each mean baseline mode k and every mode in the new dataset l is calculated. This
results in a Kfc × Mnew dpMAC distance matrix DMT , where Kfc ≤ Mnew. The mean values of the
baseline poles are calculated according to

λ̄k = 1
N

N∑
i=1

λk,i (17)

where λk,i is the pole from the ith dataset in cluster k and λ̄k is the mean cluster pole. The mean cluster
mode shape φ̄k is calculated according to

USVT = [φk,1, . . . ,φk,N ]
φ̄k = U [:,1] (18)

where U [:,1] is the first column vector of the unitary matrix U , which in turn is calculated from the
SVD of all mode shapes φk,1, . . . ,φk,N in cluster k. The affiliation between the pair of modes λ̄k, φ̄k

and λnew,l,φnew,l with the smallest dpMAC distance DMT,k,l is saved. The corresponding row k and
column l are removed from the distance matrix DMT . The procedure is repeated until a mode from the
new dataset was associated with every baseline cluster. If the number of new mode candidates is equal
to or larger than the number of baseline modes, modal tracking will always be successful. However, this
does note necessarily mean that a fitting mode candidate is guaranteed to be found. If the new dataset
does not include an appropriate mode candidate for one or more baseline mode(s), the least unfitting
candidate(s) will be chosen. This will almost certainly result in an outlier classification of such datasets
in the subsequent anomaly detection step.

2.5 Data normalization and damage detection

The consideration of OEV is often called data normalization in the context of SHM. Multiple approaches
to account for OEV are investigated in this work. First, the detectability of damage without further
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Shuffle M AOMA datasets, each with
Km modes λ1 . . . λKm , φ1 . . .φKm

Find nearest neighbour from next dataset
according to dpMAC for each mode λn,m,

φn,m with n = 1 . . . Km, m = 1 . . . M

For each pair of nearest neighbours
calculate mode distance vector p

Transform and normalize p into hN

Cluster modes into small-distance
(S1) and large-distance (S2)

observations using hN and GMM

Derive d̃dpMAC , the 99th
percentile of a Weibull distribution

fitted to the S1 observations

Group all modes into consistent sets
Shc,m using hierarchical clustering
with d̃dpMAC as stopping criteria

Remove natural frequency and
damping ratio outlier in each set Shc,m

Remove all but one representation
of each dataset in every set Shc,m

Retain only the Kfc sets Shc that
contain at least ϑ · M observations

Retain only complete datasets

Sort modal data into feature matrix X

Figure 3: Summary of baseline preparation algorithm
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information about the currently encountered operational conditions is investigated. In this scenario
anomalies are detected using the Mahalanobis Distance (MD), which is defined as

dmahal =
√

(xnew − µ̂BL)T Σ̂−1
BL (xnew − µ̂BL) (19)

where Σ̂BL is the covariance matrix estimate of the baseline feature vector X, xnew is the to be tested
observation and µ̂BL is the mean of each individual feature in X. The direct application of the MD has
been shown to be well-suited for damage detection under OEV [19, 28].

There are other popular approaches to account for unmeasured OEV, e.g. removal of the contribution
from the major principal component before the application of Mahalanobis distance-based anomaly
detection [17, 29, 11]. These approaches may result in higher damage sensitivity if the damage-induced
feature vector changes point mainly into the directions of the minor components. However, this comes
at the price that damage that manifests itself in a major principle component direction but outside the
ellipsoid spanned by a Mahalanobis threshold cannot be detected using a minor PCA-based monitoring
approach, whereas it could be detected if the Mahalanobis distance test were directly applied. Thus,
since the feature vector changes induced by an arbitrary damage are not easily predictable and also vary
depending on the currently encountered OEC (see table 1 and 2) PCA-based preprocessing is not used
in this work.

To investigate whether the availability of direct measurements of the currently encountered OEV can
substantially improve damage detectability, two approaches to incorporate this information are investi-
gated. For the first approach the information about the currently encountered OEV is appended to the
feature vectors

xoec,i = [xi m0 m1 m2 v1 v2 v3 α1 α2 α3] (20)

where m0 . . . α3 are binary variables that indicate whether the specified OEC are currently encountered or
not. For applications with continuously changing OEC these variables would be replaced by quantitative
measurements of the OEV and normalised in the same manner as xi. The second approach to consider
OEV measurements is based on regression-based preprocessing and is commonly used in the AOMA-
based SHM literature to account for direct measurements of the OEV [30, 11]. Here the OEV is modelled
using multiple output Linear Regression (LR)

X = Oβ + E (21)

where X is the N × p matrix of baseline features, O is the N × (m + 1) matrix of binary variables
that indicate whether the specified OEC are currently encountered or not, β is the (m + 1) × p matrix
of parameters and E is the N × p matrix of residuals [26]. For the regression-based approach the
Mahalanobis test is applied to the residual matrix E instead of X.

3 Results and Discussion

3.1 Automated feature vector preparation

Figure 4 shows a scatterplot of the transformed and normalized feature vector hN , which was introdcued
in Eq. (8). The small-distance and large-distance clusters S1 and S2 selected by the GMM (Eq. (9))
are represented with colors. The data show excellent separability in λ and fu, which are also strongly
correlated. The clusters are not as well separable based on the other distance features. ξ is known to
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show strong identification variance and the informative value in 1-MAC and dMPD is limited due to the
use of only two sensors. Still, there is a significant amount of correlation present and the large-distance
observations show a higher population density in the large-distance region of every investigated distance
feature. It is important to point out that the large-distance observations are not directly removed
as inconsistent. The GMM is only used to get a better estimate of what represents a consistently
identified mode. This information is then used to derive a stopping criterion for the hierarchical clustering
procedure.
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Figure 4: Scatterplot matrix of normalized distance vector hN . The upper right triangle numbers are correlation coefficients
between the individual feature variables. The number of shown observations was reduced for visualization purposes.

The investigated structure was equipped with only a single accelerometer and a single piezoelectric
strain sensor. In order to obtain relevant consistency indicators from the MAC and the dMPD the
modal properties were identified from the joined strain and accelerometer measurements. Thus, the
MAC and dMPD in Eq. (5) and Eq. (6) are applied to a pattern of motion at the kth equilibrium state
where one component of the resulting mode shape represents an acceleration and the other represents
a strain. The MAC (and dMPD) is used to measure the similarity of this pattern in observations from
different datasets.

The vector in Eq. (6), shown in figure 4, contains two highly correlated features, namely dλ and dfu.
Features with high correlation are known to create more “weight” in the clustering process [25], which
in this case is a desired effect that is used to take into account that natural frequencies are excellent
indicators of consistency and are known to be identified with significantly higher precision and accuracy
than the other modal properties in OMA. Instead of scaling dfu to create more weight on that feature, dλ
is used to in addition capture the interaction between dfu and dξ. Interaction-terms are commonly used
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in statistical learning to capture the interaction between variables and improve the overall performance
of classification and clustering algorithms [26]. The dMPD feature shows comparatively little correlation
with the other small-distance indicators and cannot be used to effectively distinguish between two nearly
normal mode shapes, even if these are otherwise dissimilar. However, in aerospace applications the
mode shapes are often markedly non-normal as a result of the fluid-structure interaction. Furthermore,
large-distance observations can also be the result of false AOMA identifications, which may have an
arbitrary amount of complexity. For the latter two scenarios the dMPD can be a valuable indicator of
consistency.

The sensor setup investigated in this work consists of only two sensors. Thus, the informative value
that can be extracted from the (mixed sensor) mode shapes is quite limited. It seems natural that
measurements from more sensors will allow for better separation based on pi(4) (1-MAC) and pi(5)
(dMPD) in Eq. (6). To verify this assumption, data from the FBGS shown in figure 1 were used. Due to
the inherent limitations of the adopted Fiber Bragg Grating (FBG) interrogator [22] not enough modal
data could be extracted from the measurements to allow for damage detection. However, under certain
operational conditions (m0...2-v3-α1...3) the first four modes were consistently identifiable from the FBG
measurements. These data were used to investigate whether the correlation between the mode shape
related and pole related features increases when all ten FBGS instead of only two of them are used
to calculate pi(4) and pi(5). Applied to identical observations the correlation between all pole related
quantities and all mode shape related quantities increased when ten sensors instead of two sensors were
used, e.g. the correlation between dλ and 1-MAC increased from 0.4 to 0.5, the correlation between dλ
and dMPD increased from 0.21 to 0.35. These results confirm that measurements at more Degrees of
Freedom (DOFs) will improve the separation based on the mode shape related features.

One major objective during the development of the proposed methodology was to avoid arbitrarily chosen
or user-defined parameters. Instead parameters are derived from the statistical properties of the present
data. This, in principle, allows the algorithm to adapt to varying levels of noise, different inter-mode
distances, variable number and type of sensors, etc. However, there are scenarios where the procedure
can fail. If there exists no clear separation between the small-distance and the large-distance clusters
(figure 4) GMM clustering may result in unpredictable partitioning. This can happen when the OEV
induces modal parameter changes that are as far away from the cluster mean as a significant number of
noise modes. However, due to the curse of dimensionality [26], this scenario is highly unlikely when a
uniform distribution of noise modes is assumed and a multidimensional feature space is considered as it is
the case here (Eq. (6)). A similar scenario could occur with two or more not consistently detected modes
in near proximity to each other. In this work the procedure is shown to work with modal properties that
were identified from only two sensors, which is at the lower end of the possible sensor quantity. More
sensors will allow for better separation in the mode shape related dimensions (pi(4) and pi(5) in Eq. (6))
rendering the two described scenarios even more unlikely.
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Figure 5: Small-distances cluster S1 PDF distribution fitting.

Figure 5 shows the dpMAC small-distances observations distribution. A comparison of a large number of
distributions from the exponential family showed that the Weibull distribution seems to best represent
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the nearest-neighbour detection procedure. Two fitted models are shown in figure 5, an exponential and
a Weibull distribution. The inverse cumulative distribution of the fitted model is used to calculate the
99th percentile d̃dpMAC (Eq. (10)), which is used as a stopping criterion for the hierarchical clustering
procedure.

The process of hierarchical clustering is often visualised using a dendrogram, where the node height
represents the distance at which two clusters are joined. A dendrogram, with the corresponding cutoff
threshold according to Eq. (10), is shown in figure 6. The dendrogram shows a number of well separated
clusters below the cutoff threshold. Their inter-cluster distances differ significantly. Some clusters are
joined well below the threshold, whereas observations in other clusters are further apart from each other.
The difference in in-cluster distances can be explained by different identification variances as well as by
different sensitivities to OEV. This underlines one of the advantages of the approach proposed in this
work. The cutoff distance automatically adapts to the level of variance in the baseline data. Instead of
manual selection based on trial and error or experience for every individual use case an automatic and
data-driven procedure is applied.
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Figure 6: Hierarchical clustering dendrogram. The number of shown observations was reduced for visualization purposes.

The major disadvantage of AOMA-based SHM is that feature extraction is not guaranteed to be success-
ful for every mode from every dataset. Some modes are identified with total consistence, whereas others
are identified from for example 90% of all datasets. Hence, there exists a trade-off between the number
of modes and the percentage of feature-complete datasets in the baseline dataset. More modes in the
feature vector will generally increase the damage detection capabilities of the model and allow for better
differentiation between various OEC and damage. However, the number of feature-complete datasets
decreases when modes are included into the feature vector that are identified with lower than perfect
consistency. Hence, the training set size decreases, resulting in worse model training performance and
thus worse damage detection capability. Furthermore, there is no reason to assume that the percentage
of feature-complete datasets will increase after the baseline has been built. Hence, depending on how
missing features are handled either more datasets will be discarded during operation of the SHM sys-
tem or the false alarm rate will increase. An effective procedure to reduce the false alarm rate without
increasing the consistency threshold is discussed at the end of this section.

Figure 7 shows how the number of selected modes and the percentage of feature-complete datasets
change when the required consistency is varied. Here the consistency threshold is defined as the ratio
between the number of modes in a cluster returned by the automated baseline selection algorithm and
the total number of initial baseline datasets M . The number of selected modes increases with decreasing
consistency threshold. Only two modes are detected from every initial baseline dataset. In the range
between 99% and 96% 5 modes are selected. Two additional modes are selected in the range from 95% to
92%. Simultaneously the percentage of feature-complete datasets decreases from 100% to 99% and then
to 90%. For subsequent analysis a threshold of 90% was chosen, which balanced the need to keep the
threshold as high as possible whilst still capturing a sufficient number of modes. This threshold resulted
in 8 selected modes and 82% feature-complete vectors.
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Figure 7: Relationship between the number of modes selected for the feature vector and the percentage of feature-complete
baseline datasets.

Figure 8 illustrates the distance matrix DMT and one step of the modal tracking procedure outlined
in section 2.4. The distance between each of the eight selected baseline modes and each new mode
candidate is calculated using the dpMAC distance (Eq. (5)). In this case the test set contains eight
mode candidates with complementing baseline clusters and three without. The three are dropped,
whereas the eight are associated with their respective baseline clusters. The example shows that modes
that are in near frequency proximity to each other are still well seperated according to the dpMAC
distance. The distances between the new candidates and the baseline modes that belong together are at
least an order of magnitude smaller than the distances to the neighbour modes. Since dpMAC contains
information from three independent features (natural frequencies, damping ratios and mode shapes), the
proposed procedure is immune to the problem of crossing frequencies. The example also shows that the
smallest distances between neighbouring modes are approximately 0.3. Around this distance multiple
clusters are joined in the dendrogram shown in figure 6. The hierarchical clustering cutoff distance lies
between this distance and zero, the ideal distance values for two representations of the same physical
mode at identical OEV. This further substantiates the well balanced automated choice of the cutoff
distance.
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Figure 8: Modal tracking matrix with dpMAC values between baseline modes and new mode candidates.

Figure 9 shows the frequencies of all modes detected by AOMA from every investigated dataset. The
region captioned “Baseline” was processed with the algorithm described in section 2.3. The regions
“Test” and “Damaged” were prepared using the modal tracking algorithm described in section 2.4. The
baseline and test sets were randomized during the automated baseline creation procedure, whereas the
damaged set is ordered by the prevalent OEC. In accordance with the chosen consistency threshold of
90% eight modes were selected for the feature vector, which are highlighted using different colors. Two
frequency regions with a high density of omitted modes are visible around 11 Hz and 260 Hz. These
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are the first out-of-plane bending mode and the first in-plane bending mode, which are neglected since
they are identified with a lower consistency than required by the chosen consistency threshold. Modes
at 17 Hz, 35 Hz and 48 Hz were identified as narrow-banded wind tunnel-induced excitations, which are
only detectable under certain OEC. The Baseline section shows a considerable number of omitted modes
in near proximity to the eight selected feature vector modes. These are modes that were part of not
feature-complete datasets. For a consistency threshold of 90% there proportion is approximately 18%
(Fig. 7). Finally, a small number of randomly distributed modes are visible, which are the result of false
AOMA identifications.

The proposed methodology relies on multiple statistical methods whose performance increases with the
availability of more data. The approach was successfully tested and delivered consistent results for
baseline observations from only three operation points (144 baseline datasets). The use of significantly
less datasets may result in inconsistent behavior. To detect damage under operational variability many
more samples of the normal state will usually be necessary. Multiple thousand samples are commonly
used [9, 11, 12]. Thus, the proposed baseline preparation methodology does not require more datasets
than one would actually need to set up an AOMA-based SHM system with manually selected and
prepared features.
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Figure 9: Natural frequencies identified by the AOMA algorithm from every investigated dataset. Representations of a
single mode that were selected for the feature vector are highlighted with colors and denoted with their respective type of
movement (where B stands for bending and T for torsion).

3.2 Damage detection

Figure 10 shows the natural frequencies and damping ratios of all eight feature vector modes at a single
mass configuration (m0). Frequencies and damping ratios clearly vary as a result of damage and OEV.
The damage-induced frequency and damping ratio shifts are not constant and strongly depend on the
present OEC. Table 1 shows the mean natural frequency shifts for all operation points together with
the standard deviations at each of these operation points. Mass changes show the largest influence
on the frequency with shifts up to 5%. Velocity changes have a strong influence as well (over 3%).
The angle of attack changes still results in frequency shifts that are larger than 1%. A comparison
between the damaged and undamaged cases at otherwise constant operational conditions shows that the
damaged-induced changes are well below 1% for the majority of operation points and modes (maximum
shift 1.7%). Table 2 shows damping ratio shifts as a result of OEV. The damping ratio shows a very
strong sensitivity to damage and operational variability with shifts that range from -67% to +56% as
a result of damage at otherwise constant OEC. The OEV-induced damping ratio shifts are even larger.
However, it is evident from the standard deviations given in table 1 and table 2 that the damping ratio
identification variability is in the same range as the changes to be detected and that the rather small
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damage (and OEC) sensitivity of the natural frequencies is outweighed by the excellent precision of the
identification process. Still, the consideration of damping ratios as part of the feature vector results in
a significantly improved damage missclassification rate on test data (-30% to -50%) and thus damping
ratios are used as part of the feature vector throughout this study. Overall the dispersion of the individual
damage sensitive features under OEV is much larger than the shifts introduced by the impact damage.
Hence, the challenge in this study is to reliably identify a damage that produces feature changes that
are significantly smaller than the (unmeasured) operational and environmental variability.
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Figure 10: Damping ratios ξ over natural frequencies fu extracted from measurements at a constant mass configuration
m0, where undamaged and damaged data (d0/d1) are visualised through symbols, velocities (v1/v2/v3) are visualised using
saturation and angles of attack (α1/α2/α3) by varying hue.

Figure 11 shows the results of the Mahalanobis distance-based anomaly detection. In figure 11a only
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Table 1: Natural frequency changes and standard deviations (f̄u ± σ̂) due to the investigated damage d and OEV m, v and
α.

OEC B2 T1 B3 T2 T3 B4 T4 B5
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

d0-m0-v1-α1 69.28 ± 0.33 78.75 ± 0.14 194.0 ± 0.7 244.2 ± 1.2 379.9 ± 3.3 434.3 ± 0.2 632.3 ± 0.3 661.1 ± 0.4
d0-m0-v1-α2 69.50 ± 0.29 77.73 ± 0.12 194.4 ± 0.3 243.5 ± 1.3 381.3 ± 1.9 434.4 ± 0.2 632.8 ± 0.3 661.0 ± 0.3
d0-m0-v1-α3 69.50 ± 0.56 77.69 ± 0.10 194.2 ± 0.5 243.4 ± 1.2 381.5 ± 1.4 434.4 ± 0.2 633.0 ± 0.3 661.5 ± 0.3
d0-m0-v2-α1 69.15 ± 1.07 77.74 ± 0.11 195.2 ± 0.6 242.2 ± 0.2 380.1 ± 3.3 433.8 ± 0.5 632.8 ± 0.2 660.8 ± 0.3
d0-m0-v2-α2 68.75 ± 0.94 77.39 ± 0.14 194.8 ± 1.3 241.4 ± 1.1 380.9 ± 2.1 433.5 ± 0.3 632.2 ± 0.8 660.1 ± 0.3
d0-m0-v2-α3 68.91 ± 0.93 77.32 ± 0.12 195.1 ± 0.6 240.2 ± 0.6 380.8 ± 1.4 433.2 ± 0.3 632.2 ± 0.2 660.0 ± 0.4
d0-m0-v3-α1 69.98 ± 1.06 76.15 ± 0.13 194.8 ± 0.3 240.3 ± 1.4 379.3 ± 3.6 431.2 ± 0.5 630.9 ± 0.3 656.6 ± 0.7
d0-m0-v3-α2 69.87 ± 0.32 76.10 ± 0.13 194.8 ± 0.1 237.5 ± 1.3 380.0 ± 3.9 431.9 ± 0.3 630.9 ± 0.5 657.6 ± 0.4
d0-m0-v3-α3 69.46 ± 0.54 75.86 ± 0.10 194.5 ± 0.1 235.6 ± 1.8 378.9 ± 4.2 431.7 ± 0.3 630.4 ± 0.2 656.6 ± 0.3
d0-m1-v1-α1 67.48 ± 0.28 78.05 ± 0.15 193.9 ± 0.3 243.5 ± 1.6 374.0 ± 1.6 436.2 ± 0.2 627.7 ± 0.2 658.8 ± 0.3
d0-m1-v1-α2 67.52 ± 0.40 77.95 ± 0.09 193.7 ± 0.5 243.2 ± 1.1 373.1 ± 2.9 436.5 ± 0.2 626.9 ± 0.8 658.1 ± 0.3
d0-m1-v1-α3 67.73 ± 0.14 77.90 ± 0.10 194.1 ± 0.3 243.3 ± 1.3 373.2 ± 1.8 436.4 ± 0.2 627.4 ± 0.2 659.2 ± 0.3
d0-m1-v2-α1 67.22 ± 0.59 77.85 ± 0.13 193.9 ± 1.6 241.7 ± 1.2 373.2 ± 0.9 434.7 ± 0.2 626.7 ± 0.2 657.0 ± 0.3
d0-m1-v2-α2 67.20 ± 0.52 77.47 ± 0.15 194.4 ± 0.5 241.0 ± 1.1 373.0 ± 1.9 434.4 ± 0.3 626.3 ± 0.2 656.3 ± 0.3
d0-m1-v2-α3 67.27 ± 0.53 77.51 ± 0.13 194.1 ± 1.1 240.4 ± 1.1 372.6 ± 2.0 435.3 ± 0.2 627.0 ± 0.2 658.0 ± 0.3
d0-m1-v3-α1 67.85 ± 1.40 76.28 ± 0.14 194.1 ± 0.3 239.8 ± 1.1 372.4 ± 1.7 432.6 ± 0.5 625.5 ± 0.3 653.6 ± 0.7
d0-m1-v3-α2 67.75 ± 0.47 76.25 ± 0.10 194.0 ± 0.1 237.7 ± 1.0 372.3 ± 2.1 433.4 ± 0.3 625.4 ± 0.2 654.5 ± 0.4
d0-m1-v3-α3 67.08 ± 0.82 76.30 ± 0.10 194.1 ± 0.1 235.8 ± 0.9 372.7 ± 1.6 434.8 ± 0.3 625.7 ± 0.2 655.7 ± 0.3
d0-m2-v1-α1 65.88 ± 0.36 78.07 ± 0.10 192.6 ± 0.5 244.1 ± 1.6 368.6 ± 1.6 435.7 ± 0.2 615.3 ± 0.8 660.0 ± 0.4
d0-m2-v1-α2 65.93 ± 0.46 77.97 ± 0.11 192.7 ± 0.6 244.1 ± 1.5 368.4 ± 2.0 435.8 ± 0.2 614.8 ± 0.9 660.0 ± 0.4
d0-m2-v1-α3 65.97 ± 0.48 77.64 ± 0.13 192.8 ± 0.7 243.6 ± 1.8 368.6 ± 1.4 435.3 ± 0.2 615.3 ± 0.8 660.6 ± 0.3
d0-m2-v2-α1 66.28 ± 0.53 77.88 ± 0.16 192.9 ± 1.5 242.6 ± 1.6 369.2 ± 1.7 435.0 ± 0.2 614.8 ± 0.2 659.1 ± 0.3
d0-m2-v2-α2 66.08 ± 0.56 77.53 ± 0.15 193.3 ± 0.6 241.2 ± 1.1 368.1 ± 1.1 433.7 ± 0.3 614.6 ± 0.3 658.0 ± 0.4
d0-m2-v2-α3 66.01 ± 0.49 77.52 ± 0.15 193.2 ± 0.7 240.7 ± 0.3 368.0 ± 2.0 434.6 ± 0.2 615.2 ± 0.2 659.6 ± 0.3
d0-m2-v3-α1 66.17 ± 0.69 76.39 ± 0.11 193.0 ± 0.4 239.9 ± 0.7 368.4 ± 3.2 432.1 ± 0.3 614.0 ± 0.2 655.1 ± 0.3
d0-m2-v3-α2 65.86 ± 0.56 76.36 ± 0.11 192.8 ± 0.2 237.9 ± 0.8 367.7 ± 2.1 433.0 ± 0.3 614.0 ± 0.2 655.9 ± 0.4
d0-m2-v3-α3 65.66 ± 0.59 76.36 ± 0.11 192.8 ± 0.1 235.8 ± 0.5 368.0 ± 2.6 434.2 ± 0.4 614.0 ± 1.2 657.2 ± 0.4
d1-m0-v1-α1 69.36 ± 0.25 78.49 ± 0.12 196.3 ± 0.2 242.6 ± 0.4 380.8 ± 1.3 434.1 ± 0.3 629.8 ± 0.4 659.1 ± 0.4
d1-m0-v1-α2 69.40 ± 0.05 78.47 ± 0.11 194.8 ± 1.2 241.8 ± 0.4 381.0 ± 1.8 435.0 ± 0.2 630.5 ± 0.3 659.7 ± 0.3
d1-m0-v1-α3 69.37 ± 0.13 78.24 ± 0.15 194.9 ± 1.4 240.8 ± 0.5 380.7 ± 1.3 434.3 ± 0.2 630.2 ± 0.2 659.0 ± 0.4
d1-m0-v2-α1 69.40 ± 0.12 77.77 ± 0.20 195.5 ± 0.3 241.1 ± 0.3 380.7 ± 0.3 433.4 ± 0.3 630.0 ± 0.2 658.2 ± 0.5
d1-m0-v2-α2 69.41 ± 0.09 77.61 ± 0.18 196.2 ± 0.5 239.5 ± 0.3 380.6 ± 1.7 434.1 ± 0.2 630.6 ± 0.2 659.0 ± 0.3
d1-m0-v2-α3 69.29 ± 0.23 77.44 ± 0.20 195.9 ± 0.4 237.6 ± 0.5 380.7 ± 1.7 433.9 ± 0.1 630.4 ± 0.4 658.7 ± 0.3
d1-m0-v3-α1 69.07 ± 0.35 76.14 ± 0.27 195.2 ± 0.3 239.2 ± 0.4 380.1 ± 1.5 431.2 ± 0.4 628.5 ± 0.3 654.6 ± 0.6
d1-m0-v3-α2 69.37 ± 0.11 76.19 ± 0.18 195.3 ± 0.2 235.8 ± 1.2 380.7 ± 1.2 433.1 ± 0.2 629.1 ± 0.3 656.2 ± 0.3
d1-m0-v3-α3 69.39 ± 0.12 75.97 ± 0.14 195.2 ± 0.1 232.1 ± 1.2 380.8 ± 0.9 433.6 ± 0.4 628.8 ± 0.2 655.8 ± 0.7
d1-m1-v1-α1 67.44 ± 0.05 78.90 ± 0.11 194.2 ± 0.2 242.7 ± 0.5 373.8 ± 0.1 437.2 ± 0.2 625.9 ± 0.3 657.4 ± 0.3
d1-m1-v1-α2 67.43 ± 0.05 78.69 ± 0.08 193.5 ± 0.7 241.7 ± 0.3 373.5 ± 0.1 436.8 ± 0.2 625.4 ± 0.2 656.4 ± 0.3
d1-m1-v1-α3 67.51 ± 0.05 78.62 ± 0.10 193.9 ± 0.6 241.2 ± 0.2 373.5 ± 0.1 437.1 ± 0.2 625.4 ± 0.3 657.0 ± 0.3
d1-m1-v2-α1 67.38 ± 0.07 78.23 ± 0.14 194.3 ± 1.1 241.4 ± 0.9 373.3 ± 0.1 436.3 ± 0.2 625.6 ± 0.2 657.2 ± 0.3
d1-m1-v2-α2 67.39 ± 0.08 78.03 ± 0.12 195.5 ± 0.6 239.2 ± 0.2 373.1 ± 0.1 436.0 ± 0.2 625.2 ± 0.2 656.5 ± 0.4
d1-m1-v2-α3 67.50 ± 0.09 77.79 ± 0.11 195.4 ± 0.8 237.7 ± 0.2 373.3 ± 0.2 436.6 ± 0.2 625.5 ± 0.2 656.1 ± 0.3
d1-m1-v3-α1 67.48 ± 0.10 76.83 ± 0.17 195.0 ± 0.2 239.9 ± 1.1 373.3 ± 0.1 435.0 ± 0.3 624.3 ± 0.2 654.5 ± 0.4
d1-m1-v3-α2 67.43 ± 0.11 76.44 ± 0.15 194.7 ± 0.1 235.7 ± 0.4 373.0 ± 0.2 435.1 ± 0.3 623.8 ± 0.2 653.5 ± 0.5
d1-m1-v3-α3 67.57 ± 0.10 76.55 ± 0.10 194.8 ± 0.2 232.8 ± 1.7 373.5 ± 0.1 437.3 ± 0.2 624.5 ± 0.2 656.4 ± 0.4
d1-m2-v1-α1 66.13 ± 0.05 78.97 ± 0.10 193.4 ± 0.2 243.2 ± 1.2 369.3 ± 0.5 436.5 ± 0.1 613.6 ± 0.2 659.0 ± 0.3
d1-m2-v1-α2 66.15 ± 0.06 78.88 ± 0.09 192.9 ± 0.2 242.6 ± 1.6 369.2 ± 0.5 436.4 ± 0.2 613.4 ± 0.2 658.8 ± 0.3
d1-m2-v1-α3 66.14 ± 0.05 78.56 ± 0.10 192.7 ± 1.1 241.2 ± 1.6 368.8 ± 0.6 435.8 ± 0.2 613.6 ± 0.2 658.9 ± 0.3
d1-m2-v2-α1 66.00 ± 0.10 78.05 ± 0.15 192.4 ± 1.0 242.0 ± 1.5 368.7 ± 1.2 435.0 ± 0.3 613.4 ± 0.2 657.5 ± 0.3
d1-m2-v2-α2 66.17 ± 0.08 78.07 ± 0.12 193.2 ± 1.5 239.8 ± 0.2 368.9 ± 1.1 435.7 ± 0.7 613.5 ± 0.2 658.2 ± 0.2
d1-m2-v2-α3 66.12 ± 0.09 77.64 ± 0.15 193.8 ± 0.3 237.7 ± 1.6 368.6 ± 1.5 435.2 ± 0.3 613.0 ± 0.2 657.8 ± 0.4
d1-m2-v3-α1 66.14 ± 0.10 76.79 ± 0.16 193.6 ± 0.2 239.7 ± 0.9 368.5 ± 0.5 433.9 ± 0.3 612.4 ± 0.5 655.2 ± 0.4
d1-m2-v3-α2 66.11 ± 0.23 76.51 ± 0.14 193.5 ± 0.1 236.0 ± 0.3 368.5 ± 1.2 434.7 ± 0.3 612.4 ± 0.2 656.0 ± 0.4
d1-m2-v3-α3 65.98 ± 0.18 75.98 ± 0.14 193.3 ± 0.2 231.6 ± 0.6 368.4 ± 1.3 435.0 ± 0.4 611.8 ± 0.3 655.5 ± 0.6
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Table 2: Damping ratio changes and standard deviations (ξ̄ ± σ̂) due to the investigated damage d and OEV m, v and α.

OEC B2 T1 B3 T2 T3 B4 T4 B5
[%] [%] [%] [%] [%] [%] [%] [%]

d0-m0-v1-α1 1.13 ± 0.19 1.30 ± 0.17 0.79 ± 0.16 0.52 ± 0.12 0.56 ± 0.19 0.76 ± 0.05 0.63 ± 0.05 0.93 ± 0.05
d0-m0-v1-α2 0.83 ± 0.10 1.30 ± 0.15 0.84 ± 0.15 0.55 ± 0.10 0.59 ± 0.21 0.71 ± 0.07 0.62 ± 0.07 0.72 ± 0.06
d0-m0-v1-α3 0.85 ± 0.18 1.40 ± 0.16 0.80 ± 0.16 0.56 ± 0.15 0.58 ± 0.16 0.61 ± 0.06 0.52 ± 0.04 0.70 ± 0.06
d0-m0-v2-α1 1.37 ± 0.60 1.22 ± 0.14 0.73 ± 0.10 0.58 ± 0.05 0.64 ± 0.23 0.75 ± 0.08 0.44 ± 0.04 0.70 ± 0.05
d0-m0-v2-α2 1.02 ± 0.42 1.55 ± 0.16 1.20 ± 0.25 0.57 ± 0.10 0.52 ± 0.08 0.64 ± 0.06 0.42 ± 0.04 0.67 ± 0.05
d0-m0-v2-α3 1.25 ± 0.42 1.46 ± 0.17 0.98 ± 0.22 0.50 ± 0.07 0.54 ± 0.12 0.61 ± 0.05 0.40 ± 0.03 0.63 ± 0.05
d0-m0-v3-α1 1.40 ± 0.25 1.38 ± 0.18 0.56 ± 0.06 0.79 ± 0.14 0.43 ± 0.14 0.83 ± 0.06 0.41 ± 0.04 0.65 ± 0.06
d0-m0-v3-α2 1.82 ± 0.36 1.27 ± 0.15 0.58 ± 0.08 0.95 ± 0.28 0.39 ± 0.14 0.87 ± 0.06 0.38 ± 0.04 0.71 ± 0.06
d0-m0-v3-α3 2.07 ± 0.31 1.05 ± 0.12 0.56 ± 0.06 0.96 ± 0.23 0.39 ± 0.15 0.87 ± 0.07 0.37 ± 0.03 0.60 ± 0.05
d0-m1-v1-α1 1.08 ± 0.17 1.46 ± 0.18 0.89 ± 0.16 0.52 ± 0.15 0.57 ± 0.15 0.55 ± 0.04 0.58 ± 0.05 0.67 ± 0.05
d0-m1-v1-α2 0.94 ± 0.13 1.28 ± 0.13 0.80 ± 0.15 0.52 ± 0.15 0.61 ± 0.15 0.67 ± 0.05 0.62 ± 0.07 0.68 ± 0.05
d0-m1-v1-α3 1.06 ± 0.19 1.37 ± 0.18 0.77 ± 0.16 0.54 ± 0.15 0.54 ± 0.14 0.56 ± 0.05 0.51 ± 0.03 0.67 ± 0.05
d0-m1-v2-α1 1.02 ± 0.47 1.56 ± 0.16 1.17 ± 0.23 0.56 ± 0.09 0.53 ± 0.12 0.64 ± 0.06 0.48 ± 0.06 0.70 ± 0.05
d0-m1-v2-α2 1.11 ± 0.39 1.58 ± 0.15 1.09 ± 0.18 0.50 ± 0.09 0.50 ± 0.11 0.62 ± 0.07 0.42 ± 0.03 0.67 ± 0.04
d0-m1-v2-α3 1.29 ± 0.33 1.59 ± 0.16 1.18 ± 0.18 0.50 ± 0.10 0.49 ± 0.16 0.62 ± 0.05 0.44 ± 0.03 0.62 ± 0.04
d0-m1-v3-α1 1.65 ± 0.29 1.39 ± 0.17 0.59 ± 0.08 0.79 ± 0.16 0.47 ± 0.11 0.86 ± 0.05 0.41 ± 0.04 0.65 ± 0.05
d0-m1-v3-α2 1.90 ± 0.25 1.28 ± 0.15 0.60 ± 0.10 0.87 ± 0.16 0.44 ± 0.13 0.86 ± 0.06 0.39 ± 0.03 0.64 ± 0.04
d0-m1-v3-α3 1.96 ± 0.49 1.08 ± 0.14 0.57 ± 0.06 0.95 ± 0.19 0.46 ± 0.10 0.85 ± 0.06 0.37 ± 0.03 0.58 ± 0.04
d0-m2-v1-α1 1.13 ± 0.20 1.28 ± 0.11 0.77 ± 0.13 0.55 ± 0.13 0.63 ± 0.19 0.63 ± 0.06 0.57 ± 0.08 0.68 ± 0.05
d0-m2-v1-α2 1.05 ± 0.20 1.33 ± 0.17 0.76 ± 0.14 0.52 ± 0.13 0.53 ± 0.19 0.61 ± 0.06 0.53 ± 0.06 0.69 ± 0.06
d0-m2-v1-α3 1.10 ± 0.22 1.37 ± 0.14 0.87 ± 0.19 0.57 ± 0.12 0.63 ± 0.16 0.58 ± 0.05 0.49 ± 0.05 0.66 ± 0.05
d0-m2-v2-α1 0.86 ± 0.36 1.66 ± 0.15 1.23 ± 0.26 0.58 ± 0.15 0.57 ± 0.10 0.64 ± 0.04 0.57 ± 0.03 0.67 ± 0.04
d0-m2-v2-α2 1.24 ± 0.35 1.57 ± 0.14 1.13 ± 0.26 0.56 ± 0.08 0.54 ± 0.12 0.60 ± 0.04 0.46 ± 0.04 0.64 ± 0.04
d0-m2-v2-α3 1.38 ± 0.38 1.58 ± 0.14 1.17 ± 0.26 0.51 ± 0.05 0.56 ± 0.13 0.59 ± 0.06 0.49 ± 0.03 0.65 ± 0.05
d0-m2-v3-α1 1.68 ± 0.37 1.41 ± 0.15 0.60 ± 0.09 0.84 ± 0.10 0.47 ± 0.15 0.85 ± 0.06 0.41 ± 0.04 0.65 ± 0.06
d0-m2-v3-α2 1.92 ± 0.28 1.28 ± 0.16 0.63 ± 0.07 0.84 ± 0.23 0.46 ± 0.14 0.88 ± 0.07 0.41 ± 0.05 0.63 ± 0.05
d0-m2-v3-α3 2.02 ± 0.40 1.10 ± 0.14 0.56 ± 0.08 0.95 ± 0.18 0.49 ± 0.13 0.88 ± 0.06 0.38 ± 0.05 0.60 ± 0.04
d1-m0-v1-α1 0.56 ± 0.10 0.93 ± 0.16 0.64 ± 0.10 0.80 ± 0.18 0.38 ± 0.12 0.50 ± 0.05 0.46 ± 0.05 0.79 ± 0.05
d1-m0-v1-α2 0.57 ± 0.08 1.12 ± 0.17 0.81 ± 0.17 0.86 ± 0.15 0.39 ± 0.10 0.52 ± 0.06 0.48 ± 0.05 0.76 ± 0.04
d1-m0-v1-α3 0.46 ± 0.08 1.08 ± 0.18 0.82 ± 0.23 0.87 ± 0.16 0.39 ± 0.12 0.51 ± 0.05 0.46 ± 0.04 0.77 ± 0.04
d1-m0-v2-α1 0.67 ± 0.13 1.16 ± 0.19 0.67 ± 0.11 0.80 ± 0.15 0.50 ± 0.10 0.62 ± 0.05 0.44 ± 0.04 0.81 ± 0.04
d1-m0-v2-α2 0.83 ± 0.11 1.32 ± 0.25 0.97 ± 0.29 0.71 ± 0.10 0.41 ± 0.12 0.57 ± 0.07 0.43 ± 0.03 0.78 ± 0.05
d1-m0-v2-α3 0.92 ± 0.20 1.33 ± 0.21 1.11 ± 0.31 0.67 ± 0.12 0.47 ± 0.09 0.54 ± 0.04 0.42 ± 0.05 0.83 ± 0.05
d1-m0-v3-α1 1.65 ± 0.26 1.55 ± 0.30 0.58 ± 0.07 0.96 ± 0.19 0.40 ± 0.09 0.67 ± 0.07 0.42 ± 0.05 0.79 ± 0.06
d1-m0-v3-α2 1.45 ± 0.15 1.27 ± 0.25 0.52 ± 0.05 0.92 ± 0.17 0.38 ± 0.11 0.72 ± 0.07 0.43 ± 0.04 0.76 ± 0.05
d1-m0-v3-α3 1.55 ± 0.15 0.94 ± 0.20 0.46 ± 0.06 1.01 ± 0.14 0.40 ± 0.06 0.83 ± 0.09 0.38 ± 0.03 0.85 ± 0.05
d1-m1-v1-α1 0.58 ± 0.09 1.02 ± 0.13 0.71 ± 0.07 0.77 ± 0.14 0.40 ± 0.03 0.54 ± 0.04 0.47 ± 0.05 0.73 ± 0.04
d1-m1-v1-α2 0.56 ± 0.09 1.07 ± 0.13 0.75 ± 0.15 0.87 ± 0.13 0.39 ± 0.03 0.54 ± 0.04 0.42 ± 0.04 0.73 ± 0.06
d1-m1-v1-α3 0.47 ± 0.08 1.08 ± 0.13 0.73 ± 0.13 0.84 ± 0.13 0.40 ± 0.03 0.55 ± 0.05 0.46 ± 0.06 0.73 ± 0.04
d1-m1-v2-α1 0.97 ± 0.12 1.60 ± 0.18 1.13 ± 0.34 0.70 ± 0.09 0.41 ± 0.03 0.57 ± 0.05 0.43 ± 0.05 0.82 ± 0.05
d1-m1-v2-α2 1.09 ± 0.11 1.46 ± 0.18 0.91 ± 0.33 0.71 ± 0.08 0.45 ± 0.03 0.58 ± 0.04 0.39 ± 0.03 0.81 ± 0.05
d1-m1-v2-α3 0.83 ± 0.13 1.07 ± 0.12 1.08 ± 0.39 0.62 ± 0.06 0.48 ± 0.05 0.55 ± 0.04 0.41 ± 0.03 0.71 ± 0.04
d1-m1-v3-α1 1.30 ± 0.16 1.75 ± 0.21 0.60 ± 0.09 0.89 ± 0.14 0.40 ± 0.04 0.65 ± 0.03 0.44 ± 0.04 0.85 ± 0.06
d1-m1-v3-α2 1.33 ± 0.16 1.41 ± 0.14 0.54 ± 0.06 0.91 ± 0.11 0.41 ± 0.04 0.71 ± 0.04 0.39 ± 0.04 0.80 ± 0.05
d1-m1-v3-α3 1.48 ± 0.16 0.99 ± 0.12 0.52 ± 0.08 0.93 ± 0.08 0.40 ± 0.04 0.81 ± 0.07 0.36 ± 0.03 0.85 ± 0.07
d1-m2-v1-α1 0.58 ± 0.10 1.06 ± 0.11 0.74 ± 0.07 0.67 ± 0.18 0.40 ± 0.10 0.56 ± 0.04 0.50 ± 0.04 0.83 ± 0.05
d1-m2-v1-α2 0.55 ± 0.08 1.12 ± 0.11 0.69 ± 0.08 0.82 ± 0.12 0.41 ± 0.07 0.57 ± 0.04 0.52 ± 0.04 0.83 ± 0.05
d1-m2-v1-α3 0.48 ± 0.07 1.17 ± 0.13 0.83 ± 0.20 0.80 ± 0.10 0.38 ± 0.08 0.55 ± 0.05 0.48 ± 0.04 0.79 ± 0.05
d1-m2-v2-α1 0.87 ± 0.16 1.60 ± 0.16 0.98 ± 0.19 0.70 ± 0.15 0.37 ± 0.09 0.61 ± 0.05 0.45 ± 0.03 0.87 ± 0.05
d1-m2-v2-α2 0.82 ± 0.12 1.34 ± 0.17 1.11 ± 0.36 0.73 ± 0.07 0.40 ± 0.13 0.59 ± 0.04 0.45 ± 0.04 0.82 ± 0.04
d1-m2-v2-α3 0.82 ± 0.13 1.15 ± 0.16 0.96 ± 0.15 0.69 ± 0.09 0.41 ± 0.11 0.56 ± 0.06 0.43 ± 0.04 0.77 ± 0.04
d1-m2-v3-α1 1.27 ± 0.16 1.71 ± 0.20 0.66 ± 0.15 0.86 ± 0.12 0.39 ± 0.09 0.64 ± 0.05 0.45 ± 0.05 0.87 ± 0.05
d1-m2-v3-α2 1.18 ± 0.14 1.38 ± 0.17 0.54 ± 0.07 0.95 ± 0.12 0.40 ± 0.06 0.66 ± 0.04 0.44 ± 0.04 0.91 ± 0.05
d1-m2-v3-α3 1.34 ± 0.22 1.01 ± 0.12 0.45 ± 0.09 1.04 ± 0.16 0.40 ± 0.09 0.71 ± 0.06 0.44 ± 0.04 0.82 ± 0.05
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data at a constant mass m0 are considered for training and damage detection. In figure 11b the full
range of measured operational variability is investigated. In figure 11c again full operational variability is
considered. However, the information about the currently encountered OEC are appended to the feature
vector. Results presented and discussed throughout this section are based on 5-fold cross-validation of
the undamaged data. The diagrams in figure 11 each show one of those folds. All three diagrams show
an accumulation of observations at the upper edge of the diagram from the Test and Damaged datasets.
These observations are further away from the mean than six times the standard error estimate of the
Mahalanobis distance in Baseline and were mapped to this value for visualisation purposes. These strong
outliers come from datasets where at least one baseline mode was not detected in the corresponding Test
or Damaged dataset. Identifications with not detected modes are not uniformly distributed over the
different OEC. Instead, some modes show a significantly higher rate of missing modes.
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(a) Data at a single constant mass m0 but otherwise unmeasured OEC.
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(b) Data with full operational variability and unmeasured OEC.
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(c) Data with full operational variability and with OEC augmented feature vector.

Figure 11: Mahalanobis distance-based damage detection.

Figure 11a shows the excellent damage detection capabilities of the proposed methodology under varying
wind-excitation, i.e. when only datasets at a constant mass are considered during training and for
subsequent testing. The datasets used for this figure correspond to the data shown in figure 10. Hence,
training is done under varying velocities and angles of attack. From the large Mahalanobis distance jump
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in the outlier class it is obvious that the target and the outlier class are strongly separated when the entire
feature space is considered. This type of strong separability is not visible in the 16 individual features
shown in figure 10. The excellent separability can be explained by the different impact of the damage
and the wind-related variability on the dynamic properties of the specimen. The damage will result in
a local modification of the specimen and its discrete stiffness and damping matrix approximation. The
investigated wind-induced changes on the other hand result in more widely spread or global modifications
of the stiffness and damping matrices [20]. Hence, feature vector changes introduced by local damage
and global wind-excitation show into different directions. This is the key property that is necessary to
make damage detection under OEV without explicit measurements of the variability feasible [17]. An
investigation of the other two mass configurations show similar results.

The picture changes dramatically when the mass variability is introduced. Figure 11b shows that a
large proportion of Damaged samples falls below the 95% threshold and are therefore misclassified. The
missclassification rate strongly depends on the currently encountered OECs. For some OECs damage
is still reliably detectable. However, the overall missclassification rate would certainly be unacceptable
for productive application. The mass changes introduce local modifications of the mass matrix, which
result in feature vector changes that are more aligned with the damage-induced changes. Hence, local
mass changes introduced in the vicinity of the damage location are hard to separate reliably from
damage without explicit measurements of the OEC. Figure 11c shows the damage detection performance
significantly improves when information about the currently encountered OEC are part of the feature
vector. In this case each feature vector xi (Eq. (16)) is extended with OEC information according to
Eq. (20). The provision of OEC information lifts the Damaged observations above the 95% threshold.
However, damage is still at the verge of detectability for some OECs and the separation between the
target and outlier class is not as strong as in figure 11a.

To investigate which of the OEC information benefit classification the most, the experiment was repeated
with subsets of the binary OEC variables introduced in Eq. (20) and Eq. (21). Table 3 shows error rates
starting from the case m?-v?-α? shown in figure 11b to the case m!-v!-α! shown in figure 11c, as well as
for all possible combinations of known and unknown OECs. For example, in the case of m?-v!-α? only
three additional features v1 . . . v3 were attached to the feature vector xi (Eq. (20)). Mean error rates
and standard error estimates were determined using 5-fold cross-validation on the undamaged datasets.
The outlier rate in Baseline was set to 0.05. The Testsets (T) show nearly constant missclassification
rates of 0.19-0.20. This agrees well with the 0.82 ratio of feature-complete Baseline datasets (see figure
7). The missclassification rate for m?-v?-α? is 0.42. However, it can be concluded from the Testset
missclassification rate that approximately 20% of the observations in Damaged will be classified as
outliers due to missing modes. Hence, the true missclassification rate on “good” feature vectors is even
larger (approximately 50%). The error rate can be improved substantially when information about all
OECs is considered. The evaluation shows that the largest improvements can be achieved when the mass
variability is explicitly measured. Knowledge about the velocity variability still improves the classification
results considerably. Explicit provision of the AOA measurement does not significantly improve the error
rate. Neither the direct MD approach nor the LR approach shows a decisive advantage over the other
when information about the mass variability is introduced. For the m? cases the direct MD approach
shows slightly better error rates and significantly lower dispersion. This indicates a higher robustness to
outliers. As expected the error rate improves when direct measurements of the OEV are included into
the feature vector. Interestingly, separating the data into subsets and training multiple models may be
a significantly better strategy than including OEV measurements into a single model as is evident from
the figures 11a and 11c. Of course, this is only an option if the data can be divided into clearly separated
states.

Aircraft wings or wind turbine blades rarely encounter unmeasured and local mass changes. Fuel is
uniformly distributed inside a modern aircraft wing. The fuel level changes uniformly as well and the
current fuel mass is usually well known during operation. The only unmeasured mass variability typically
encountered by aircraft wings and wind turbine blades is icing. However, icing usually affects a large
portion of the wing and therefore results in a more global modification of the mass matrix. Additional
masses are sometimes attached below a wing in scientific or military applications. However, in this case
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Table 3: Mean missclassification rates ē and standard error estimates σ̂e for different extents of explicit OEC knowledge.
OECs marked as ? were unknown during training and testing. OECs marked as ! were part of the feature vector or were
used for regression. Direct application of the Mahalanobis test (MD), linear regression and a subsequent Mahalanobis test
(LR). B stands for baseline data, T for a test set and D for samples of the damaged state.

m?-v?-α? m?-v?-α! m?-v!-α? m?-v!-α! m!-v?-α? m!-v?-α! m!-v!-α? m!-v!-α!
ē σ̂e ē σ̂e ē σ̂e ē σ̂e ē σ̂e ē σ̂e ē σ̂e ē σ̂e

B 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00
MD T 0.19 0.02 0.19 0.02 0.20 0.02 0.20 0.02 0.19 0.02 0.19 0.02 0.19 0.02 0.19 0.02

D 0.42 0.03 0.42 0.02 0.35 0.02 0.33 0.02 0.29 0.12 0.29 0.13 0.24 0.10 0.22 0.10
B 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00

LR T 0.19 0.02 0.20 0.02 0.20 0.02 0.20 0.02 0.19 0.02 0.19 0.02 0.19 0.02
D 0.44 0.06 0.39 0.10 0.38 0.13 0.28 0.14 0.29 0.15 0.22 0.11 0.20 0.10

the data can be split into well separated states in accordance with the discussion above. Hence, joint
unmeasured mass and wind variability may not be a practical problem for aircraft wings or wind turbine
blades. Of course, for other applications like bridges subjected to heavy-duty traffic it could very well
be.

Without further processing the false alarm rate of the proposed methodology is quite high if a consis-
tency thresholds is chosen that is significantly lower than 100%. Another outlier detection step could
be used before the actual damage detection to identify feature vectors that contain a missing mode.
However, there is always the danger of removing legitimate (damage-induced) anomalies in the data
during preprocessing. Instead of an additional outlier detection step, one can take advantage of the fact
that once damage occurs it does not go away. Hence, multiple successive outliers are a sure sign of an
anomaly. How many consecutive outliers are required to trigger an alarm can be estimated from the
false positive rate estimate obtained from the cross-validation of the training data. Assuming random
occurrence of outliers and a false alarm rate of 0.2 one can be 99% confident of an anomaly after three
consecutive outliers. Since this procedure effectively allows one to control the (final) false alarm rate, the
trade off between the proportion of feature-complete datasets and the number of modes in the feature
vector can be shifted towards the latter. More damage-sensitive features generally will improve damage
detection as well as allow for better separation between damage and OEV [17]. However, there is a limit
to the reduction of the consistency threshold. At some point modes may be included into the feature
vector that are not excited under certain OEV at all. Hence, the assumption of random false alarm
occurrences is violated and the procedure will identify this OEC as an anomaly.

The sensor locations can also influence the damage-sensitivity of an AOMA-based SHM methodology.
The proposed feature vector (Eq. (16)) only includes global modal properties (natural frequencies
and damping ratios). Thus, the damage-sensitivity of the feature vector is independent of the sensor
locations. Since it can be shown that a given natural frequency is only unaffected by damage when
the damage location coincides with a modal node of the correspondent mode shape [31], the inclusion
of more natural frequencies should in general improve the damage-sensitivity of the approach. Hence,
with a feature vector consisting only of global modal properties the most beneficial sensor distribution
would be one that maximises the number of consistently detectable modes. However, it can also be
shown that mode shape changes induced by damage are most pronounced in the vicinity of the damage
location [4, 32]. Thus, if mode shape related quantities are included in the feature vector (not further
investigated in this work) it may be beneficial to place some sensors in the vicinity of potentially critical
damage locations, irrespective of whether these locations are optimal from an identification point of
view.

Mahalanobis distance-based anomaly detection works best for multivariate normal baseline data and
may fail if this assumption is strongly violated. The experimental data used in this study are markedly
non-normal (see figure 10). Still, the investigated damage case produced feature vector changes that are
outside of the ellipsoid that covers 95% of the baseline data under varying wind excitation. Obviously,
these results cannot be generalized to all types of damage or OEV. If a damage produces changes that
fall inside the normal operation domain boundary this damage scenario is simply not detectable [17].
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If the domain boundary is highly non-linear a more flexible domain description technique, like Support
Vector Domain Description (SVDD) [33] or an Auto-Associative Neural Network (AANN) [19], may be
more appropriate. However, more flexible models usually have to be parameterized using cross-validation
on target and outlier data and sufficient representative samples of the latter are seldomly available in
damage detection applications [33]. In general, detectability has to be proven on a case-by-case basis for
each individual combinations of damage type, monitored structure and encountered OECs. Continuous
monitoring for baseline data accumulation under OEV is comparatively simple or at least feasible for
many engineering structures. This is not the case for experimentally generated outlier samples. The
use of modal parameters as damage-sensitive features opens the possibility to create outlier samples
from numerical models (except for damping ratios, which cannot be predicted with numerical modal
analysis). However, this presupposes the availability of an accurate numerical model, knowledge about
the most critical and frequent damage scenarios, valid linear approximations of the damage cases and no
interdependency between damage- and OEC-induced changes to the feature vector. These are very high
demands. However, if they are fulfilled, this information can furthermore be processed to investigate
higher levels of SHM like type classification, severity estimation and even prognosis [16].

4 Conclusions

Natural frequencies and damping ratios that were automatically extracted with operational modal anal-
ysis were used to detect a small scale impact damage on a composite cantilever that was subjected to
wind and mass-induced operational and environmental variability in a wind tunnel.

An automated baseline or training set preparation procedure was described and successfully tested with
the experimental data from the wind tunnel. The proposed methodology is most helpful in cases where
the structure under consideration has modes that are not consistently detectable under all operational
and environmental conditions. The amount of user interaction was reduced to the selection of a sin-
gle threshold: the desired consistency of the least well detected mode that is accepted as feature for
subsequent damage detection.

It was shown that the operational variability induced significantly stronger modal parameter changes
than the investigated damage. Still, the damage could be detected under varying wind velocity and angle
of attack with great reliability and without information about the operational conditions during training
or testing. Damage detection under joint mass and wind variability was less successful and the damage
was not reliably detectable under the majority of investigated operational conditions. The damage
detection performance under this conditions could significantly be improved using data normalization
techniques. Finally, a simple procedure to reduce the final false alarm rate and simultaneously increase
the damage sensitivity of the anomaly detection system is discussed.
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