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ABSTRACT 

Particleboard often represents the lowest cost option amongst a range of suitable wood panel 

products. Particleboard consumption in the world is approximately 57% of total wood panel 

consumption and the demand is growing at 2 – 3% per year. This demand required more and 

more wood chipping to supply the raw materials as particleboards are traditionally made using 

custom flaked softwood particles. Hardwood sawmill residues have traditionally not been 

favoured by the particleboard industry (or indeed other forest product industries) owing to 

their high density and high extractive content. Throughout Australia considerable quantities of 

hardwood saw mill residues are produced as solid waste.  In Victoria alone, over a million 

cubic metres of saw logs are converted annually into sawn timber, producing in excess of 

200,000 tonnes of hardwood sawdust. In recent years, the re-growth and plantation timber 

industry in Australia has been producing hardwood sawmill residues with lower extractive 

contents and lower densities. 

The work presented here is aimed at developing an economical methodology for making 

particleboard using 100% hardwood sawmills waste. A comprehensive literature review 

indicated that a similar attempt has not been conducted to date. Through the literature review, 

major parameters which would influence particleboard made of sawmill waste were 

established. Subsequently, in consultation with the softwood particleboard industry, a 

preliminary process of making particleboards in the laboratory was developed. This method 

was trialled and modified until an acceptable particleboard could be produced. 

A systematic experimental investigation was then performed incorporating a design of 

experiments method (DOE) and analysis of variance (ANOVA) to investigate the behaviour 

of single-layer and three-layer particleboard properties separately with processing parameters. 

Seven processing parameters were studied for three-layer boards while six parameters were 

studied for single-layer boards. The particleboard testing was performed according to the 

Australian and New Zealand standards for reconstituted wood-based panels. It was found that 

three-layer particleboards can be produced using 100% hardwood sawmill residues as the 

major raw material to meet the standards for general purpose particleboard. This hardwood 

particleboard uses a slightly higher amount of resin and moisture for its surface layer than 

conventional softwood particleboards.  
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To understand the effect of processing parameters on the particleboard properties, further 

analysis was conducted. Based on this analysis, process models were developed to predict the 

most critical particleboard properties (modulus of elasticity, modulus of rupture and the 

vertical density profile) with respect to processing parameters. These models can be used to 

optimise properties of hardwood particleboard with regard to processing parameters. Also, 

these models can be used to produce particleboards in the laboratory with required design 

properties. 
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CHAPTER 1  

INTRODUCTION 

1.1 Rationale 

 

Within the 'family' of wood-based panels, particleboard is a mature and established product. 

Particleboards are generally made in Australia, using custom flaked soft woods. According to 

Drake (1995; 1997), particleboard consumption in the world represents 57% of the total 

volume of solid wood panel product consumption.  Worldwide demand for particleboard has 

been growing steadily at a rate between 2 to 5% per annum. According to current Australian 

forest statistics, particleboard consumption in Australia increased by 7% during the year 2001 

(ANU 2002). Raw material costs can constitute at least 50% of total production costs, whilst 

the properties of the wood raw material feedstock significantly influence the properties of the 

finished product. The particleboard industry has started to include smaller quantities of 

softwood sawmill residues into custom flaked softwood particles to produce particleboards 

with the required quality without significantly affecting the final particleboard properties. 

However, communication with the particleboard industry in Australia has indicated that more 

than 10% inclusion of these softwood residues into wood flakes creates adverse effects on 

particleboard properties. 

Throughout Australia considerable quantities of hardwood saw mill residues are produced 

annually (Kim, 2001).  In Victoria alone, over a million cubic metres of saw logs are 

converted annually into sawn timber, producing in excess of 200,000 tonnes of hardwood 

sawdust. This sawdust is mainly considered as solid waste.  According to the industry sponsor 

of this project, Dormit Pty Ltd. of Dandenong, Victoria, numerous attempts have been made 

to find a solution for the growing problem of disposing of nearly 50,000 tonnes of sawdust 

collected at its sawmill in Swifts Creek at Central Gippsland. Such attempts have included 

burning of sawdust to generate energy, burning of sawdust and using the heat to convert some 

of the residue to briquettes and using sawdust as fertiliser. Due to the high moisture content of 

this green sawdust, none of the above alternatives were found to be satisfactory. 
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To date, hardwood residues have typically not been favoured by the particleboard industry (or 

indeed other forest product industries), primarily because of the perception that they have 

relatively higher density (compared with softwoods) and contain high levels of undesirable 

extractives, which can cause other processing problems.  This has limited the potential market 

for such residues and their market value.  However, the move in recent years by the sawn-

wood industry towards the harvesting and processing of re-growth and plantation resources 

has opened up new opportunities for both the residue generators and potential residue users 

such as the particleboard industry, since the residues are likely to have lower extractives 

content and be of a lower density. A method to use hardwood sawmill residues as a raw 

material for wood-based composites has been investigated at RMIT University, Australia and 

the research program and the outcomes are presented in this thesis. 

 Wood density is considered to be the most influential factor affecting particleboard 

properties. It influences binder consumption, mat consolidation and hence board properties 

(Lehmann 1959). Previous publications suggested that the  increase in raw material density 

causes a decrease of particleboard strength properties while increasing linear expansion and 

thickness swelling properties, at a given board density (Liri 1960; Mitchell 1957). For the 

same raw material, increasing the board density increases the board properties, especially the 

internal bond strength and it is closely related to particle size distribution of flakes. Increasing 

the amount of smaller particles increases internal bond strength. 

Moisture is a critical component in manufacturing wood and fibre composites due to its effect 

on the initial drying operation of wood substrate, press cycle manipulation, wood 

conformability, composite properties, spring back, and post consolidation and re-

humidification (Frink and Layton 1985). Hardwood sawmill residue has a higher inherent 

moisture content. Processing of residue to control the moisture content was therefore an 

important parameter considered in this thesis. 

According to the Australian standards for wood based panels (AS/NZS/1859: 2004), General 

purpose particleboard should mainly satisfy its strength properties on modulus of rupture 

(MOR), modulus of elasticity (MOE) internal bond strength (IB) and screw withdrawal 

strength. However, initial investigation which was done in RMIT University shows that screw 

withdrawal strength satisfies the AS/NZS 1859:2004 requirement (Appendix E). It further 

shows that MOR, MOE and IB need to be improved significantly. 
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Density variation along the thickness direction within the final particleboard product occurs 

during the pressing process with higher density at the surface and a lower density in the core 

of the wood panels (Mitchell 1957). This variation in density along the thickness direction of 

a board is called ‘vertical density profile’ (VDP). VDP has a significant impact on 

particleboard properties. Elastic and plastic properties of the layers are mainly determined by 

the density of the particular layer. The denser layer is the layer subjected to the most 

deformation and compression within that layer. The layer’s stress-strain behaviour determines 

its compressibility and hence deformation. Being a hydroscopic material, the temperature and 

moisture content of the wood determine its stress-stain behaviour. VDP was found to depend 

on the pressing conditions, heat and moisture content and resin cure, while horizontal density 

profile depends on the mat formation process and the layout of the wood flakes (Suchsland 

1969; Oudjehane and Frank 1998). In most composite materials, the VDP is directly related to 

mechanical properties. Therefore, the effect of VDP on a particleboard product developed 

using hardwood sawmill residue was another aspect which had to be explored. 

The following sections of the chapter will discuss the aims and objectives of this 

investigation, followed by the outline of this thesis. 

1.2 Aims 

The major aim of this investigation was to develop new knowledge and technology for 

producing an economical particleboard product using large quantities of hardwood saw mill 

residues as the main raw material. This required research into innovative pressing techniques 

including high-moisture pressing, investigating relationships between mechanical properties 

and processing parameters of particleboard, understanding the VDP generated during the hot-

pressing operation as well as understanding the relationship between the VDP and the panel 

properties. 

1.2.1 Objectives 

• To develop an experimental methodology for making particleboard from hardwood 

sawmill residues in the laboratory. 
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• To develop an understanding of the effect of process variables (hot press temperature, 

cold and hot press closure times) and material variables (mat moisture content, resin 

load, hardener load) on the mechanical properties of particleboards made from hard 

wood sawmill residues. The mechanical properties measured on the final board were 

MOR, MOE and IB according to AS/NZS 1859 (1997; 2004). The screw withdrawal 

strength is an important aspect for the properties of a particleboard. However, 

optimisation of screw withdrawal strength was not carried out as part of this 

investigation as initial investigation showed that it has satisfied AS/NZS 1859 (2004) 

requirement of 400 kPa (Appendix E). Measurement of the VDP was carried out to 

relate the board physical properties to the mechanical properties of a given 

particleboard. 

• To develop and validate composite material models to predict the MOR and MOE of a 

particleboard for a given set of process variables and material composition, and to use 

these models to optimize MOE and MOR of a board within a given process-parameter 

range. 

• To study the formation of VDP and to model the VDP as a function of processing 

parameters and validate it with experimental VDP. 

• To investigate the durability/ thickness swelling properties of hardwood particleboard 

in order to identify possible applications of hardwood particleboard. 

 

1.2.2 Scope 

The scope of the work covered the development of the complete methodology for producing 

particleboard from 100% hardwood sawmill residue to satisfy AS/NZS 4266 (2004) and 

AS/NZS 1859 (2004) requirements. This required an experimental investigation to understand 

the effects of material and process variables on the properties of three-layer particleboard 

production using hardwood saw mill residues. An experimental design was developed using 

partial factorial design to investigate the relationship between process variables, material 

variables, and the mechanical properties of the particleboard. Process variables considered 

here were the pressing temperature, cold press closure time and hot press closure time. 
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Material variables were the mat moisture content, the resin load and hardener load. The 

mechanical properties of the board in terms of input variables were evaluated. Analysis of 

variance (ANOVA) was used to analyse the results to investigate the most important factors 

in particleboard production using hardwood sawmill residues.  During the research program, 

the importance of the VDP in predicting board properties was understood and consequently a 

detailed analysis of VDP was carried out, leading to a model predicting the VDP as a function 

of process variables. 

1.2.3 Potential benefits 

A study of this nature is important both to expand fundamental knowledge as well as enhance 

industrial applications. Outcomes will be a significant contribution towards the sustainability 

of the Australian Timber Industry and the environment by reducing logging to produce chips 

for softwood particleboard as well as using waste material for a viable product. The outcome 

will also be a significant benefit to regional and rural communities. 

1.3 Outline of the thesis 

To achieve the objectives, a well planned research program was completed. The thesis which 

presents the research program is divided into eleven chapters. A brief description of each is 

outlined below. 

1.3.1 Chapter 1: Introduction 

Chapter 1 introduces the topic of this research, rationale background, aims and objectives of 

this investigation. Also, it outlines the organization of this thesis, giving a brief introduction 

to each chapter. 

1.3.2 Chapter 2: Effects of raw materials and processing parameters on 

particleboard properties  

Chapter 2 reviews the literature on important physical and mechanical properties of 

particleboard and effects of material and process variables on these physical and mechanical 
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properties. Commonly measured physical and mechanical properties of a particleboard are 

final board density, thickness swelling property, flexural strength (MOE and MOR) and the 

tensile strength perpendicular to the surface (IB) of the particleboard. This chapter further 

reviews the literature on different types of resin or binder used in the particleboard industry 

and compares their advantages and disadvantages. Various attempts made in the past to 

investigate the suitability of different types of raw materials for particleboard production 

including agricultural residues are also discussed. 

1.3.3 Chapter 3: Review of simulation models to predict the formation of 

vertical density profile (VDP) 

Chapter 3 discusses the literature on analytical, numerical and empirical models to simulate 

VDP of a particleboard. The applicability of various mathematical, numerical and 

experimental models for various conditions and their limitations are highlighted.  

1.3.4 Chapter 4: General procedure for producing particleboards in the 

laboratory and methods of testing 

Chapter 4 begins with the illustration of the apparatus used in the laboratory to produce 

particleboards and relevant Australian standards used to test their properties. It also presents 

the methods and procedures which were adopted in the laboratory to manufacture 

particleboards using hardwood saw mill residues.  

1.3.5 Chapter 5: Design of Experiments (DOE) 

Theories of design of experiments (DOE) were used to organize experiments to identify the 

most significant parameters involving hardwood particleboards. Therefore Chapter 5 

discusses methods of DOE and analysis techniques used for this research. The advantage of 

using experimental design based on a factorial design, instead of changing two variables at a 

time is highlighted. In addition, it will elaborate the analytical techniques used to analyse data, 

such as ANOVA. 
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1.3.6 Chapter 6: Significant parameters influencing the properties of single-layer 

particleboards 

At the beginning of this investigation, single-layer particleboards were manufactured in the 

laboratory before producing conventional three-layer particleboards. Chapter 6 describes the 

procedure followed to identify significant parameters influencing the properties of a single-

layer particleboard using hardwood sawmill residues. Once these results were analysed, the 

most influential parameters on the properties of single-layer particleboards were identified.  

1.3.7 Chapter 7: Significant parameters influencing the properties of three-layer 

particleboard 

Chapter 7 investigates the significant parameters influencing the properties of three-layer 

hardwood particleboard using sawmill residues. Three-layer particleboards were prepared in 

the laboratory by changing the mix proportions for both surface and core layers of a 

particleboard to identify the significant parameters on the board properties. This chapter 

explains the experimental parameters and procedures adopted to produce three-layer 

particleboards. Analysis of the experimental results to identify the most important parameters 

for three-layer particleboard production using hardwood sawmills residues is also discussed. 

1.3.8 Chapter 8: Formulation and process modelling of particleboard 

production using hardwood sawmill residues 

Chapter 8 presents the development of polynomial regression models to predict the MOE and 

the MOR of a hardwood particleboard as functions of processing parameters. The validation 

of these models using further experiments is also discussed in this chapter.  These models 

were used to optimize the MOR and MOE of a particleboard.  

1.3.9 Chapter 9: Development of composite process models to predict the 

vertical density profile (VDP) of a particleboard 

Chapter 9 discusses the attempt to model the VDP of a particleboard with respect to the 

processing variables which were studied in this work. A process model clearly shows the 
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relationship between the raw materials and processing parameters with the density at different 

locations along the thickness of the board.  This chapter illustrates the modelling of VDP with 

regard to the actual processing parameters used. The usability as well as advantages of the 

model for the improvement of final particleboard properties are discussed. 

1.3.10 Chapter 10: Possible applications of Hardwood particleboard (Reference 

to AS/NZS: 1859) 

Chapter 10 presents an investigation into the thickness swelling property of a particleboard as 

that has a significant effect on the stability of the particleboard as well as on the bond 

durability. This is an important property to be explored to identify possible applications for 

hardwood particleboard.  

1.3.11 Chapter 11:  Conclusions and recommendations 

Chapter 11 summarizes the general conclusions of the work reported in the thesis. Further, it 

illustrates recommendations for future work in the area of the research. 
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CHAPTER 2  

EFFECTS OF RAW MATERIALS AND PROCESSING 

PARAMETERS ON PARTICLEBOARD PROPERTIES 

2.1 Introduction 

Particleboard is a low cost alternative to solid wood panels and is 57% of the total wood panel 

consumption in the world (Drake 1995). The demand grew 3.5% annually for 15 years until 

1995 and is still growing (Drake 1995). Figure 2.1 shows the spread of total wood panel 

consumption in the world, indicating that North America, Europe and Asia each consume a 

little under one-third of the panels produced in the world. Russia takes about 8% and the rest 

of the world consumes the balance.  

 

Figure 2.1: Regional consumption of panel products (Drake, 2005) 

Further, Drake (1995) analysed and reported (Figure 2.2) that the growth rate for total wood 

panel consumption is 3 to 4% per year and the predicted total wood panel consumption could 

be around 210 to 225 million cubic meters by 2010.  He indicated that this growth would 

require a further 100 million cubic meters of wood panels by 2010 compared to the 

consumption in 1990. Since in recent years the rate of increase in plywood consumption has 

declined or remained static at about 25% of total wood panel consumption, a significant 
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32 
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increase in particleboard consumption has been observed and it will be around 60% of total 

wood panel consumption by the year 2010 (Drake 1995).  

 

Figure 2.2: Wood-based panel consumption worldwide growth projection (FAO = Food and 

Agriculture Organization and HAS = H.A. Simpsons, Ltd.) after Drake 2005 

Kozlowski and Helwig (1998) reported that the particleboard industry supplied a significant 

portion of total wood consumption in the world, which was 0.36 billion cubic meters and 

expected to reach 0.47 billion cubic meters by the year 2010. According to Drake (1995; 

1997), the level of utilization of the current wood harvest is estimated to be around 50% of the  

volume that is felled and the rest is being left in the forest unused. Improved utilization 

practices and new manufacturing technologies could improve the amount of raw wood 

required by the wood panel industry. 

As observed by Alma et al. (2004), the world population currently consumes over 3.5 billion 

tons of green wood annually. If the consumption rate of wood fibre and the rate of population 

growth (approximately 90 million people per year) stay constant, the demand for wood fibre 

will increase by over 60 million tonnes each year. That would significantly increase 

deforestation, creating a huge negative impact on the environment (Zheng et al. 2006). 

Therefore, it is vital to explore different raw materials to meet that demand. Particleboard and 

other wood composite researchers have been interested in the use of different raw materials 

such as agricultural wood wastes. The work presented here deals with the investigation of the 
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use of hardwood sawmill residues as particleboard raw material. Therefore, it is vital to have a 

general understanding of important properties of particleboard as a building or construction 

material. A thorough knowledge of the particleboard production process, processing 

parameters and the relationship between processing parameters and particleboard properties 

will be extremely helpful. 

This chapter discusses the important physical and mechanical properties of particleboard and 

the effects of material and process variables on these properties. Commonly measured 

physical and mechanical properties of particleboard are final board density, thickness swelling 

property, flexural strength and the tensile strength perpendicular to the surface of the 

particleboard. This chapter further reviews the literature on different types of resin or binder 

used in the particleboard industry and compares their advantages and disadvantages. Various 

attempts made in the past to investigate the suitability of different types of raw material 

including agricultural residues are also discussed. 

2.2 Wood-based panels and their usability 

Based on the physical configuration of the wood particles which are used to manufacture 

wood-based composite panel products, wood-based panel products can be categorized into 

four main types (Wood Handbook 1999). They are plywood, oriented strand board (OSB), 

particleboard and fibreboard. The similarities or variations between each type of these panels 

are discussed in following subsections. 

2.2.1 Plywood 

Plywood is a flat panel built up of sheets of veneer called plies. These plies are bonded in 

layers by using a bonding agent between plies to create a panel. These plies are laminated 

together such that their grain directions are parallel to each other. A layer can consist of one 

or two or odd or even numbers of plies. However, the plywood panel is always made up using 

odd numbers of layers in such a way that the grain directions of adjacent layers are oriented 

perpendicular to one another. This alternating grain direction in the adjacent plies between 

layers provides the dimensional stability of the plywood. Plywood can be made of either 

softwood or hardwood (Wood Handbook 1999). 
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2.2.2 Oriented strand board (OSB) 

Oriented strand board is an engineered structural-use panel manufactured from thin wood 

strands united together with waterproof resin using hot pressing. Thin strands are normally 

prepared using debarked wood logs from pine or birch-type woods. These strands are dried 

and blended with resin and wax to form a loosely consolidated mat. The mat is then hot-

pressed to produce OSB. The applications of OSB are mainly for roof, wall and floor 

sheathing in both industrial and commercial use. 

2.2.3 Particleboard 

Particleboards are generally made of three layers using custom-made softwood flake, blended 

with resin. Particleboard production is mainly a dry process as sketched in Figure 2.3. 

Particleboard includes different panel types called chipboard, flake board, strand board or 

wafer board depending on the size and shape of the wood particles used (Wood Handbook 

1999). Particleboard has a specific gravity of between 0.6 and 0.8 and is usually produced 

from softwoods such as Douglas fir, southern pines or other low-value wood sources 

(Maloney 1993). This chapter will extensively discuss the production methods, materials and 

properties of particleboards.  

2.2.4 Fibreboard 

Fibreboard mainly includes hardboard, medium-density fibreboard (MDF) and insulation 

boards. Fibreboard exploits the inherent fibre strength of wood by means of wet processing. 

Fibreboard can be produced using a wet process or a dry process. Fibreboard production using 

the dry process is very similar to particleboard production except for the pressing procedure. 

Wet forming fibreboard is significantly different from the dry forming process. The wet 

process is really an extension of the paper manufacturing process (Wood Handbook 1999). 

In addition, the schematic diagram in Figure 2.3 shows the different types of panels and 

methods used to manufacture them, particle size and average panel density (Suchsland and 

Woodson 1986).   
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Figure 2.3: Classification of wood composite boards by particle size, density and process type 

(Suchsland and Woodson 1986) 

Wood-based panels are used extensively in the commercial and domestic construction 

industry. Major uses are for roof and wall sheathing, floor decking, exterior siding and interior 

decorative walls.  In addition, wood-based panels particularly particleboards are used for 

making furniture, cabinets and bathroom and kitchen cabinets and shelving (Marcin 1987). 

Softwood plywood has become the dominant material used in roof sheathing in residential 

construction. According to Marcin (1987), in USA 86% of roof sheathing used plywood and 

the rest used lumber sheathing of spaced panels. Further, he reported that structural 

particleboards and veneer composites would have gained some share of the roof sheathing 

market.   

Exterior wall sheathing uses wood-based panes, gypsum boards or lumber boards as well as 

plastic foam sheathing and aluminium-foil-faced sheathing. Selecting the type of material 

may change depending on the structural requirements, insulation requirements and cost. Floor 

decking is another major use of wood panel products. This market is primarily served by 

particleboard, plywood, wafer board and also with new types of structural panels (Marcin 

1987; ANU 2002). According to the Australian National University (ANU 2002), structural 

particleboard has taken the major share of floor panel consumption with its lower cost (A$ 
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11.00 – 12.00 per square meter in 2002) compared to pine wood floor panels (A$ 21.00- 

22.00 per square meter in 2002). In addition to the cost, depending on the end user’s 

requirements, particleboards or most of the other panels can be manufactured for specialized 

termite resistance, fire and moisture resistance and with special thicknesses and sizes.  

2.3 General procedure for manufacturing particleboard 

In understanding the properties of particleboards, it is important to understand the basic 

manufacturing procedure of particleboards. Chapter 4 discusses the laboratory procedure 

adopted for the purposes of this study to manufacture particleboards. This section outlines the 

general methodology followed by both the particleboard industry as well as particleboard 

researchers. Standard grade particleboards are made in Australia using custom-flaked 

softwood fibre as the major raw material. Boards are usually made of three-layers with finer 

material bonded with about 10% resin in the surface layers and coarse flaky particles bonded 

with a lower proportion (8%) of resin in the core (Figure 2.4).  

 

Figure 2.4: Typical cross section of a three-layer particleboard 

However, single-layer or five-layer particleboards are manufactured occasionally for mainly 

research purposes. Figure 2.5 below depicts the general procedure of particleboard production 

practised by the particleboard industry. The important steps highlighted are: 

• Custom flaked wood chips, also called custom flaked wood furnish, are prepared 

either on-site or off-site of the particleboard factory. Softwood forests are normally cut 

and milled to prepare the wood chips. The commercial particleboard industry uses two 

different types of wood chips for the core layer and for the surface layer of three-layer 

particleboard.  

Surface Layer 

Core Layer 

Surface Layer 
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 Figure 2.5: Particleboard manufacturing process (Prepared by the Author) 
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• These chips are classified using screening to separate surface and core layer materials 

for three-layer particleboards. The surface layer uses smaller sized wood chips while 

the core layer uses bigger particles. These custom flaked wood chips have a specific 

but broad particle size distribution to achieve proper compaction during the production 

process. 

• The materials are dried to remove moisture entrapped between particles before mixing 

with other additives. 

• Wood particles are blended while being spayed with a mix of water, resin and other 

additives such as hardener and wax to prepare the wood pulp. Surface and core 

materials are blended separately as they use two different recipes. 

• The pulp is formed in three layers to prepare the particleboard mat for pressing. 

• The particleboard mat is pre-pressed, followed by hot pressing. The commercial 

particleboard industry generally trims the edges of the wood mat before hot pressing. 

• Hot pressing is done at a specific temperature for a specific time to complete the 

process. 

• The final particleboard is left for cooling before being finished by sanding and 

trimming. 

 Up to about 5% of sawmill residue from softwood sawmills is incorporated in making 

particleboard without a significant reduction in mechanical properties (Nemli et al. 2006). 

Unlike custom flaked wood chips, sawmill residue does not have a specific particle size 

distribution. Therefore, using more saw dust would interfere with compaction during the 

production process. Use of hardwood residue, especially finer particles, has not yet been 

accepted nor explored in detail by the mature particleboard industry due to its inherent 

properties such as higher density, high extractive content and particle size distribution.  

2.4 Physical and mechanical properties of a particleboard 

According to wood handbook (1999) successful manufacturing of any wood composite needs 

a good control over raw materials used. If raw materials are uniform, consistent and 

predictable, the final product properties can be predicted. However, wood does not offer this 
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uniformity but varies significantly from species to species. Size reduction during the 

production process and the shape of individual lignocellulosic components will depend on 

application.  Therefore, physical and mechanical properties of a particleboard are controlled 

by the properties of the raw material (mainly wood furnish and resin type) used as well as 

processing parameters controlled during the manufacturing process. Unlike fibreboard, 

frbrous nature of lignocellulosics in not exploited. That is because converting wood into 

particles requires less energy compares with converting into fibres. Therefore, the main raw 

material properties which control the final properties of a particleboard are the furnish 

density, size, and shape. The initial moisture content of the mixture and the amount of 

adhesive used have significant influence on the final properties of the particleboard.  The key 

processing parameters are the hot pressing time and the press temperature as they link with 

the cross-linking temperature of the resin and temperature and time taken for moisture to 

escape from the board (Dunky 1998; Hawke et al. 1992). 

2.4.1 Density of the board  

The initial pressing operation consolidates the particle mat into the desired thickness by 

reducing and eliminating voids between particles.  Then, the curing of the resin creates the 

bond between particles and that ensures the retention of the consolidated mat at the desired 

thickness. Two stoppers placed either side of the mat enable the manufacture to attain the 

ultimate thickness of the particleboard or the amount of mat consolidation by closing the 

platens against the stoppers during the pressing process.  The platens stop at the stopper which 

is made of an incompressible material subject to maximum applied press or the maximum 

capacity of the press as maximum pressing capacity is employed during the hot pressing. 

The ultimate density of the particleboard is dependent upon the amount of furnish used to 

make the particleboard at a given thickness and the density of the wood furnish. In addition, it 

depends on the resin load and the amount of other additives such as hardener or wax load. 

However, the final board density is independent of the press capacity, press closure time or 

press temperature as long as they are sufficient for resin curing and evaporation of excess 

moisture trapped inside the mat. The VDP of the board is mainly governed by press capacity, 

pressing time and temperature (Oudjehane and Lam 1998). The literature on the formation of 

VDP and its effect on particleboard properties is reported in Chapter 3. 
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The densities of the raw materials used as well as the compaction of the mat during the 

pressing operations mainly control the density of the particleboard. Particleboards with the 

same average density, achieved by higher raw material density or by higher compaction do 

not show the same physical or mechanical properties. Larmore (1959) investigated the 

flexural strength of particleboard with constant specific gravity (0.73 at a temperature of 24oC 

and relative humidity of 65%) from different species. He found higher MOR values from 

particleboards made from aspen furnish (specific gravity 0.37) than those particleboards made 

from yellow birch (specific gravity 0.65). Further he reported that particleboards with specific 

gravity lower than the specific gravity of the furnish produced very low MOR. The properties 

of particleboard depend on both density of furnish used as well as processing parameters. 

Suchsland (1959) developed a statistical model for the degree of densification of a 

particleboard mat with respect to particle geometry, wood species density and relative air 

volume. Since the total particle thickness varies in a mat, the area with greater total particle 

thickness experiences higher compaction than the area with low total particle thickness in 

order to maintain a uniform thickness during the compression. He added that the relative 

compression area is a significant factor to determine the bending strength of a flake-board-

type particleboard. Further, he stated that narrower and thicker flakes require higher pressing 

capacity to attain a desired specific gravity than wider and thinner flakes. 

Increase in the board density increases inter-locking between particles that enhances the 

development of stronger glue-bonds between particles. However, this inter-locking could be 

increased up to a certain point to allow moisture which is vital for heat transfer to travel from 

the surface to the core and then to escape from the edge of the board (Kelly 1977).  

2.4.2 Bending strength of a particleboard 

Bending strength of a particleboard is a very important property that determines the 

applicability of a particleboard for structural bending elements such as floorboards. The MOR 

or the ultimate bending strength and the MOE or the stiffness of the board are directly related 

to the bending strength. This section of the chapter mainly reviews the MOR and the MOE of 

particleboard with respect to wood furnish properties. These properties will further be 

reviewed later in the chapter under the processing condition and parameters in Section 2.6. 
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2.4.2.1  Modulus of rupture of a particleboard (MOR) 

The MOR, defined as the ultimate bending strength of the particleboard, is normally 

determined after a static bending test. The MOR is very important property that controls the 

usability of a particleboard as a structural building element. The MOR of a particleboard is 

dependent on various factors including material type, size and processing conditions. This 

section reviews the factors which are important for MOR of particleboard as well as similar 

types of composite panel products. 

Hse (1975) stated that the board density, divided by the wood furnish density, is the 

compaction ratio, which highly influences the final bending strength of softwood 

particleboard.  Further, previous researchers indicated that the compaction ratio of the 

particleboard increases the MOR of the final board (Hse 1975; Howard 1974; Vital 1973). 

However, particleboards with the same compaction ratio from different furnish densities do 

not produce constant MOR values (Vital 1973). Stewart and Lehmann (1973) reported that 

while increase in panel density increased the MOR for panels from four different hardwood 

species, an increase in species density decreased the MOR. This finding is similar to the 

observations made by Stegmann and Durst (1965) for softwood particleboards.  Therefore, it 

is common to both softwood and hardwood that the increase in panel density increases the 

MOR. 

Research has found that the vertical density gradient significantly influences MOR of the 

particleboard, as bending stresses are higher at the surfaces (Rice 1960; Lehmann 1965). 

Lehmann (1965 and 1970) further explained that the increase in surface moisture content up 

to 16% increased the surface density and MOR, and further increase in moisture reduced the 

MOR due to excess of moisture trapped in the middle of the board. Suchsland (1974), Beech 

(1975) and Nemli et al. (2006; 2007) explained that higher moisture in the middle of the board 

after the hot-pressing leads to non-reversible spring-back of the particleboard. This lowers the 

MOR of the particleboard. Heebink et al. (1972) also found that the surface densification and 

MOR increased with increase in press closing speed. The formation of VDP and the effects of 

its variations on the board properties are discussed in Chapter 3. 

Various attempts have been made in the past to investigate the effect of particle size and 

shape on particleboard properties for both hardwood and softwood materials (Turner 1954; 
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Post 1958; Brumbaugh 1960; Heebink and Hann 1959; Lehmann and Geimer 1974). 

According to these reports, the increase in flake length up to 5 cm while maintaining the flake 

thickness and other processing conditions increased the MOR however, further increase in 

length started to decrease the rate of increase. However, increase in flake thickness above 0.26 

mm started decreasing the MOR for all flake lengths.  

Brumbaugh (1960) indicated that the length/thickness ratio of the flake was a better indicator 

of the MOR, when increasing the length/thickness ratio up to 400 for Douglas fir 

particleboard. He reported that the best length/thickness ratio is 250 for optimum properties. 

In a similar investigation, Kimoto (1964) found the optimum MOR with a length/thickness 

ratio of flake at 100 by increasing it from 10 to 100. Heebink (1974) investigated the variation 

of MOR by changing particle length and thickness while maintaining the length/thickness 

ratio. He concluded that increasing the particle thickness from 0.5mm to 0.75mm had a more 

detrimental effect than decreasing particle length from 75mm to 50mm. Lehmann (1974) and 

Gatchell et al. (1966) reported that the increase in flake thickness has a negative effect on 

MOR when phenol formaldehyde is used as the binder. However, Stewart and Lehmann 

(1973) indicated that if the flake thickness was in a range of 0.15mm to 0.45 mm, the MOR 

did not change significantly. Suchsland (1959) reported the most appropriate particle 

configuration for softwood three-layered particleboard was narrow thick particles for the core 

and short square particles for the surface. Kusian (1968) indicated that short smooth particles 

at the surface produced a smooth surface.  

Research on particleboard properties of hardwood sawmill residues was not found by the 

author. Nemli et al. (2006) once reported that finer particles such as softwood sawdust 

(particle size < 0.25mm) up to 5% could be incorporated for particleboard production without 

much variation to MOR. However, any further increase started decreasing MOR as more and 

more short fibre affects the bending strength (Maloney 1970; Brumbaugh 1960). 

2.4.2.2  Modulus of Elasticity (MOE) 

The modulus of elasticity is an important parameter that determines the stiffness or the 

resistance to bending of the particleboard. Generally, both MOE and MOR are calculated after 

a three-point bending test as per AS/NZS 4266.5 (2004). In most situations, both MOE and 

MOR have similar trends with respect to processing parameters such as board density and 



Chapter 2  Effects of raw materials and processing parameters on 

particleboard properties 

 21 

species density. Hse (1975) reported that by decreasing the hardwood species density, the 

MOE value for the same density particleboards can be increased as MOE increases with the 

increase in the compaction ratio. An increase in board density while maintaining other process 

parameters steady, significantly increases the MOE for both hardwood and softwood 

particleboards (Lehmann 1970; Kelly 1977). Various attempts have been made to show the 

influence of VDP and press closing time on the MOE. It has been reported that high density 

surfaces significantly improve the MOE even with the same mean density for softwood 

particleboard (Geimer et al.1975; Heebink et al. 1972).  That may be due to the bending 

strength being mainly dependent on the surface of a beam element. 

Similar to MOR, MOE could be increased by increasing the particle length/thickness ratio. 

MOE increases with an increase in flake length and decrease in particle thickness (Lehmann 

1974; Heebink et al. 1964). Addition of fine particles such as saw dust decreases the MOE of 

a softwood particleboard due to low amounts of woody cells and short fibres (Nemli et al. 

2006; Maloney 1970; Brumbaugh 1960). However, both Nemli (2006) and Maloney (1996) 

recommend that up to 5% of softwood sawdust could be included in particleboard raw 

material with minimum effect on MOE. 

In summary, it can be concluded that both MOR and MOE of a particleboard can be improved 

by increasing the compaction ratio (defined as the ratio of particleboard density to the particle 

raw material density) as well as by increasing the length/thickness ratio for the same wood 

species. The optimum MOR or MOE of a particleboard can be produced with a 

length/thickness ratio of around 250. The MOR and MOE of a particleboard with the same 

mean density increase with the decrease in the density of the wood species. Therefore, our 

main challenge in the work proposed here is the utilization of hardwood sawmill residue as 

particleboard raw material without compromising MOR or MOE.  

2.4.3 Internal bond strength of a particleboard 

Internal bond (IB) strength is measured as the tensile strength perpendicular to the board 

surface. When a tensile stress is applied perpendicular to the surface, the particleboard 

normally fails close to the middle of the board where density is low.  The lowest inter-particle 

contact and lower consolidation is found in the centre of a particleboard at the lowest density 

region. 
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Previous investigators indicated that the lower density core decreases the IB strength of 

particleboard or fibreboard and that higher density surface increases MOE and MOR 

(Strickler 1959; Geimer et al. 1975). According to Strickler (1959) the lower density in the 

core of a particleboard is a result of a lower press cycle which results in excessive moisture in 

the core. During the hot pressing process, the transportation of moisture from surface to core 

is the main medium that carries heat from the hot platen to the core of the board. That is vital 

to chemical reactions leading to resin cure (Lehmann 1970; Hart and Rice 1963; Heebink et 

al. 1972). However, if the press cycle is not sufficient to heat up the core moisture to 

evaporate the excessive moisture from the particleboard, this moisture may be trapped inside 

the particleboard even after the hot pressing. The trapping of excessive moisture leads to 

spring-back of the board breaking inter-particle bonds and creating a lower density core. Hse 

(1975) reported that an increase in compaction ratio increased the IB for particleboards from 

nine different hardwood species.  

Similar to MOR and MOE, particle configuration has a significant effect on IB. Changing the 

particle configuration from long wide flakes to planer shavings or slivers improves the IB 

significantly (Childs 1956; Suchsland 1959; Brumbaugh 1960;d Lehmann and Geimer 1974). 

The research further explaines that particle configuration should be maintained in order to 

produce homogeneous particleboard. Flake particles for the surface and coarse particles for 

the core would optimize MOR, MOE and IB in the same particleboard (Kelwerth 1958; 

Suchsland 1960). Nemli et al. (2006), who investigated particleboard properties with respect 

to manufacturing parameters, reported that IB improved with increasing amounts of wood 

dust (particles < 0.2mm) up to 20% and then started decreasing. Smaller particles increased 

the contact between blended material (resin) filling the gap inside the core and increased the 

resistance to tension perpendicular to the surface. Further increase in dust required more and 

more resin to wet the whole surface until then eventually ran out of resin, producing weaker 

board. They observed that IB increased with resin load. The observed reduction of IB with the 

increase of the surface moisture from 9% to 13% was explained as due to excessive moisture 

being trapped inside the board after hot pressing. 

Researchers have investigated the effects of adding wax during particleboard production on 

the IB strength of particleboard. Talbott and Maloney (1957) found a significant improvement 

in IB by adding 0.75% wax into phenol-formaldehyde-bonded particleboard with controlled 

specific gravity and particle size. Hann et al. (1962) reported similar observations for UF-

bonded particleboard with 1% wax. However, Heebink and Hann (1959) observed no changes 
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to IB strength after adding 1% wax into UF-bonded particleboard. Later they found that an 

increase in wax above 2% reduced the IB strength of a particleboard (Stegmann and Durst 

1965; Gatchell et al. 1966). Little evidence is available to confirm the relationship between 

wax and IB or to explain the chemical attraction between wax and wood particles. The 

addition of wax is required to improve liquid water resistance of a particleboard. However, 

excessive wax would hinder bond formation. 

Ayrilmis (2006) investigated the IB and bond durability of phenol-bonded particleboard by 

adding different quantities of boric acid, borax, mono-ammonium phosphate and di-

ammonium phosphate, which were known to improve the fire retardant and biodegradation 

properties of wood and wood products. However, as almost all the fire retardants used 

appeared to interfere with the glue line strength development for phenolic resin, a reduction in 

IB was observed.  

It is clear that IB is a very important property in a particleboard that depends highly on glue 

line strength. IB reduces with the reduction in core density since the compaction ratio is low. 

IB can be improved by adding extra resin into the core, however excessive addition of water 

resistance such as wax or addition of fire retardant such as boric acid or borax reduces the IB. 

Also, it is noted that the addition of excessive amounts of smaller particles such as sawdust 

would decrease the IB. These findings are very important for the present study as it is dealing 

with a new hardwood material which contains excessive amounts of sawdust. 

2.4.4 Durability  

Bond durability is the major issue in particleboard when it is exposed to the environment with 

different moisture conditions, temperature levels etc. Similar to solid wood, particleboard is 

hydroscopic and can become dimensionally unstable by absorbing moisture from a high 

humidity environment. However, the dimensional change in thickness direction is much 

greater for conventional flat press particleboard due to the release of compressive stress 

incorporated into the board during pressing operations (Kelly 1977). The thickness swelling 

due to absorption of moisture is not entirely reversible even after the board is subsequently 

dried. This irreversible thickness swelling is a result of moisture penetration into the board 

which leads to bond failure. Irreversible thickness swelling is a very disturbing characteristic 

in a particleboard since it occurs unevenly and is therefore aesthetically unappealing. 
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Thickness swelling normally occurs close to the edges of the board leading to swollen edges. 

Swollen edges absorb more and more moisture resulting in paint failure and panel decay.  

Research has found that the manufacturing process of particleboards contributes to board 

thickness swelling. Halligan and Schniewind (1972) observed an increase in thickness 

swelling as board density increased when the moisture content was 10% or higher, for a series 

of particleboards made with three different resin levels. When moisture content was less than 

10%, boards showed little influence on the change in thickness swell. This finding was 

confirmed by several other reports (Vital et al. 1974; Hse 1975; Gertjejansen et al. 1973). The 

application of high pressure during the pressing operation required to attain an adequate inter-

particle contact for proper glue bonding (Dai and Stainer 1994; Suchsland and Xu 1989). 

These high pressures would contribute to wood cell wall buckling, creating plastic hinges or 

fractures depending on the viscous-elastic state of the polymers. The elastic buckling of wood 

cell walls during hot pressing may recover if exposed to moisture by absorbing water, 

ultimately contributing to the thickness swelling (Wolcott et al. 1989; 1990). Researchers 

have found that cell wall recovery from deformation is higher than solid wood of the same 

species (Wu and Piao 1999; Kelly 1977). This viscoelastic recovery of the collapsed cell wall 

as a spring back or non-recoverable thickness swells could be up to 75% of the total thickness 

swell. Adcock and Irle (1997) reported that the cells which have undergone a greater 

compression could have a greater potential of thickness swelling than those that were slightly 

compressed. 

Stewart and Lehmann (1973) studied the effect of hardwood species on particleboard 

properties. They investigated four different hardwood species: basswood, yellow poplar, red 

oak and hickory. The density of those four species was reported as 593 kg/m3, 785 kg/m3, 993 

kg/m3 and 1073 kg/m3 respectively. They found an increase in board stability with reduced 

thickness swelling when the particleboard density was increased for all the four hardwood 

species. They also found that neither low-density panels nor low-density species always 

produced the most stable board. As reported earlier, the shape of the particles is important for 

particleboard compaction. Also, increase in particleboard density increases particleboard 

compaction, hence inter-particle bonding increases, leading to increased particleboard 

properties. 

Suchsland (1973) reported no relationship between thickness swell and board thickness for 

ten commercial particleboards under cyclic relative humidity and water soak exposure. 
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However, he too observed the highest thickness swell from the particleboards with highest 

densities. However, particleboard made with phenol formaldehyde resin showed no 

relationship between thicknesses swell and board density (Lehmann and Geimer 1974; 

Gertjejansen et al. 1973). Kelly (1977) explained that there was no consistent and 

reproducible relationship between particleboard density and linear expansion. 

Some research have indicated that particle thickness has a significant effect on the stability of 

the particleboard and hence thickness swelling (Lehmann 1974; Brumbaugh 1960; Post 

1958). Post (1961) added that flake length has no relationship with board stability or thickness 

swelling if the particle thickness is less than 0.3 mm. Particleboard made with thinner 

particles was more stable compared to that made with thick particles. Having thinner particles 

with lower wood mass in each particle increases the number of inter-particle contacts, 

facilitating better dispersion of hydroscopic swelling into microscopic inter-particle voids 

(Kelly 1977). Because of this swelling into microscopic voids, the creation of internal 

swelling within the wood particles is reduced, which results in less thickness swelling. 

Further research has shown that increasing the resin content improves the thickness stability 

of a particleboard with both urea formaldehyde resin and phenol formaldehyde resin (Hann et 

al. 1963, Lehmann and Hefty 1973; Gatchell et al. 1966). It may be expected that increasing 

the resin content in a given particleboard will result in improved inter-particle bonding, which 

should improve board stability.  

Paraffin wax is normally added into the mixture during particleboard production to reduce 

short-term moisture penetration into the board to improve durability. Many researchers have 

observed that wax-treated particleboard has a large or moderate reduction in both water 

absorption and thickness swelling in the 24-hour water soak test (Stegmann and Durst 1965; 

Maku et al. 1959; Heebink and Hann 1959).  However, increasing the wax content to more 

than 1% of wax solids in oven-dry wood interferes with adhesive bonding, eventually 

reducing the strength properties (Kelly 1977). In contrast to the above claims, when wax-

treated particleboard was exposed to water vapour for a long term, there was no reduction in 

either moisture content or dimensional changes (Gatchell 1966; Heebink and Hann, 1959).  

Some researchers have reported that the dimensional stability of a particleboard could be 

improved by post-steaming of the final board or heating the unbounded particles (Heebink et 
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al. 1972; Hujanen 1973). These methods would reduce hydroscopic thickness swelling and 

consequently improve dimensional stability Kelly (1977). However, reported that the industry 

has not accepted those methods due to excessive costs in processing. 

Various types of inorganic salts such as phosphoric acid, mono-ammonium phosphate, di-

ammonium phosphate, ammonium sulphate, nitrogen or boron compounds such as boron, 

borax and boric acid can be added to improve fire-retardant properties and biodegradation 

(Ayrilmis 2006; Tsunoda 2001). However, adding fire-retarding chemicals during 

particleboard production can cause effects on pH level, resin viscosity and reduction in the 

number of hydroxyl groups available for hydrogen bonding ultimately resulting in reduced 

bond strength (Boggio and Gertjejansen 1982). Ayrilmis (2006) observed a significant 

reduction in IB and aged IB by adding fire-retarding chemicals. A greater strength reduction 

was found with an increase in boron compounds levels or organic acid levels, since the 

change in pH significantly affects bond durability. 

The durability of a particleboard can therefore be improved by improving the stability. 

Increasing the resin content in a particleboard reduces the thickness swelling as well as spring 

back, although high moisture content has the opposite effect. Releasing the pressure after hot 

pressing should be carefully maintained to reduce spring back. Increasing the pressing time 

also assists. Additives such as paraffin wax are added to the particleboard to reduce water 

adsorption in order to reduce the thickness swell. Similarly, addition of fire retardants such as 

borax is important for the durability of a particleboard. However, the amount of these 

additives should be maintained carefully as they may have an effect on the resin curing. The 

stability of hardwood particleboard, specially spring back and thickness swell, with respect to 

processing parameters will be discussed in Chapters 7 and 10 respectively. 

2.5 Wood parameters 

2.5.1 Wood species density 

The effect of wood species density on particleboard density is interdependent  such that if the 

final board density is less than the species density, an unsatisfactory board is produced 

(Suchsland 1967; Hse 1975). The final board density should be higher than the initial wood 

furnishing density to attain better inter-particle contact and hence sufficient bond between 
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particles by maximizing usage of resin. Otherwise, most of the resin will polymerize at the 

void spaces resulting in poor inter-particle bonding. Therefore, research has suggested the 

need to compress the wood furnish to a higher specific gravity than their original to obtain 

sufficient inter-particle contact in order to improve resin efficiency.  

In the case of high-density woods, generally hardwood, the inherent strength and stiffness of 

the wood elements is greater than that for lower density species. Therefore, a greater 

compressive force is required to attain a similar degree of inter-particle contact, and the 

magnitude of internal stress is increased (Hse 1975). Stewart and Lehmann (1973) 

investigated particleboard properties with cross-grained knife-planed hardwood flaked with 

nominal chip thickness of 0.006 (0.15 mm), 0.012 (0.30mm) and 0.018 (0.45mm) inches. A 

factorial design was carried out for four types of species, three panel densities and flake 

geometries. These researchers used a constant amount of resin, 8% of urea formaldehyde for 

all the experiments with pH at 3.5. The amount of catalyst needed for the resin was 

determined experimentally. Similar to Larmore (1959), Stewart and Lehmann (1973), Liri 

(1960) and Mitchel (1957) also found that the higher the species density, the lower the 

modulus of rupture and elasticity. With the increase of board density, the MOR and the MOE 

increase linearly, and the strongest board was produced from 0.006-inch (0.15 mm) flakes. 

Increasing the board density increases the internal bond strength and they suggested that it is 

closely related to particle size distribution of flakes. In addition, a higher proportion of 

smaller particles increase IB. However, IB does not have any relationship with the species 

density. Further, Stewart and Lehmann (1973) reported that the boards produced from cross-

grain planer flakes were extremely stable in different room humidity conditions. Boards 

produced from low-density cross-grain flakes were more stable than those produced from 

higher density species.  

Haygreen and Gartjejansen (1971) investigated the use of five tropical hardwoods with 

medium to low density (Aceituna, Banak, Jogo, Gallina and Aspen) on the properties of flake-

type particleboards with a normal density of 721 kg/m3 using UF resin. They observed 

superior bending properties in the boards made from the species with lower densities, 

compared to those made from the higher density species. The founding was explained as 

furnish from lower density species could attain better compaction and inter-particle contact 

than the higher density species when producing particleboard with the same normal density.  
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Vital et al. (1974) investigated the relationship between board density on particleboard 

properties using four exotic hardwood species (kiri, virola, limba and afrormosia). They 

produced three-layer particleboard using wood furnish from either one species or mixed 

species. They measured the pH-value of furnish, in order to maintain the amount of catalyst 

used for urea formaldehyde resin. They found that the boards pressed with a higher 

compression capacity (board density: species density = 1.6: 1.0) had a higher bending strength 

than the boards with a low compression capacity. Boards with the same compaction ratio 

produced the same average MOE and MOR values irrespective of whether they were made 

from single specie or a mix of species. 

It is clear from the literature that the final board density of a particleboard should always be 

higher than the wood species density to attain better inter-particle contact to produce 

satisfactory board. This observation will be very important in the work reported here to 

develop a satisfactory particleboard product using hardwood sawmill residue. 

2.6 Processing Conditions and Parameters 

The press cycle plays an important role in particleboard production. Pressing is generally the 

bottleneck in particleboard production and determines plant capacity. In addition, resin 

efficiency; resin type and level consume a considerable portion of the total manufacturing 

expenses. Press time and resin consumption (which will be discussed later in this chapter) 

therefore directly determine the economy of the particleboard manufacturing operation. 

During the pressing operation, several physical, chemical and interacting activities are 

happening such as the formation of the VDP and resin curing. These activities directly 

influence the final properties of the particleboard. At the initial stage of the hot pressing, the 

moisture closer to the surface of the mat evaporates as the temperature increases rapidly. As 

the generated vapour increases the vapour pressure at the surface, vapour moves towards the 

colder core of the mat, where it may condense. However, with the increase in the core 

temperature due to heat and mass transfer from the surface to the core by thermal 

conductivity, diffusivity or permeability, the moisture in the core also vaporizes. Then this 

vapour drives transversely to the edge of the mat and exits from the structure. Zombort et al 

(2001) reported that the transient void volume, which is comprised of gaps between particles, 

plays the major role by providing pathways for heat and mass transport during mat 
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consolidation. According to previous researchers (Humphrey and Bolten 1989; Kamke and 

Wolcott 1990), reduction in void volume and wood densification that occur during 

compression affect heat and mass transfer during the hot-pressing process.  

2.6.1 Moisture Content  

Mat moisture content is a critical parameter for developing the VDP and a very significant 

parameter for particleboard production. However, excessive moisture when migrated to the 

particleboard core requires additional pressing time to exit through the edges of the board to 

prevent de-lamination and spring-back the pressure release due to the press opening. 

Excessive moisture may cause rapid densification of the surface and loose core, resulting in 

poor internal bond strength and poor screw withdrawal strength of the final board. In addition, 

excessive moisture may interface with the polymerization of resin. 

In addressing the above issues, the particleboard industry generally uses a non-uniform 

distribution of moisture through the thickness, with high moisture for the surface and less 

moisture for the core. Therefore, the higher amount of moisture in the surface than the core 

accelerates heat transfer to the core without unnecessarily lengthening the press cycle results 

in increased VDP. Heebink (1977) observed improved board strength when he used non-

uniform moisture content (15 percent for surface and 5 percent for core) instead of using 

uniform moisture content (12 percent) for three-layer particleboard.  

The continuous increase in surface moisture content improves the particleboard properties 

until they reach their optimum levels. Then, these properties start decreasing with further 

increase in the moisture (Strickler 1959; Rice 1960). However, Lehmann (1960), Strickler 

(1959) and Rice (1960) observed an increase in dimensional stability and a reduction in water 

absorption with the increase in surface moisture content. The pressing time reduces with the 

increase in surface moisture content in faster heating of the core (Strickler 1959). When the 

surface moisture increases above 15 percent with core moisture at 9 percent, MOE, MOR and 

IB reduced (Strickler 1959). The same observations were made by Lehmann (1960), who 

reported that an increase in surface moisture from 13.2 to 16.5 percent increases the MOR and 

IB and then a further increase in moisture from 16.5 to 20 percent reduces the MOR and IB. 

Therefore, the literature suggests that mat moisture content should be changed only within a 

limited range. 
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Smith (1980) reported that moisture dissipation in the form of steam from the edges of the 

board depends on the particle geometry of the board. Flat particles, which are normally used 

in flake boards, provide a channel for the steam transport.  However, particleboard and 

medium density fibreboard required a longer pressing time as steam dissipation was slow.  

P = P0.e
-λT’        Equation 2.1 

Where, 

P pressure at temperature T 

P0 initial pressure   

T’ relaxation time 

λ    a factor depending on board density, species type, particle geometry and the 

moisture content 

The release of the pressure when the moisture content in the middle is higher leads to spring 

back and non-reversible excessive dimensional changes of the board (Suchsland 1974; Beech 

1975). The spring back leads to bond line failures result in poor strength properties in a 

particleboard. Therefore, stress relief or the opening of the press after hot pressing, should be 

addressed. Deppe and Ernst (1964) reported that the pressure relaxation due to press open 

after completing the hot press has an exponential relationship as in Equation 2.1. It shows that 

relaxation pressure has e-T relationship with relation time. Therefore, if shorter the relaxation 

time, higher the spring back will be due to high relaxation pressure. If relaxation time is 

increased, spring back would reduce due to low relaxation pressure. Therefore, press opening 

after hot pressing should carefully maintain to control the spring back. 

2.6.2 Press closing time and press capacity 

Generally, the final board thickness of a particleboard is achieved by placing two stoppers 

with a thickness equal to the required board thickness  at either side of the mat and allowing 

the press to close until the upper platen reaches those stoppers. Press closing time, which is 

different to the total pressing time (explained in Section 2.5.3), is the time taken for the upper 

platen to meet the stopper. Press closing speed influences the properties of a particleboard and 

needs to be optimized to achieve the desired properties of the board. However, adjustments 

have to be made within narrow boundaries limited by resin curing and press capacity (Kelly 

1977). 
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Rice (1960) and Bismarck (1974) observed improved MOE and MOR when increasing the 

press-closing rate by reducing the time. However, Heebink et al. (1972) and Bismarck (1974) 

observed a reverse relationship between press closing time and IB. They found that the IB 

increases with the increase in press closing time. Press closure time is important for heat and 

mass transfer to the core to create stable inter-particle bonding in the core, hence an increase 

in IB. In addition, press closure time helps to release excessive moisture from the core to 

prevent spring-back and breakage of inter-particle bonds. Similarly, Geimer et al. (1975) and 

Heebink et al. (1972) reported that reduction of the press closing speed increases core density 

and IB. During the hot-pressing process, resins in the surface layers of the particleboard mat 

start to cure as soon as the hot platens touch the particleboard mat surfaces. Faster press 

closing will subject the particleboard mat surfaces to platen heat and faster compression and 

curing at the surface before the core has warmed sufficiently. This results in a higher density 

surface and a lower density core. Therefore, increasing the press closing speed increases the 

MOE and MOR as they are mainly dependent on the surface, while reducing the IB which is 

dependent on the core. Reducing the press closing speed allows surface layers to cure while 

leaving the uncured core, resulting in dense surface and loose core and lower core density. 

However, the IB, thickness swelling and spring back were independent of the press closing 

time (Rice 1960).   

According to Liri (1969), the maximum pressure required for mat consolidation decreases 

with increase in press closing time. He explained that when the mat was exposed to elevated 

temperature for a longer time, the extent of wood plasticization was higher and that reduced 

the pressure required. In addition, press capacity should be sufficient to consolidate the 

particleboard mat to a desired thickness while influencing moisture migration from the core to 

the edges of the board, especially in commercial production with larger-sized board (Lehmann 

1959). 

2.6.3 Pressing time 

Pressing time is the total time taken from when the upper pattern first touches the wood mat 

until it leaves it. Pressing time should be sufficient to consolidate the particle mat into the 

desired thickness as well as the polymerization of resin into cross-linked solid polymer to 

hold the mat in a compacted form even after removal from the press. Pressing time together 

with press temperature is extremely important in particleboard production to ensure the core 
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temperature reaches a sufficient level for resin curing as well as to evaporate the moisture 

from the core.  

Lehmann (1960) reported a significant decrease in particleboard thickness even after 

removing the press if he used higher pressing time (20 to 45 minutes) with three different 

platen temperatures (105 0C, 152 0C, 173.3 0C). He explained that result as being due to the 

increased drying and subsequently higher shrinkage of furnish. A three-layer board, which is 

subjected to high initial pressures with short press closure time, can achieve a sandwich effect 

(Suchsland 1967). The effective modulus of elasticity of the board Ee is expressed as in 

Equation 2.2. Raw material variables that are favourable for sandwich characteristics are 

shown in the Table 2.1.  

Ee = Ef – (1- λ) 3(Ef-Ec)      Equation 2.2 

Where,  

Ee  effective modulus of elasticity of the board 

Ef  modulus of elasticity of the face  

Ec  modulus of elasticity of the core 

Table 2.1: Potential material variables (Suchsland 1967) 

 

Material Species Particle geometry Moisture 

content 

Glue 

content 

Face Low compressive strength Small void volume High High 

Core High compressive strength Large void volume Low Low 

2.6.4 Press temperature 

During the pressing, a loose mat of particles transforms into a solid board with pre-determined 

thickness. Adequate contact between particles and heat and mass transfer into the mat to 

increase the temperature in the gullies for curing of the resin occurs during the pressing. 

Suchsland (1967) suggested that fast heat transfer to the centre of the board is therefore the 

key to a short press time. The final thickness of the board is achieved during the mat 

compression, which should occur quickly to avoid pre-curing of resins near the platens, before 

the densification has completed and maximum contact developed. 
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The importance of the processing conditions, the parameters of mat formation, consolidation 

as well as on the resin curing is clear from the literature. Pressing time, press temperature and 

the moisture content are the most important parameters, which should be carefully maintained 

for efficient glue bonding while achieving the proper consolidation. In this study, since we are 

dealing with a new raw material for particleboard production, the processing conditions and 

parameters need to be investigated thoroughly. Chapter 5 discusses the experimental 

procedures and the analytical steps which were used to identify optimum processing 

conditions and parameters for this work. Chapters 6 and 7 discuss the results of properties of 

particleboard with respect to processing parameters which were investigated in this study. 

2.7 Resin or Adhesives 

During the particleboard production process, resin or adhesives are normally sprayed into the 

wood furnish which has been continuously blending inside a blender or mixer. This 

continuous blending action enhances the rubbing action between particles that increases the 

possibility of transferring adhesive from one particle with excessive adhesive to another with 

less or no adhesive. The physical and strength properties of a particleboard increase as the 

droplet size decreases and the dispersion of the adhesive solution increases, because the finer 

the nozzle spray, the better the coverage of particle surfaces (Carroll and McVey 1962; 

Lehmann 1970, Kehr et al. 1964; Dunky 1998). Meinecke and Klauditz (1962) showed that 

the increase in the resin droplet size for the same resin content from 35 µm to 100 µm reduces 

the tensile strength, both parallel and perpendicular to the surface. They observed that 

increase in droplet size causes resin to stagnate in particular areas of the wood mat and not 

spread evenly. This reduces tensile strength. However, further decrease in the droplet size did 

not increase the tensile strength and this was not further explained in the research (Figure 2.6). 

In addition, most industrial blenders operate with droplet diameter of around 80 µm and 

consequently, improved board properties could be obtained by reducing the droplet size. 

Carroll and McVey (1962) found that laboratory boards have higher internal bond strength 

and modulus of rupture than identical industrial boards, although, laboratory blended mix was 

pressed in the industrial press producing a board with laboratory strength. That may be due to 

the use of industrial blender which has bigger droplet size and therefore does not blend wood 

furnish and resin in the same way as laboratory blender (Meinecke and Klauditz 1962).  
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Figure 2.6: Influence of resin droplet size on tensile strength perpendicular and parallel to 

particleboard surface (Meinecke and Klauditz 1962) 

Christensen and Robertschek (1974) and Kehr et al. (1968) reported that resin transfer during 

blending contributes to improved particleboard properties, especially IB. However, in a 

similar study, Carroll and McVey (1962) found that increase in mixing time only slightly 

improves particleboard properties. They explained that proper blending using smaller droplets 

is more effective than post-blending. Lehmann (1965) maintained a uniform distribution of 

resin using fine atomization to optimize board properties. He was able to improve 

particleboard properties by decreasing the droplet size for urea formaldehyde resin (UF). 

Decreasing the droplet size resulted in a uniform distribution of resin and subsequently 

increased particleboard properties. However, Burrows (1961),using phenolic resin that does 

not have high flow properties like UF resin, found that modulus rupture is independent of 

atomization level. However, the cause for this observation was not explained. 

Carroll and McVey (1962) observed that resin efficiency could increase the coating of the 

particles with resin while keeping total solids lower. This is achieved by having less resin 

solids in one droplet but adding more droplets to one single particle area. In a similar 

observation,  Meinecke and Klauditz (1962) found that continuous resin film is important 

for particleboard production. However, the increase in throughput per nozzle decreases the 

dimensional stability and strength properties of particleboard (Kehr et al. 1964). The lower the 

throughput per nozzle, the better the properties of flake board which can achieved. This is 

attributed to a uniform distribution of resin. 
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Lehman (1968; 1970) added fluorescent dye to urea formaldehyde (with three different resin 

contents: 2, 4, 6 percent of oven dry weight of wood furnish) and phenol formaldehyde resin 

using two atomization levels (fine and coarse) to investigate inter-particle bonding.  The 

location and distribution of the adhesive in the finished board was determined by 

photomicrographs under ultra-violet (UV) light. Better particleboard properties could be 

obtained with finer atomization level than the same resin with coarse atomization level. His 

microphotographs revealed that continuous glue lines could be obtained with 6 percent UF 

resin and almost continuous with 4 percent UF resin when fine atomization was used. He 

further micro-photographed boards made with diluted, low viscosity. UF resin as a fine spray 

and no penetration of resin into the particles was observed. The fine atomization of resin 

improved the strength properties as well as dimensional stability of the board more effectively 

than the spraying method or varying the spraying temperature or the solid content of the resin 

(Lehmann 1965). 

The amount of resin consumed for particleboard has a relationship with the particle size 

distribution of the wood sample. Turner (1954) reported that most of the time the amount of 

resin used for particleboard manufacturing is normally calculated as the amount of resin solid 

as a percentage of the oven-dry weight of wood. Post (1958; 1961) studied the surface areas 

of wood particles as the basis of oven-dry weight of the wood to optimum resin load in a 

controlled particle size. He observed a moderate increase in bending strength when resin solid 

level was increased from 3.27 g to 13.07 g for a square meter of particle surface. In another 

attempt, Istrate et al. (1964) showed that the particles with high slenderness coefficient 

(length/thickness) require less resin to glue the particleboard than ones with small slenderness 

ratio. 

For hardwood particleboard, about 30% longer press times are required compared with 

softwood for curing of phenolic resins (Pizzi 1983). He explained that hardwood required 

higher press capacity to compact the particleboard mat compared to softwood mat. In 

addition, phenolic resin has a longer flow rate compared to UF resin. Pre-pressing is therefore 

helpful to reduce pre-curing closer to the hot platens during hot pressing. 

The literature clearly shows that the smaller the droplet size, the higher the resin efficiency is. 

Therefore, smaller droplet size was maintained in this research to improve resin efficiency. 

However, this work investigated the effect of resin content on board properties to optimise the 

mix design. 
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2.7.1 Resin type 

There are a number of different types of resin used in the particleboard industry. Resin type is 

vital for particleboard production as it directly contributes to the production cost. Urea- 

formaldehyde (UF) resin, melamine formaldehyde (MF) resin, phenol-formaldehyde (PF) 

resin and di-phenyl methane di-isocyanate (MDI) polymer are the most commonly used resins 

in the particleboard industry. UF resin is the most widely used resin considering its basic 

properties such as water solubility, thermal properties, high reactivity and most importantly 

lower cost compared to any other resin type. However, MF is often used in combination with 

UF resin to improve the strength of UF-bonded boards to achieve improved water resistance 

and reduction in formaldehyde emission while retaining bond strength and to speed up the 

curing rate of UF resin (Products 2001). PF resin is mainly used in the OSB or hardboard 

(HB) industry due to its superior quality in bond strength and higher retention of bond 

strength after soaking for a few hours. MDI bonding is superior to the other three resin types 

in both dry conditions as well as wet conditions. The advantage of MDI is its ability to work 

with higher moisture content compared to the other resins. 

Urea formaldehyde resin was used as the binder in our investigation to produce three-layer 

particleboard using hardwood sawmill residue. Therefore, this section of the chapter critically 

reviews the suitability of urea formaldehyde as the resin type in the production process and its 

thermal properties. However, other resin types and their usage are mentioned. 

Hse (1974; 1989) investigated UF resin with various ureas to formaldehyde molar ratios at 

different temperatures under various alkaline and acidic conditions. Resin with higher 

methylol content produced board with higher internal bond and modulus of rupture values. He 

changed the methylolation pH from 7 to 10 and polymerization pH from 3.8 to 5.8 and found 

that the resin with methylolation under neutral or slightly alkaline conditions produced 

particleboard with higher internal bond. Optimum properties were found with polymerization 

at pH 5.8 following a neutral methylolation reaction.  

Temperature and pressing time are very important process parameters in particleboard 

production as they directly relate to resin curing. The press cycle should be long enough for 

the heat to migrate from platens to the mat centre to increase the core temperature to cure the 

resin. PF resin is not as reactive as UF resin, requiring higher pressing temperature and press 
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cycle compared to UF resin (Carroll 1963; Lehmann et al 1973). Roffael and Rauch (1972) 

reported that raising the core temperature to 220oC improved the dimensional stability and 

internal bond strength of Scotch pine particleboard. 

The durability of a particleboard could improve with an increase in the resin level of either PF 

resin or UF resin (Hann et al 1963; Lehmann 1974). Several researchers manufactured 

particleboards using particles which were dipped into aqueous solutions of resin or sprayed 

with resin solutions before being sprayed with conventional resin solution. This method is 

called the impregnation of resin. Phenolic impregnation of resin in particles to improve 

particleboard properties has been reported by several researchers (Browne et al. 1966; 

Haygreen and Gartjejansen 1971; Kajita and Imamura 1991). They observed a significant 

improvement to spring-back and thickness swelling as well as board properties.  Browne et al. 

(1966) used phenolic impregnated resin in particleboard made with both UF resin as well as 

PF resin. They reported that impregnation reduced the irreversible thickness swelling. 

However, the cost of this method limits its applicability. 

Deppe and Earnst (1971) found that particleboard with the same MOR could be produced 

with less MDI resin than PF. They also found that the amount of pressing time was much 

shorter compared to phenol formaldehyde resin. 

In recent years, the demand for environmentally-friendly adhesives has increased to replace 

UF or PF resins to reduce formaldehyde emissions. Soybean protein has been investigated as 

an alternative petroleum polymer in manufacturing various binders due to its inherent 

advantages in renewability, biodegradability and feasibility (Mo et al. 2001; Kuo et al. 1998). 

The performance of protein adhesives is dependent on the dispersion and unfolding of the 

protein in solution. Mo et al. (2001) reported that the bond strength of soy protein-based 

adhesives could be increased by adding alkaline to promote unfolding. In further 

investigations, Mo et al. (2003) found that diphenyl di-isocyanate resin produces particleboard 

with superior properties than particleboard made with UF or soy protein-based resin. 

However, soy protein-based resin could produce particleboard suitable for standard general 

purposes such as interior furniture and shelves. 

Acacia mernsii is an easily-grown tree in most parts of the world especially in South Africa 

and is a main supplier of tannin. Since the structure of the tannin is so close to the structure of 
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phenol’s structure, researchers in the wood industry started to investigate the possibility of 

using tannin as a natural adhesive (Plomley 1966). Improved tannin adhesives could be used 

for co-condensation with UF to improve swelling properties (reduce the swelling) of 

particleboard. However, since tannin does not flow like phenolic resin, it requires higher 

moisture content (25% is the norm) to improve workability. Since tannin does not shrink 

during curing, it produces very strong bonds between particles with very little or no 

destruction of the wood. In addition, when pressing at high moisture contents, spring-back of 

the board is very rare with tannin (Plomley 1966). 

2.7.2 Urea Formaldehyde resin 

Urea-formaldehyde (UF) is the most important amino-plastic resin in the wood-working 

industry due to its high reactivity, water solubility and the reversibility of the amino-

methylene link, which also explains the low resistance of UF resins against the influence of 

water and moisture, especially at higher temperatures. Approximately 6 billion tonnes are 

produced per annum worldwide, based on a usual solid content of 66% (Dunky 1998). UF 

resin is based on two monomers, urea and formaldehyde. 

UF resins are thermosetting duromers and consist of linear or branched oligomeric and 

polymeric molecules, which always contain some amount of monomer. Non-reacted urea is 

often beneficial to achieve better stability during storage.  Formaldehyde is necessary to 

induce the hardening reaction; however formaldehyde emission during pressing is unpleasant. 

2.7.2.1  Formation of Urea Formaldehyde  

 

Figure 2.7: Formation of mono-, di-, and tri-methylolurea by the addition of formaldehyde to 

urea. (Conner 1996) 
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The reaction of urea and formaldehyde is a two-step process: usually an alkaline 

methylolation followed by an acid condensation (Dunky 1998 and Conner 1996). 

Methylolation refers to the addition of up to three molecules of the bi-functional 

formaldehyde to one molecule of urea to give the so-called methylolureas (Figure 2.7). The 

formation of tetra-methylolurea has not been observed experimentally. The reversibility of 

this reaction is one of the most important features of UF resins, and is responsible for both the 

low resistance against hydrolysis caused by the attack of moisture or water and subsequent 

formaldehyde emission.  

 

Figure 2.8: Influence of pH on the rate constant (k) for addition and condensation reactions of 

urea and formaldehyde (Pizzi 1983) 

During the second stage, methylolureas condense into low molecular weight polymers.  The 

type of bond between the urea molecules depends on the conditions used: low temperatures 

and only slightly acidic pH favour the formation of methylene ether bridges (-CH2-O-CH2-), 

while higher temperatures and lower pH values lead to the more stable methylene (-CH2-) 

bridges (Figure 2.8). Therefore, the condensation process is carried out in an acidic 

environment, with pH of about 5.0 until a desired viscosity is reached. After the mixture is 

cooled and neutralized, the extra water is removed using a vacuum distillation method to 

produce resin with the desired solid content. The most widely used solid content is around 60-

65%.  
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Figure 2.9: Condensation reaction of methylolureas (Conner 1996) 

Conner (1996) explains the formation of the methelene bridges in four steps as in Figure 2.9 

above. 

1. methelene bridges between amino nitrogens by the reaction of methylol and amino 

groups on reacting molecules 

2. methylene ether linkages by the reaction of two methylol groups. 

3. mehtylene linkages by the splitting out of formaldehyde. 

4. methylene linkages by the reaction of methylol groups splitting out water and 

formaldehyde in the process. 

It is very important to control the molecular size of the UF resins during the production 

process as their properties change continuously as the molecular size grows larger. The 

molecular weight can vary from a few hundred to a few thousand with a wide range of 

molecular size (Pizzi 1983). The most perceptible change is the viscosity.  
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The addition of urea into formaldehyde is done in two stages to control the formaldehyde to 

urea ratio.  First in the formation of methylolurea, the ratio of urea to formaldehyde is 

maintained at around 2.0 -1.6. In the condensation step, urea is added into methylolurea to 

maintain the final U/F ratio at a desirable level. In this second stage an extra amount of urea is 

added to consume the excess formaldehyde. The pH value of the final product is adjusted to 

maintain the required storage life. 

2.7.2.2  Curing of Urea Formaldehyde Resin 

During the curing process, UF resin forms into three-dimensional networks that are no longer 

thermo-formable and insoluble. Similar to the condensation process of producing UF resin, 

the curing of the UF resin has to be done in an acidic environment. This acidic condition is 

achieved by addition of direct acids or latent hardener. Ammonium sulphate or ammonium 

chloride is widely used as a latent acid in the particleboard industry. However ammonium 

chloride has not been widely used as the formation of hydrochloric acid (Equation 2.3) during 

the combustion of wood-based panels accelerates corrosion, and is suspected of producing 

dioxins (Dunky 1998).  

4NH4Cl +6HCHO   � 4HCl + (CH2)6N4 + 6H2O     Equation 2.3 

 

Figure 2.10: pH change of UF resin with NH4Cl hardener as a function of temperature and 

time (Pizzi 1983) 
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Hardener reacts with free formaldehyde in the resins to generate acid. The capacity of the 

hardeners depends on their ability to release acid, thereby decreasing the pH of resin to 

accelerate the curing. The speed of the reaction depends on the amount of available free 

formaldehyde and ammonium salt, which is dependent on the temperature and the time 

(Figure 2.10). NH4Cl (a weak acid) is said to be a better hardener than HCl (strong acid) as 

the latter produces weaker inter-particle-bonds (Pizzi 1983). 

2.7.2.3  Testing methods for UF resin 

It is important to understand the quality and the performance of the resin for quality control of 

the system. Solid content, refractive index, density, viscosity, pH and reactivity are usually 

measured in the laboratory, which produces the resins and in particleboard factories as part of 

their quality control system (Dunky 1998).  

Gel time is one of the most important resin parameters that determines curing reactions as 

well as its applications. The test will yield not only the time during which the resin gels but 

also extra information such as whether resin gels sharply within 1-2 seconds or spans to about 

10 seconds. If the time extends to more than 10 seconds, the resin will have a character of 

slow generating of bonding strength (Siimer et al. 2003).   

2.7.2.4  Advantages and Disadvantages of UF 

The main disadvantage in UF is that it is not stable at higher relative humidifies especially at 

elevated temperatures, since the amino-methylene linkage is susceptible to hydrolysis and is 

therefore not stable (Yamagushi et al. 1980). In addition, UF-bonded board lacks resistance to 

moisture, especially in combination with heat, compared to a board produced using PF resin 

or MDI resin (Conner 1996). Water also causes degradation of UF resin. Dunky (1998) has 

suggested the incorporation of melamine into UF resin (M-UF, MF-UF) or phenol and/or 

melamine into UF resin (M-U-PF, P-M-UF) to improve resistance to moisture or humidity. 

However, this may change the characteristics of the resin as well as the cost of the resin.  

Papadopoulos and Hill (2001) reported that a board made using MDI had superior board 

properties compared to a board made with UF resin. They found that the amount of MDI resin 

required to produce a board with the same properties is considerably lower, compared with 
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UF resin. The bonding efficiency can be significantly increased by adding 1% wax to both UF 

and MDI resin. Although the mat moisture content and platen temperature have an influence 

on the bonding efficiency in UF bonded board, they do not have a significant effect on the 

bonding efficiency of MDI board.  

Weather durability of a glue line is an important property, which should be maintained in 

particleboard. Durability is essentially dependent on cyclic stresses generated due to swelling 

and shrinkage of joints, as well as hydraulic attacks on the chemical bonds. Dunky (1998) 

reported that weather durability can be increased by the addition of hydrophobic chains into 

the hardened network. That can be achieved by incorporating urea-capped di- and tri-

functional amines which contain aliphatic chains into the resin structure, and using the 

hydrochloride derivates of some of these amines as a curing agent (Ebewele et al. 1991a; 

1991b; 1993; 1994). 

Adding more hardener to the resin does not increase the curing reaction. Instead, it leaves 

residues of acids or acid compounds in the glue-lines and contributes to the brittleness of the 

cured resin. This will initiate hydrolysis of the wood cell wall adjacent to glue-lines as well as 

acid-catalysed resin degradation, which decreases bond durability (Myers 1984). Therefore, it 

is important to maintain the amount of hardener to create neutral glue-lines which show a 

distinctly improved resistance to hydrolysis. 

Having reviewed the different types of resins used in the particleboard industry, UF resins 

were recognized as the most suitable resin for this work. Its inherent properties, such as high 

reactivity and water solubility, as well as low cost compared to other resin types, promote it to 

be the ideal candidate for this research. Press temperature and pressing time are important 

parameters for complete curing of resin. In addition, it is important to maintain an acidic 

environment for resin curing. However, literature on the amount of hardener (acid) required to 

create an acidic medium for UF resin curing with respect to hardwood particleboard is not 

available. Therefore, optimum resin content, hardener content, optimum pressing time and 

temperature for resin curing were investigated in this research will be discussed in Chapter 6 

and Chapter 7. 
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2.8 Particleboards from different types of raw materials 

Particleboard properties depend significantly on the properties of the raw material used. The 

quality of the wood furnish is affected by its properties such as density, acidity, extractive 

content and machinability. This section of the chapter discusses the effects of the widely-used 

wood species and other lingo-cellulostic material used for manufacturing particleboard on the 

properties of the final board. As mentioned earlier in the chapter, final board density should 

be higher than the wood species density to achieve proper compaction and bond between 

particles. 

Softwood flake is the most common raw material used in particleboard production. However, 

research has shown that other lingo-cellulostic materials such as root wood (Howard 1974), 

forest residue (Heebink 1974; Lehmann and Geimer 1974)), wood bark (Dost 1971; 

Gertjejansen and Haygreen 1974; Anderson et al. 1974), urban wood wastes and different 

types of agricultural residues (Nami et al. 2001) have been investigated as potential 

particleboard raw materials.  

2.8.1 Particleboard from softwood sawmill residue 

Heebink (1974) and Lehmann and Geimer (1974) investigated phenolic-bonded particleboard 

produced from wood residues from lodge-pole pine and Douglas fir respectively. Heebink 

reported that a mixture of live and dead lodge-pole pine residue would produce particleboard 

with properties acceptable to the industry. 

Heebink et al. (1974) compared the quality of particleboard produced from planer shavings 

produced from different planer settings. They found that longer and thinner flakes produced 

stronger, stiffer and more dimensionally stable particleboards. 

2.8.2 Hardwood as Particleboard Raw Material 

Vital et al. (1974) produced three-layer particleboards by combining four species of exotic 

hardwood species. The manufactured particleboard combined one, two, three or all four types 

of species at each of 1.2 and 1.6 compaction ratios. They found that the properties of the final 

boards were dependent on the average of the mix density. MOR and MOE had a direct 
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relationship with the compaction ratio for boards with equal density and could be explained 

by the better compaction and resulting better inter-particle contact which created better bond 

between particles. 

Hse (1975) used phenol formaldehyde resin to produce three-layer particleboards for three 

different densities using nine different species of hardwood with large flake size (76.2 mm x 

9.525 mm x 0.4 mm). He found that if final boards need to be used in exterior applications, 

they should be compacted to at least 1.25 (board density / wood density). Thus, low-medium 

density boards from lower density species and high-density boards from high-density boards 

are suitable. However, thickness stability is inversely related to the board density. 

Stayton et al (1971) investigated the suitability of a mixture of high-density birch and low 

density aspen flakes that were 12.5 mm long. They reported that particleboards with 

acceptable properties could be produced using 8 percent urea formaldehyde resin and 6 

percent phenol formaldehyde resin with an average density 720 kg/m3 and 737 kg/m3 

respectively. They added that the all-aspen boards were superior to board made with a mixture 

of birch, and adding birch adversely affected the surface quality of the final product. 

However, all-birch particleboard could retain at least 80 percent of all-aspen board properties. 

2.8.3 Wood Bark as Particleboard Raw Material 

Nemli et al. (2006) attempted to impregnate pinus brutal bark into particle to produce three-

layer particleboards bonded with UF resin. They also found that increasing the extractive 

content in particles reduced MOR, MOE, and IB. They explained this as being possibly due to 

a decrease in pH value of the particles due to the presence of reactive material such as the 

tannin in the bark. The curing rates of formaldehyde-based resins depend on the pH. If the pH 

is low, then pre-cure may happen before compression of the particles. When the press closes, 

the pre-cured resin bonds are broken, reducing MOE, MOR and IB. However they observed 

the decay resistance could be increased. This may have been due to high amounts of poly-

phenolic extractives, which are toxic to fungi and insects. 

A substantial amount of wood bark is produced by the wood industry as 10-15% of each 

wood log is bark. A considerable amount of this remains unused (Nemli et al. 2006). 

Therefore, the use of wood bark as particleboard raw material has been investigated from time 
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to time. Post (1971) used redwood bark as a raw material to prepare three-layer particleboard 

using urea formaldehyde resin. He used three levels of resin incorporating 0, 10, 20 and 30 

percent redwood bark. A significant decrease in MOE, MOR and IB was observed with 

increase in the percentage of bark. Gertjejansen and Haygreen (1973) incorporated aspen bark 

into furnish of wafer and flake-type particleboard using phenol formaldehyde resin. They used 

3 percent resin for wafer and 8 percent for flake boards and reported that the entire tree trunk 

could be used in making particleboard if the bark was removed from the but log. As explained 

by Nemli (2006), higher pH value in bark interferes with UF resin to pre-cure. These pre-

cured resin bonds would have broken during the compression, decreasing MOE, MOR and 

IB. 

2.8.4 Urban Wood Waste as Raw material for Particleboard 

Environmental issues restrict the available timber harvest for the particleboard industry. 

Therefore, it needs to look beyond the traditional resources of raw materials such as planer 

shaving, plywood trim or sawdust as raw material. Utilizing urban wood waste that is a good 

source for particleboard manufacturing as well as recycling wood waste to produce 

particleboard is excellent for the environment. 

Urban wood waste however is contaminated with foreign materials such as plastics, rubber, 

metals, chemicals (as preservatives), which is a concern for manufacturing plants, end-use 

customers, employee safety, product quality anf the tool life.  

Chromated copper arsenate (CCA) is currently a major commercial wood preservative for 

many applications in the world. Recycling of treated wood waste into wood-based composites 

is a relatively low-cost alternative compared to disposal into the environment. Extraction of 

the CCA elements from the wood fibre can increase recycling opportunities for the remaining 

pulp. One novel method for recycling CCA-treated wood fibre would be to modify it by 

removing all or much of the heavy metal, which could be reclaimed. Acid extraction is one 

option for removal of copper, chromium, and arsenic from treated wood fibre, which has been 

explored by several researchers using different acids (Kartal and Clausen 2001). Oxalic acid 

(OA) is used in the extraction of contaminants such as copper, chromium, and arsenic from 

CCA-treated wood waste and pH reduction of wood substrate. 
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Bacterial fermentation is another possible method for the removal of heavy metals from 

treated wood, since some bacteria are extremely tolerant of toxic metals. In this method, CCA 

in treated wood can be first converted to its water-soluble form and then copper, chromium 

and arsenic can be removed from the wood through a washing process. Bacillus licheniformis 

isolated on CCA-treated wood had great potential to remove toxic metals when treated wood 

sawdust was exposed to this organism in liquid culture (Crawford and Clausen 1999). 

In order to investigate the effect on the mechanical properties of particleboard due to the 

interference of OA on UF resin, Nami et al. (2001) compared the effect of OA on UF resin by 

remediating CCA-treated wood waste using OA as well as bioremediation using B. 

locheniformis. They further evaluated three other particles; 1). Untreated southern pine 

particles (SYP), 2). SYP particles treated to 6.4 kgm3 with CCA-type C and 3). SYP particles 

treated to 6.4 kgm3 with CCA-type C followed by an OA-extraction. They found that the 

particleboard made from CCA-treated wood particles using UF complies with the strength 

properties as well as thickness swelling and fungal resistance. However, leaching of arsenic is 

relatively high, which is not desirable either in use or in disposal. They suggest a thorough 

removal of CCA from treated waste prior to particleboard manufacturing. Then, they were 

able to produce particleboard which is even desirable for the indoor use.  

2.8.5 Agricultural residue 

Agricultural residues such as wheat straw and flax fibre as lignocellulose material are 

becoming popular alternative raw materials in the particleboard industry to supplement wood 

chips. Wheat straw as particleboard raw material has been investigated in recent years. Mo et 

al. (2003) investigated the suitability of different resin types as a binder for wheat straw 

particleboard. They found that MDI resin was the best resin to use with wheat straw to 

produce particleboards that satisfied the thickness-swelling property. As MDI facilitates 

working with higher moisture content than other resin types, this could effectively wet the 

surface of the straw, enhancing proper chemical bonding through both hydrogen bonding and 

covalent bonding (Dalen and Shoram 1996; Mo et al. 2003). In contrast, water-based resin 

such as UF or soybean-based resin, could not effectively wet the straw surface due to the 

hydrophobic wax and silica found on the surface of wheat straw (Hague et al. 1998). 

However, treating straw with bleach or modifying UF with silane coupling could improve the 
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properties of wheat straw particleboard produced using UF as the binder (Hann el al. 1998; 

Mo et al. 2003). 

Joss tall wheatgrass (JTW), Agropyron elongatum, has been used as pasture or “standing hay” 

for cattle and upland game cover or to manage saline subsurface drainage water in arid land 

irrigated agriculture (Zheng et al. 2006). Zheng et al. (2006) have investigated the properties 

of JTW particleboard made using different resin types with different MC and board density. 

They manufactured particleboard using UF resin and PMDI resin with and without NaOH 

treatment (soaking with NaOH solution followed by soaking with distilled water at 50 oC).  

They reported that high quality particleboard can be manufactured using PMDI resin with a 

board density of 730 kg/m3 and those properties could be further increased by increasing 

particleboard density. 8% moisture was found most suitable for particleboard by 

experimenting with MC from 2% to 10% of the particles with PMDI-bonded boards. 

However, UF resin is not suitable for JTW particleboard with or without NaOH treatment. 

Similar to wheat straw, JTW contains high concentrations of extractives such as wax on the 

surface of JTW straw, and therefore UF would not be suitable as the binder (Vick 1999; 

Zheng et al. 2006). 

In recent years, flax fibre have been considered as raw material by not only the particleboard 

industry but also by other composite industries due its inherent properties such as low density, 

high specific stiffness, recycle ability and low cost (Troger et al. 1998; Baley 2002; 

Papadopoulos and Hague 2003). Flax (Linum usitatissimum) has been identified as a potential 

alternative source of lignocellulose raw material which could supplement wood from natural 

and plantation forests for particleboard raw material (Papadopoulos and Hague 2003). They 

investigated the possibility of using flax particles by partially substituting flax shive with 

wood chips bonded with UF resin to make single-layer particleboard and mixing its strength 

properties. According to the report, 30% substitution of flax could produce single-layer 

particleboard with the strength and physical properties required by the industry standard for 

interior use. 

Kenaf (Hibiscus cannabinus L.) stalks are another good cellulostic fibre which has been 

investigated by many researchers for use in particleboard, textiles or recycled plastics 

(Webber and Bledsoe 1993; 1999; Kalaycioglu and Nemli 2006). In an attempt to 

manufacture three-layer particleboards using UF as the binder, Kalaycioglu and Nemli (2006) 
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found that Kenaf stalks could be considered as a potential raw material for particleboard 

production. 

Athel tree is a fast growing plant widely used in the US for soil and water remediation as it is 

tolerant of alkaline and saline soils. Zeng et al. (2006; 2007) manufactured particleboards 

using Athel with UF or PMDI resin, considering that its high content of silica, phenol and 

oxidant would be beneficial for particleboard properties. They found that Athel with 7 – 16% 

UF could produce particleboards that satisfy ANSI/A208.1. However, they found that more 

stable particleboard could be manufactured using 5% PMDI resin. 

Alma et al. (2005) investigated the suitability of cotton carpel chips as particleboard raw 

material using UF and melamine UF (MUF) as the binder. They found that particleboard that 

meets the minimum standard for particleboard and MUF-bonded board had better strength 

properties than UF-bonded particleboard. However, most produced board did not satisfy the 

screw withdrawal test perpendicular to the board. 

2.9 Summary and Conclusions 

A review of the published work assisted in gaining state of the art knowledge of 

manufacturing particleboard using a range of raw materials. Particleboards are mainly 

manufactured using softwood. However, hardwood flake, agricultural residues and treated 

timber have also been investigated at different times. In most instances, important physical 

and mechanical properties of a particleboard were measured and effects of material and 

process variables on the physical and mechanical properties of a particleboard were studied. 

Commonly measured physical and mechanical properties of a particleboard are final board 

density, thickness swelling property, flexural strength and the tensile strength perpendicular to 

the surface of the particleboard. The following major points are found to be important for the 

work undertaken in the present study. 

• Final particleboard density is an important parameter. Increase in final particleboard 

density with the same final board thickness increases the internal pressure of the 

board. This increases the interlocking between particles, enhancing stronger chemical 

bond between particles and adhesives. However, this inter-locking could be increased 
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up to a certain point to allow moisture which is vital for heat transfer to travel from 

surface to core and then to escape from the edges of the board.  

• Both MOR and MOE of a particleboard can be improved by increasing the 

compaction ratio as well as by increasing the length/thickness ratio for the same wood 

species. The optimum MOR or MOE of a particleboard can be produced with a 

length/thickness ratio around 250.  

• The MOR and MOE of a particleboard with the same mean density increase with 

decrease in the density of the wood species.  

• IB is a very important property in particleboard, which is highly dependent on glue 

line strength. IB reduces with the reduction in core density since the compaction ratio 

is low. IB can be improved by adding extra resin into the core. However, excessive 

addition of water-resistant chemicals such as wax or the addition of fire retardants 

such as boric acid or borax reduces the IB. In addition, excessive amounts of smaller 

particles such as saw dust decrease the IB.  

• The durability of a particleboard can be improved by improving its stability and 

resistance to fire or fungus. Board stability is dependent on properties such as 

thickness swelling or spring-back. Increasing the resin content in a particleboard 

reduces the thickness swelling as well as spring-back, although high moisture content 

does the opposite. After hot pressing, releasing the pressure slowly and carefully or 

increasing the pressing time reduce spring-back.  

• Additives such as paraffin wax are added into the particleboard to reduce water 

adsorption in order to reduce the thickness swell. The addition of fire retardants such 

as borax is important for the durability of a particleboard. However, the amount of 

these additives should be carefully be monitored as they may affect resin curing.  

• Spraying the resin into raw material should be done carefully as the smaller the droplet 

size, the higher the resin efficiency. 
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• UF resin was recognized as the most suitable resin for this study. Its inherent 

properties such as high reactivity and water solubility as well as low cost compared to 

other resin types make it the ideal candidate for this research.  

• It is important to maintain an acidic environment for UF resin curing. However, 

literature on the amount of hardener (acid) required to create an acidic medium for UF 

resin curing with respect to hardwood particleboard is not available.  

The importance of the processing conditions and the parameters on the mat-formation and 

consolidation as well as on resin curing is clear from the literature review. Pressing time, 

press temperature and the moisture content are the most important parameters, which should 

be carefully monitored for efficient glue bonding while achieving proper consolidation. In this 

study, since we are dealing with a new raw material for particleboard production, the 

processing conditions and parameters need to be investigated thoroughly. Chapter 6 discusses 

the experimental procedures and the analytical steps used to identify optimum processing 

conditions and parameters for this work.  

Prior to establishing the experimental procedures, a review of literature covering simulation 

models for predicting the VDP of particleboard was undertaken. This study is reported in 

Chapter 3. This study was required since the success of the laboratory process developed was 

measured against the expected density profiles of three-layer particleboard. 
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CHAPTER 3  

REVIEW OF SIMULATION MODELS TO PREDICT THE 

FORMATION OF VERTICLE DENSITY PROFILE 

3.1 Introduction 

The density of a particleboard is not uniform along its direction of thickness. This variation of 

density along the thickness direction of a particleboard is referred to as vertical density profile 

(VDP) vertical density gradient. The VDP in a particleboard significantly influences most of 

the mechanical properties of a particleboard including MOR, MOE and IB. The MOR and 

MOE of a board are mainly dependent on the surface layers of the board, while IB is 

dependent on the core. Therefore, commercial particleboard producers use VDP as a 

benchmark for quality control purposes. The purpose of this chapter is to examine previous 

studies on the formation of VDP and to investigate parameters that influence the formation of 

VDP. Further, the chapter will report on analytical, numerical and empirical studies used in 

the past to model the formation of VDP, discuss the significance of those models and outline 

their limitations. Chapter 9 will further examine the formation of VDP of a particleboard that 

was produced from hardwood sawmill residue, which is the main raw material used in this 

investigation. 

3.2 Density Profile 

The VDP forms due to the nature of the interactions of heat and mass transfer with the 

rheological properties of furnish and resin during the production of particleboards. It also 

depends on the rate of press closing, moisture distribution in the mat and the hot-press 

temperature (Kelly 1977; Humphrey 1982). Particle configuration, wood type and resin type 

also influence the formation of the density gradient of a particleboard. The VDP in a 

particleboard significantly influences most of the mechanical properties of a particleboard 

including MOR, MOE and IB. Therefore, considering the critical property of the final 

practical applications of the end product, the modification of the pressing operation may be 

important to enhance or restrict the formation of this VDP (Kelly 1977). 
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There are two common methods used in practice to determine the VDP. They are the 

gravimetric method and the x-ray scanning method. The gravimetric method uses 

mass/volume method to measure the density profile. In this method first the initial mass and 

volume of a sample is measured. Then, a layer of the sample is shaved and the mass and the 

volume of the sample are measured again. The reduced mass and the reduced volume are then 

used to calculate the density of the shaved layer.  This process is repeated after shaving each 

layer from the sample and the density of each layer is calculated accordingly to obtain the 

final VDP of the sample. In the x-ray scanning method, smaller specimens from panels are 

used to test the density of the panel. During the scanning, an x-ray beam, parallel to the plane 

of the panel, is passed across the thickness of the specimen. Then it averages the in-plane 

density of the panel to produce the VDP (Wang et al. 2006).  

3.2.1 Formation of the VDP 

Suchsland (1967) explained the formation of the density profile as being due to the influence 

of moisture and temperature on the compressive stress of a wood perpendicular to the grain. 

The combination of heat and moisture severely reduces the compressive stress of the wood. 

However density profile in a particleboard forms due to the unequal distribution of heat and 

moisture content and the differences in the stress-strain relationship of all particles during the 

hot pressing process. When the heat and moisture transfer through the mat, their effects on the 

compressive strength of the wood component develop the VDP in a particleboard mat which 

originally had homogeneous properties.  

During the hot-pressing of a particleboard, the time required for the upper platen of the hot-

press to reach the stoppers is directly related to the initial pressure inside the board. If the 

press reaches the stoppers and has developed a pressure that exceeds the compressive 

strengths of inner layers, a compressive failure would occur close to two surfaces. This may 

result in high-density face regions and low-density core regions providing a sharp density 

gradient (Suchsland 1967; Stickler 1959). Although press closure time can be used to control 

the VDP, a VDP caused by the large pressure would not lead to desirable board properties. As 

soon as hot platens touch the particleboard mat, polymerization of cross-linked polymer 

begins, even before having sufficient inter-particle contact. Further increase in press closing 

time starts to break these already cured particle bonds (pre-cured bonds). Therefore, a pre-

cured surface severely reduces the bending strength of a particleboard (Kelly 1977). 
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3.3 Effects of the moisture content, temperature and pressing time on the 

formation of the density profile 

Strickler (1959) reported how the press cycle, moisture content and moisture distribution 

affected the properties of Douglas fir flake-board during the pressing operation. When the 

press temperature controlled the rate of heat conduction from the top and the bottom platens 

to board surfaces, moisture plasticizes the wood particles and improves the compaction, 

producing higher layer densities. A rapid press closing speed generates higher initial pressure 

in the mat, consequently allowing a shorter time period for heat and moisture transfer into the 

mat. Rapid pressing only allows maximum compression of wood closer to the surface and less 

compression in the core layer, which results in higher surface density and lower core density. 

Both Strickler (1959) and Maku (1959) reported that heat transfer into the core layer was 

mainly controlled by the mat moisture content in the form of steam transfer from the surface 

to the core. Also, the heat flow to the core is mostly by steam rather than entire heat transfer 

due to conduction. The increase in surface moisture content is vital for rapid heat transfer to 

the core and mat compaction, hence on the formation of the VDP. 

Therefore, the ‘steam shock’ treatment method is widely used by the particleboard industry to 

control the VDP. The method uses steam to heat the mat interior quickly to reduce the wood 

compressive strength allowing mat consolidation to occur at lower pressure (Strickler 1959; 

Kelly 1977). Strickler (1959) and Maku et al. (1959) studied the heat transfer from the hot 

platens to the mat as well as the effect of this unsteady state heating process on moisture 

distribution and movement across the mat thickness. They reported that the maximum 

temperature reached by the core was a function of the moisture content of furnish in the early 

stage of the hot pressing. During the press closing time, when heat and moisture had 

transferred into the mat, wood compression occurred to allow consolidation of the mat to the 

desired thickness, during which time the VDP is established.  

Research has shown that the initial temperature rise in the core of a flake-type particleboard 

mat could reach higher than the boiling point of water (100 oC) and start decreasing as 

moisture starts to evaporate from the edges of the mat releasing the heat (Strickler 1959; 

Maku 1959; Kelly 1977).  However, the initial core temperature for granular type particles did 

not rise above the boiling point of water, irrespective of the mat moisture content observed 

from 1% to 30%. That may be due to the porosity of the particles, which may be high enough 
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to evaporate moisture from the mat surface area to the edges to escape (Maku 1959). 

However, the rate of the initial temperature rise in the core was observed to be approximately 

the same for both flake-type and granular-type mats at the same moisture content (Strickler 

1959; Maku 1959). The rate of evaporation was found to be related to the core temperature 

though more water may evaporate form the edges, which would result in evaporative cooling 

in the core at a given time period. Strickler (1959) further showed that the higher surface 

moisture content has a substantial influence on increasing the surface density as well as the 

intermediate layer density, while decreasing the inner-most layer density. 

Geimer (1975) observed steeper VDP from thicker particleboards with a constant average 

density and constant press closing speed because heat and moisture would not reduce the 

internal compressive strength quickly enough to allow the compressive failure to be equally 

distributed across a large portion of the total thickness. Maloney (1970) reported that the 

higher surface resin content increased the surface density of the particleboard when he 

maintained other processing parameters as constant. 

 

Figure 3.1: Homo-profile particleboard with uniform VDPs (Wong et al. 1998) 

Wong et al. (1998; 1999) reported that the formation of a VDP was due to the effects of the 

mat moisture content and press closing speed.  They observed and compared the board 

properties of homo-profile particleboard with conventional particleboard and reported that a 
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uniform density profile has been observed for homo-profile board (Figure 3.1), while a ‘U’ 

shape density profile has been observed for conventional particleboard (Figure 3.2). 

 

Figure 3.2: Conventional ‘U’-shape density profile (Wong at el, 1998) 

Wong et al. (1988; 1999) added that for the homo-profile boards (Figure 3.1), the MOE, 

MOR, IB and the screw withdrawal strength highly correlated with the board mean density. A 

conventional particleboard with the same mean density as a homo-profile board has a higher 

MOR and a higher MOE compared to those of homo-profile boards. This was explained as 

being due to a higher density closer to the surface increasing the flexural strength. However, 

the reverse was true for the internal bond strength due to lower density being found in the core 

of a conventional three-layer particleboard. Particleboards made with higher moisture content 

for the surface and lower moisture content for the core could increase the peak density of the 

board with slightly reduced density at the core. Higher press closing speed reduces the peak 

density of the board by increasing the density profile gradient towards the core having a 

minimum effect on the core density. High initial pressure with a short closing time during the 

hot pressing resulted in higher face density with low core density (Strickler 1959). A board 

with a lower initial pressure with a longer press closure time produced a relatively uniform 

VDP. Smith (1980; 1982) made similar observations to Strickler (1959), and reported that the 

press closure time can alter the shape of the density profile. Fast press closing produces a U 

shaped density profile, while slow press closing produces an M shaped density profile.  

 
Distance from one surface (mm) 
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However, previous investigations on homogeneous particleboards observed that pressing at 

various press closing speeds (time taken for the upper platen to reach to stoppers) to a 

constant final thickness produced different VDPs (Strickler 1959; Wong et al. 1998; 

Miyamoto et al. 2002). This was clearly shown by Miyamoto et al. (2002) as in the Figure 

3.3. It was further clarified that the time-dependent nature of the heat and moisture transfer 

through the mat and their resultant effect on the compressive strength of the various particle 

layers produce different vertical density gradients (Suchsland 1962). He further reported that 

with a faster press closing speed, a higher VDP could be attained, whereas with a slower press 

closing speed, a lower VDP is attained. A longer press closing speed helps increase stress 

relaxation in a board before final thickness is achieved. This affects heat and moisture 

transfers as well as resin cure (Miyamoto 2002). However, using longer press closing time 

will cause the adhesive coatings in particles next to the top and bottom platens to polymerize 

before sufficient inter-particle contact has occurred inside the board. This ‘pre-cured’ 

condition drastically reduces the bonding between particles close to the surfaces (Kelly 1977). 

 

Figure 3.3 Effect of press closing temperature (PCT) on the density profile (Miyamoto et al. 

2002) 

Schulte and Grunwald (1996) observed that for a medium density fibreboard, the failures of 

the internal bond test happened at the outer part of the specimen irrespective whether the 

absolute minimum of the density profile is located in the centre of the specimen or of the glue 

type or the glue content. They observed that whether the density profile had very high 

maxima closer to the surface or smooth density profile or sharp relative minima in the outer 

parts of the specimen, failure occurred in the outer layers. They described this failure type was 

as being a result of the outer part of the board heating up first during the hot pressing. 
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Therefore, it started plasticization, densification and hardening first. At the later part of the 

hot pressing, the inner part of the board started to plasticize. During this time, the already 

cured surface layer glue bonds might have failed. Pressing conditions, heat, moisture 

conditions, and the curing of resins govern the vertical density profile (Suchsland 1967). 

However the horizontal density distribution is found to be dependent on the mat formation 

process and the layout of the wood strands of flakes (Dai et al. 1997). 

3.4 Modelling of the VDP 

Various attempts have made in the past to understand and predict the compaction of wood mat 

during hot pressing and formation of VDP using engineering fundamentals (Suchsland 1967; 

Harless et al 1987; Suo and Bowyer 1994; Dai and Steiner 1993; 1994; 1997; Length and 

Kamke 1996; Zombort et al. 2001; Zombort 2001; Carvalho et al. 2001). In most of these 

investigations, the formation of VDP is related to particle size and shape, mat formations, mat 

consolidation, heat and mass transfer during hot pressing. This section of the chapter 

discusses various attempts made in the past to model mat formation, consolidation and 

formation of VDP of a custom flaked softwood particleboard. 

3.4.1 Modelling the mat formation 

 

Figure 3.4: Schematic illustration of particle mat structure (Suchsland 1967) 

Suchsland (1967) was one of the first to model the formation of a particleboard mat. He 

suggested that a mat may have identical square flakes arranged in a manner similar to the way 

in which bricks are combined in a brick wall (Figure 3.4). He illustrated that a mat formed 

layer by layer having a certain amount of wood substance with void spaces distributed within 

each layer can be assumed to be in a binomial distribution. However, mat structure from layer 
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to layer could be different. The relative void space of each layer would be the same for a mat 

for a given type of particle. During hot pressing the amount of void space would reduce and 

total area of contact would increase. However, other important aspects such as the mechanism 

for heat and mass transfer has not illustrated in the model. 

Dai and Steiner (1993; 1994; 1997) have developed a probability-based model to explain a 

randomly-packed, short-fibre-type wood flake composite.  In this model the mat structure was 

viewed as a system of horizontally arranged flake columns with infinitely small cross-

sectional area. When pressure is applied to the wood mat, it is primarily resisted by the 

transverse compression of flakes in those columns with total solid-flake thickness higher than 

the current mat thickness. The flake count in a column was assumed as randomly distributed 

by Poisson distribution. The mat compression was predicted based on the compression 

behaviours of the flakes. The randomly-formed flake networks are random variables 

essentially characterized by Poisson and exponential distribution of number of flake centres 

per unit area of a layer, flake area coverage, free flake length and the void size. Using this 

model, they tried to investigate how localized material properties in a single flake column 

could affect overall panel behaviour.  

Zombort et al (2001) developed a model using Monte-Carlo simulation to describe mat 

formation in the manufacturing process and their model can produce the structure and 

property relationships for oriental strand boards (OSB). The model investigated mat 

formation, including the three-dimensional spatial geometry, orientation and density of the 

strands. Each of these physical characteristics was assumed to be a stochastic variable.  They 

used data collected on industrial strands using image analysis techniques to develop 

probability distributions for each physical characteristic. Then the model was super-imposed 

on a grid on the simulated mat. Thus, this model was capable of computing the number of 

strands as well as the thickness and density of the mat at each grid point. The model could 

calculate the void volume fractions and strand contact areas which directly influence heat and 

mass transport properties (thermal conductivity, diffusivity and permeability) of the mat 

during consolidation. It was very important to know the initial sizes of particles to predict the 

void volumes to use this model accurately for OSB. Although the model was developed to 

predict the mat formation of OSB, it also successfully predicted the mat formation of random 

softwood fibre network. 
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Lenth and Kamke (1996: 1; 1996: 2) reported an investigation of flake-type mat formation for 

OSB. The method used is a computer image analysis technique to study the cross-sectional 

images of narrow mat sections. They used computer image analysis techniques to quantify the 

cellular structure of a flake board mat with respect to percentage area of the mat, void size and 

shape. The results from this investigation were used to analyse mat consolidation using 

theories of cellular solids. 

Most of the studies discussed earlier were carried out to obtain a fundamental understanding 

of material behaviour during the hot-pressing process. However, most of these models have 

concentrated on particular types of custom-flaked softwood or custom-flaked wood materials 

used in the particleboard industry. The applicability of these models for prediction of mat 

formation of new materials with different particle shapes, particle sizes or material types is 

limited.  

3.4.2 Modelling the consolidation and the formation of VDP 

Various researchers (Suchsland 1967; Jones 1963) have considered the consolidation 

mechanisms of wood-based composites from different angles. Suchsland (1967) identified 

that the transverse compression mainly affects the consolidation of wood-fibre composite. 

However Jones (1963) reported that this occurs due to fibre slippage, bending at contact 

points, or deformation of wood fibre. Some other researchers (Dai and Stainer 1993; Wolcott 

et al. 1990; Length and Kamke 1996) have also modelled the behaviour of a wood-based 

composite, during the consolidation process.  These researchers have assumed wood flake as a 

cellular material and used theories for cellular solids to model the consolidation of wood mat 

during the mat consolidation. Englund et al. (2002) developed a model to predict the 

compression of wood/thermoplastic fibre mat during consolidation. They concluded that the 

stress-strain behaviour of wood/thermoplastic fibrous material during consolidation is similar 

to that of granular materials. Therefore they adopted the method which is mostly used in 

powder compaction research. Once the material type and its behaviour were assumed, they 

tried to predict the formation of the vertical density profile during consolidation.  

Zombort (2000) considered most possible parameters that could be incorporated into 

modelling the formation of VDP during the hot-pressing of particleboard. In his modelling he 

considered heat generation or loss at the platen and at edges due to the latent heat of water. 
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Also he separately modelled heat transfer due to diffusion, conduction and mass transfer due 

to permeability, diffusivity etc.  Then he incorporated all the individual models into a 

numerical model to predict the formation of the density profile both vertically and 

horizontally. 

These numerical or mathematical models assist to gain fundamental general understandings of 

mat formation, mat consolidation and heat-mass transfer of particleboard during the 

production. However, these models were developed for custom flaked softwood particleboard 

where particles are flake in shape. Also, these models could not be used to understand or 

predict the VDP of material where material properties and shape were significantly variable. 

A number of other researchers used experimental design to study and then predict the 

formation of VDP. Kelly (1977) reported various researches on the prediction of the 

formation of VDP using experimental methods. Stickler (1959) and Maku et al. (1959) tried 

to identify the pattern of formation of VDP using experimental design. The general trend of 

final VDP was successfully predicted with regard to process variables such as platen 

temperature and moisture content. Using these models, board properties could be successfully 

optimized with regard to VDP.  

Park et al (1999) used the theories of experimental design incorporated with response surface 

to study the formation of temperature profile and VDP of MDF board with regard to pressing 

parameters (pressing temperature, press closing time and pressure). The objective of their 

study was to optimize the performance of MDF with regard to its mechanical properties 

(MOE, MOR and IB) with regard to selected pressing parameters (moisture content, platen 

position and press closing time). The study showed that the VDP was highly influenced by the 

moisture content and platen position. However, ignoring other important parameters such as 

pressing time and press temperature made this study incomplete, since moisture movement is 

mainly controlled by temperature and time to form the VDP.  

Similar to Park et al (1999), Suzuki and Miyamoto (1998) studied the formation of VDP for 

homogeneous particleboards using knife-ring-flaky type particles with respect to 

manufacturing parameters. They observed high density layers formed approximately 1 mm 

inside the board. The location of this high density layer was observed to influence the elastic 

properties of the board.  Wong et al (1998; 1999) reported similar results in a similar study. 
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They further analysed density profile data to calculate the mean density and peak density of 

each board. Wong et al (1999) used these density data to predict board properties with respect 

to mean density and peak density using regression analysis. In addition, they studied the 

relationship between mean density and peak density with process parameters. The study 

showed that higher density near the surface was important for the mechanical properties of a 

particleboard while core density was important for the IB, especially for lower density boards. 

Investigating the VDP with respect to processing parameters using experimental methods is 

attractive due to its simplicity and more appropriate prediction for practical applications. 

Also, it provide successful predicting capability for a given process environment such as 

particular laboratory or particular particleboard factory. Also, the literature shows that this 

method has been widely used when investigating new products, new materials or processes 

since inherently complex interactions are unknown. Therefore, this method is more 

appropriate for this investigation to find a particleboard product using hardwood sawmill 

residue. However, the main disadvantage of these models is that they can only successfully 

predict the VDP within the range of testing conditions. Since particleboard production using 

hardwood sawmill residues has been neither investigated nor been reported before, in this 

investigation, regression analyses accompanied by experimental design were used to 

investigate the formation of VDP. Chapter 9 investigates the formation of the VDP of three-

layer particleboard produced using hardwood sawmills residues with regard to processing 

parameters. 

3.5 Summary and conclusions 

This chapter reviewed the formation of VDP and its effect on properties of particleboards. 

Various attempts made in the past to model the formation of VDP were reviewed. Significant 

findings on the formation of VDP and different types of models available to predict VDP are 

summarized below: 

• The VDP of a particleboard forms due to the interactions of heat and mass transfer 

with the rheological properties of furnish and resin used during the production process. 
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• VDP gives an indication of the effect of processing parameters on board properties. 

Therefore measuring/observing VDP can be used to understand the appropriate levels 

of hot-pressing and optimise the pressing process. 

• A number of analytical, numerical and empirical models have been developed to 

predict the VDP of softwood particleboard. However, these models cannot be used for 

particleboard made with hardwood residue. 

• Most of the analytical models developed in the past considered particular material 

types, particle shape or size. Heat and mass transfer during hot pressing was then 

incorporated into modelling to predict the final VDP. Therefore, the applicability of 

these models in predicting the VDP of a particleboard produced from new material is 

limited. 

• Theories of experimental design or response surface design were used in the past to 

study the VDP of particleboard that was manufactured using new material. However, 

these types of models can only be used for the range of testing conditions considered 

in the study. 
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CHAPTER 4  

GENERAL PROCEDURE FOR PRODUCING 

PARTICLEBOARDS IN THE LABORATORY AND METHODS 

OF TESTING 

4.1 Introduction 

The objective of this research work was to investigate the possibility of developing a 

methodology to produce particleboard using hardwood saw-mill residue. This chapter 

describes the procedures, materials and equipment used for this work in the laboratory to 

manufacture particleboards. Further, the chapter illustrates the testing methods adopted to 

investigate the physical and mechanical properties of the boards produced. Single-layer and 

three-layer particleboards were manufactured in the laboratory with a target density 680- 720 

kg/m3 using various mix proportions derived from experimental designs with a number of 

variables. These variables included resin load for surface layer, resin load for core layer, 

moisture content for surface layer, moisture content for core layer, hardener load for core 

layer, pressing time and press temperature for three-layer particleboard. In addition, wax was 

considered to improve the moisture resistance of the particleboards at the later stages of the 

work. The experimental design used to perform the experiments is discussed extensively in 

the Chapter 5. Processing parameters and their effect on single-layer and three-layer 

particleboards are discussed in Chapters 6 and 7 respectively. 

4.2 Materials used  

4.2.1 Hardwood sawmill residues 

Particleboards are traditionally made using custom-flaked softwood as the major raw 

material. Whilst use of softwood chips in the production of particleboard flooring is well 

documented, there is very little information on the use of hardwood residue in producing 

particleboards (Bhagwat 1993; Nirdosha et al. 2005). The worldwide demand for 

particleboard is growing at between 2 and 5% per annum (Drake 1995). The demand for raw 

materials for particleboard is continuously increasing. In Australia, considerable quantities of 
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hardwood residues are produced annually (Kim 2001). In Victoria alone, over a million cubic 

meters of saw logs are converted annually, producing in excess of 200,000 tones of sawdust.  

Other value-adding industries such as fencing and furniture manufacturing produce a 

significant additional residue streams.  To date, hardwood residues have typically not been 

favoured by the particleboard industry (or indeed other forest products industries), primarily 

because of the perception that they are relatively high density (compared with softwoods) 

and contain high levels of undesirable extractives which can cause other processing 

problems.  This has limited the potential market for such residues and their market value. 

However, the move in recent years by the sawn-wood industry towards the harvesting and 

processing of re-growth and plantation timber has started producing residues which are likely 

to have lower extractive content and be of a lower density.  This potentially opens up new 

opportunities for both the residue generators and potential residue users such as the 

particleboard industry. Therefore the usability of hardwood sawmill residue as particleboard 

raw material was investigated.  

 

Figure 4.1: Saw mill residue type 1: Mulch (Bigger particles) 

Hardwood sawmill residues were obtained from a hardwood sawmill located in Dandenong, 

Victoria, Australia. Sawmill residues come in two types. Figure 4.1 shows residue type 1: 

Mulch (bigger particles including both cubical and flake shape particles). Figure 4.2 shows 

residue type 2: Fine (saw dust with smaller particles mainly cubical in shape). A Sieve 

analysis was done for each particle type to observe the particle size distribution (Figure 4.3). 
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The figure 4.3 shows that 95% of the mulch contains particles bigger than 5 mm, whilst 90% 

of the fine residue contains particles smaller than 5 mm.  

 

Figure 4.2: Saw mill residue type 2: Fine (Smaller particles) 

 

Figure 4.3: Sieve analysis curves for Mulch, Fine and final layer’s mix 

The particle size distribution is important in order to obtain proper compaction. Therefore, 

fine and mulch were mixed in different proportions for the surface layer and core layer and 

tested for their grading (sieve analysis). It was identified that mixing 45% Mulch with 55% 

Fine would provide relatively uniform particle size distribution, which was suitable as the 
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core layer raw material. Mixing 35% Mulch with 65% Fine that contains higher amount of 

smaller particles was suitable for the surface layer. The softwood particleboard industry 

generally uses smaller particles for the surface layer and bigger particles for the core layer. 

This proportioning process optimises the economy of utilisation of saw mill residue in 

making particleboard, since no elaborate pre-processing is needed. 

The mulch and fine residues were oven dried at 105oC for approximately 48 hrs to remove 

the moisture. Then these two types of particles were mixed separately according to the mix 

proportions identified for the surface and for the core. 

4.2.2 Resin, hardener and wax 

Urea formaldehyde (UF) was used as the resin, considering its basic characteristics at 

molecular level such as their high reactivity and water solubility, which renders it ideal for 

the wood industry. The chemical division of Orica (Australia) Pty Ltd provided the Urea 

formaldehyde resin (E1 resin) in liquid form. Particleboards were made in the laboratory 

using urea formaldehyde resin with 63-65% solids, and viscosity in the range of 115-220 

cPs at 25oC. The amount of resin required for a layer of a three-layer particleboard was 

determined by its resin solid weight and was calculated as proportionate to the oven dry 

weight of the wood particles required for the layer (Appendix B). 

The softwood particleboard industry uses hardener for the core layer to accelerate the 

curing of UF resin. The softwood particleboard industry generally uses 1 -2 % hardener for 

the core layer when manufacturing three-layer particleboards. Therefore, NH4Cl was used 

as the hardener for the core layer to accelerate resin curing. NH4Cl which was used in this 

investigation came as a crystalline salt in which 25% of NH4Cl solid and the rest was 

moisture. The amount of hardener required for this work was investigated. The hardener 

load was calculated as the solid weight of NH4Cl that is proportionate with the resin solid 

used for the core layer.  

In addition, the softwood particleboard industry uses paraffin wax when manufacturing 

particleboards to increase short term moisture resistance. Technimul/ VivaShield Emulsion: 

EXP 486 was used as the Wax for this work to investigate the amount of wax required for this 

study to improve moisture resistant property. The VivaShield Emulsion wax came as a liquid form 
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with 60% solid wax weight. The amount of wax added for a layer was calculated as a proportion of  

the solid wax weight with the dry weight to the wood particles used in that layer (surface layer or 

core layer). 

4.3 Apparatuses and procedures used to manufacture particleboards in the 

labs 

This section outlines the major equipments used to produce particleboards in the School of 

Civil and Chemical Engineering laboratories at RMIT University. Section 4.3.1 details the 

manufacturing apparatus used for this work. Section 4.3.2 explains the procedure used to 

manufacture particleboards in the laboratory. Section 4.3.3 describes the test methods and 

testing equipment used for this work. 

4.3.1 Manufacturing Apparatuses 

4.3.1.1  Mixer  

A normal concrete mixer with a lid was used for mixing raw materials (Figure 4.4). The lid 

was designed to have a hole with a diameter of 8 cm which was used to spray the binding 

materials. The capacity of the mixture was 2.2 cubic foot (~ 0.062 m3) and the rotating speed 

was 1250 rpm. 

 

Figure 4.4: Mixing drum 

High press air carrier 
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A spray gun together with a high pressure pot was used to spray the mixture of water resin 

into the residue which was placed inside the rotating mixer (Figure 4.5). The capacity of the 

pressure pot was 1 cubic foot (0.028m3). The maximum allowable pressure capacity in the 

pressure pot was 100 kPa (80 PSI). The pressure gun had a nozzle size of 1.5 mm and had the 

facility to maintain the path of the spray in either vertical, horizontal or circular directions. 

The blue colour which carried the mix of water-resin and the red tube carried the high 

pressure air.  

 

Figure 4.5: Pressure Pot and the Spray Gun 

A small container (250 ml) with the mix of resin and water was kept inside the pressure pot. 

The end of the tube which carried the mixture was inserted into the container, to allow the 

transportation of the mixture to the pressure gun. Using a smaller container to hold the resin-

water mix reduced wastage as well as assisted cleaning the containers quickly in order to 

switch from one mixing to another as soon as possible. A constant pressure capacity of 80 kPa 

was maintained during all the mixings although the allowable pressure capacity in the 

pressure pot was 100kPa.  

4.3.1.2  Mould 

A mould with dimensions 300 mm X 400 mm and 120 mm was used for casting 

particleboards before pressing. The mould could also be adjusted to prepare particleboards 

with the size of 400 mm X 400 mm (Figure 4.6). Horizontal lines were grooved along the 
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perimeter of the mould at each 1cm along the depth, to facilitate spreading the pulp evenly. 

Teflon foils were introduced to either side (top and bottom) of the wood pulp during the 

moulding to stop adherence of the top and bottom of final board to aluminium plates after the 

hot pressing.   

 

Figure 4.6: The Mould 

4.3.1.3  Cold pressing and hot pressing apparatus 

 

Figure 4.7: Cold Press 
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‘Wabash’ hot pressing equipment was used for manufacturing particleboards in the laboratory 

(Figure 4.8). It has facilities for both cold pressing and hot pressing. However, it takes 

approximately 1hr to reach 190o C and its cooling system takes nearly ½ hr to cool to room 

temperature (25o C). Therefore, the Wabash pressing equipment was used only for hot 

pressing.  

Separate cold pressing equipment was developed and used for the cold pressing (Figure 4.7). 

The maximum press area for both the hot press and the cold press were equal at 500 mm x 

500 mm. A high pressure hydraulic press was incorporated to develop the cold pressing 

equipment for the project. It has a pressing capacity of 25 tons on a 5 inch ram diameter. 

However, constant pressure was applied during the pressing operation until the final mat 

thickness reached 20 mm thickness using 20 mm stoppers. The maximum pressing capacity of 

the hot press was 40 tonnes on a 500 mm x 500 mm area. However, maximum pressing 

capacity was maintained at 37 tonnes throughout the manufacturing of particleboards in this 

study.  

 

Figure 4.8: Wabash Hot Press 

4.3.2 Manufacturing Procedure  

This section explains the procedure adopted in this research work to manufacture 

particleboards using hardwood sawmill residues whereas Section 2.3 discussed the general 

procedure for manufacturing particleboards in industry and research contexts.  
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Figure 4.9: Procedure for manufacturing particleboards in the laboratory 
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Figure 4.9 shows the flowchart which highlights the major steps adopted in the laboratory in 

making particleboards. As mentioned earlier in Section 4.2.1, the hardwood sawmills residues 

came in two types: Mulch (bigger particles) and Fine (Smaller particles). These residues 

contained very high initial moisture content measured at around 80% at the saw mill when 

they were collected for the investigation. As this moisture content was extremely high, the 

residues were oven dried at a temperature of 105oC (Figure 4.10). It was of interest to 

investigate at the beginning, how long it would take to evaporate the moisture completely or 

to dry the raw material completely. The method adopted in the drying of material is given 

below: 

• A sample of residue was left in an oven at 105oC 

• The weight was measured each 6 hrs until a constant weight was achieved 

 It was found that residues need to be oven dried for more than 24 hrs to evaporate the surface 

moisture (a constant weight of residue was noted). Therefore, sawmill residues were oven 

dried more than 24 hrs before being used for particleboard manufacturing. 

 

Figure 4.10: Oven drying the wood residues 

The amounts of mulch, fine residue, resin and water were calculated considering the target 

density of the particleboard. When the target density was decided, the final board weight was 

calculated by multiplying the density with final board volume. The total thicknesses of two 

surface layers of the three layer particleboard were 40% of the total particleboard thickness. 

That means the final thickness of a surface layer was 20% of the final board thickness. The 
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total weight of residue (mulch + fine) for each layer was calculated in proportion to the dry 

particleboard weight. 

The amount of Mulch or Fine for each layer was measured considering the designed particle 

size distribution which was discussed in Section 4.2.1. The mulch: fine ratio for the surface 

layer was maintained at 35%: 65% and for the core at 45%:55% (by weight). When the 

calculated amount of mulch and fine were weighed for the surface layer, they were mixed 

inside the mixing drum for 2 minutes prior to spraying the resin mix. 

 

Figure 4.11: Mixing the material 

The proportionate amounts of resin and wax for each layer were calculated considering the 

solid weight of resin or the solid weight of wax with respect to the oven dry weight of the 

residue required for the layer. However, the solid weight of the hardener was calculated with 

respect to resin weight used for the same layer. The spreadsheet which incorporates a pivot 

table used for calculating mix proportions is attached in Appendix B. The amount of resin and 

water (and wax or hardener if used) required for surface layer was measured and then mixed 

inside a small container. Then this mix was placed inside the pressure pot and the inlet for the 

resin/water mix carrier of the spay gun was inserted into it. This mix was then sprayed into 
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the mix of fine and mulch which had already been mixed for 2 minutes in the drum (Figure 

4.11). After adding resin, furnish was mixed for a further 5 minutes approximately. Then this 

pulp was separated into two containers for the two surface layers of a particleboard. 

 

Figure 4.12: Moulded wood mat 

 

Figure 4.13: Manual pressing of the mat 

Similar to the procedure adopted for the surface layer material, the core materials were mixed 

inside the mixing drum. The major difference between surface layer and core layer was the 

proportions of mulch and fine. The amount of mulch used for the core layer was higher than 

that for the surface layer. Also, the surface layer used higher amounts of resin and moisture 

compared to those for the core layer. When the core material was mixed, the required amount 
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for a single core layer was measured. Then, these pulps were spread into three layers in the 

mould (Figure 4.12). The following steps were taken during the moulding. 

• An aluminium plate was placed on the bench. 

• A Teflon foil was spread on the Al plate. 

• One surface layer material was spread first followed by core layer material and 

finished with top surface layer material. 

• The thickness and the level of each layer were maintained with the help of lines in the 

walls of the mould.  

Once the moulding was finished, the mould was closed with an aluminium plate. Then, it was 

manually pressed by standing on the lid (Figure 4.13). The mould was removed carefully 

while the researcher was still standing on the lid.  Then, the researcher stepped off the wood 

mat cautiously. Once the mat was transferred into the cold press, the lid was carefully taken 

away leaving the nicely pre-pressed mat (Figure 4.14). Then another Teflon foil was placed 

on top of the mat followed by an aluminium plate. The aluminium plates facilitate the even 

distribution of pressure on the wood mat as well as even temperature distribution at the mat 

surface during hot pressing. The Teflon foils prevents sticking of the wood mat to the 

aluminium plate after the hot press. 

 

Figure 4.14: Manually pressed wood mat (before cold press) 

Constant pressure was maintained on each board during the cold pressing operations. The 

cold pressing time is important to remove the trapped air from the wood mat during mat 
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consolidation. However, in this work the cold pressing time and the hot pressing time were 

controlled to be the same as is the usual practice in the particleboard industry. When the cold 

pressing and hot pressing times are kept equal, no machines are idle during the production 

cycle in order to maintain a low production cost of particleboard by the particleboard factory. 

The final thickness of the wood mat after the cold press was controlled by using two stoppers 

at either side of the wood mat (Figure 4.15). The thickness of each stopper was 20 mm.  

 

Figure 4.15: Cold pressing 

 

Figure 4.16: Hot pressing 

20 mm thick Stoppers 
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Immediately after the cold pressing, the wood mat was inserted into the hot press (Figure 

4.16). Two stoppers were used to control the final particleboard thickness. The hot press 

temperature and hot pressing time were maintained depending on experimental design values. 

The experimental design values are discussed in each chapter when the experimental design 

and results are discussed. The hot pressed boards were removed from the press and left to 

cool. Then these cooled boards were stored in a ventilated area for a week to remove the 

trapped air and formaldehyde before sampling and cutting (Figure 4.17). Spacers were used 

between these boards to facilitate ventilation. 

 

Figure 4.17: Final particleboards (before cutting and sampling) 

4.3.3 Sampling and Cutting 

Samples were prepared and cut from each test board according to AS/NZS 4266.1 (2004). 

The thickness of the particleboard was measured and its symmetry compared about its central 

axes. Then, the sizes for the test pieces were marked on the cutting side of the particleboard 

after trimming the edges of the test particleboards. A Steel-fast chain-saw was used for cutting 

the samples as it gives a smooth cutting surface (Figure 4.18). Once the samples were 

prepared, they were left in a humidity cabinet (Figures 4.19 a and 4.19 b) at a temperature of 

20oC and 65% humidity until a constant mass was achieved (AS/NZS 4266.1 2004). 

Spacers 
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Figure 4.18: The Chainsaw 

             

Figure 4.19a: Humidity cabinet   Figure 4.19b: Samples in the humidity cabinet     

4.3.4 Testing Apparatus and test methods 

Each particleboard was tested for its mechanical properties (MOR, MOE and IB). In addition, 

particleboards from selected test groups were tested for their density profiles and thickness 

swelling.  The MOE and MOR of a sample were tested according to three point bending test 

using an Instron universal testing machine. The IB of a sample was measured using a 

Hounsfield tensiometer. 
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4.3.4.1  Testing modulus of elasticity (MOE) and modulus of rupture (MOR) 

A universal testing machine manufactured by Instron was used to test the MOE and MOR of a 

test sample using three-point bending test (Figure 4.20). The maximum loading capacity of 2 

kN was used. The equipment comes with software that can be used to program the equipment 

to tun as required, recording the data into a computer file,  as well as calculating basic 

properties such as compressive or tensile strength. The MOE and MOR of particleboard 

samples were prepared and tested according to AS/NZS 4266.5 (2004).  

 

Figure 4.20: INSTRON universal testing machine 

 

Figure 4.21: Testing of MOE and MOR 
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The test apparatus which was placed on the lower bed of the testing machine (Instron) in the 

figure 4.21 was designed by the author according to the specification given in AS/NZS 4266.5 

(2004) for three-point bending test (Figure 4.21). It was then manufactured in the RMIT Civil 

Engineering workshop. The test piece was simply supported horizontally on parallel metal 

rollers with a diameter of 25 mm which were free to rotate. The centre spacing of the rollers 

was maintained at 250 mm. A load normal to the face of the test piece was applied at the 

centre of the span by means of a metal bar parallel to the supporting rollers and in contact 

with the test piece over its whole width, and the deflection at a given load was measured. For 

testing the MOR, the load was increased until sample failure occurred and the breaking load 

was recorded. The rate of travel of the loading bar was maintained at 5 mm/min. The MOE of 

the sample was calculated using equation 4.1 considering the corresponding deflection was 

within a load range up to one third of breaking load of the board under test. Therefore, it was 

programmed to consider ∆W calculated as ‘40% of fracture load – 10% fracture load’ and the 

corresponding deflections to calculate the MOE. Deflection (S) was measured to the nearest 

0.01 mm and load value to the nearest 5 N. The MOR of the test sample was calculated the 

Equation 4.2 using the ultimate fracture load. 
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MOE

∆

∆
=

3

3

4
       Equation 4.1 

Where, 

MOE   Modulus of elasticity, in Mega Pascal 

L  Span between centres of supports, in mm 

∆W  Increment in load in N  

b  mean width of test specimen, mm 

t mean thickness of specimen, mm 

∆S deflection with the load ∆W 

22

3

bt

WL
MOR =         Equation 4.2 

Where, 

MOR  Modulus of Rupture in MP 

W Ultimate failure load, N 

L Span between support, mm 

b mean width of test specimen, mm 

t mean thickness of test specimen, mm 
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4.3.4.2  Testing internal bond strength (IB) 

A Hounsfield tensiometer was used with modified jaws to hold the test samples for this test 

(Figure 4.22). The modified jaws that can be assembled to the Hounsfield tensimeter were 

designed by the author according to AS/NZS 4266.6 (2004) and manufactured at the RMIT 

workshop. 50 mm x 50 mm samples were taken from each particleboard and processed in a 

humidity cabinet at 20oc and 65% humidity until a constant weight was reached. Hardwood 

testing blocks with 70 mm x 50 mm were used, to which the test pieces were glued for IB 

testing. 24 hour Araldite (epoxy glue) was used to bond the test samples to the test blocks. 

Once the samples were glued into test blocks, they were stored for 24 hours before being 

returned to the humidity cabinet. The samples were stored in the humidity cabinet until 

testing.  

 

Figure 4.22: Hounsfield universal testing machine 

ab

F
f t

max
=

⊥
         Equation 4.3 

Where, 

 Fmax = breaking load in newtons 

 a, b = length and width of the test piece, in millimetres 

 
⊥tf  = tensile strength perpendicular to the plane of the panel 
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Test blocks were assembled in the grips with modified jaws (Figure 4.23). Tension 

perpendicular to the surface of the test piece was determined by applying a uniformly 

distributed tensile force. The rate of loading was maintained so that the maximum load was 

achieved within 60 ± 30 seconds. The IB was determined using the maximum load in relation 

to the surface area of the test piece using Equation 4.3 (AS/NZS 4266.6: 2004). 

 

Figure 4.23: IB testing 

4.3.4.3  Swelling in thickness after immersion in water (2 hour and 24 hour 

thickness swelling test) 

Swelling in thickness of a particleboard sample was determined by measuring the increase in 

thickness after being immersed in water (AS/NZS 4266.8: 2004). 50 mm x 50 mm test 

samples were taken from particleboards and conditioned in a humidity cabinet at 20oC and 

65% humidity until a constant weight was reached. Then the thickness of the sample was 

measured with an accuracy of 0.01mm at the intersection of the diagonal (centre of the test 

piece). The sample was then immersed in clean, still water with pH = 7±1 and a temperature 

of 20oC. Samples were placed with their faces vertical. The upper edges were covered by up 

to 25±5mm of water throughout the test. The thickness of the centre of the sample was 

measured after 1 hour (for the 1 hour thickness swelling test) and after 24 hours (for the 24 

hour thickness swelling test). The swelling in thickness (Gt) was calculated as a percentage of 

initial thickness using Equation 4.4. 

Hardwood 
test blocks 

Fixing Jaws 
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100
1
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tt
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−
=         Equation 4.5 

Where 

 Gt  = swelling in thickness  

1t  = thickness of the test piece before immersing in water 

 2t  = thickness of the test sample after immersing in water 

 

Figure 4.24: Thickness swelling test 

4.3.4.4  Wet bending strength after immersion in water at 70
o 
C temperature 

            

Figure 4.25a: Samples in the hot water bath  Figure 4.25b: Wet bending test 
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The wet bending strength of a particleboard was measured by measuring the bending strength 

(MOR) of a particleboard sample after being immersed in a hot water bath (AS/NZS 

4266.10:2004).  

4.4 Summary and Conclusions 

This chapter introduced the procedure adopted in the RMIT laboratory for processing 

materials and manufacturing particleboards using hardwood saw mill residues. It also 

discussed the testing equipment used and the test methods followed to test the physical, 

mechanical and moisture resistance properties of particleboard. Particleboards were sampled 

and tested according to AS/NZS 4266:2004 on standard tests for particleboard testing. 

All the equipment developed at the RMIT and the methodologies reported in this Chapter 

were developed entirely by the author after many trials based on findings of the preliminary 

literature review. These processes were further optimised using a systematic research program 

reported in subsequent chapters. 
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CHAPTER 5  

DESIGN OF EXPERIMENTS (DOE) 

5.1 Introduction  

Experimental methods are widely used in research and development (R & D) work as well as 

in industrial settings for different purposes. In industrial research and development, the 

primary goal is to extract the maximum amount of unbiased information from the dependent 

variables and independent factors using a minimum number of observations in order to 

minimize R& D costs and optimize the process. Design of experiment (DOE) theory is a sub-

set of statistics which provides the experimenter with methods for selecting the values for 

independent variables, so that a limited number of experiments can be performed to obtain a 

logical understanding of the dependent variables and independent variables. The statistical 

tools used to model the sensitivity in the observed data include regression analysis, analysis of 

variance (ANOVA) or a collective use of both techniques called response surface 

methodology (RSM). 

The primary objectives of our research were to develop a technology for producing an 

economical particleboard product utilizing large quantities of hardwood saw dust and other 

saw mill residue (a new raw material for particleboard production), to meet AS/NZS 

1859.1:1997 and to investigate the relationship of the process variables of particleboard 

production with the density profile of the board and its properties. DOE is a very important 

technique when there is a need to develop a new product using new materials if the 

underlying mechanism in the system to formulate a model between response variables and 

independent factors is unknown.  

This chapter therefore discusses methods of DOE and analysing techniques used for the 

research. The following sections will review the advantages of DOE methods when 

developing a new product and process. Further, the chapter explains the method used in DOE, 

factorial design and fractional factorial design and how these methods have been incorporated 

into this research. In addition, it elaborates the analytical techniques used to analyse data, such 

as ANOVA (analysis of variance) tables, regression modelling and methods that can be used 

to check the validity of the model. 
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5.2 Using the Design of Experiments 

DOE provides the researcher with methods for selecting the independent variable values at 

which a limited number of experiments can be conducted to cover a large number of 

independent variables. The researcher can change several factors simultaneously yet each 

factor is evaluated independently as though factors were varied independently. Since this 

research is to evaluate the suitability of hardwood saw mill residue as particleboard raw 

material, the challenge is that there are a lot of unknowns about how best to design the 

product. The theory is unknown or inadequate, risk is very high and some people are not 

convinced about the new product. Using DOE can turn unknowns into estimates of the effects 

of variables in developing empirical relationships which adequately predict and replace 

theoretical models between dependent and independent variables. In order to achieve the best 

possible empirical relationships, tests should be carried out with:  

• Randomization: Randomization is the running of test parts in random order which 

prevents the confounding of effects that can happen when tests are run in a standard 

order. For example, if temperature is a controlled design variable, it would be best not 

to run all the temperatures at a given level at the same time. If all test points at a given 

temperature are run at the same time, the effects of time can be confounded (mixed 

up) with ten effects of temperature (DOES 1989).   

• Replication: Replication is repeating the same test for several times and get the 

average test results for analysis in order to monitor and minimize any human error.  

The selection of ranges of controlled design variables should be done in line with the test 

objectives and should be clustered around the current product values. Since our objective is to 

develop a new product, the ranges would encompass all possible achievable values as well as 

the aim to develop an achievable particleboard product. Also, the increment between levels of 

test variables should be realistic in order to obtain good readings of the variables. Selection of 

the range of each factor was carried out considering actual practice in the particleboard 

industry. Therefore, using DOE together with factorial design was identified as a very 

efficient way of achieving these objectives. 
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5.3 Factorial design 

Factorial designs are most efficient way to study the effects of two or more factors than one-

factor-at-a-time experiments, when studying with experiments (Montgomery 2005; Bailey 

2004). In factorial design, all the possible combinations of the levels of the factors are 

investigated. Also, it helps to identify the interaction between factors as well as the 

significance of the main effect with respect to the level of the other factors without drawing 

misleading conclusions. Since factorial design allows the effects of a factor to be estimated at 

several levels of the other factors, yielding conclusions are valid over a range of experimental 

conditions.  

5.3.1 Factorial design 

Since 2k of experiments are performed at each replicate of the trial experiments for k number 

factors (independent variables), the design is called 2k factorial design. In this method, only 2 

levels for one factor are considered for the experiments. 2k factorial design is very important 

at the start of the response surface methodology to identify important process or product 

variables for response surface design. 2k is the building block that is used to create other 

response surface design. It is often used to fit a first-order response surface model to generate 

the factor effect required to perform the method of steepest ascent.   

  

 

 

 

Figure 5.1: Design space for two parameters, 2 – level factorial design. 

Figure 5.1 shows the two parameters, 2k (k=2) design which contains two levels; low and high 

values of the parameters. These two levels may be quantitative, such as two values of 

Low (1) 

 
High (a) 

+ 

High (b) 

+ 
High a and High b 
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temperature or time; or two values of moisture or resin; or even two values of machine or 

operator. In the 2k design experiments will be conducted for at least four factor-level 

combinations. 

Generally the effect of the factor (A) is denoted as capital letter ‘A’, the effect of factor B as 

‘B’ and the interaction effect of AB as ‘AB’. In the 2k design the low and high levels of the 

factors A and B are denoted as ‘-’ and ‘+’ respectively on the A and B axes (Figure 5.1). This 

convention is used by the ‘MINITAB’ software which was used here for the design and 

analysis of experiments. Therefore, the same convention will be used in the following 

chapters for analysing and graphing the effects of factors such as ‘A’ for ‘surface moisture 

content’, ‘B’ for ‘core moisture content’ and ‘C’ for ‘surface resin content’ etc.  

5.3.1.1  Effects 

The average effect of the factor (A) on the response is an important property that is used to 

determine the relative strength of the effects. The totals of the response (R1) from all the 

replicates (n) are used to calculate the average effect. Figure 5.1 shows the total of R1 from n 

replicate at each four levels of the design as (1), a, b and ab. Then the average effect of the 

factor A on the response R1 is calculated by averaging: 

• The effect of A at the low level of B [a – (1)]/n and  

• The effect of A at the high level of B ([a-(1)]/n). 

 Therefore, the main effect of A can be calculated using Equation 5.1 which can be expanded 

as in Equation 5.2. Similarly, the average effect of the AB interaction on the R1 can be 

calculated as in Equation 5.3. Myers and Montgomery (2002) have elaborated in detail the 

method of calculating the effects of factors and interaction. 
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The average effect on the response value is important for analysing experimental results as the 

higher the value, the greater the effect on the response. Therefore, this can be used to identify 

the most important factors on the response as well as to screen out the least important factors. 

Then, the analysis of variance (ANOVA) is generally used to confirm this. The sign of the 

calculated value of the effect determines whether the factor has a positive or a negative effect 

on the response. If the sign is ‘+’, then the factor has positive effect on the response, 

otherwise the factor has a negative effect on the response. 

5.3.1.2  Analysis of Variance (ANOVA) 

The ANOVA Table has been used extensively to identify the most important factors and 

interactions on the dependent variables or response variables such as MOE or MOR in this 

research. The ANOVA table (Table 5.1) includes: 

• Test statistical value (T), 

• Test of null hypothesis (P-values), 

• Degree of freedom and Error component. 

It is a very important tool to determine the important factors or their interactions on the 

response variables as well as their level of importance. The factor effect that is not significant 

is normally distributed with mean zero and variance σ2.  

A variable with a significant effect will have a higher ‘T’ value compared to non-significant 

variables (Myers and Montgomery, 2002). Therefore, parameters with higher ‘T’ value are 

considered as significant variables and those with lower ‘T’ values are considered to have a 

negligible effect on that particular testing property. The level of significance of the variable 

considered is estimated by calculating the probability of the null hypothesis (P). MINITAB 14 

can be used to calculate these statistical values. According to Myers and Montgomery (2002 

page 89) the SSR value (sum of squares of the regression value) for each factor or interaction 

may be easily calculated from the data in Equations 5.2 and 5.3 (see Equation 5.4). 
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Table 5.1 Analysis of Variance for Significance of Regression in Multiple Regressions 

(Myers and Montgomery 2002) 

Source of 

Variation 

Sum of 

Squares 

Degree of 

Freedom (DF) 

Mean 

Squares 
T P-Value 

Regression SSR k MSR MSR/ MSE  

Error of residuals SSE n-k-1 MSE   

Total SST n-1    

n

baab
SS A

4

)]1([ 2
−−+

=

       (Equation 5.4) 

Where,  

SSA = Sum of squares of factor A 

5.3.1.3  P-values 

The experimenter should select the most significant factors which have an effect on the 

response while omitting unimportant factors. Adding more and more factors for the regression 

model may increase the sum of squares for regression. However, having unimportant factors 

in the model increases the mean square of error, thereby reducing the usefulness of the model 

(Myers and Montgomery 2002). The significant interactions should be given priority because 

a significant interaction will influence how the main effects are interpreted. At this point 

hypothesis testing is done to select the most important factors and interactions. A null 

hypothesis is made as ‘the particular factor does not have a significant effect on the response’ 

and the probability of this null hypothesis (P-value) is calculated with respect to that. The 

calculated P-value is then compared with α (=0.05) to conclude that the null hypothesis is true 

or not true. If the P-value is less than 0.05 (P < α), it implies that the null hypothesis is not 

true. Therefore the factor or the interaction has a significance effect on the response with 

more than 95% significance. This significant tool will be extensively used for factor screening 

in this research. 
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5.3.1.4  Normal effects plot 

Normal effects plot is another tool used to analyse data to identify significant effects and 

interactions in the particleboard production process. Normal effects plot compares the relative 

magnitude and the statistical significance of both main and interaction effects. The MINITAB 

software draws a line to indicate where the points would be expected to fall if there were no 

effects. Significant effects are larger and farther from the line than non-significant effects. By 

default, MINITAB uses ‘α-level = 0.05’ and labels any effect that is significant. These plots 

will be used in this analysis as they will screen the most significant process variables with 

95% level of significance.  

5.3.2 2
k-p 

Factorial design 

When there are many factors which are to be considered for experimentation, the number of 

runs required to complete a replicate of experiments is higher with 2k full factorial design. At 

the beginning of our research to develop hardwood particleboard using saw mill residues, 

seven factors were identified as possible variables which may control the properties of the 

final particleboard. In order to complete a single replicate of a full 2k design, 128 

particleboards should be manufactured and tested in the lab. Due to the time and resources 

needed for completing such a large number of experiments, it is vital to find an alternative but 

efficient method to complete the task.  

Fractional factorial design (2k-p) was identified as it would fulfil our requirements. Fractional 

factorial design is a widely-used method in the industry to design for product or process or to 

improve an existing process by performing experiments efficiently. Also, this method 

significantly reduces the number of experiments by drastically minimizing costs and time. 

According to Montgomery (2005), the success of fractional factorial design depends on: 

1. The sparsity of effects: When there are several variables, the process is likely to driven 

by some of the main effects and interactions. 

2. The projection property: Fractional factorial design can be projected into a larger 

design. 
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3. Sequential experimentation: It is possible to combine the runs of two or more 

fractional factorial designs to assemble sequentially a larger design to estimate the 

factor effects and interactions of interest. 

In case of a 23-1 fractional factorial design, four experiments need to be conducted. There are 

two fractions to this 23-1 design: combination type (a) and (b) as in Figure 5.2. Then 

experiments can be conducted for either combination type (a) or (b). However, the runs for 

the combination (a) are normally conducted (first half of Table 5.2) with plus sign for ABC. 

ABC is called the generator and ‘I’ (the first column of Table 5.2) is called the identity 

column. The ‘—’ and the ‘+’ signs respectively represent the ‘low’ and the ‘high’ value of A, 

B and C factors on the A or B or C axes (Montgomery 2005; Myers and Montgomery 2002).  

 

Figure 5.2: The two one-half fractions of the 23 design. (Myers and Montgomery 2002, p.156) 

The linear combinations associated with the main effects can be calculated using equation 5.2. 

Since there is no replicate, the value of n becomes ‘one’ and the main effect of A will be as in 

Equation 5.5. The two factor interaction of BC can be calculated using equation 5.4 and it is 

formulated in Equation 5.6. 
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Chapter 5   Design of experiments (DOE) 

 94 

Table 5.2: Plus and minus signs for 23 factorial designs. 

Factorial Effect Treatment  

Combination I A B C AB AC BC ABC 

a + + - - - - + + 

b + -- + - - + - + 

c + - - + + - - + 

abc + + + + + + + + 

ab + + + - + - - - 

ac + + - + - + - - 

bc + - + + - - + - 

(1) + - - - + + + - 

When Equations 5.5 and 5.6 are considered, it is clear that factor effect of A = combination 

effect of factor B and factor C (ei:  [A] = [BC]. Similarly [B] = [AC] and [C] = [AB]. This 

property is called aliases. That is, factor effect of A and combining effect of BC are aliases. 

Therefore experiments will be performed for the fraction of these aliases; either in Figure 

5.2.a or 5.2.b. When analysing a fractional factorial design, the property of aliases is taken 

into consideration to predict the main effects or interaction effects of the aliases. Therefore 

this property was used to design the experiments for designing screening tests to identify main 

effects and interactions on the properties of particleboard. The following section will discuss 

screening tests and methods used for analysis. 

5.3.2.1  Screening Tests 

At the initial stage of the project, a series of screening experiments was performed to identify 

the most important parameters and their interactions controlling the process and the final 

properties of the particleboard. Two series of screening tests were performed. In the first 

stage, single-layer particleboards were manufactured considering six variables (factors). 

Fractional factorial design 26-3 was done with three replicates and the results are analysed and 

discussed in Chapter 6. In the second stage of the screening test, 27-3 fractional factorial 

design was carried out considering 7 factors for three-layer particleboard. Sixteen (16) 

different treatment combinations were recognized to conduct the experiments (Table 5.3). 

Considering the literature and industrial practices the following seven variables were 
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identified as having an effect the three-layer particleboards. Although pressing pressure is an 

important parameter with regard to particleboard production, it could not be controllable with 

the hot press used for this work. Also, highest pressing capacity used for this investigation 

was found to be 1/8 times of the industrial set-up after communication with the particleboard 

industry. Therefore, the maximum pressing capacity (40 tonnes on 500 mm x 500 mm area) 

was used for this investigation. 

1. A Moisture Surface 

2. B Moisture Core 

3. C Resin Surface 

4. D Resin Core 

5. E Hardener Core 

6. F Pressing Time 

7. G Hot press Temperature 

Table 5.3: Plus and minus signs 27-3 for fractional factorial design 

Runs A B C D E F G 

1 - - - - - - - 

2 - - + - + + + 

3 + - - + + + - 

4 - + - + + - + 

5 + - + + - - + 

6 - + + + - + - 

7 + - - - + - + 

8 + - + - - + - 

9 - - + + + - - 

10 + + - - - + + 

11 + + + + + + + 

12 + + - + - - - 

13 - - - + - + + 

14 - + + - - - + 

15 - + - - + + - 

16 + + + - + - - 
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The software that was used for design and analysis (MINITAB release 14) produces the 

output for Table 5.3 as well as aliases required for folding the experiments. The sixteen 

aliases defined are tabulated in Table 5.4. The parameter range (low and high value) used to 

design experiments the results and analysis are discussed in detail in Chapter 6.  

Table 5.4: The aliases structure  

1  I + ABCE + ABFG + ACDG + ADEF + BCDF + BDEG + CEFG 

2  A + BCE + BFG + CDG + DEF + ABCDF + ABDEG + ACEFG 

3  B + ACE + AFG + CDF + DEG + ABCDG + ABDEF + BCEFG 

4  C + ABE + ADG + BDF + EFG + ABCFG + ACDEF + BCDEG 

5  D + ACG + AEF + BCF + BEG + ABCDE + ABDFG + CDEFG 

6  E + ABC + ADF + BDG + CFG + ABEFG + ACDEG + BCDEF 

7  F + ABG + ADE + BCD + CEG + ABCEF + ACDFG + BDEFG 

8  G + ABF + ACD + BDE + CEF + ABCEG + ADEFG + BCDFG 

9  AB + CE + FG + ACDF + ADEG + BCDG + BDEF + ABCEFG 

10 AC + BE + DG + ABDF + AEFG + BCFG + CDEF + ABCDEG 

11 AD + CG + EF + ABCF + ABEG + BCDE + BDFG + ACDEFG 

12 AE + BC + DF + ABDG + ACFG + BEFG + CDEG + ABCDEF 

13 AF + BG + DE + ABCD + ACEG + BCEF + CDFG + ABDEFG 

14 AG + BF + CD + ABDE + ACEF + BCEG + DEFG + ABCDFG 

15 BD + CF + EG + ABCG + ABEF + ACDE + ADFG + BCDEFG 

16 ABD + ACF + AEG + BCG + BEF + CDE + DFG + ABCDEFG 

Once the screening experiments are completed, the most important variables and their 

interactions will be identified. Since we are dealing with seven basic parameters as well as 

more than one response variable, it is important to study the behaviour of these responses with 

respect to more than one variable. That will accelerate the achievement of the objective of 

developing a new material while optimizing the process. Therefore, regression modelling was 

used to find second order regression models between response such as MOR and effects or 

their interactions to optimize the process. The method used will be outlined in the next 

section. 



Chapter 5   Design of experiments (DOE) 

 97 

5.4 Developing regression models 

Regression modelling is a collection of statistical techniques useful for developing important 

empirical models based on observed data from the process. In the case of two independent 

variables such as x1 and x2 and one dependent (response) variable: y, the first order 

regression model can be written as in Equation 5.7. A first order model sufficiently predicts 

the process when the experiments are performed in a confined region of independent variables 

(Myers and Montgomery 2002; Montgomery 2005). Therefore, it is assumed that a first order 

model will sufficiently predict the particleboard production process in our laboratory 

environments because our experiments were designed to be conducted over a relatively small 

region of the independent variable space. The β0...Values are called regression coefficients 

and ε is the error term. These regression coefficients can be expressed in natural units such as 

temperature in Celsius. They can also be converted into coded variables, which are 

dimensionless with mean zero and standard deviation (Montgomery 2005; Myers and 

Montgomery 2002).  

y = β0+β1x1+β2x2+β3x1x2 +ε      Equation 5.7 

Multiple linear regression techniques are used to calculate the regression coefficients of the 

model. Once the important variables and their interactions are identified using ANOVA 

(discussed in Section 5.3.1.2), the regression coefficients with respect to those variables and 

their interactions are calculated to form the regression models to predict the MOR, MOE and 

IB. Further, surface density, core density and the mean density of the particleboard can be 

predicted using the processing parameters. Chapters 6 and 7 discuss the formation of 

regression models to predict responses and their validations using further experiments. 

A statistical method called least square estimator is used to estimate these regression 

coefficients after the completion of all the experiments with regard to experimental design to 

collect all the response data (y values) (Montgomery 2005). There are two types of regression 

coefficients which are calculated by slightly different methods, called coded units and un-

coded units. 
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5.4.1 Coded versus un-coded units 

By default, the MINITAB software calculates regression coefficients using coded units. 

Coding eliminates any spurious statistical results due to different measurement scales for the 

factors - for example, ‘seconds’ versus ‘degrees’. In addition, using un-coded units often leads 

to co-linearity among the terms in the model. This inflates the variability in the coefficient 

estimates and makes them difficult to interpret. Using the coded units helps eliminate this 

problem. 

Using un-coded units provides estimated regression coefficients in the original factor scales. 

However, it may change the results of the statistical tests of hypotheses used to determine 

whether each term is a significant predictor of the response. In the light of advantages of using 

coded units over un-coded units, coded units will be used to develop regression models here. 

5.4.1.1  Transformation into coded units 

The original measurement units for experimental factors can be transformed into coded units. 

In this experimental study, measurement scales as diverse as Celsius (temperature), seconds 

(Time) or percentage (moisture content or resin load) are transformed into a common, coded 

scale. For each factor level measured in the original scale, the coded unit can be obtained as in 

equation 5.8 (Montgomery 2005; Myers and Montgomery 2002). 
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5.4.2 Checking model adequacy using residual analysis 

The difference between actual y value and the model predicted y value is called the residual 

or the error (Equation 5.9). In linear regression modelling, the error term is assumed to be 

independently distributed with mean zero and variance σ2. Due to this assumption, the 

observed y value should be independently distributed with mean β0+Σβjxij and variance σ2 

(Myers and Montgomery 2002). 
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iii yye ˆ−=          Equation 5.9 

Where: 

i  1, 2, 3,..n , (number of responses) 

yi  model predicted response value 

iŷ
 average of the observed response 

The residual estimation can be used to examine model adequacy. If the residual versus the 

predicted response iŷ  scatter randomly, it suggests that the earlier assumption is satisfied. 

Standardized residuals are more informative than normal residuals. Standardized residuals can 

be used to check any unusual observations in the experiments and will be discussed in the 

next section. (Figure 5.4 displays a plot of standardized residual versus the predicted y). 

Standardized Residual

N
o
rm

a
l 
%

 P
ro

b
a
b
ili
ty

3210-1-2-3

99

95

90

80

70

60

50

40

30

20

10

5

1

Normal Probability Plot of the Residuals
(response is MOE)

 

Figure 5.3: A normal probability plot of standardized residual data 

A normal probability plot is another tool used to check the normality assumptions made 

earlier. In this plot, the normal percentage probability is plotted against the standardized 
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residuals in a semi-log graph. If the normal probability plot of residuals is in a straight line, it 

indicates that there is no significant difference from the normality assumptions made earlier 

(Montgomery 2005). These techniques will be used in Chapters 6 and 7 to check the adequacy 

of regression models statistically. Figure 5.3 shows a normal probability plot with residual 

data. It is seen that almost all the data lie on the straight line and hence it satisfies the 

normality assumptions. 

5.4.2.1   Standardized residual 

In contrast to ordinary least square residuals, standardized residuals convey more information 

on the model as well as the data used to develop the model. The standardized residuals can be 

calculated using the ordinary residuals (ei) and mean square of residuals (MSE) as in Equation 

5.10. The sum of the square of the errors or residuals (SSE) needs to be calculated in order to 

calculate the MSE. The SSE can be calculated from residual data using Equation 5.12. 
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Figure 5.4: Plot of residuals versus predicted response 

σ̂

i
i

e
d =          Equation 5.10 



Chapter 5   Design of experiments (DOE) 

 101 

Where 

di = standardized residual 

ei = ordinary residual 

EMS=σ̂  

i = 1, 2…n 

 
pn

SS
MS E

E
−

=         Equation 5.11 

Where 

n is the number of observations made and 

p is the number of number of model parameters 
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)ˆ(      Equation 5.11 

These standardized residuals have mean zero and approximate unit variance consequently 

they are useful to identify any outliers in the response data. Normally standardized residuals 

lie in  33 ≤≤− id and any residual outside this range is called an unusual observation or an 

outlier (Montgomery 2005). Figure 5.4 shows the plot of standardized residuals versus the 

predicted response for the surface density of particleboards. These data are randomly 

distributed with a variance < 1.5. Therefore, it can be concluded that these data are reliable 

and they do not have any outliers. 

5.4.2.2   R2
 value 

R2 value is a commonly-used technique to check the validity of a model. R2 value is 

calculated using SSE and SST. This technique will be used to validate process models 

discussed in Chapter 6 and Chapter 7. The calculated value for R2 value may vary from zero 

to one (or 0 to 100%).  

T

E

SS

SS
R −=12          Equation 5.12 

R2 is used to compare the experimental data and model predicted data. If R2 � 100% , this 

implies the developed model significantly elaborates the total population of the data and 

hence the model is acceptable. Adding more and more variables to the model increases the R2 
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significantly. Therefore, the adjusted R2 value can be calculated to check the validity of the 

model further. If the adjusted R2 value is significantly lower than the R2, then the model does 

not adequately predict the process (Montgomery 2005; Myer and Montgomery 2002). The R2 

adjusted can be calculated using Equation 5.13.  

)1(
1

1 22 R
pn

n
R adj −

−

−
−=        Equation 5.12 

Where, 

n is the number of observations made and 

p is the number of number of model parameters 

There is another way of calculating the R2 value using adjusted SSE and SST, when the 

population size of the data changes significantly. However, in the case of this study, this will 

not be important as the sizes of the population of data are always same or almost same. 

5.5 Application of experimental design for developing natural composites 

The DOE method or the statistical analysis techniques discussed here have been used by 

many researchers in the past to develop new natural composite products using new raw 

materials (Nelmi et al. 2003; 2006; 2007; Stewart and Lehman 1973; Okino et al. 2004). 

Okino et al (2004) incorporated the 2k factorial design to investigate the physical and 

mechanical properties of laboratory-made particleboard and flake board using natural and 

acetylated particles. They investigated the properties of the boards with respect to change in 

two different materials. A 2k- full factorial design was carried out to perform experiments and 

the effect of a factor was studied by using test of significant (calculating p-values with 

05.0=α ).  They did not consider investigating the effects by change in resin, moisture or 

pressing temperature with respect to the new raw material. Instead they kept other processing 

parameters as constant.  

Nemli et al. (2003) used DOE and statistical methods to investigate the suitability of Kiwi 

prunings as particleboard raw material. In addition to the methods used by Okino et al. 

(2004), they used ANOVA to study the significant differences among factors and levels. 

Further, they used the Tukey test to identify the significant variations among factor groups. In 

their study, ANOVA was observed to successfully predict the significant factors, factor levels 
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and their interactions in producing a new particleboard product using Kiwi prunings. In their 

investigation, they kept most of the processing parameters such as moisture content, hardener 

load, pressing time and temperature constant though they might have had some significant 

effects on the process. Karr et al. (2000) investigated the suitability of wheat straw as a 

particleboard raw material. They used DOE techniques to investigate the effects of processing 

parameters on straw particleboard quality. ANOVA was mainly used to compare and screen 

the most important effects with respect to the production process in the laboratory 

environment. 

Experimental design combined with regression analysis to develop a response model has been 

used on many occasions to find the unknown mechanisms between response and the process 

or the systems (Park et al. 1999; Windon and Cook 1998; Rikards et al. 2004). Park et al. 

(1999) used regression modelling to model the hot pressing process of the three-layer MDF 

production process. First they found the most important factors with respect to internal 

temperature of the MDF during production. Then they utilized them to find relationships for 

temperature profile and density profile with respect to pressing time, press temperature and 

moisture content. The developed models were then used to optimize the hot pressing process 

of the fibre board. 

 In addition, the DOE method has been widely used in experimental investigations in the areas 

of drug production, ceramic production, material and polymer sciences (Kincl and Vrecer 

2005; Ragonese et al. 2002). Box-Behnken experimental design has been used by various 

authors for factor screening, process modelling and optimization in various other fields. 

Ragonese at al. (2002) and Kincl et al. (2005) used the method for the formulation of the 

process and optimization of a capillary electrophoresis method for pharmaceutical research.  

In other situations DOE has been used to formulate the Ullmann type side production 

(Rozsumberszki et al. 2004). These researchers used the DOE with the response surface 

method to formulate a second-order polynomial equation showing the production process. Lee 

and Gilmore (2003) used the DOE method to formulate and model the process of developing 

a thermoplastic polymer using industrial wastes. In most of these investigations, either 

ANOVA regression analysis, or the response surface method, or combinations of these 

techniques have been used to produce new material, or to optimize existing products, or 

process.  
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5.6 Summary 

This chapter has provided an introduction to the DOE method using factorial design and its 

efficiency in developing a new product using new raw materials, developing a new production 

process or improving an existing process or product. Further the chapter has discusses 

selected tools and techniques used in analysing experimental data of this research. The most 

important tools discussed here are: 

• 2k fractional factorial design and how it will be used to design experiments and 

analyses. 

• ANOVA which is a very efficient tool used to identify the most important factors and 

their interaction for developing a new particleboard product. 

• Regression analysis and calculating regression coefficients, which can be used to 

model particleboard properties such as MOE and MOR using processing parameters. 

These models are very useful to optimize particleboard properties and this 

optimization will be discussed in Chapter 8. 

• Residual analysis (error analysis) and residual plots are important techniques to select 

correct data from experiments. Residual analysis and normal probability plots can 

further be used to check the validity of regression models.  

• DOE methods have been used by various researchers in the past, to develop new 

materials, to develop experiments with new raw materials,  or new processes or to 

optimize existing processes. 
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CHAPTER 6  

SIGNIFICANT PARAMETERS INFLUENCING THE 

PROPERTIES OF S INGLE-LAYER PARTICLEBOARD  

6.1 Introduction 

This chapter describes the procedure followed to identify significant parameters influencing 

the properties of particleboard using hardwood sawmill residues. Single layer particleboards 

were manufactured in the laboratory before producing three layer particleboards at the start. 

Once these results were analysed, most influential parameters were identified for single layer 

particleboards. Then, these processing parameters and their upper and lower values were 

identified and incorporated into design of the mix proportionates for three-layer 

particleboards. Three layer particleboards were prepared by changing the recipe for both 

surface and core layers to find the significant parameters. Three layer particleboards are 

discussed in detail in the Chapter 7. Results, analysis and outcomes for the single-layer 

particleboards are discussed here. 

6.2 Objectives 

Particleboards are generally manufactured using softwood flakes. The ingredients as well as 

the production process for softwood particleboards are therefore well documented. There is a 

little literature available on particleboard production using hardwood materials. Particleboard 

production using hardwood sawmill residues have never being investigated before. Since the 

properties of three-layer particleboards would be a function of the three separate layers, it was 

decided to explore properties of single layer particleboards to establish an understanding of 

the properties of individual layers. 

The objective of this work is to determine influence of the processing parameters on the 

properties of single layer hardwood particleboard. A partial factorial experimental design was 

carried out to study all the processing parameters and their interactions on final product. 

Initial investigation shows that hardwood particleboard may need higher resin content and 

higher moisture content compared to industrial softwood particleboard (Appendix E). Six 

material and process variables with three levels were experimented (Table 6.1). The last 
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column of the Table 6.1 shows the average values for same variables use in industrial 

softwood particleboard for three layer particleboards (Values collected after communication 

with a local particleboard factory). The MOE, MOR and IB of the final particleboard product 

were investigated and the effect analysis with respect to these strength properties was done. 

Table 6.1: Variables used in the experimental design for single layer particleboards 

Variable Effect 
Low 

Value 

Middle 

Value 

High 

Value 

Industrial 

Softwood 

Particleboard 

Target Board Density (kg/m3) A 600 700 800 680 

Moisture Content  B 9 14.5 20 11 

Resin Load (% of dry wood 
residue load) 

C 5 10 15 
11 

Hardener Content (% of resin 
load) 

D 0 1  2  
1.5 

Pressing Time (Minutes) E 4 6 8  3 

Press Temperature (o C) F 150 195 220  190 

6.3 Materials and Methodology 

A local hardwood sawmill provided the hardwood sawmill residues for the project. These 

residues contained a mix of residues from different hardwood. However, the majority of them 

were from two species of eucalyptus (Regnans or Mountain Ash and Obliqua or Messmate 

Stringy Bark). Residues come of two types called fine and mulch. Fines consist of smaller, 

cubical shaped particles formed of saw dust and Mulch is bigger, flaky particles. These 

particles were sieved as both mulch and fine material consisted of unevenly distributed 

particles as well as a large amount of bigger particles, which disturb proper compaction when 

preparing the board. From each batch of fines and mulch residues samples with particle-size 

<19.00 mm were measured separately for a particular layer. Then, mixture of fines and 

mulches were prepared in order to obtain a better particle size distribution which is vital for 

better compaction of the board. In the three layer particleboard a mix of 65% fine with 35% 

mulch was used for the surface layer while a mix of 55 % fine with 45% mulch was used for 

the core layer. A mix of 65% fine with 35% mulch that is similar to the surface material in 

three layer board was used in the single layer particleboards. Initial particle size distributions 

and final mix for surface and core materials of residues are given in Figure 6.1.  
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Figure 6.1: Sieve analysis data of the raw material 

The initial moisture content of these residues were measured at the laboratory and established 

to be in 65-85% at the saw mill. Therefore, raw materials were oven dried at a temperature of 

105oC to remove this excessive moisture. It was studied and found that these residues need to 

be oven dried for 24 hrs – 48 hrs to dry them properly. 

Conventional three layer particleboards are manufactured using formaldehyde resin as the 

binder. In addition to the resin, hardener is used for the core layer to facilitate the resin curing. 

In this work, urea formaldehyde (E1 resin) was used as the binder. This resin which contained 

63-64.9% solid, and viscosity in the range of 115-220cPs at 25oC, was provided by the 

Divisions of Adhesives and Resins of Orica Chemicals, Deer Park, Australia. The chemical 

composition of the resin is attached in the appendix A. Ammonium Chloride was used as the 

hardener (catalyst).  

6.3.1 Methodology 

Fine and Mulch were sieved separately. The saw mill residue was oven dried at 105oC for 

approximately 48 hours to remove excessive moisture intact. Fine and Mulch were measured 

as required by the mix proportion for a board as well as the mix proportion for the particular 

layer according to the Figure 6.1. Then, these Fine and Mulch were mixed inside the mixing 

drum. The amount of resin, hardener and water were measured separately and mixed together 

before spraying onto the wood residue which had already been in the mixing drum. When the 

pulp was ready, it was hand formed in a rectangular mould of 300 mm X 400 mm. Then it 

was manually pressed and then cold pressed followed by the hot press. The cold pressing time 
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and the hot pressing time were maintained to be at equal. Then, final board was sampled and 

tested for its physical and mechanical properties. The complete laboratory procedure for the 

particleboard manufacturing was explained in the Chapter 4.  

6.4 Test procedure 

Finished particleboards were then kept in an open space approximately for a week to remove 

formaldehyde trapped inside. Then they were stored in a controlled humidity (65%) and 

temperature (20oC) before testing according to AS/NZS 4266.5 and AS/NZS 4266.6. MOR, 

MOE and IB were measured as part of testing the properties of the final board. 

All boards were trimmed to obtain 200 mm x 300 mm rectangles by trimming 50 mm thick 

strips along the edges. Samples were cut and prepared as per AS/NZS 4266.1(2004). 

Thickness of the final board which was measured to calculate the IB was used to calculate the 

spring-back too. (Spring-back is the thickness swelling happening in a particleboard 

immediately after removal from the hot-pressing.) 100 mm x 300 mm samples were cut to 

measure the MOR and MOE. 50 mm x 50 mm samples were taken to measure the IB. 

6.5 Screening test 1: Identification of significant parameters for single layer 

particleboard 

6.5.1 Experimental design 

Table 6.2: The aliases structure for 26-3 design 

1 A + BD + CE + BEF + CDF + ABCF + ADEF + ABCDE 

2 B + AD + CF + AEF + CDE + ABCE + BDEF + ABCDF 

3 C + AE + BF + ADF + BDE + ABCD + CDEF + ABCEF 

4 D + AB + EF + ACF + BCE + ACDE + BCDF + ABDEF 

5 E + AC + DF + ABF + BCD + ABDE + BCEF + ACDEF 

6 F + BC + DE + ABE + ACD + ABDF + ACEF + BCDEF 

7 AF + BE + CD + ABC + ADE + BDF + CEF + ABCDEF 

8 ABD + ACE + BCF + DEF + ABEF + ACDF + BCDE 
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Fractional (1/8) factorial design was done using 6 factors (that is 26-3 number of experiments 

for a single replicate) for the variables in Table 6.1. The highest and the lowest point of each 

factor were considered for experimentation. In addition, the centre point of the distribution 

was also considered to produce experimental particleboard. The alias structure for this set of 

experiments (as explained in the Chapter 5) is tabulated in the Table 6.2. Particleboards were 

manufactured for each recipe produced by the experimental design with three replicates.  

6.6 Results, Analysis and Discussion 

After preparing the samples for each test mentioned earlier, they were stored in a humidity 

cabinet with a controlled humidity (65%) and a controlled temperature (22oC) for 

approximately two weeks before testing. Then, they were tested for MOE, MOR and IB. Test 

method and equipments used were reported in the Chapter 4. Test results were then 

statistically analysed incorporating theories of experimental design to calculate the test 

statistical values (T) for each process variable and the probability of null hypothesis (P). The 

theories used for experimental design and analyses used in here were discussed in the Chapter 

5.  

6.6.1 Factors affecting the flexural strengths of a hardwood particleboard 

Table 6.3 shows the calculated T and P values while Figure 6.2 and Figure 6.3 show the 

normal probability for standardized effect (or test statistical value considering the  error term) 

for each variable on MOE, MOR and IB respectively. Solid line in each Figure 6.2, 6.3 and 

6.4 connects the negative and positive limit of test statistical value for 95% significant level. 

Any parameter which has a negative effect lies left to this line where as parameter with 

positive effect lies right to it. The magnitude of the test statistical value of each variable is 

compared with this upper and lower limit in the line. If the test statistical value is higher than 

the upper limit (positive limit in the line) is positively significant on the tested property with 

95% significance level. If the test statistical value is smaller than the lower limit (negative 

limit in the line) has a significant negative effect with 95% significant level.   

MOE, MOR and IB are the most important strength properties which determine the suitability 

of particleboard as building elements. Therefore, only these properties were studies in this 

initial investigation with the single-layer particleboards.  
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Table 6.3: Estimated Effects and Coefficients for Tested Board Properties 

MOE MOR IB 
Term                    

T      P      T  P T P 

Density         (A)         -1.05 0.301 0.06  0.953 1.00 0.330 

Resin Load     (B)                 6.78 0.000 0.81 0.429 -0.53 0.604 

MC                    (C)        3.05   0.008   2.58 0.020 1.44 0.169 

Hardener           (D)        -4.48   0.000   0.85  0.406 0.35 0.730 

Temperature      (E)        -0.74   0.468  -0.66 0.517 0.11 0.916 

Pressing Time    (F)        4.56   0.000   0.05  0.958 -0.92 0.372 

Density*Pressing  
Time(AF)         
 

1.73  0.100  -1.33 
0.202 
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Figure 6.2: Significant factors affecting the MOE of single-layer particleboard 

It can be seen from Table 6.3 that for each of the tested properties moisture content was the 

most significant factor with probability for null hypothesis; P < 0.05 for MOE and MOR.   

Also, the lowest P (= 0.169) for IB was found with the moisture content. In addition, Figure 

6.2 and Figure 6.3 show that the moisture content has a positive effect on both MOE and 

MOR.  



Chapter 6   Significant parameters influencing the properties of 

Single-Layer particleboard 

 111 

Standardized Effect (T - values)

E
x

p
e
ct

e
d

 N
o

rm
a

l 
V

a
lu

e

3210-1-2-3

99

95

90

80

70

60

50

40

30

20

10

5

1

Factor

Hadener

E Temperature

F Pressing Time

Name

A Density

B Resin Load

C MC

D

Effect Type

Not Significant

Significant

C

Normal Probability Plot of the Standardized Effects
(response is MOR, Alpha = .05)

B

D

F

A

E

AF

 
 
Figure 6.3: Factors affecting the MOR of single-layer particleboard 

Moisture is a critical component in manufacturing wood composites and fibre composites due 

to its effect on the initial drying operation of wood substrate, press cycle manipulation, wood 

conformability, composite properties, spring back, and post consolidation, re-humidification.  

One method of reducing the high compressive force required during the pressing is to press at 

high moisture content. Raw materials with high moisture content have not been used in the 

past because of the excessive vapour pressure generated during the hot pressing. That would 

disturb the wood composite addition (Kelly, 1977). Optimum moisture content in softwood 

particleboard furnish has been accepted as around 8% - 10% for the core and 11%-15% for 

the surface material.  

Preliminary results reported herein indicate that the optimum moisture content for hardwood 

residue can be higher than that for softwood particleboard furnish. This could be explained as 

the higher inherent moisture content (absorption) of hardwood compared to softwood. This 

observation is extremely important and needs to be explored systematically since pressing at 

high moisture content can lead to a reduction in the cost of production of particleboard by 

reducing the energy required to press as well as dry the material. Resin load and pressing time 

has a significant positive effect on MOE (P < 0.05 and T is  “+”), hardener has a negative 

effect on that (P < α and T is “-” in Table 6.3 and Figure 6.2). Higher amount of resin will 
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produce a strong and rigid composite, which also will reduce the water absorption and the 

thickness swell (Karr et al., 1999). In addition, pressing time provides the time required for 

resin curing and creation of more cross-linking sites increasing the MOE. 

The purpose of having hardener in the core layer of softwood three-layer particleboard is to 

create an acidic medium to facilitate better curing of the urea formaldehyde resin. However, 

results in the Figure 6.2 indicated that the hardener has a negative impact on MOE of a single 

layer particleboard. Having hardener at the surface of the board accelerate the resin curing at 

the surface. However, when completing the total press cycle, already cured resin may have 

over cooked resulting in a weaker surface. The surface of the board is mainly responsible for 

flexural strength of a particleboard. 
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Figure 6.4: Factors Affecting IB of single-layer particleboard 

Figure 6.4 represents the normal probability plot of standardised effect for IB of single layer 

particleboard. However, figure 6.4 does not provide much information on the significant 

variables or interactions. Generally, IB of a particleboard is mainly dependent on the core of 

the particleboard. Having same amount of resin, hardener, moisture through out of the board 

does not create significant variation between the surface and the core of the board. At the 
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same time, using high moisture in the core (same as surface), increases the core moisture 

further when the surface moisture migrates into the core during the hot pressing. The 

excessive moisture creates a higher steam pressure in the core of the board. When the hot-

press pressure is released, releasing this steam pressure causes the spring-back in the board. 

Internal glue-bonds between particles may also have been broken due to this spring-back 

resulting in weaker IB boards.  

6.7 Summary and Conclusions 

From the preliminary work presented here, following conclusions can be made.  

• Moisture content is significantly affecting both MOE and MOR of hardwood single-

layer particleboard. Almost all the single layer particleboards have undergone spring-

back due to some of the moisture may not have beenreleased completely during the 

hot pressing. 

• It is interesting to observe that hardwood particleboard furnish may have a higher 

moisture content than softwood furnish without adversely affecting the board 

properties. However, pressing at high moisture may have to be verified with further 

work on three layer boards. 

• Resin load, pressing time have significant positive influence on the MOE of single 

layer particleboard. However, according to results, there was not any significant 

relationship between IB and any variable. However, this observation may not be used 

to predict the IB behaviour of three-layer particleboards. Further investigation need to 

be performed to verify this observation or identify differentiation between single layer 

and three layer particleboard. 

Therefore, the next section, Chapter 7 will be investigating the properties of three-layer 

particleboard which are produced using hardwood saw mill residues. 
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CHAPTER 7  

SIGNIFICANT PARAMETERS INFLUENCING THE 

PROPERTIES OF THREE-LAYER PARTICLEBOARD  

7.1 Introduction 

It is evident from the previous chapter that the significant parameters influencing the 

properties of three-layer particleboards may not be the same as the significant parameters for 

single-layer boards. Therefore, it is important to make a separate study of three-layer 

particleboards to evaluate the significant parameters. This chapter investigates the significant 

parameters influencing the properties of three-layer hardwood particleboard using saw-mill 

residues. Three-layer particleboards were prepared in the laboratory by changing the recipe 

for both surface and core layers to find the significant parameters. This chapter explains the 

experimental parameters and procedures adopted for manufacturing. Results, analysis and 

outcomes are also discussed. 

7.2 Objectives 

The work presented here aims at investigating the effect of material and process variables on 

the properties of three-layer particleboard production using hardwood saw-mill residues. The 

investigation has three main objectives. 

• To study the effects of material variables (surface resin load, core resin load, surface 

moisture content, core moisture content) and process variables (pressing temperature 

and the press closure time) on the mechanical properties (Modulus of Rupture (MOR), 

Modulus of Elasticity (MOE) and Internal Bond  strength (IB)) of the finished board. 

• To study the effects of the material variables (resin load for surface, resin load for 

core, moisture content for surface, moisture content for core, hardener for core) and 

the process variables (pressing temperature and the press closure time) on the physical 

properties (the density profile) of the finished board. 
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• To compare the mechanical properties and the physical properties of the finished 

board with respect to processing parameters. 

7.3 Screening test 2: Identification of significant parameters for three-layer 

particleboard 

Similar to single-layer particleboard production discussed in the Chapter 6, both process 

variables and material variables were considered here in the screening test. Process variables 

considered are the pressing temperature and press closure time, and the material variables are 

the mat moisture content, the resin load and hardener for the core. Both mat moisture content 

and resin load were different from surface to core. Therefore, seven experimental variables 

were investigated in the production of particleboard using hardwood sawmill residues. 

Moisture content for the surface (A), moisture content for the core (B), Resin load for the 

surface (C), Resin load for the core (D), Hardener for the surface (E), Pressing time (F), Press 

temperature (G) were changed according to Table 7.1. Based on the preliminary work 

discussed in Chapter 6 which conforms to the published literature (Chapter 2), it was 

identified that higher moisture content may be required for hardwood particleboard compared 

to softwood particleboard.  

Table 7.1: Variables used in the experimental design for three-layer particleboards 

Variable 
Low 

Value 

High 

Value 
Units 

Surface Moisture Content (A) 11 22 % of dry wt of the board 

Core Moisture Content (B) 7.5 15 % of dry wt of the board 

Surface Resin Content (C) 8 20 Resin load as a % of dry wt of the board 

Core Resin Content (D) 5 13 Resin load as a % of dry wt of the board 

Core Hardener Content (E) 1 3  % of Resin load 

Pressing Time (F) 120 300  Seconds 

Press Temperature (G) 150 200  o C 

Therefore, moisture for the surface was considered in the range of 11% to 22% whilst 

moisture for the core was considered in the range of 7% to 15%. However it should be noted 

that the softwood particleboard industry uses approximately 11%-15% moisture for the 
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surface and 8%-10% for the core.  Similarly resin load also selected with a wider range 

covering industrial softwood particleboard. Industrial softwood particleboard uses surface 

resin in the range of 8% to 13% whereas core resin in 8% to 10%. Industrial softwood 

particleboard uses hardener for core layer 1.5% of resin solid use in the core. Industrial 

softwood particleboard is manufactured with 190 0C and 180 seconds pressing time. (These 

values were obtained after communication with a local particleboard factory). 

7.4 Experimental design 

A screening experimental series was conducted to identify the most important parameters and 

their interactions controlling the properties of three-layer particleboard made with hardwood 

sawmill residues. Seven material and process variables with two levels (low and high values) 

were identified and used with two replicates, as in Table 7.1. A 1/8 fractional (27-3) factorial 

design was carried out to investigate the effects of material variables and process variables on 

the mechanical and physical properties of the finished boards. Sixteen different experimental 

boards were produced with one replicate in our laboratories. The different treatment 

combinations with respect to this 27-3 design were tabulated in Figure 5.3 in Chapter 5. The 

target board density was kept constant at 710 kg/m3 and the target thickness was 15.2mm.  

7.5 Materials and Methodology 

As for single-layer particleboard production, which was discussed in Chapter 6, the same 

materials were used to prepare three-layer particleboard. Firstly a sieve analysis was done for 

the two types of particles (fine and mulch) obtained from the saw mill. As discussed in 

Section 6.2.1, a mix of 65% fine with 35% mulch was used for the surface layer while a mix 

of 55 % fine with 45% mulch was used for the core layer. Urea formaldehyde E1 resin was 

used with hardener (NH4Cl) for the core layer.   

7.6 Methodology 

Fine and Mulch residues were sieved separately. The saw mill residues were then oven dried 

at 105oC for approximately 48 hours to remove excessive moisture. Fine and Mulch residues 

were measured separately for the surface layer and mixed in the mixing drum. The amounts of 

resin, and water were measured separately and mixed together in a cup. The resin-water 
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mixture was then sprayed onto the wood residue in the mixing drum. When the pulp was 

ready, the required amounts for two surfaces were separated. Similarly, the pulp was prepared 

for the core layer. Unlike for the surface layer, hardener was added into the water-resin 

mixture prior to spraying. When the pulp for the core layer was ready, the required amount for 

the core of the board was measured. Then, the pulps were hand-formed in three layers in a 

rectangular mould of 300 mm X 400 mm. Then it was manually pressed. The manually 

pressed particleboard mat was then cold pressed followed by the hot press to manufacture the 

final particleboard. The cold pressing time and the hot pressing time were equal. Then the 

completed board was sampled and tested for its physical and mechanical properties. The 

complete laboratory procedure for the particleboard manufacturing was explained in Chapter 

4.  

7.7 Test procedure 

Similar to the single-layer particleboards, the finished three-layer boards were then kept in an 

open space for approximately one week to remove the formaldehyde trapped inside. All 

boards were trimmed to obtain 200 mm x 300 mm rectangles by trimming 50 mm wide strips 

along the edges. Samples were cut and prepared as per AS/NZS 4266.1(2004). The thickness 

of the final board was measured to calculate the spring-back. Then the samples were stored in 

a humidity cabinet with controlled humidity (65%) and temperature (20oC) before testing as 

per AS/NZS 4266 (2004). MOR, MOE, IB, and spring-back were measured as part of testing 

of the properties of the final board. Mean density and the density profile of the board were 

also measured. 

7.7.1 Testing of board’s physical properties 

Mean density and the density profile of each board were included in the measured physical 

properties. The mean density of the board was measured according to AS/NZS 4266.4(2004) 

by measuring the weight and the volume of a test sample. A sample with a volume of 100 mm 

x 300 mm x board thickness from each board was used to measure the mean density of the 

board. A 50 mm x 50 mm sample from each board was used to measure the vertical density 

profile. Then, mean surface density and mean core density of the board were calculated from 

the measured density profile values.  
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7.7.2 Testing of board’s mechanical properties 

After measuring the density profile, all the samples were sanded to remove the low density, 

loose surface before performing other tests.  Then, the MOR, MOE and IB were measured to 

ascertain the mechanical properties of the final board. A sample of 100 mm x 300 mm was 

used to test the MOE and MOR, and a sample of 50 mm x 50 mm was used to test IB 

according to AS/NZS 4266.5(2004) and AS/NZS 4266.6(2004) respectively. 

7.8 Results, analysis and discussion 

Table 7.2 shows the 16 different recipes given by experimental design to manufacture 

particleboards. These 16 screening test boards are labelled as ST 1…16. Moisture content and 

resin content were calculated with respect to the oven-dried wood weight and these 

percentage values are tabulated in Table 7.2. However, the hardener content was calculated 

with respect to the resin solid. The percentage of hardener solid with respect to resin solid is 

given in Table 7.2. The measurement of the pressing time was commenced as soon as the top 

platen of the press touched the particleboard mat. The hot press time and the cold press time 

were maintained the same and measured in seconds. Press temperature was measured in 

degrees Celsius and both top and bottom platens were kept at the same temperature. The 

averages of the test results are also tabulated in Table 7.2. MOE and MOR are measured in 

mega Pascals (MPa) while IB is measured in kilo Pascals (kPa). Mean surface density and 

mean core density were calculated from the density profile test data and presented in the same 

Table 7.2.  

Test results show that particleboard ST5 has MOE > 2000 MPa, MOR > 16 MPa and IB > 

400 kPa. According to AS/ NZS 1859 (2004), this particular board satisfies the minimum 

strength property requirement for standard grade particleboard. Therefore, it is clear that 

particleboard can be manufactured using hardwood saw mill residues. However, it is 

necessary to test this board for its moisture resistance in order to use it as a standard grade 

particleboard. Therefore, the investigation of moisture resistance property of these 

particleboards has been conducted and is discussed in Chapter 10.  
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Table 7.2: Experimental variables and results 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Board 

Number 

Moisture 

Surface (% 

of oven dry 

weight of 

wood) 

Resin 

Surface (% 

of oven dry 

weight of 

wood) 

Resin Core 

(% of oven 

dry weight 

of wood) 

Hardener 

Load (% of 

resin solids 

weight ) 

Pressing 

Time (s) 

Press 

Temperat

ure 

IB (kPa) MOE 

(MPa) 

MOR 

(MPa) 

ST 1 11 8 5 1 120 150 74.40 1253.0 6.085 

ST 2 11 20 5 3 300 200 389.32 1983.0 9.659 

ST 3 22 8 13 3 300 150 330.12 1801.8 8.256 

ST 4 11 8 13 3 120 200 320.00 1394.0 6.687 

ST 5 22 20 13 1 120 200 545.88 2419.0 12.530 

ST 6 11 20 13 1 300 150 605.32 2233.0 11.600 

ST 7 22 8 5 3 120 200 86.12 1480.0 6.000 

ST 8 22 20 5 1 300 150 282.92 2190.0 8.970 

ST 9 11 20 13 3 120 150 368.52 1464.0 8.509 

ST 10 22 8 5 1 300 200 76.28 1658.0 7.518 

ST 11 22 20 13 3 300 200 384.00 1990.0 10.091 

ST 12 22 8 13 1 120 150 122.40 957.0 5.025 

ST 13 11 8 13 1 300 200 638.92 1450.0 7.615 

ST 14 11 20 5 1 120 200 415.72 1915.0 10.350 

ST 15 11 8 5 3 300 150 103.20 1078.0 5.277 

ST 16 22 20 5 3 120 150 17.60 829.0 3.639 
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On the other hand, these particleboards required extra resin and moisture for the surface layer 

compared to industrial softwood particleboards. Therefore, it is necessary to optimize this 

recipe to find optimum processing parameters.  Therefore, it was decided to develop 

composite models for the MOE and MOR of the hardwood particleboard incorporating the 

effects of the processing parameters. Those models were then used to optimize particleboard 

mix proportions. This matter is discussed in Chapter 8. 

Table 7.3: Estimated Effects and Coefficients for physical properties of a board 

Term                 

 
MOE MOR IB 

 T P T P T P 

Moisture Surface (A) -0.94 0.393 -6.37 0.003 -6.82 0.001 

Moisture Core (B) -1.23 0.274 -0.94 0.4 -4.28 0.008 

Resin Surface (C) 7.74 0.001 17.57 0 8.01 0 

Resin Core (D) 0.23 0.831 4.45 0.011 11.91 0 

Hardener Core (E) -4.88 0.005 -10.18 0.001 -4.86 0.005 

Pressing Time (F) 2.26 0.073 4.03 0.016 5.48 0.003 

Press Temperature (G) 5.53 0.003 11.17 0 6.06 0.002 

Moisture Surface * Moisture 

Core 
-2.65 0.045 -3.61 0.022 -3.94 0.011 

Moisture Surface * Press 

Temperature 
3.37 0.02 7.45 0.002 -1.74 0.142 

Moisture Surface * Hardener 

Core 
NS NS -2.96 0.041 NS NS 

Moisture Surface*Resin surface NS NS NS NS NS NS 

Moisture Core*Resin Core 3.08 0.027 4.20 0.014 NS NS 

Moisture Surface*Pressing Time NS NS NS NS NS NS 

Moisture Core*Resin Surface NS NS NS NS NS NS 

Moisture Surface*Moisture 

Core*Resin Core 
NS NS NS NS NS NS 

NS = Not Significant 

The results were analysed using the theories of experimental design as discussed in Chapter 5. 

The effects that are not significantly dependent on the testing parameters are normally 
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distributed with mean zero and variance ( 2
σ ), and will tend to fall along a straight line on a 

normal probability plot. However, a variable with significant effect will have a nonzero mean 

and hence does not lie on the straight line (Myers and Montgomery 2002). Therefore, effects 

with higher ‘T’ value are considered as significant variables, while those with lower ‘T’ 

values are considered to have a negligible effect on that testing property. The level of 

significance of a given variable is calculated assuming that there is no significant effect (null 

hypothesis: P) of that variable on a particular testing property. Test results were then 

statistically analysed incorporating theories of experimental design to calculate the test 

statistical values (T) for each process variable and the probability of null hypothesis (P). 

Using 5% significance for null hypothesis, a factor is considered to affect the tested property 

if P < 0.05. In other words, the null hypothesis is not true and the factor affects the board 

property with 95% significance. 

Table 7.3 shows the calculated T and P values for the testing properties of particleboards 

discussed in this chapter. Normal probability plots and Pareto charts will be used to analyse 

the data to identify significant variables as well as to find the level of significance.  

7.8.1 Factors affecting the mechanical properties of a board 

MOE, MOR and IB values used to determine the mechanical properties of the final 

particleboard (Table 7.2) and their statistical analysis results (T and P values) are given in 

Table 7.3. Resin surface, pressing time and press temperature significantly influence all the 

tested properties of hardwood particleboard (Table 7.3). This is to be expected, as higher resin 

content would coat more surfaces thus providing better bonding between particles. Press 

temperature and pressing time are important as they provide the heat and time required for 

resin curing and creating more cross-linking sites, eventually reducing spring-back and 

thickness swelling (Karr 1999). Surface resin content has more effect on both MOR and 

MOE, while core resin has more effect on the IB and MOE. The MOR of a board is mainly 

dependent on the surface layer of the board though IB depends on the core layer.   

7.8.1.1 Modulus of Elasticity (MOE) 

T and P for each process variables with respect to MOE can be found in Table 7.3. The most 

significant parameters which affect MOE can be found in the table with P < 0.05. As 
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explained in Chapter 5, T values are higher for the effects with P < 0.05. The higher the T 

value, the higher the effect on MOE.  In addition, Figure 7.1 shows the normal probability 

plot for standardized effect for MOE. Significant parameters which control MOE are marked 

with red squares. The test statistical value and the effect that satisfies 95% significant margin 

value was calculated and found to be around (+ or -) 2.4. The blue line in Figure 7.1 connects 

the two positive and negative margins of the test statistical values. Effects or combinations of 

effects, which negatively influence MOE, stay on the negative side of the graph (That is T < -

2.4 in Table 7.3). Therefore, the hardener and the combination of moisture core with moisture 

surface negatively influence the MOE. Resin surface, press temperature, the combination of 

moisture surface and press temperature and combination of moisture core with resin core have 

positive significant effects on MOE.  
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Figure 7.1: Normal probability plot for standardized effect for MOE 

Figure 7.2 is the Pareto chart which highlights significant parameters with respect to MOE in 

a bar chart. This figure shows that the resin surface has the most significant effect on the 

MOE of hardwood particleboard. The amount of resin is important to create proper bonding 

between particles. Generally in-plane and lateral bending loads are primarily resisted by the 

surface materials in a structural element (Vinson 1999). Hence, having higher amount of 

surface resin in the surface layer is vital to create inter-particle bonding in the surface layer. 
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That creates a stronger surface layer in three-layer particleboard, and directly influences the 

MOE of particleboard. 

Figure 7.2 show that press temperature has the second highest effect on MOE. Press 

temperature is important for heat and mass transfer to the core of the board for curing of resin 

and to release the excessive moisture from the final board. Also, fast heat transfer is a key to a 

short press cycle (Suchsland 1967). 

According to Figure 7.2, hardener has the third highest effect on MOE. However, Figure 7.1 

shows the hardener negatively affects the MOE. Hardener is a normal ingredient in three-

layer softwood particleboards. In softwood particleboards, hardener is added into the core 

layer to create an acidic medium to accelerate the resin curing, since UF resin prefers an 

acidic medium. However, hardener may not be required for this task. It was hypothesised that 

hardwood saw mill residue is acidic in nature. That hypothesis was finally confirmed by 

measuring the pH value of sawmill residues which were found to be acidic. The testing of the 

acidity of sawmill residue is discussed later in this chapter. 
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Figure 7.2: Pareto chart for standardized effect MOE  

Moisture surface combined with press temperature is the next significant factor for hardwood 

particleboard. Moisture surface and press temperature directly influence the heat and mass 
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transfer to the core. Further, the increase in moisture surface reduces the hardness of the wood 

mat and provides better compaction of the mat before resin curing. In addition, the 

combination of these factors may provide enough steam to carry heat from the surface to the 

core that is essential for resin curing. This ultimately increases the stiffness of the board. 

However, moisture surface combined with moisture core negatively influence the MOE, 

possibly because the excessive moisture that may be trapped inside the board, creates 

excessive steam pressure inside the board. Releasing the hot press allows steam pressure to 

relax, leading to thickness swelling in the board, resulting in inter-particle bond failures. In 

addition, moisture core combined with resin core positively affect the MOE. These individual 

factor effects or combinations of factor effects were further studied using contour plots. 

Contour plots show the behaviour of the MOE with respect to two variables, while other 

processing parameters are considered as steady at their middle levels. 

The advantage of drawing a contour plot is that response surface is viewed in a two 

dimensional plane in the plot where the constant responses are connected to produce contour 

lines. In a contour plot, change in the response with respect to change in two variables (whilst 

others are kept constant) is presented and that is very useful for establishing the desirable 

response values and mixture blends for this work. 
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Figure 7.3: Contour plots of MOE with respect to most significant effects  
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Figure 7.3 shows the contour plots of MOE with respect to most significant factors. Figure 

7.3.1 shows the resultant MOE when moisture surface and resin surface are changed. It 

indicates that increasing the surface resin by keeping moisture surface constant leads to a 

steady increase of MOE. However, increasing the moisture surface, while keeping the resin 

surface constant, does not change MOE significantly, reflecting that resin surface is the 

dominant factor for particleboard MOE.  

Figure 7.3.2 is the contour plot for MOE when moisture core and moisture surface are 

changed. It shows that increasing both surface and core moisture initially increases the MOE 

then significantly reduces it. There is a saddle in the middle of the graph, implying that both 

the surface and core moisture can be changed by a certain amount while achieving a constant 

MOE. It also shows that a very low core moisture (approximately 8%) with higher surface 

moisture (15% or higher) will give the highest achievable MOE (dark green area of the 

graph). This combination of moisture is a critical finding for this product, as using a high core 

moisture has a negative effect on most of the properties of particleboard. However, it was 

noted earlier as well as being reported in previous work (Chapter 2) that surface moisture is 

very important for heat transfer to the particleboard core and for mat consolidation during 

production to achieve better properties. Heebink (1974) observed that higher strength 

properties were found in softwood particleboards when he used 15% surface moisture and 5% 

core moisture, when other parameters were constant.  

Increasing press temperature when moisture surface is high can produce boards with high 

MOE (Figure 7.3.3). However the surface moisture content can only be increased up to a 

certain maximum value, as it may eventually contribute to thickness swelling. Figure 7.3.4 

shows that both resin core and moisture can be maintained at their minimum values if other 

parameters are at their middle values (of the tested parameter range) to produce particleboards 

with higher MOE (MOE > 1700 MPa). Therefore, it may be possible that moisture core and 

resin core can be kept at their lower limits when the above variables are increased in 

producing particleboards with higher MOE values. 

Therefore, considering the effects, interaction and contour plots of significant parameters on 

the MOE, better MOE values may be found if particleboards are produced with the following 

approximate mix proportions: 

• Surface moisture - 15% or higher 
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• Core moisture – 8% 

• Resin surface – 15 % or higher 

• Resin core – 10% 

• Press Temperature – approximately 190 oC  

When the pressing time is at its middle value (Pressing Time – 210 seconds) 

These mix proportions need to be compared with other particleboard properties to produce 

optimised particleboards. This is discussed in Chapter 8. 

7.8.1.2 Modulus of Rupture (MOR) 

Similar to MOE, T and P for each process variable and important interactions with respect to 

MOR can be read in Table 7.3. Most significant parameters and their interactions have P < 

0.05 and have higher T values in the table. As explained in Chapter 5, T values are higher for 

the effects with P < 0.05. The higher the T value, the higher the effect on MOR.  In addition, 

Figure 7.4 shows the normal probability plot for standardized effect for MOR. The method of 

calculating effects was discussed in Chapter 5.3. Significant parameters which control MOR 

are marked with red squares. The test statistical value for the effect that satisfies 95% 

significant level is calculated to be around (+ or -) 2.5. That is marked in blue line in Figure 

7.4. The parameters which have positive effect on the MOR can be found right of the blue 

line, whereas, the effects and interactions with negative influence on MOR lie left of the blue 

line. Therefore, resin surface, resin core, pressing time and press temperature are the 

parameters which have a positive influence on MOR. Moisture core, hardener, moisture 

surface combined with moisture core, moisture surface combined with hardener and moisture 

surface combined with moisture core and resin core have a negative effect on MOR. 

Figure 7.5 shows these significant effects in a bar chart. It shows that resin core and resin 

surface have the most significant effects on MOR out of all the others. Similar to MOE 

discussed earlier, resin is the most important ingredient in particleboard manufacturing to 

create strong inter-particle bonding. Unlike MOE, core resin is also very important for MOR. 

This suggests that, both stronger surface and stronger core are important for optimum bending 

strength in three-layer particleboard made using sawmill residues. Moisture core and moisture 

surface combined with moisture core have the next most significant effect on MOR (Figure 

7.5). Similar to MOE, these have a negative effect on MOR.  
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Figure 7.4: Normal probability plot for standardized effect for MOR 
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Figure 7.5: Pareto chart for standardized effect MOR  
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Although moisture is important for heat and mass transfer to the core for resin curing, 

excessive moisture disturbs particleboard properties. Press temperature and pressing time 

have the next most significant effects on MOR. Both press temperature and pressing time are 

required for heat and mass transfer and resin curing as well as evaporating excessive moisture 

from the sides of the board during hot pressing. 

Similar to MOE, hardener negatively affects the MOR of the particleboard. However, the 

behaviour of MOR with respect to change in moisture surface and hardener has not been 

studied before or could not be found in any of the literature cited here. Since hardener 

accelerates resin curing, this will cause curing of resin before moisture exits from the board 

completely. The excessive moisture trapped inside the board may have created steam 

pressure. Releasing this high steam pressure causes spring-back which results in breaking 

some of the glue-bonds. This ultimately reduces the MOR of the particleboard.  
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Figure 7.6: Contour plots of MOR with respect to most significant effects  

These data were further analysed using contour plots to find the best combination of the 

significant effects with respect to MOR. In a contour plot for MOR, two parameters are 

changed at a time by keeping other parameters constant at the middle of their parameter 
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range. Figure 7.6 shows the contour plots of MOR with respect to selected significant 

parameters. Figure 7.6.1 shows how MOR changes with respect to change in moisture surface 

and moisture core simultaneously. Increasing both surface moisture and core moisture 

decreases the MOR, showing that MOR does not change much if the core moisture is 

increased while surface moisture is at a lower level. Instead, similar to MOE, MOR increases 

when surface moisture is increased while keeping the core moisture at the lowest limit. A 

higher level of surface moisture is required for the other properties, hence surface moisture 

should be kept at a higher value and the core moisture should be reduced. Similar to the MOE, 

the optimum MOR value may be achieved if core moisture is kept at the lower level 

(approximately 8 – 9%) when a higher level of surface moisture is maintained (13% or 

higher). 

Figure 7.6.2 shows that increasing the resin surface and resin core simultaneously increases 

the MOR steadily. The highest MOR can be found by combining the highest surface resin and 

highest core resin. That indicates that both the surface and core resin are important to have a 

satisfactory MOR in particleboard. However, resin is one of the main components that control 

the cost of the production. Therefore, an optimum combination between surface resin and core 

resin should be found without compromising the strength properties. As discussed earlier, 

increasing surface resin by keeping core resin at a lower value (approximately 10%) would 

increase the MOE. Therefore, core resin should be kept at its lowest value whilst increasing 

the surface resin.  

Figure 7.6.3 shows the behaviour of MOR with respect to change in moisture surface and 

hardener-core. It can be seen that keeping the moisture surface at its lower level while 

increasing hardener does not make much difference to the MOR of particleboards. However, 

increasing both these parameters simultaneously drastically reduces the MOR of the final 

product. It also shows that by keeping the hardener level at its minimum while increasing the 

moisture surface, better MOR properties can be achieved. It was also explained earlier that, 

combining moisture surface with the hardener core negatively affects the MOR. This 

observation may be due to the fact that hardener may not be required since hardwood sawmill 

residue is acidic. Therefore, the addition of extra acid may weaken glue line bonding.   

According to figure 7.6.4, increasing the resin core while keeping the moisture core at its 

minimum, is important for MOR. It shows that MOR > 11 MPa can be achieved when resin 

core is approximately 10% or higher and moisture core is at 8 % when other parameters are at 
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their middle level in the designed experimental range. This observation also supports that core 

resin and core moisture can be maintained at a lower level similar to softwood particleboard 

in achieving particleboard with higher flexural properties. Reducing core moisture should also 

reduce spring-back during particleboard production.  

Therefore, the following predictions can be made from the observations made on the response 

plots. With the increase in resin surface with resin core, MOR is increased and the opposite is 

true for moisture surface with moisture core. Hardener should be kept to its minimum or 

should be avoided completely in order to achieve better MOR. Therefore, better MOR values 

may be found if particleboards are produced using the following mix proportions: 

• Surface moisture content – 13% or higher 

• Core moisture content – 8% - 9%  

• Resin surface – 15% or higher 

• Core resin – approximately 10% 

where as pressing time and press temperature are at their middle values (Press temperature 

– 175 oC and Pressing time – 210 seconds). 

7.8.1.3 Internal Bond Strength (IB) 

Internal bond strength is measured as the tensile strength perpendicular to the board surface. 

IB of a particleboard is mainly controlled by the inter-particle bonding in the particleboard. 

Inter-particle bonding in a particleboard is provided by glue-line bonding between particles. 

As part of measuring the mechanical properties of the product, IB was measured for each 

particleboard. Experimental observations showed that most of the test samples split close to 

the core of the board, when they were tested for their IB. Similar to MOE and MOR discussed 

earlier, T and P values of each important effect with regard to IB were calculated and 

tabulated in Table 7.3. It is seen from Table 7.3 that all the individual parameters studied here 

are significantly important, to different degrees on the IB of the final particleboard product 

(with P < 0.05). In addition, the interaction of moisture surface and the moisture core is an 

important effect with respect to the IB. 
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Figure 7.7: Normal probability plot of standardized effect for IB 
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Figure 7.8: Pareto chart of standardized effect for IB 
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Figure 7.7 shows the normal probability plot of standardized effect for IB. Parameters which 

have positive effects on IB stay on the positive side of the graph, while ones with negative 

effects stay on the negative side. Therefore, while resin surface and resin core with pressing 

time and press temperature have positive effects on IB, moisture surface and core with 

hardener have negative effects. Excessive moisture always has a negative effect on the 

mechanical properties as moisture trapped inside the board after hot pressing could cause 

spring-back. Press temperature and pressing time affect the IB as they provide the heat and 

time required for resin curing and creating more cross-linking sites in the core. 

The Pareto chart of standardized effects for IB is plotted in Figure 7.8, which shows that the 

resin core is the most significant effect on IB of this product. This is to be expected, as the IB 

strength of a particleboard is mainly dependent on the inter-particle bonding of the core. Core 

resin is thus very important to create good inter-particle bonds in the core. Surface resin is 

also important for IB, as the IB test may otherwise fail close to the surface. 
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Figure 7.9: Contour plots of IB with respect to most significant effects 

Figure 7.9 shows the contour plots of IB with respect to selected significant effects. Figure 

7.9.1 shows that both resin core and resin surface are important to produce a particleboard that 
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satisfies the AS/NSZ 1859 (2004). According to AS/NZS 1859 (2004), IB of a standard 

general purpose particleboard should be higher than 300 kPa. It was seen in Table 7.2 that 

most particleboards satisfy the IB required by the AS/NZS 1859 (2004). As explained earlier 

the surface resin content is critical for both MOE and MOR.  However, core resin is more 

important for the core. This is because, MOR and MOE of particleboard mainly dependent on 

inter-particle bonding of surface layers whereas IB is dependent on inter-particle bonding of 

the core.  

When observing Figure 7.9.1, it can be seen that any IB value which is in the green area in the 

graph satisfies AS/NZS 1859 (2004). Therefore, the core resin content can be reduced as 

much as possible despite the surface resin without failing the IB as per AS/NZS 1859 (2004). 

Figure 7.9.2 shows that increasing both moisture surface and moisture core simultaneously 

reduces the IB. However, as discussed earlier, moisture surface combined with press 

temperature is important for most properties to provide heat transfer from surface to core 

through steam for resin curing. Therefore, moisture surface could not be reduced as it affects 

chemical reactions of resin. However, it was noted earlier that the moisture core has a 

negative effect on most parameters. Also, it was also suggested earlier that moisture core 

should be kept at its lowest to have better MOE and MOR. It has been observed that excessive 

steam pressure after hot pressing causes spring-back results in breaking inter-particle bond. 

Therefore moisture core should be reduced as much as possible without compromising IB.  

Figure 7.9.3 shows how the IB changes with respect to the change in hardener core and resin 

core. It shows that increasing the hardener reduces the IB even if resin core is kept constant. 

The optimum IB can be achieved with minimum hardener and maximum core resin. 

Therefore, as suggested earlier for MOR, a minimum amount of hardener or zero level of 

hardener should be used to achieve better IB. Therefore, it is clear from Figure 7.9.3 that 

industry grade IB can be found with core resin at 8% or higher if the hardener is at its 

minimum.  Figure 7.9.4 show the behaviour of IB with respect to changes in moisture core 

and resin core. Similar to the hardener core, increasing the moisture core reduces the IB even 

if resin core is kept constant. Therefore, minimum moisture core should be suitable for this 

product as moisture core disturbs most of the properties discussed so far.  
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From the study on the factors affecting the mechanical properties of hardwood particleboard it 

was found that moisture is a critical variable that needs to be controlled carefully for better 

compaction of the wood mat.  Also moisture is the main medium that transports heat from the 

surface to the core of the board. The interaction of surface moisture with press temperature 

increase board flexural strengths (MOE and MOR) as they are vital for the heat transfer from 

surface to core required for resin curing. The fast transfer of heat from the mat surfaces to the 

core is also essential in short press cycles. However, the interaction of moisture surface with 

moisture core has a negative effect on the MOE, MOR and IB.  

Moisture core has a negative effect on the rigidity of the board (MOE), flexural strength 

(MOR) as well as IB. In the tested parameter range, hardener has a significant negative impact 

on all the tested mechanical properties of hardwood particleboard (P < 0.05 and T is negative 

in Table 2). Hardener decreases the IB when increasing the resin or moisture in the core of 

hardwood particleboard. In addition, the combination of surface moisture with hardener core 

has a negative impact on MOR. The purpose of having hardener in the core layer of softwood 

particleboard is to create an acidic medium to facilitate better curing of the resin. However, it 

is evident that the hardener may not be required for this. That may be further tested as 

described in Chapter 8 by manufacturing and testing particleboard without the hardener. 

Considering the factor effect, interactions and contour plots discussed in this section, it can be 

suggested that particleboard having the following mix proportions may produce higher MOE, 

MOR and IB:  

• Surface moisture – 13% or higher 

• Core moisture – approximately 8% 

• Resin surface – 15% or higher 

• Resin core – 8 % or higher 

• Press Temperature  – approximately 190 oC 

• Pressing Time - approximately 210 seconds. 

7.8.2 Factors affecting the physical Properties of a hardwood particleboard 

As part of the investigation, the physical properties of the final particleboards were measured. 

Their behaviours with respect to manufacturing parameters were studied and results are 

reported in this section. The mean density of the final particleboard has also been measured as 
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that can be different from the predicted board density due to the process conditions. Density 

profiles of the final particleboards were measured using a density profile meter. The density 

profile data were used to calculate the mean surface density and mean core density. The 

thickness of the final board was measured as change in thickness is an important gauge of 

spring-back. 

Table 7.4 shows the experimental variables and test results for mean density, mean surface 

density, mean core density and board thickness. The estimated effects and coefficients for 

those tested physical properties are compiled in Table 7.5. Resin core, pressing time, press 

temperature have significant positive impacts on all the tested properties. As quoted earlier, 

press temperature and pressing time are important for heat and mass transfer during the hot 

pressing. Similar to mechanical properties, the combination of moisture surface with moisture 

core has a negative impact on all the physical properties measured. 

7.8.2.1  Mean Density, Mean Surface Density and Mean Core Density 

7.8.2.1.1 Mean density 

Mean density of a particleboard is measured in this study as it is the main factor directly 

related to the weight of the final board. If the particleboard is too heavy, it may not be suitable 

for some applications. Therefore, it is important to limit the mean density of a board while 

maintaining the strength properties at a standard level. The mean density was measured using 

the weight/volume method, while mean surface density and mean core density of the 

particleboard were calculated from density profile data. The density profiles were measured 

using the x-ray scanning method. 

Resin core (D), Pressing Temperature (G) and the Pressing time (F) are the most significant 

individual variables affecting the particleboard mean density but moisture core has a negative 

effect on it. Although moisture surface has a positive impact on particleboard mean density 

with increased pressing time, it has a negative impact when combined with higher core 

moisture or with increase in moisture core and core resin. In addition, the ANOVA table 

suggests that mean density has a second order relationship with the process variables. The 

normal probability plot of standardized effect for mean density is shown in Figure 7.10.  
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Table 7.4: Experimental Variables and Tested Physical Properties 

Board 

Number 

Moisture 

Surface 

Resin 

Surface 

Resin Core Hardener 

Load 

Pressing 

Time (s) 

Press 

Temperature 

Thickness Mean 

Density 

Mean Surface 

Density 

Mean Core 

Density 

ST 1 11 8 5 1 120 150 16.92 679.870 605 494 

ST 2 11 20 5 3 300 200 15.20 713.374 904 676 

ST 3 22 8 13 3 300 150 15.64 750.733 911 679 

ST 4 11 8 13 3 120 200 16.40 708.058 873 655 

ST 5 22 20 13 1 120 200 15.52 723.797 985 665 

ST 6 11 20 13 1 300 150 15.62 740.845 866 690 

ST 7 22 8 5 3 120 200 16.52 690.377 737 578 

ST 8 22 20 5 1 300 150 15.40 716.508 887 624 

ST 9 11 20 13 3 120 150 16.74 668.346 759 583 

ST 10 22 8 5 1 300 200 15.74 711.330 812 555 

ST 11 22 20 13 3 300 200 15.20 717.140 915 677 

ST 12 22 8 13 1 120 150 19.52 603.000 611 512 

ST 13 11 8 13 1 300 200 15.10 713.267 756 611 

ST 14 11 20 5 1 120 200 16.28 698.083 760 553 

ST 15 11 8 5 3 300 150 17.46 637.610 792 668 

ST 16 22 20 5 3 120 150 19.40 608.162 493 462 
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Table 7.5: Estimated Effects and Coefficients for Physical properties of a particleboard 

 Thickness Mean Density Surface Density Core Density 

 T P T P T P T P 

Moisture Surface 2.81 0.038 -0.67 0.537 0.07 0.948 -4.98 0.04 

Moisture Core 7.34 0.001 -4.07 0.015 -1.96 0.145 -3.78 0.063 

Resin Surface -3.42 0.019 1.62 0.181 2 0.139 4.88 0.04 

Resin Core -2.6 0.048 2.98 0.041 3.13 0.052 12.66 0.006 

Hardener Core 2 0.102 -1.63 0.178 0.36 0.74 7.51 0.017 

Pressing Time -10.18 0 5.64 0.005 4.61 0.019 18.58 0.003 

Press Temperature -9.17 0 4.75 0.009 3.71 0.034 7.07 0.019 

Moisture Surface * Moisture Core 4.13 0.009 -4.42 0.012 -4.32 0.023 -14.85 0.005 

Moisture Surface * Press 
Temperature 

-2.64 0.046 NS NS 1.31 0.281 3.78 0.063 

Moisture Surface * Hardener 
Core 

NS NS NS NS -2.66 0.076 -5.32 0.034 

Moisture Surface*Resin Core NS NS NS NS NS NS 4.55 0.045 

Moisture Core*Resin Core NS NS NS NS 0.66 0.554 3.56 0.071 

Moisture Surface*Pressing Time -5.01 0.004 3.86 0.018 1.76 0.176 NS NS 

Moisture Core*Resin Surface NS NS 2.05 0.11 NS NS NS NS 

Moisture Surface*Moisture 
Core*Resin Core 

NS NS -3.37 0.028 NS NS -1.92 0.195 

# NS = Not Significant 
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Figure 7.10: Normal probability plot of standardized effect for mean density 
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Figure 7.11: Pareto chart of standardized effects for mean density 

Effects which have a positive influence on the mean density can be found on the right of the 

straight line. Therefore, pressing time, press temperature, resin core and the combination of 
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moisture surface with pressing time have significant positive effects on mean density. 

Moisture surface with pressing time is important for mat consolidation, which leads to a better 

mean density. Resin core and pressing time are important for internal inter-particle bonding in 

the core. Similar to most of the parameters discussed earlier, moisture core and combination 

of moisture surface with moisture core significantly reduce the mean surface density. In 

addition, moisture surface and moisture core combined with resin core have negative effects 

on the mean density. That may be due to excessive moisture trapped inside the particleboard 

causing spring-back leading to lower mean density. 
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Figure 7.12: Contour plots of Mean density with respect to most significant effects 

The Pareto chart of standardized effects for mean density is plotted in Figure 7.11. It shows 

that the pressing time is the main effect that controls mean density. Substantial pressing time 

is required for mat consolidation to increase the mean density. Similar to the study of 

mechanical properties discussed earlier, the interacting effects of the significant parameters on 

the mean density were plotted as contour plots and are shown in figure 7.12. The interacting 

contour plots were drawn considering the most important parameters with regard to 

particleboard mean density. 
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The expected mean density for the final board was approximately 700 kg/m3 and 

particleboards with that mean density stay in the light green areas of the graphs. Figure 7.12.1 

shows how the mean density changes when moisture surface and pressing time are changed. It 

shows that particleboard with mean density around 700 kg/m3 can be produced with pressing 

time of 240 seconds. The moisture surface could be reduced to as low as 12%. Since moisture 

surface is very significant for almost all the properties discussed earlier, the moisture surface 

should be maintained around 15% at least, to produce a satisfactory particleboard. Although 

moisture is important for mat consolidation, the effect of moisture core on particleboard mean 

density is negative. Since moisture core causes spring-back, it reduces the mean density. 

Therefore, core moisture should be maintained at its minimum because the designed board 

density can be achieved with 15-18% moisture surface and with minimum core moisture 

(Figure 7.12.2). 

Figure 7.12.3 shows that resin core significantly improves the particleboard mean density 

whilst the opposite is true for the moisture core. It also shows that moisture core can be kept 

at its minimum without any effect on the expected mean density. Both pressing time and press 

temperature should be increased to achieve the designed mean density since they are 

important for resin curing to create proper inter-particle bonding (Figure 7.12.4). Therefore, in 

order to produce particleboard with a mean density equal to 700 kg/m3, the following factors 

should be maintained the following approximate figures: 

• Moisture surface – 15% or higher  

• Moisture core or resin core – approximately 8% 

• Press Temperature – 190oC 

• Pressing time 240 seconds 

• Resin surface – approximately 14% or more 

7.8.2.1.2 Mean surface density 

The behaviour of the mean surface density was studied carefully as flexural properties (MOE 

and MOR) of the particleboard are mainly dependent on the surface layers. The effects of 

processing parameters on surface density are discussed here, and the relationship between 

surface density and mechanical properties will be discussed later in the chapter. The T and P 

values with respect to particleboard surface density were calculated and tabulated in Table 

7.5. It can be seen in Table 7.5 that resin core, pressing time, press temperature, combination 
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of moisture surface with moisture core and the combination of moisture surface with hardener 

core have significant influence on particleboard mean density, with P < 0.05. 
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 Figure 7.13: Normal probability plot of standardized effect for mean surface density 
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Figure 7.14: Pareto chart of standardized effects for Surface density 
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Figure 7.13 is the normal probability plot for standardized effect for mean surface density. 

Similar to MOR, Figure 7.13 shows that the pressing time, press temperature and the resin 

core have significant positive impacts on the particleboard mean surface density. Similar to 

MOR, the effect of combined moisture surface with moisture core and the effect of combined 

moisture surface with hardener core have a negative impact on particleboard mean surface 

density. Therefore, particleboard mean density may also be vital for board MOR. 

Figure 7.14 shows the significant effects on surface density in a bar chart. The pressing time 

is the most important factor affecting mean surface density. Similar to mean density and 

MOR, the resin core and the press temperature are significant for the mean surface density. 

The second most important effect is combining surface moisture with the core moisture. This 

combined effect is a negative effect.  
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Figure 7.15: Contour plot for Surface density with respect to most significant effects 

That combination has been shown to have a significant negative impact on almost all the 

parameters discussed so far. Similar to MOR, the combination of moisture surface with 

hardener core has a negative effect on particleboard mean surface density. Therefore, it is 

clear that most effects and inter-active effects on particleboard mean surface density are 

common with the significant effects for MOR. 
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Figure 7.15 shows the contour plots for surface density with respect to the most significant 

effects. The effect of moisture surface and hardener core on the mean surface density has a 

saddle in the middle (Figure 7.15.1). Increasing moisture surface if hardener core is 

unchanged produces higher surface density. Although higher hardener with less surface 

moisture can produce higher mean surface density, the use of hardener should be avoided as 

hardener has a negative effect on most of the properties tested. However, surface moisture 

does not always have negative effects. Similar behaviour was found in Figure 7.15.2 for the 

change in surface density with regard to moisture surface and moisture core. Since moisture 

core has a negative impact on most of the tested properties, higher surface moisture with 

lower core moisture should be the better combination to achieve a compact surface.  

Increasing both resin surface and resin core increases surface density (Figure 7.15.3). Since 

resin mainly affects production cost, the best combination which satisfies the required 

particleboard properties should be selected. Therefore, the combination of higher surface resin 

with low core resin is suggested as the best combination which produces a compact surface 

with better mechanical properties. Figure 7.15.4 shows that mean surface density increases 

with increasing both pressing time and the press temperature. Therefore similar values of the 

factors which were suggested earlier to achieve the mean density of 700 g/m3 would produce 

the compact surface.  They are approximately as follows: 

• Moisture surface – 15% or higher  

• Moisture core or resin core – approximately 8% 

• Press Temperature – 190oC 

• Pressing time –  240 seconds 

• Resin surface – approximately 14% or more 

7.8.2.1.3 Mean core density 

The IB of particleboard is mainly dependent on the core layers. Therefore, the mean core 

density is important and was calculated from density profile data. The relationship between 

mean core density and the processing parameters was investigated. Table 7.4 shows the 

results of mean core density with respect to processing parameters and Table 7.5 includes the 

test statistical values (T) and probability of null hypotheses values (P) with respect to mean 

core density. The normal probability plot of the standardised effect (Figure 7.16) and the 

Pareto chart of the standardised effects (Figure 7.17) were plotted using these data. Positively 
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significant effects can be found right of the blue line and negative effects left of the blue line 

(Figure 7.16). The effects with their level of significance can be read in bar charts in Figure 

7.17. 
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 Figure 7.16: Normal probability plot of standardized effect for mean core density 
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Figure 7.17: Normal probability plot of standardized effect for mean core density 
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It can be seen from Table 7.5 that most of the variables studied here are affect mean core 

density (P<0.05). Similar to the effects on the surface density, pressing time is the most 

positively significant parameter (Figure 7.16) as well as the most significant parameter 

(Figure 7.17) on core density. In addition, Figure 7.16 shows that both resin surface and resin 

core are significant for improving core density. Also, moisture surface combined with resin 

core and the press temperature significantly improve core density. Moisture surface is 

important for mat consolidation as well as heat transfer to the core. Press temperature is vital 

for resin curing. Therefore, moisture surface facilitates wood compaction as well as heat 

transfer which are vital for resin curing in the core to increase the core density. 

Unlike all the parameters discussed earlier, hardener core has a positive impact on 

particleboard core density (Figure 7.16). Hardener may accelerate the resin curing in the core 

to increase inter-particle bonds in the core to increase core density. However, Figure 7.17 

shows that hardener combined with moisture surface has a significant negative impact on the 

mean core density. Extra surface moisture transported into the core and trapped inside during 

the hot-pressing creates higher steam pressure in already bonded core (due to hardener). 

When releasing the hot-press, spring-back occurs due to this trapped steam, resulting in 

reduced core density. Similar to most properties discussed earlier, combining moisture surface 

with moisture core has a significant negative impact on core density. Therefore, it is clear that 

moisture surface alone or combined with core moisture or hardener has a negative effect on 

core density.  

Figure 7.18 shows the contour plots of mean core density with respect to selected significant 

parameters. The relationship between surface moisture and core moisture on the core density 

was studied further because surface moisture is also important for particleboard mechanical 

properties. Although moisture surface alone or in combination with core moisture or hardener 

core has a negative impact on core density, an optimum amount for surface moisture could be 

established using Figure 7.18.1. Figure 7.18.1 has a saddle at the middle with a reasonable 

higher core density (> 600 kg/m3). Therefore, core moisture may be kept at its minimum 

while having optimum surface moisture as reasoned earlier.  
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Figure 7.18: Contour plot for mean core density with respect to most significant effects 

Resin core is dominant for particleboard core density compared with surface moisture (Figure 

7.18.2). This is expected as core resin creates stronger inter-particle bonds in the core, 

whereas extra moisture may cause spring-back to reduce the core density. However, Figure 

7.18.3 shows that both increases in the resin surface and the resin core increase core density. 

Therefore, a suitable minimum amount of core resin with a higher amount of surface resin 

should be selected without compromising core density as surface resin is critical for most 

particleboard properties. However, the average core density in each graph is higher than 500 

kg/m3. Figure 7.18.4 shows that hardener is more important compared to surface moisture for 

the particleboard core density. However, hardener negatively affects most of the properties 

studied earlier.  

The relationship between particleboard mechanical properties and density profile has further 

been investigated and results are reported later in this chapter. Increases in both surface and 

core density increase the mean density of the board. Increase in mean density increases the 

weight of the final particleboard and that affects the handling of the board in practical 

applications. Therefore, minimum core density with sufficient strength has been studied to 

achieve an efficient particleboard product. 



Chapter 7   Significant parameters influencing the properties of 

Three-Layer particleboard 

 147 

7.8.2.2 Particleboard Thickness  

Maintaining a constant particleboard thickness is important for its use as a wood panel. 

However, particleboard thickness may change due to various factors discussed in Section 

2.4.4. Particleboard thickness just after manufacturing was measured and its variation, with 

respect to processing parameters is discussed in this section. Table 7.4 shows the results of 

particleboard thickness values, and Table 7.5 includes the test statistical values (T) and 

probability of null hypotheses values (P) with respect to the thickness. Increase in the 

particleboard thickness after the hot pressing is defined as spring-back. Spring-back normally 

happens just after hot-pressing due to the relaxation of internal pressure due to hot-pressing. 

Optimum spring-back was found in board ST16 which has the highest moisture level and 

highest resin level (Table 7.4).  

Similar to the investigation earlier, the normal probability plot of the standardised effect 

(Figure 7.19) and the Pareto chart of the standardised effects (Figure 7.20) were plotted using 

the data presented in Table 7.5. Figure 7.19 shows that moisture in both surface and core has 

significant positive impact on increasing board thickness. In other words, moisture is the main 

cause of spring-back. 
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Figure 7.19: Normal probability plot of standardized effect for particleboard thickness 
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The excessive moisture that may be trapped inside the board after hot pressing can create 

weaker bonds that result in spring-back. This has been explained by previous researchers 

(Beech 1975; Suchsland 1969) as the result of releasing the pressure after hot pressing. Higher 

moisture content in the middle may lead to spring-back and non-reversible excessive 

dimensional changes of the board. Also, Deppe and Ernst (1964) reported that releasing the 

pressure after completing the hot pressing, has an exponential relationship as in Equation 7.1. 

P = P0e
-λT’                 Equation 7.1 

Where,   

P   = pressure at the time T    

P0  = initial pressure 

T’  = relaxation time 

λ   = a factor depending on density, species, particle geometry, moisture content  
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 Figure 7.20: Pareto chart for standardized effect on the thickness 

Pressing time and press temperature have the most significant negative effects on increasing 

thickness to control spring-back (Figures 7.19 and 7.20). However, resin surface, resin core, 

moisture surface combined with press temperature or pressing time have negative effects on 

thickness-increase or spring-back.  
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Moisture surface combined with temperature or pressing time are required for heat transfer to 

the core of the board to improve resin curing. When resin has properly cured by creating more 

and more cross linking sites, it reduces spring-back due to the release of the press. Increasing 

the pressing time or press temperature gives moisture enough time and temperature to become 

steam and to exit from the board. 
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Figure 7.21: Contour plot for the particleboard thickness with respect to the most significant 

effects 

In order to find the best combination of the effects to control particleboard thickness, contour 

plots were plotted considering the most significants effects with respect to the thickness. 

Figure 7.21.1 shows that moisture core is the most dominant factor that increases 

particleboard thickness. Therefore, moisture core should be controlled to its minimum 

possible level (< 10%) while increasing the moisture surface as required by most properties 

(Figure 7.21.1). By increasing the pressing time or press temperature with constant surface 

moisture, increase in thickness or spring-back can be controlled (Figure 7.21.2 and Figure 

7.21.3). The minimum increase in thickness can be found above the horizontal contour of 

Figure 7.21.2 and Figure 7.21.3 (with pressing time > 250 seconds and press temperature > 

180oC). Resin surface and resin core are equally important to control particleboard thickness 
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to minimise spring-back (figure 7.21.4). Therefore particleboard with the designed thickness 

(15.2 mm) may be produced with the following figures: 

• Moisture core < 10% (then the moisture core can be changed anywhere within the 

range) 

• Pressing Time – approximately 250 seconds 

• Press Temperature > 185oC 

• Resin core – 10%  

• Resin Surface > 15% 

In the tested parameter range, moisture is a critical variable that needs to be controlled 

carefully for better compaction of the wood mat. Also, moisture is the main medium that 

transports heat from the surface to the core of the board. Moisture has a negative effect on 

physical properties such as mean density and thickness of board. Interaction of moisture 

surface with moisture core reduces all the tested properties.  

In the tested parameter range, hardener has a significant negative impact on all the tested 

properties of hardwood particleboard except core density. The purpose of having hardener in 

the core layer of softwood particleboard is to create an acidic medium to facilitate better 

curing of the resin. It was hypothesized that hardwood residues already have a higher acidity, 

and hardener is not required in the core to create an acidic medium to facilitate faster cross-

linking. This hypothesis was proven to be true when the pH value of hardwood residue was 

measured in acidic range.  Adding more hardener to the resin does not increase the curing 

reaction, and instead leaves residues of acids or acid compounds in the glue-lines. These 

acidic compounds may also contribute to the brittleness of the cured resin. This will initiate 

hydrolysis of the wood cell wall adjacent to the glue-lines as well as acid-catalysed resin 

degradation which, decreases bond durability (Myers, 1984). Therefore, an alternative 

catalyst/ hardener will need to be investigated to accelerate the curing of the core layer or an 

alkaline used to decrease the curing of the surface layer to match the curing of the surface and 

core layers.  
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7.8.3 Board density profile and mechanical properties 

In sections 7.8.1 and 7.8.2 the effects of processing parameters on the physical and 

mechanical properties of particleboard were discussed. MOR, MOE and IB were studied 

under mechanical properties and particleboard density (mean density, surface density and core 

density) and thickness were studied under physical properties. This section evaluates how 

mechanical properties can be dependent on these physical properties. Therefore this section 

compares the patterns of density profile data with the actual mechanical properties of the 

same particleboard.  

Figures 7.22, 7.23 and 7.24 show the density profiles of final boards. In each board, density at 

the surface of the board is very low. Then it increases dramatically to provide the highest 

density at 1 to 2 mm from the surface. Then it reduces to a constant value along the core layer. 

The reason for lower density at the surface may be due to over-curing of the resin at the 

surface of the board, which may have broken the bonds between particles providing loose 

particles at the surface. Figure 7.22 displays vertical density profiles of particleboards that 

have relatively uniformly shaped density profiles, better mechanical properties and lower 

thickness swelling compared to those boards in Figures 7.23 and 7.24. Board ST 5 which had 

120 seconds pressing time has a sharp peak close to the surface, whereas numbers ST2, ST6, 

ST8 and ST13 which had 300 seconds pressing time have a blunt peak (Table 7.2 and Figure 

7.22). 
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Figure 7.22: Density profiles of boards with the best mechanical properties 
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The highest MOE and MOR were found in ST 5 (Figure 7.22) and that set also has a higher 

IB which complies with the mechanical properties required by AS/NZS 1859 (2004). Board 

ST5 has the highest peak density close to the surface layer and also consistent core density 

that higher than 700 kg/m3 (Figure 7.22). Boards which have relatively high MOE and MOR 

have both peak density higher than 900 kg/m3 and mean core density higher than 600kg/m3. 

In addition, boards with lower pressing time have their peak surface density closer to the 

surface of the board, whereas increased pressing time moves the peak surface density towards 

the core. This observation was confirmed by board density profiles plotted in Figures 7.23 and 

7.24.  
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Figure 7.23: Density profiles of boards with medium mechanical properties 

In addition, boards with lower pressing time have their peak surface density closer to the 

surface of the board, whereas increased pressing time moves the peak surface density towards 

the core. Similar observations have been reported by previous researchers, it is clear that high 

initial pressure with short closing time during the hot pressing results in higher face density 

with low core density, and a board with lower initial pressure with longer press closure time, 

shows relatively uniform vertical density (Strickler 1959; Wong 1998). Smith (1980) also 

made a similar observation to those reported by Strickler (1959), and reported that press 
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closure time can alter the shape of the density profile. Fast press closing produces a U shaped 

density profile while, slow press closing produces an M shaped density profile. 

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

Desplacement (mm)

D
en

si
ty

 k
g

/m
3

ST9 ST14

ST11 ST3

ST4

 

Figure 7.24: Density profiles of boards with the weakest mechanical properties 

Boards ST2, ST5, ST11 and ST13 have higher mean surface and mean core density, which 

produced better mechanical properties than those of boards ST1, ST4, ST10 and ST13 

respectively. However, this observation is not true for boards ST14, ST15, ST2, ST3 and ST6. 

That may be explained by the hypothesis that boards with high density may not necessarily 

have better inter-particle bonding than boards with lower density. The density profile forms 

due to the interactions of heat and mass transfer with the rheological properties of furnish and 

resin during the production of particleboard and that depends on the pressing time and the 

temperature (Humphrey 1982; Suchsland 1969). The shape of the density profile describes the 

change in density along the mat thickness.  

According to Schulte and Fruhwald (1996),  for a medium density fibre-board, the failure of 

the internal bond test happens at the outer part of the specimen, irrespective whether the 

absolute minimum of the density profile is located in the centre of the specimen, or the glue 

type or the glue content. They observed the same behaviour with all specimens: whether the 

density profile had very high maxima closer to the surface or smooth density profile or sharp 
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relative minima in the outer parts of the specimen. This failure type is explained by them, as a 

result of the outer part of the board starting heating up first during the hot pressing, which 

cause that it starts plasticization, densification and hardening first. At the latter part of the hot 

pressing, the inner part of the board starts plasticizing and densification. During this time, 

already cured surface layer glue bonds could have failed. Therefore, the density profile may 

not always correctly predict particleboard properties. 

Wong et al. (1998; 1999) observed that the high moisture content (MC) on the faces enhances 

plasticizing of the wood particles, in addition to retarding the occurrence of pre-cure, giving 

rise to tight and hard faces near the surfaces. Theoretically, moisture on the mat faces would 

change into steam, then move into the core upon hot pressing, hence facilitating the 

transference of heat to the core. Consequently, while faces are plasticized and set at higher 

density, the core would still be resisting the pressure. When sufficient heat finally reaches the 

core, most of the wood particles would have been compressed and set near the faces. As a 

result, a wide and low density zone forms in the core. It has been estimated that about 12% 

MC needs to be converted to steam in order to fill all the voids in the particleboard during hot 

pressing (Strickler, 1959).  

7.9 Testing the acidity of sawmill residues 

The acidity of saw mill residue was tested according to the method adopted by Stewart and 

Lehmann (1973) for cross-grain, knife-planed hardwood flakes. Fifteen grams (15 g) of saw 

dust (fine material) was measured into a clean glass container. A hundred and fifty millilitres 

(150 ml) of boiling water was added to the residue meal. Then, the wood meal was left at 

room temperature for 30 minutes to cool it to room temperature (24oC) before the liquid was 

filtered. A fifty millilitre (50ml) sample was taken from the filtered liquid to test for its pH. 

The same procedure was repeated for testing the pH value for the mulch sample.  Custom-

flaked soft wood samples used in the particleboard industry (at H R Henderson’s Pty Ltd., 

Victoria, Australia) for surface and core material were also tested as benchmarks to compare 

their pH value with hardwood residues.  
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Table 7.6: Test results of the pH values of wood samples 

Sample pH Value 

Distilled water used in the laboratory 7.00 

Mulch  (Wood residue) 6.46 

Fine (Wood residue) 5.13 

Soft wood flake – Core material 6.73 

Soft wood flake – Surface material 6.74 

The pH test results showed that soft wood flakes can be considered as slightly acidic or rather 

neutral in nature as the pH is similar to the distilled water used in the lab. Results revealed 

that the pH of wood residues (both mulch and fine) is acidic in nature as pH < 7.0 (the pH of 

distilled water). 

Therefore, hardwood residue may not require additional additives to create an acidic medium 

for accelerating UF resin curing. Adding additional additives may leave acidic residues 

between inter-particle bonds resulting in brittleness of cured resin. This will initiate hydrolysis 

of the wood cell-wall adjacent to the glue-lines as well as acid-catalysed resin degradation 

which decreases bond durability (Myers 1984). Therefore, in the experimental work 

performed after this finding hardener was deliberately not used in and attempt to optimise 

particleboard properties without using hardener. 

7.10 Summary and Conclusions 

This chapter has reported on the physical and mechanical properties of hardwood 

particleboard with regard to processing parameters. Three-layer particleboards were 

manufactured in the laboratory by changing seven manufacturing parameters. The 

manufacturing parameters which were studied here are surface resin load, core resin load, 

surface moisture content, core moisture content, pressing temperature and press closure time.  

Modulus of Rupture (MOR), Modulus of Elasticity (MOE) and Internal Bond strength (IB) of 

the finished board were studied as well as the physical properties of the final particleboard. 

The tested physical properties were mean density, surface density, core density, thickness and 

density profiles. These board properties with respect to the manufacturing parameters were 

analysed and the results are summarised below. 
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• Moisture is a critical variable that needs to be controlled carefully for better 

compaction of the wood mat. Moisture is also the main medium that transports heat 

from the surface to the core of the board. The fast transfer of heat from the mat faces 

to the core is essential in short press cycles that control the cost of production. 

However, moisture as an individual variable has a negative effect on the rigidity of the 

board (MOE) as well as IB. However, the interaction of surface moisture with press 

temperature increases board flexural strength as well as physical properties.  

• Interaction of moisture surface with moisture core has a negative impact on all the 

tested parameters. Using higher amounts of moisture for both surface and core may 

leave some moisture trapped inside the particleboard just after releasing the hot press. 

Therefore, this trapped moisture may have caused steam pressure inside the board 

after hot pressing could which cause spring-back by breaking already set inter-particle 

bonds. 

• In the tested parameter range, hardener has a significant negative impact on almost all 

tested mechanical properties of hardwood particleboard. Hardener decreases the IB 

when increasing the resin or moisture in the core of hardwood particleboard. In 

addition the combination of surface moisture with hardener core has a negative impact 

on MOR. The purpose of having hardener in the core layer of softwood particleboard 

is to create an acidic medium to accelerate resin curing in the core. It was found that 

hardwood sawmill residue is already acidic and therefore, hardener may not be 

required. This will be further tested in Chapter 8 by manufacturing and testing 

particleboard without hardener. 

• Results of the laboratory studies indicate that resin surface and pressing time 

significantly influence both mechanical and physical properties of hardwood 

particleboard. Resin is the main ingredient that creates permanent inter-particle bonds 

in the particleboard. Therefore, an adequate pressing time is vital for mat 

consolidation as well as heat transfer from surface to core for resin curing.  

• Hardwood particleboard had better mechanical and physical properties when the 

surface resin content and pressing time were higher. These particleboards used greater 
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amount of surface resin compared to softwood board. It helped to make more inter-

particle bonds in the surface to increase mechanical properties. 

• While pressing time and pressing temperature significantly reduce thickness-swell, 

moisture core increases it drastically. Pressing temperature significantly affects MOR, 

MOE and the thickness, but it has only a small effect on the other properties. Although 

resin core significantly increases both IB and MOR of the board, resin surface is very 

important for all the properties tested. Therefore, resin core needs to be reduced 

without compromising IB or MOR while keeping the resin surface at a higher value. 

• Relationships between MOE with processing parameters and MOR with significant 

processing parameters were studied further to predict MOE and MOR with respect to 

processing parameters. The results are reported in the next chapter. 

• Density profile alone cannot predict board mechanical properties. Inter-particle bond 

has a significant influence on strength properties. However, results show that 

particleboards that have a surface density 900kg/m3 and core density > 600kg/m3 

produce MOE and MOR, which satisfy the AS/NZS 1859(2004) standards for general 

purpose particleboard. 
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CHAPTER 8  

FORMULATION AND PROCESS MODELLING OF 

PARTICLEBOARD PRODUCTION USING HARDWOOD 

SAWMILL RESIDUES 

8.1 Significance of Process Modelling 

As discussed in earlier chapters, factorial design is a very efficient method widely used in 

experiments involving several variables. Chapter 6 and Chapter 7 respectively discussed how 

factor screening is done to obtain the most important factors for single-layer and three-layer 

particleboards. In addition, using this method, important variables and combined effects were 

investigated. Process modelling using experimental design is another important tool that can 

be used to develop a new product, to formulate a new process or to improve an existing 

product or process. Process modelling is an empirical method of developing a process model 

based on observed data from the process considering the response surface. The underlying 

response surface is typically driven by a combination of some unknown physical mechanisms 

and known chemical reactions. The multiple regressions are a collection of statistical 

techniques used for this model building.  

 It is a well recognized method in chemical and polymer science, pharmaceutical research and 

drug development as it is an efficient and an economical tool that can be used for mix designs 

for almost any product considering the production variables. Since the process model clearly 

explains the relationships between raw materials and processing parameters with final board 

properties, it can be used to do quantitative and qualitative analyses of hardwood 

particleboard production. In addition, the model can be used to optimize particleboard 

properties and to develop the recipe to produce hardwood particleboard with expected 

properties.  

When the most significant parameters were found for the properties of three-layer 

particleboards (Chapter 7), the relationships between those significant parameters with respect 

to particleboard properties can be found using linear regression techniques as discussed in 

Chapter 5. The experimental results for three-layer particleboard shown in the Table 7.2 show 
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that only one particleboard (ST5) has the flexural strength properties ( MOE and MOR) which 

comply with the AS.NZS 1859 (2004) requirements. Also, the recipe for this particular 

particleboard indicates that it uses the optimum resin content for both surface and core. 

Further, MOE and MOR are not only dependent on resin but also on some other process 

parameters (Chapter 7). Therefore, it is important to develop process models for MOE and 

MOR considering the most important effects with respect to each other using regression 

analysis. Then these models can be used to optimise the respective property.  This chapter 

therefore explains the methodology used to develop process models for MOR and MOE. In 

addition the developed models will be validated using further experiments. 

8.2 Methodology 

8.2.1 Composite process models 

Composite process models discussed here are empirical models which are developed using 

multiple regression analysis. Multiple regressions are a collection of statistical techniques 

used for model building. The method is suitable for the exploration of response surfaces and 

to develop second order polynomial models, thus helping optimization of the process by using 

a smaller number of experimental runs (Myers and Montgomery 2002).  Myers and 

Montgomery (2002) added that second order polynomial models work well in solving true 

response surface problems. As observed in Chapter 7, tested parameters (responses) for this 

investigation behaved in true responses surfaces with respect to process variables. Therefore, 

a polynomial function may explain the behaviour of responses with regard to process 

variables. That suitability will be tested by calculating regression coefficients. The generated 

model contains quadratic terms with two-factor interaction effects of individual terms. The 

second order polynomial models are of the following form: 

Y = a0 + a1x1 + a2x2+ a3x3+ ……+ a8x1x2+ a9x1x3+ ……anx
2
1  …...+ amx 2

7 + E      Equation 8.1 

Where, 

  Y is the selected response,   

a0 … am are the regression coefficients,  

x1…x7 are the factors being studied and 

E is the error term. 
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In this investigation, it was observed that multiple linear models excluding 2nd order effects 

provide a reasonable prediction of particleboard properties.  

8.2.2 Method of developing composite process models 

Factorial experimental design was carried out considering seven process and material 

variables with their two levels and the centre point in planning experiments (Table 7.1). Then, 

the most important effects and interactions were identified by observing and analysing the 

final board properties (Chapter 7). As discussed in Chapter 7, final particleboards were tested 

and final results were statistically analysed. Subsequently, significant parameters affecting 

each different properties were identified (Table 7.2). Test statistical values for significant 

parameters are relatively higher than those which are non-significant. In addition, the 

probability of null hypothesis is less than 0.05 (α). Then, the partial regression coefficients 

which are required to develop a polynomial function (equation 8.1) relating the tested 

property with significant parameters were estimated using the least square regression method 

discussed in Chapter 5. Minitab (release 14) was used to calculate these coefficients 

incorporating design of experimental theories. 

Once models were developed, the reliability of those models was estimated statistically before 

testing experimentally. ANOVA is one method used to estimate the significance of the 

selected model type: whether a linear model or a polynomial model is required. Further, 

Pearson correlation coefficients (R2) that compare and explain the reliability of the 

experimental data with predicted data were used to explain the validity of the model. When 

both of the above were satisfactory for the predicted model, further experiments were 

performed and their results against predicted results by the model were compared. 

8.3 Predicting MOR with respect to processing parameters 

As discussed in Chapter 7, nine factors or interactions are significant for MOR. Those are the 

effects which have P< 0.05 in the Table 7.3 and are reproduced in Table 8.1. In addition, 

effects which generally have significant effects on most properties were also considered for 

model development. Sometimes parameters with a less significant effect on MOR may have a 

higher effect on another parameter. Therefore, during the process optimisation, those effects 

become a variable. Therefore, the effects with minor effect on MOR (P < 0.15) were also 
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considered for the MOR model. However, adding minor effects or non-significant variables 

may decrease the validity of the model by increasing the error. Therefore, R2 and the R2 

adjusted were calculated using the method explained in Chapter 5.  If R2 is close to 100% it is 

a reflection of the reliability of the model. If the model has significant errors due to the 

inclusion of non-significant parameters, a significant variation of R2 and the R2 adjusted can 

be found (Myer and Montgomery 2002).  

Table 8.1: Lower and Upper limit of each variable 

Variable Lower Limit Upper Limit 

Surface Moisture Content (A) 11 22 

Core Moisture Content (B) 7.5 15 

Surface Resin Content (C) 8 20 

Core Resin Content (D) 5 13 

Core Hardener Content (E) 1 3 % of Resin load 

Pressing Time (F) 120 300 Seconds 

Press Temperature (G) 150 200 o C 

Table 8.2: Test statistical and coefficient used for MOR model 

Term Co-eff  T P 

Constant 11.429   210.70 0.003 

Moisture Surface -0.476  -8.39 0.075 

Moisture Core -1.067   -23.84 0.027 

Resin Surface 1.541  27.72 0.023 

Resin Core 1.634   36.51 0.017 

Hardener Core -0.584   -13.04 0.049 

Pressing Time 0.952  21.27 0.030 

Press Temperature 0.967  21.60 0.029 

Moisture Surface*Moisture Core -1.228  -27.43 0.023 

Moisture Surface*Resin Surface 0.191  4.27 0.147 

Moisture Surface*Hardener Core -0.742  -16.58 0.038 

Moisture Surface*Pressing Time -0.198  -4.42 0.142 

Moisture Surface*Press Temperature 0.165   3.69 0.168 

Moisture Core*Resin Core 0.238   5.33 0.118 

Moisture Surface*Moisture Core* Resin Core -0.667   -14.91 0.043 
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The regression method used in this calculation was discussed in detail in the section 5.4 of the 

Chapter 5. The validity of the second order polynomial function for this investigation was 

explained in section 8.2.1. The MINITAB software calculates the regression for coded 

variables as well as un-coded variables. The model presented here was developed using coded 

variables and should use only coded variables as factors. If the model is developed using the 

un-coded variables, that model can be used with variables with the same units. Since this 

work uses the Celsius temperature scale, un-coded models cannot be used for data with 

Fahrenheit temperature scale. If the model is developed for coded data, then it is not 

dependent on the unit of the parameter but only on the parameter range. The difference 

between coded and un-coded variables was explained in Chapter 5. 

MOR = 11.429 - 0.476*A - 1.067*B + 1.541*C + 1.634*D - 0.584*E + 0.952*F + 0.967*G - 

1.228*A*B + 0.191*A*C - 0.742*A*E - 0.198*A*F + 0.165*A*G + 0.238*B*D - 

0.667*A3*B3*D3        Equation 8.2 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note:  all the variables are in coded units.) 

The coded variables and the method of calculating them were explained in Chapter 5. The 

upper and the lower limit used to calculate the coded unit are given in Table 8.1. Results used 

for regression analysis was Tabulated in Table 7.2. The calculated regression coefficients for 

significant factors (Regressor variables) with respect to the MOR model are given in Table 

8.2. These coefficients are calculated considering the coded variables. The P and T values for 

those major effects are also tabulated in the same table. Incorporating these regression 

coefficients, the process model for MOR can be compiled as in Equation 8.2. The regression 

method used in this calculation was discussed in detail in the section 5.4 of the Chapter 5. The 

validity of the second order polynomial function for this investigation was explained in 

section 8.2.1. 
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8.3.1 Significance of the developed model 

For estimation of the significance of the model, ANOVA was calculated (Table 8.3). It shows 

that the main effects and three-way interactions are the most important effects on MOR with 

P<0.05. The two-way interactions which are considered here are very significant with            

P < 0.05. The model has fifteen degrees of freedom (DF = 15) which includes main effects, 

two-way interactions, three-way interactions and the error term. Table 8.3 shows that the sum 

of squares (SS) of mean squares (MS) of the error term is negligible compared to those for 

main effects or interactions which are considered in the MOR model. Therefore, the error 

term can be ignored into the model.  In addition, R2 was calculated with regard to the model. 

R2 measures the amount of reduction in the variability of y obtained by using the regression 

variables (Equation 5.12). It was found that the calculated R2 >99.00% and the adjusted R2 > 

99.98%. As discussed in Chapter 5, there is no significant variation between R2 and the 

adjusted R2. Therefore, it can be suggested that this model will adequately predict the MOR of 

final particleboard using the current production process. However, a large value of R2 does not 

necessarily imply that the developed regression model is a good one which predicts the 

process correctly unless it is tested with further experiments. Therefore, the next section 

describes the experimental validation of the model and the method used to select the 

processing parameters to prepare the test boards. In the meantime, this model will be used to 

optimise the MOR of the board. 

Table 8.3: Analysis of Variance for MOR (coded units) 

Source DF SS MS F P 

Main Effects 7 122.698 17.5283 547.06 0.033 

2-Way Interactions 6 35.482 5.9137 184.57 0.056 

3-Way Interactions 1 7.124 7.1236 222.33 0.043 

Residual Error 1 0.032 0.0320   

Total 15 165.336    

Where:  SS = sum of squares   
              MS = mean squares   
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Table 8.4: Manufacturing variables and corresponding coded values 

Board 

Numb

er 

A B C D E F G A B C D E F G 

1 17.5 9 20 11 0 180 195 0.1818 -0.6 1 0.5 -2 -0.333 0.8 

2 13 9 17.5 11 0 300 195 -0.636 -0.6 0.5833 0.5 -2 1 0.8 

3 22 9 17.5 11 0 300 195 1 -0.6 0.5833 0.5 -2 1 0.8 

4 17.5 9 20 11 0 300 195 0.1818 -0.6 1 0.5 -2 1 0.8 

5 13 9 20 11 0 240 195 -0.636 -0.6 1 0.5 -2 0.3333 0.8 

6 22 9 15 11 0 240 195 1 -0.6 0.1666 0.5 -2 0.3333 0.8 

7 22 9 20 11 0 240 195 1 -0.6 1 0.5 -2 0.3333 0.8 

8 17.5 9 17.5 11 0 240 195 0.1818 -0.6 0.5833 0.5 -2 0.3333 0.8 

9 13 9 17.5 11 0 180 195 -0.636 -0.6 0.5833 0.5 -2 -0.333 0.8 

10 17.5 9 17.5 11 0 240 195 0.1818 -0.6 0.5833 0.5 -2 0.3333 0.8 

11 17.5 9 15 11 0 300 195 0.1818 -0.6 0.1666 0.5 -2 1 0.8 

12 13 9 15 11 0 240 195 -0.636 -0.6 0.1666 0.5 -2 0.3333 0.8 

13 22 9 17.5 11 0 180 195 1 -0.6 0.5833 0.5 -2 -0.333 0.8 

14 17.5 9 15 11 0 180 195 0.1818 -0.6 0.1666 0.5 -2 -0.333 0.8 

15 17.5 9 17.5 11 0 240 195 0.1818 -0.6 0.5833 0.5 -2 0.3333 0.8 

16 19 9 20 11 1 300 200 0.4545 -0.6 1 0.5 -1 1 1 

17 18 9 20 13 1 210 200 0.2727 -0.6 1 1 -1 0 1 

18 19 9 20 11 1 240 190 0.4545 -0.6 1 0.5 -1 0.3333 0.6 
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Table 8.5: Actual and Model predicted values for MOR and MOE 

Board 

Number 
A B C D E F G MOR 

MOR 

model-1 

Error % 

model-1 

MOR 

model-2 

Error % 

model-2 
MOE 

MOE(mod

el) 
Error 

1 17.5 9 20 11 0 180 195 17.84 16.42 7.95 16.33 8.44 2994.98 2781.359 7.13% 

2 13 9 17.5 11 0 300 195 14.62 15.28 -4.49 15.37 -5.13 2534.57 2692.03 -6.21% 

3 22 9 17.5 11 0 300 195 16.91 18.69 -10.57 18.55 -9.71 2952.87 3156.16 -6.88% 

4 17.5 9 20 11 0 300 195 19.49 17.64 9.47 17.60 9.68 3118.6 3022.765 3.07% 

5 13 9 20 11 0 240 195 16.54 15.15 8.40 15.38 7.03 2724.93 2731.082 -0.23% 

6 22 9 15 11 0 240 195 15.74 17.47 -11.0 17.27 -9.76 2897.63 2913.543 -0.55% 

7 22 9 20 11 0 240 195 17.24 18.92 -9.73 18.56 -7.65 2991.38 3073.043 -2.73% 

8 17.5 9 17.5 11 0 240 195 18.39 16.38 10.95 16.33 11.22 2648.58 2803.392 -5.85% 

9 13 9 17.5 11 0 180 195 16.24 13.84 14.78 14.10 13.18 2728.3 2534.951 7.09% 

10 17.5 9 17.5 11 0 240 195 15.11 16.38 -8.38 16.33 -8.05 2720.88 2803.392 -3.03% 

11 17.5 9 15 11 0 300 195 17.71 16.33 7.79 16.32 7.86 2878.52 2825.425 1.84% 

12 13 9 15 11 0 240 195 15.27 13.97 8.53 14.093 7.71 2554.87 2495.9 2.31% 

13 22 9 17.5 11 0 180 195 18.08 17.69 2.14 17.283 4.41 2990.65 2830.427 5.36% 

14 17.5 9 15 11 0 180 195 14.63 15.11 -3.28 15.05 -2.87 2671.91 2584.018 3.29% 

15 17.5 9 17.5 11 0 240 195 16.56 16.37 1.11 16.33 1.41 2606.79 2803.392 -7.54% 

16 19 9 20 11 1 300 200 16.83 17.52 -4.10 17.40 -3.40 2890.00 3002.454 -3.89% 

17 18 9 20 13 1 210 200 18.53 17.16 7.39 17.03 8.07 3070.63 2801.036 8.78% 

18 19 9 20 11 1 240 190 15.68 16.53 -5.41 16.38 -4.47 2822.87 2793.616 1.04% 
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8.3.2 Validating the MOR 

After generating the model equations to relate the dependent and independent variables, the 

validity of the model was checked with further experiments. Several particleboards were 

manufactured in the laboratory in order to validate the model and to improve the MOR 

simultaneously, considering the developed model. Also, the developed particleboard recipe 

shows that it requires higher amounts of resin and moisture for the surface layer of three-layer 

particleboard compared to the industrial recipe for softwood particleboards (Chapter 7).  

As discussed in Chapter 7, moisture is a critical variable that needs to be controlled carefully 

for better compaction of the wood mat. In addition, moisture is the main medium that 

transports heat from the surface to the core of the board. However, moisture as an individual 

variable has a negative effect on the rigidity of the board (MOE). Also, the findings in 

Chapter 7 indicated that the surface layer should use higher amounts of moisture and resin and 

the core layer should use lower moisture and resin amounts while keeping other parameters 

constant to optimise properties. Therefore, further particleboards were manufactured with 

reduced moisture and resin for the core layer while using higher amounts of moisture and 

resin for the surface layer. Further, the resultant MOR of these boards will be used to compare 

with the model’s predicted MOR. As stated in Chapter 7, hardener has a significant negative 

impact on almost all the tested mechanical properties of hardwood particleboard. In addition, 

the combination of surface moisture with hardener core has a negative impact on MOR. 

Hence, new boards were manufactured with and without adding hardener to the core to check 

the behaviour of the final particleboards.  

The manufacturing parameters were selected in order to optimise particleboard properties 

considering the above factors. The final optimal experimental parameters were calculated 

using the developed model for MOR, which allows comparison and negotiation of the 

response (MOR) with the processing parameters and the combination of them to optimise the 

response. Further, it was checked whether these factor levels would produce particleboards 

with higher MOE. The selected manufacturing variables and the coded values for the actual 

values for the variables are tabulated in Table 8.4. When these particleboards were 

manufactured, their MOR values were tested and tabulated in Table 8.4. The predicted MOR 

values by Equation 8.2 are labelled as ‘MOR (model 1)’ data in the Table 8.5.  
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Actual MOR Vs Predicted MOR (Model 1)
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Figure 8.1: Actual MOR Vs Predicted MOR (model 1) as predicted by Equation 8.2 

Figure 8.1 compares the actual MOR values for the manufactured boards with the model 

predicted values. It shows that the process model represented by Equation 8.2 closely 

predicted the actual MOR of a particleboard. Also, Table 8.5 shows that Equation 8.2 predicts 

the actual MOR with less than 15% variation. Experimental and predicted values of 80% of 

the boards differ less than 10% (Board numbers 3, 6, 8 and 10 in the Table 8.5). That 

variation could be due to an error in the model. As stated earlier it was hypothesised that 

selecting less significant effects may have added some error to the model. Therefore, it may 

be reasonable to remove some of the less significant effects from the model. This removal 

was done one by from least significant effect until achieving best possible prediction. It was 

found that removing ‘Moisture surface * Press Temperature’ and ‘Moisture surface * Pressing 

Time’ from the model, had increased the model accuracy. Further removal of less significant 

factors such as ‘moisture core * resin core’ did not affect the model accuracy or decrease the 

accuracy. Therefore that hypothesis was included in reducing the number of factor effects to 

develop the MOR - model 2 given in Equation 8.3. The sensitivity of the model was tested by 

calculating R2 and R2 adjusted and found to be at 99%. Therefore, the model 2 also should 

accurately predict the MOR. 

The predicted MOR values with respect to the same variables are also tabulated in Table 8.5 

labelled ‘MOR model-2’. The margins of errors are also tabulated in the same table, labelled 

with ‘error model 2’. It shows that the margin of error has reduced when less significant 
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effects were avoided in the model. It also shows that the MOR model-2 predicts the actual 

MOR values correctly, with more than 87% accuracy. 

MOR =11.429 - 0.476*A - 1.067*B + 1.541*C + 1.634*D - 0.584*E + 0.952*F + 0.967*G - 

1.228*A*B - 0.742*A*E + 0.238*B * D - 0.667*A*B*D   Equation 8.3 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature (Note:  all the variables are in coded units.) 

8.4 Predicting MOE with respect to processing parameters 

Similar to the process model development for MOR, the significant effects regarding the 

particleboard MOE were identified. As discussed in Chapter 7, MOE is mainly dependent on 

six effects which have P < 0.05 in Table 7.3. In addition, effects which generally have 

significant effect on most properties were also considered. Any effect with less significant 

effect on MOE, may have a higher effect on another parameter. Therefore, during the process 

optimisation, those effects become a variable. Therefore, effects with minor effect on MOE (P 

< 0.15) were also considered for MOE model building. However, adding minor effects or 

non-significant variables may decrease the validity of the model by increasing the error term 

as discussed earlier. The R2 and the R2 adjusted was calculated and compared to check the 

variation as discussed in Chapter 5.  If R2 >> R2 adjusted, it warns that those non-significant 

effects would create a significant error in the model. The effects that were considered for the 

model and their regression coefficients are tabulated in Table 8.6. 
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Table 8.6: Estimated Effects and Coefficients for MOE (coded units) 

 

Term Co-eff T P 

Constant 2080.9 136.48 0.005 

Moisture Surface 34.7 2.90 0.211 

Moisture Core -124.2 -0.39 0.061 

Resin Surface 246.9 20.67 0.031 

Resin Core 82.7 6.92 0.091 

Hardener Core -128.4 -0.75 0.059 

Pressing Time 167.0 13.98 0.045 

Press Temperature 155.2 12.99 0.049 

Moisture Surface*Moisture Core -182.9 -5.31 0.042 

Moisture Surface*Resin Surface -55.5 -4.65 0.135 

Moisture Surface*Resin Core 43.7 .65 0.170 

Moisture Surface*Pressing Time 77.3 .47 0.098 

Moisture Surface*Press Temperature 66.0 .52 0.114 

Moisture Core*Resin Core 54.1 .53 0.138 

Moisture Surface*Moisture Core* Resin 
Core 

-65.4 -5.47 0.115 

 
 

MOE = 2080.9 + 34.7*A - 124.2*B + 246.9*C + 82.7*D - 128.4*E + 167*F + 155.2*G - 

182.9*A*B -55.5*A*C+ 43.7*A*D + 77.3*A*F + 66*A*G + 54.1*B*D - 65.4*A*B*D 

                  Equation 8.4 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature (Note:  all the variables are in coded units.) 
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The Upper and Lower limits used to calculate the coded unit for the MOE model are given in 

Table 8.1. Results used for this analysis was included in Table 7.2. The calculated regression 

coefficients for significant factors (Regressor variables) with respect to the MOE model are 

given in Table 8.6. These coefficients are calculated considering the coded variables. The P 

and T values for those major effects are also tabulated in the same table. Incorporating these 

regression coefficients, the process model for MOE can be presented as in equation 8.4. The 

regression method used in this calculation was discussed in detail in the section 5.4 of the 

Chapter 5. The validity of the second order polynomial function for this investigation was 

explained in section 8.2.1. 

8.4.1 Significance of the developed model 

For estimation of the significance of the model, the ANOVA was calculated (Table 8.7). It 

shows that the main effects and two-way interactions are the most important effects on MOR 

with P<0.1. One variable with a three-way interaction is considered although its’ P > 0.1. The 

model has fifteen degrees of freedom (DF=15) which include main effects, two-way 

interactions, three-way interactions and the error term.  Table 8.7 shows that the SS of MS of 

the error term is negligible compared to those for main effects or interactions which are 

considered in the MOE model. Therefore, the error term was ignored in the model. In 

addition, R2 was calculated with regard to the model.  

Table 8.7: Analysis of Variance for MOE (coded units) 

 

Source DF SS MS F P 

Main Effects 7 2446934 349562 152.99 0.062 

2-Way Interactions 6 827259 13786 60.34 0.098 

3-Way Interactions 1 68487 68487 29.97 0.115 

Residual Error 1 2285 2285 
  

Total 
 

15 3344965 
   

SS = sum of squares                                   MS = mean squares 

The calculated R2  > 99.93% as well as the adjusted R2 > 98.98% were found. As discussed in 

Chapter 5, there is no significant variation to R2 if the adjusted R2 is calculated. Therefore, it 

can be suggested that this model will adequately predict the MOE of final particleboard using 
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the current production process. As discussed earlier, a large value of R2 does not necessarily 

imply that the developed regression model is a good one which predicts the process correctly 

unless it is tested with further experiments. 

8.4.2 Validating the MOE 
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Figure 8.2: Actual MOE vs Predicted MOE 

After generating the MOE model equation to predict the MOE of a particleboard, the validity 

of the model was checked with further experiments. The same experimental data used to 

validate MOR model were used to check the MOE model. Table 8.5 shows the resulting MOE 

values of the particleboards as well as the predicted MOE values from Equation 8.4 and the 

error. It shows that Equation 8.4 sufficiently predicts the MOE of a particleboard with less 

than 9% variation. Figure 8.2 shows actual and predicted MOE values against the board 

number. As the variation is very minor, this model should not require any corrections and can 

be used as it is to predict the MOE. 

8.5 Optimising the MOE and MOR  

The other objective of this study is to optimise the MOE and MOR values of a particleboard 

using the process model. As stated in Section 8.3.2, particleboard recipes were selected here 

considering the developed models with the intention of optimising the particleboard 
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properties. According to AS/NZS 1859 (2004), standard general purpose particleboards need 

to satisfy three main properties. They are, MOR, IB and thickness-swelling.  

Therefore, the equation 8.2 was used to find the best of all possible solutions for MOR in the 

feasible region which was recognized for these experimentations. Also, resin and pressing 

time are the main process parameters which contribute for the production cost. Therefore, 

objective of this optimization was to obtain higher MOR and MOE value by controlling the 

production cost. This optimization was base on experimental design. As explain in Chapter 7, 

hardener has a negative impact on most of the particleboard properties. Therefore, it was 

looked what the efficient amount of hardener could be used when obtains higher MOR and 

MOE. Considering these factors, experiments were design as in Table 8.5 and resultant board 

properties are tabulated in Table 8.8. 

Table 8.8: Particleboard properties and AS/NZS 1859 (2004) 

Board No MOR (MPa) MOE (MPa) IB (kPa) 

1 17.84 2994.98 828.41 

2 14.62 2534.57 1162.90 

3 16.91 2952.87 861.14 

4 19.49 3118.60 1298.94 

5 16.54 2724.93 1198.31 

6 15.74 2897.63 1239.10 

7 17.24 2991.38 1038.87 

8 18.39 2648.58 1302.58 

9 16.24 2728.30 1256.58 

10 15.11 2720.88 1058.97 

11 17.71 2878.52 1368.25 

12 15.27 2554.87 708.66 

13 18.08 2990.65 908.38 

14 14.63 2671.91 1220.61 

15 16.56 2606.79 1157.96 

Mean Strength 16.69 2801.03 1107.31 

AS/NZS1859 (2004) for High 
Performance Particleboards 

16.00 2400.00 400.00 

AS/NZS1859 (2004) for General 
Purpose Particleboards 

12.00 
Not a 
requirement 

300.00 
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Table 8.8 shows the properties of particleboards with respect to board numbers (The 

processing parameters for these relevant boards were tabulated in Table 8.5), mean of each 

property as well as the minimum requirements set by the AS/NZS 1859 (2004) for general 

purpose particleboard and high performance particleboard. Table 8.8 shows that hardwood 

particleboards can be developed in our laboratory set-up using hardwood sawmill wastes. It 

shows that the MOE data for the developed particleboards were always higher than 2500 

MPa. According to AS/NZS 1859 (2004), MOE is not a significant property for standard 

general purpose particleboards, but it is an important property for high performance 

particleboard and the expected value is 2400 MPa. MOR data for the developed 

particleboards are also higher than the AS/NZS 1859 (2004) requirements for general purpose 

particleboards with minimum MOR > 12MPa and mean MOR (= 16.43 MPa for those 15 

boards) is higher than 16 MPa.  

According to AS/NZS 1859 (2004), particleboards need to be tested for IB and moisture 

resistance. Therefore, the boards were tested for their IB and the results are tabulated in Table 

8.8, which shows that the mean IB for those boards is higher than 300 kPa which is the 

AS/NZS requirements for general purpose particleboard. Also, mean of IB is higher than 400 

kPa which is the requirement for high performance particleboard. The results of these 

optimised particleboards show that the MOR, MOE and IB of these boards easily satisfy the 

strength properties for general purpose particleboard and is an achievable target for high 

performance particleboards. However, the AS/NZS 1859 standards state that particleboard 

needs to be sufficiently moisture resistant in order for use as a general purpose board. 

Therefore, Chapter 10 explores the performance of these particleboards under different 

moisture conditions.  

The formation of the VDP with respect to processing parameters was studied as part of this 

investigation. Chapter 9 discusses the variation of particleboard density along its thickness 

direction due to the variation of process variable. This variation in density in the thickness 

direction was used to predict the formation of VDP with regard to processing parameters and 

results are reported in Chapter 9. 



Chapter 8   Formulation and process modelling of particleboard 

production using hardwood sawmill residues 

 

 174 

8.6 Summary and Conclusions 

Theories of experimental design and analysis were used for this product and process 

development. This methodology is a very efficient tool for extracting the maximum amount of 

complex information with the minimum number of experiments. Therefore, it reduces the 

material required for experiments and the time for experiment and analysis significantly.   

Particleboards were tested for modulus of elasticity (MOE) and modulus of rupture (MOR) 

and results were statistically analysed using MINITAB 14. First, the significant process 

variables with respect to particleboard mechanical properties were found. Then process 

models for mechanical properties of the hardwood particleboard were developed considering 

the relationships between board properties and significant process variables. The reliability of 

the models was statistically tested it was and found that both models are very satisfactory. 

Further, the models for MOE and MOR successfully predict MOE and MOR respectively for 

both within the model developed range as well as in a robust data range.  
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CHAPTER 9  

DEVELOPMENT OF COMPOSITE PROCESS MODELS TO 

PREDICT THE VERTICLE DENSITY PROFILE (VDP) OF A 

PARTICLEBOARD 

9.1 Introduction 

The density of a particleboard is not uniform along its thickness direction. This variation of 

density along the thickness direction of a particleboard is called the vertical density gradient 

or the vertical density profile (VDP). Kelly (1977) reported from previous research that the 

VDP of a particleboard is highly dependent upon particle configuration, moisture distribution 

in the mat, press closing speed, hot pressing temperature, and reactivity of the resin used and 

compressive strength of the wood component. As explained in Chapter 3 on the formation of 

the VDP, it influences many mechanical properties including MOE, MOR and IB as well as 

the dimensional stability of a particleboard. These properties are critical, depending upon the 

application of the final particleboard. Therefore, it is important to enhance or restrict the 

formation of the VDP by altering the above-mentioned processing variables to achieve the 

most critical property of the board. As explained in Chapter 3, there are number of stochastic 

and deterministic models available to predict the vertical density profile (Suchsland 1967; Dai 

at el 1997; Wolcott et al 1990; Length and Kamke 1995; Zombort 2001). Most of these 

models were formulated using fundamental engineering principles considering key interacting 

variables. Also, most of these models were developed for flake-type materials mainly from 

softwood particles. However, the material used in this study, was waste from hardwood 

timber and mainly contained particles with granular or cubical shapes. During the hot 

pressing, in granular type particles, the rates of temperature transfer from the surface to the 

centre as well as from the centre to the edges of the board were different to those of flake-type 

particles (Maku et al 1959). Therefore, the type of particle directly influences the formation of 

VDP.   

As discussed earlier in Chapters 6, 7 and 8, process modelling using factorial experimental 

design was recognised to be useful to study  the new material as well as for the variation of 

VDP of the final board.  In this study, an attempt was made to model the VDP of a 
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particleboard with respect to the processing variables. A process model clearly shows the 

relationship between the variation of density at different locations along the thickness of the 

board with the raw materials and processing parameters used.  This chapter discusses the 

modelling of VDP with regard to the actual processing parameters which were used in this 

study. The usability of the model and its advantages for the improvement of final 

particleboard properties are discussed. 

9.2 Methodology 

Initially, particleboard thickness was divided into thin layers with a layer thickness as 10% of 

the final board thickness. Densities at each of these layers were investigated. In addition to the 

density at 10% length from the surface, density at a 5% length was investigated, because the 

density closer to the surface of a three-layer particleboard changes significantly near the 

surface (Figure 9.1). It was assumed that the VDP of a particleboard is symmetric about the 

centre of the particleboard. Therefore, the VDP of one half of the board was modelled initially 

and the other half was predicted considering the symmetry. 

Typical Vertical Density Profile of a particleboard

0

100

200

300

400

500

600

700

800

900

1000

0 1.51 3.02 4.53 6.04 7.55 9.06 10.57 12.08 13.59 15.1

Length from the surface

D
e
n

s
it

y

 

Figure 9.1: VDP along the thickness of a particleboard 



Chapter 9   Development of composite process models to predict 

the vertical density profile (VDP) of a particleboard 

 

 177 

The same experimental design as in Chapters 7 and 8 was used to collect the data for this 

study (Table 7.1). Once the particleboards were manufactured from the experimental design 

in Table 7.2, samples were prepared from each board to measure the VDP using a density 

profile-meter. The density profile-meter uses X-ray scanning to measure the density along the 

thickness of the test sample and stores the data as text files. From these data (Appendix C), 

the density of each layer was measured. These measured data against processing parameters 

for each board was tabulated and attached in Appendix F. Then, the most significant process 

variables with regard to layer density were identified using ANOVA, as was illustrated in 

Chapter 5 and used in Chapters 8. Then, regression coefficients were calculated for significant 

parameters to develop polynomial regression function to relate processing parameters to the 

density in the layer. 

9.3 Identification of most significant parameters with regard to density along 

the thickness 

Once the experimental density data for each layer were identified, they were analysed against 

processing variables to identify the most significant effect on the density of each layer. 

MINITAB software was used to calculate the T and P for each factor effect. As discussed in 

Chapter 5, any factor which has a significant effect on the testing property has a higher T 

value as well as a lower P value. Factors or interactions of factors with P < 0.05 have 

significant effects on the density. Table 9.1 shows the P values for significant factors on the 

density of each layer. It was assumed that second order polynomial function may describe the 

behaviour of density against processing parameters. This assumption will be tested by 

calculating regression coefficient for each model. If the coefficient is close to 100%, then 

model is sufficiently predicting the density for that layer, else second order polynomial 

function may not suitable for this prediction. As discussed in Chapter 5, a second order 

polynomial composite model should contain all the significant individual factors, interactions 

and a constant to predict the selected variable (Equation 9.1). It is clear from the data in Table 

9.1 that adding a constant is significant for the model with P ≥ 0. 

In addition, densities for all the inner layers (where distance is higher than 10% of the 

thickness) were significantly affected by resin core, pressing time and the press temperature. 

These three factors are important for inter-particle bonding in the inner layers to increase the 

density. In addition, the interaction of moisture surface with moisture core significantly 
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changes the density in internal layers of the board. By observing only the P, it is not possible 

to confirm whether this effect is positive or a negative. Therefore, Pareto charts were used to 

identify the type of effect on these variables and as explained in the following sections. 

Table 9.1: The probability of null hypothesis (P) for significant parameters 

Term P 

Distance from the surface 

(% of  thickness) 
5% 10% 20% 30% 40% 50% 

Thick-

ness 

Constant 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

Moisture Surface 0.016 0.006 0.884 0.010 0.001 0.011 0.023 

Moisture Core 0.191 0.012 0.093 0.002 0.000 0.001 0.001 

Resin Surface 0.107 0.109 0.026 0.092 0.001 0.002 0.012 

Resin Core 0.059 0.006 0.002 0.000 0.000 0.000 0.030 

Hardener Core 0.046 0.992 0.509 0.012 0.321 0.024 0.064 

Pressing Time 0.061 0.008 0.001 0.000 0.000 0.001 0.000 

Press Temperature 0.207 0.012 0.001 0.000 0.000 0.001 0.006 

Moisture Surface*Moisture 
Core 

0.042 0.048 0.006 0.025 0.000 0.001 0.003 

Moisture Surface*Resin 
Surface 

0.060 0.075 NS NS 0.024 0.066 NS 

Moisture Surface*Resin Core 0.041 0.017 0.069 0.222 NS 0.017 NS 

Moisture Surface*Hardener 
Core 

0.090 0.079 0.023 0.234 NS 0.014 NS 

Moisture Core*Resin Core 0.053 0.021 0.200 0.154 0.001 0.01 NS 

Moisture Surface * Pressing 
Time 

NS NS NS NS NS NS 0.003 

Moisture Surface *Press 
Temperature 

0.082 NS 0.072 0.006 0.007 0.003 0.028 

Moisture Surface*Moisture 
Core*  Resin Core 

0.043 0.085 NS NS 0.032 NS 0.113 

9.3.1 Modelling the density at 10% x thickness from the board surface 

Table 9.1 shows the factors significant for the density at 10% x thickness from the surface of 

the board. Those factors which have P < 0.05 have 95% probability of affecting the density at 

the point. The Pareto chart of those significant factors and their test statistical values are given 

in Figure 9.2. The test statistical value for 95% probability level is shown in red line with a 

value 4.3. Therefore, moisture surface (A), resin core (D), pressing time (F), moisture core 

(B), as well as interactions of moisture surface with resin core (AD), moisture core with resin 
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core (BD), moisture surface with moisture core (AB) are significant for this layer density. 

Figure 9.3 shows the normal probability plot for these significant effects.  It shows that 

moisture core and the interaction of moisture core with moisture surface have negative effects 

on the density, while the others have positive effects. 
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Figure 9.2:  Pareto Chart of the Standardized effects 
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Figure 9.3:  Normal probability plot of the Standardized effects 
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Once the most important factors affecting the density at 10% depth from the surface were 

identified, regression coefficients for these factors were calculated using MINITAB 14. These 

regression coefficients were calculated for coded variables as explained in Chapter 5 in order 

to make them independent of the dimension of the variable. Then, a model to predict the layer 

density from 10% x thickness from the surface was developed using these coded regression 

coefficients (Equation 9.1.). 

Density at 10% x thickness from the surface = 866.41 + 34.17*A - 23.26*B + 7.15*C + 

32.13*D - 0.03*E + 28.58*F + 23.26*G - 11.36*A*C + 8.89*A*C + 19.56*A*D -8.62*A*E 

+ 17.54*B*D - 8.29*A*B*D       Equation 9.1 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note: all the variables are in coded units.) 

9.3.1.1  Significance of the developed model 

The ANOVA was calculated for the developed model to estimate its significance (Table 9.2). 

It shows that main effects and two-way interactions are more important with P < 0.05, and 

three-way interactions with P < 0.10. In addition, R2 which measures the reduction in the 

variability of y which was obtained by regression variables was calculated with regard to the 

model. It was shown that R2 = 99.74% and adjusted R2 = 98.08%. There is not a significant 

variation between R2 and the adjusted R2. Thus, as discussed in Chapter 5, it is concluded that 

the model will be adequately predict the density at the point. Therefore it can be suggested 

that equation 9.2 will adequately predict the density at 10% x thickness distance from the 

surface of the board under the current processing conditions. Also, second order multiple 

regression model appropriates for modelling the density at this depth of the particleboard. 
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After generating the model equation, its usability was tested against further experimental data. 

Density profile data from several particleboards were compared against actual density and 

results are shown in Figure 9.4 as well as in Table 9.3. These data have proven that the 

developed model can adequately predict the density at ‘10% x thickness from the surface’ 

with less than 13% variation when the processing parameters are known. 

Table 9.2: Analysis of Variance for Density at 10% thickness (coded units) 

 

Source DF SS MS F P 

Main Effects 7 66400.2 9485.7 89.00 0.011 

2-Way Interactions 5 15566.5 3113.3 29.21 0.033 

3-Way Interactions 1 1100.0 1100.0 10.32 0.085 

Residual Error 2 213.2 106.6   

SS = Sum of Squares            MS = Mean square 

 

 

Figure 9.4: Actual density versus predicted density at ‘10% x thickness’ distance from the 

surface 
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9.3.2 Modelling the density at ‘20% x thickness’ distance from the board 

surface’ 

The same steps as in Section 9.3.1 were adopted to develop a model to predict at ‘20% x 

thickness’ distance from the surface of the board. Table 9.1 shows the important parameters 

which affect the density at this layer with P < 0.05.  Resin surface, resin core, press 

temperature, pressing time, a combination of moisture surface with moisture core, and a 

combination of moisture surface with hardener significantly influence the density at 20% x 

thickness distance (with P < 0.05). In addition to these six variables, a combination of 

moisture surface with press temperature, and of moisture surface with resin core were also 

considered for the model development because they too have smaller P values. Out of these 

important parameters, pressing time is the most significant factor followed by press 

temperature for the density at this level (Figure 9.5). However, a combination of moisture 

surface with moisture core and a combination of moisture surface with hardener core have 

significant negative effects on the density at this level (Figure 9.6) whereas pressing time, 

press temperature, resin core and resin surface have positive effects. 

T
e
rm

Standardized Effect

A

E

BD

B

AG

AD

C

AE

AB

D

G

F

14121086420

3.18
Factor

Resin C ore

E Hardener C ore

F Pressing Time

G Press Temperature

Name

A Moisture Surface

B Moisture C ore

C Resin Surface

D

Pareto Chart of the Standardized Effects
(response is Density at ave20, Alpha = 0.05)

 

Figure 9.5: Pareto chart of the significant parameters for the density at 20% x thickness 
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Figure 9.6: Normal probability plot of standardized effects for the density at 20% x thickness 

After finding the important variables as well as their significance on density at ‘20% x 

thickness’ distance from the surface, a polynomial regression model was developed 

incorporating these variables similar to Section 9.3.1 to predict the density at ‘20% x 

thickness’ of the particleboard. 

Density at 20% x thickness from the surface = 701.11 - 0.76*A - 11.62*B + 19.57*C + 

49.07*D - 3.51*E + 62.87*F + 57.14*G - 33.47*A*B + 13.25*A*D - 20.64*A*E + 

5.64*A*F + 13.02*A*G - 7.81*B*D       Equation 9.2 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note: all the variables are in the coded units.) 
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Table 9.3: Comparison of actual density and predicted density at each layer 

 

Board 

Number 

*Actual   

5% 

#Pred.  

5% 
Error 

Actual  

10% 

Pred.  

10%  
Error 

Actual  

20% 

Pred. 

20% 
Error 

Actual 

30% 

Pred. 

30% 
Error 

Actual 

40% 

Pred. 

40% 
Error 

Actual 

50% 

Pred. 

50% 
Error 

1.0 939.6 926.2 -1.4 909.9 918.6 0.9 808.3 800.1 -1.0 715.4 705.4 -1.4 671.8 666.7 -0.8 669.1 642.2 -4.2 

2.0 967.8 880.0 -10.0 963.9 903.0 -6.7 826.4 809.0 -2.2 744.3 784.9 5.2 681.6 722.8 5.7 681.4 712.5 4.4 

3.0 916.0 996.5 8.1 924.1 1004.8 8.0 823.5 945.3 12.9 729.9 765.2 4.6 683.9 715.9 4.5 681.0 644.6 -5.7 

4.0 942.8 943.3 0.1 880.0 956.7 8.0 808.7 885.3 8.6 700.0 776.9 9.9 659.3 724.5 9.0 614.6 686.7 10.5 

5.0 1001.1 860.8 -16.3 972.9 887.6 -9.6 859.3 777.6 -10.5 738.4 751.0 1.7 705.6 700.3 -0.8 692.1 697.4 0.8 

6.0 970.5 987.3 1.7 924.8 983.8 6.0 831.7 891.4 6.7 719.4 727.7 1.1 683.4 683.0 -0.1 676.7 613.1 -10.4 

7.0 908.6 1008.7 9.9 908.3 987.7 8.0 796.4 907.7 12.3 728.1 731.3 0.4 693.8 690.9 -0.4 685.8 631.5 -8.6 

8.0 908.6 929.7 2.3 918.4 934.9 1.8 806.4 834.5 3.4 708.5 739.3 4.2 694.3 690.4 -0.6 697.7 656.3 -6.3 

9.0 816.5 842.7 3.1 861.5 864.9 0.4 781.0 729.9 -7.0 743.2 713.4 -4.2 684.9 665.0 -3.0 672.6 667.9 -0.7 

10.0 751.4 929.7 19.2 816.2 934.9 12.7 798.4 834.5 4.3 709.5 739.3 4.0 662.8 690.4 4.0 657.2 656.3 -0.1 

11.0 854.9 933.2 8.4 880.8 951.1 7.4 791.6 869.0 8.9 711.7 773.2 8.0 705.5 714.2 1.2 704.0 670.4 -5.0 

12.0 899.3 861.9 -4.3 890.4 880.3 -1.2 834.1 761.3 -9.6 784.9 747.3 -5.0 702.3 687.6 -2.1 680.3 683.1 0.4 

13.0 843.6 999.6 15.6 897.1 966.7 7.2 812.8 853.9 4.8 741.8 693.8 -6.9 704.7 658.1 -7.1 670.7 600.0 -11.8 

14.0 931.3 916.1 -1.7 915.8 913.0 -0.3 800.1 783.8 -2.1 720.0 701.8 -2.6 681.4 656.4 -3.8 661.0 625.8 -5.6 

15.0 851.6 929.7 8.4 908.8 934.9 2.8 826.1 834.5 1.0 745.2 739.3 -0.8 727.3 690.4 -5.3 728.2 656.3 -11.0 

16.0 840.5 938.2 10.4 886.8 974.1 9.0 793.5 907.7 12.6 705.0 771.5 8.6 670.8 730.3 8.1 648.6 667.8 2.9 

* Actual – Actual density  # Pred. – Predicted density 
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9.3.2.1  Significance of the developed model 

Table 9.4 Analysis of Variance for Density at 20% thickness (coded units) 

Source DF SS MS F P 

Main Effects 7 162522 23217.4 63.64 0.003 

2-Way Interactions 5 31238 6247.5 17.13 0.021 

Residual Error 3 1094 364.8   

Total 15 194854    

SS = Sum of Squares            MS = Mean square 
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Figure 9.7: Actual density against the predicted density at 20% thickness level 

Once the model was developed to predict the density at ‘20% x thickness distance from the 

surface’, the ANOVA for the model was calculated to test its significance (Table 9.4). It 

shows that main effects and two-way interactions are very significant for the model with P < 

0.05. In addition, R2 and R2 adjusted were calculated to estimate the variability of the 

predicted density. Results show that R2 = 99.44% and R2 adjusted = 97.19%. Since there is 

not much variation between R2 and the R2 adjusted, this model adequately predicts the density 
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at 20 % x thickness level of the particleboard. Then, the model was tested using the 

experimental results as shown in Table 9.3 and Figure 9.7. Figure 9.7 shows that the model 

closely predicts the density at this level of the particleboard with less than 13% variation 

(Table 9.2). 

9.3.3 Modelling the density at ‘30% x thickness’ distance from the board 

surface’ 

Similar to the factor screening discussed earlier, it was found moisture surface, moisture core, 

resin core, hardener core, press temperature, a combination of moisture surface with moisture 

core and a combination of moisture core with press temperature are significant for the density 

at 30% x thickness distance from the surface of a particleboard (Table 9.1 with P < 0.05). Of 

these variables, resin core is the most significant, followed by pressing time and press 

temperature for the density at this level (Figure 9.8). Figure 9.9 shows that these three 

variables have significant positive effect on the density at this depth of the board. Figure 9.9 

shows that all the other variables; moisture core, moisture surface, hardener core, combining 

moisture surface with moisture core and combining moisture surface with press temperature 

have negative effects on the density at this level.  
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Figure 9.8: Pareto chart of the standardized effects on the density at 30% distance 
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Above variables have over 95% significance on the density at this depth. Figure 9.8 shows 

that resin surface, combining moisture core with resin core, moisture surface with resin core, 

moisture surface with hardener core have some effect on the density. Therefore, these 

variables were also considered for developing the Equation 9.3. 

Density at 30% from the surface = =620 - 10.61*A - 17.75*B+4.36*C + 61.11*D - 9.65*E + 

53.58*F + 49.22*G - 7.41*A*B - 2.71*A*D - 2.63*A*E - 12.17*A*G + 3.4*B5*B5 

          Equation 9.3 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note: all the variables are in the coded units.) 
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Figure 9.9: Normal probability plot of the standardized effects on the density at 30% distance 
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Therefore, both these negative as well as positive variables were considered for developing a 

regression model for the density. Similar to the work discussed earlier, regression coefficients 

were calculated with regard to these variables to develop the regression model in Equation 

9.3. 

9.3.3.1  Significance of the developed model 

Similar to the work discussed earlier, ANOVA was calculated for the developed model to 

estimate its level of significance. It revealed that the model needs to consider the seven main 

effects, four two-way interactions and one three-way interaction effect to develop the model 

to predict the actual density precisely (Table 9.5). Table 9.5 shows that each of these variables 

has a P < 0.05. Therefore, the level of significance of these variables is more than 95%. 

Further, R2 and R2 adjusted were calculated for the model. For this model, R2 = 99.97% and 

R2 adjusted = 99.83%. This indicates that the model would adequately predict the density in a 

layer at ‘30% x thickness’ level.  

The reliability of the model was tested by comparing the density data predicted by the model 

with experimental data. As shown in Table 9.2 and Figure 9.10 the model accurately predicts 

the density at this level with less than 10% variation. 

Table 9.5: Analysis of Variance for Density at 30% thickness (coded units) 

Source DF SS MS F P 

Main Effects 7 153072 21867.4 427.79 0.000 

2-Way Interactions 5 3665 733.0 14.34 0.026 

Residual Error 3 153 51.1   

Total 15 156890    

SS = Sum of Squares            MS = Mean square 
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Actual density against model predicted density at 30% distance 

from the surface

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Board Number

D
e
n

s
it

y
 (

k
g

/m
3
)

Actual density

Predicted density

 

Figure 9.10: Actual versus predicted density at ‘30%xthickness’ distance from the surface 

9.3.4 Modelling the density at ‘40% x thickness’ distance from the board surface 

The significant factors for the density at ‘40% x thickness’ distance from the surface of the 

particleboard were found to be resin core, pressing time, press temperature, moisture core, 

resin surface, moisture surface, a combination of moisture surface with moisture core, a 

combination of moisture core with resin core, a combination of moisture surface with press 

temperature, a combination of moisture surface with resin surface and a combination of 

moisture surface, moisture core and resin core ( Figure 9.11 and Table 9.1 with P < 0.05).  

Figure 9.12 shows that resin core, pressing time, press temperature, resin surface and a 

combination of moisture core with resin core have positive effects on the density at this level, 

while other variables have negative effect. Therefore, these variables and their effects were 

considered for the development of the polynomial equation to predict the density.  MITAB 

was used to calculate regression coefficients with regard to these variables at 95% significant 

level. Equation 9.4 presents the polynomial regression equation developed to predict the 

density at this level of the particleboard. 
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Figure 9.11: Pareto chart of the significant parameters for the density at 40% x thickness 

Standardized Effect

P
e
rc

e
n
t

6050403020100-10-20-30

99

95

90

80

70

60

50

40

30

20

10

5

1

Factor

Resin Core

E Hardener Core

F Pressing Time

G Press Temperature

Name

A Moisture Surface

B Moisture Core

C Resin Surface

D

Effect Type

Not Significant

Significant

ABD

BD

AG

AC

AB

G

F

D

C

B

A

Normal Probability Plot of the Standardized Effects
(response is Density at Ave 40, Alpha = .05)

 

Figure 9.12: Normal probability plot of standardized effects for the density at 40% x thickness 
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Density at 40% from the surface = =614.59 - 12.75*A - 16.75*B + 13*C + 44.35*D + 

0.99*E + 43.32*F + 34.35*G - 23.64*A*B - 3.54*A*C - 5.7*A*G + 10.42*B*D - 

3.19*A*B*D          Equation 9.4 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note:  all the variables are in the coded units.) 

9.3.4.1  Significance of the developed model 

Table 9.6: Analysis of Variance for Density at 40% thickness (coded units) 

Source DF SS MS F P 

Main Effects 7 90175 12882.2 1145.4 0.000 

2-Way Interactions 4 11401 850.3 253.42 0.000 

3-Way Interactions 1 163 163.3 14.52 0.032 

Residual Error 3 34 11.2   

Total 15 101774    

SS = Sum of Squares            MS = Mean square 

Table 9.6 represents the ANOVA calculated for factors in the developed model (equation 9.4) 

to test its significance. It shows that all the seven main effects and four number of two-way 

interactions are important for the model (P < 0.05). In addition, one three-way interaction 

effect is important for the model development.  
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Actual density against model predicted density at 40% distance 
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Figure 9.13: Actual versus predicted density at ‘40% x thickness’ distance from the surface 

As initially suggested, the model has considered twelve effects. Also, R2 and R2 adjusted were 

calculated for the model and both were above 99.8%. Therefore, this model should adequately 

predict the density at ‘40% x thickness’ distance from the surface of the particleboard. Then 

the model was tested using experimental density profile data as presented in the Table 9.2 and 

Figure 9.13. The results in Table 9.2 show that equation 9.4 can accurately predict the density 

in the particleboard at ‘40% x thickness’ distance from the surface with less than 9 % 

variation. 

9.3.5 Modelling the density at the centre layer (‘50% x thickness’ distance from 

the board surface) 

Similar to the steps followed earlier, the important parameters that affect the density at the 

centre of the particleboard were explored. It was found that all the main effects are significant 

for the density at the centre of the particleboard (Table 9.1 and Figure 9.14).   
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Figure 9.14: Pareto chart of the significant effects for density at the centre (50% x thickness) 

In addition to the main effects, combinations of moisture surface with moisture core, an 

interaction of moisture surface with press temperature, an interaction of moisture core with 

resin core, an interaction of moisture surface with hardener and an interaction of moisture 

surface with resin core are significant for the density at the centre of the particleboard. 

Therefore, regression coefficients were calculated for these parameters to develop the 

polynomial equation to predict the density at the centre (equation 9.5). Of these variables, 

hardener, moisture surface, moisture core, interacting moisture surface with press temperature 

and interacting moisture surface with moisture core have negative effects on the density at the 

centre of the board, while all the other parameters have positive effects on the density at the 

centre of the board (Figure 9.15). 
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Figure 9.15: Normal probability plot of standardized effects for the density at the centre (50% 

x thickness) 

Density at the centre of the board = 618.85 - 7.45*A - 21.53*B + 19.09*C + 37.49*D - 

5.03*E + 33.44*F - 23.79*G - 23.79*A*B + 2.93*A*C + 6*A*D + 6.73*A*E - 13.8*A*G + 

7.94*B*D          Equation 9.5 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note: all the variables are in the coded units.) 
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9.3.6 Significance of the developed model 

The ANOVA was calculated for the parameters in the developed model in equation 9.5. It 

also highlighted that all the seven variables and six interactions which were considered for the 

model development are vital with P < 0.05 (Table 9.7). The calculated R2 was 99.98% and R2 

adjusted was 99.83%, indicating that this model should adequately predict the density at the 

centre of the board. The model equation was experimentally tested as shown in Table 9.2, 

which shows that model can predict the actual density at the centre of the board with less than 

10% variation. The comparison of actual and predicted density at the centre is plotted in 

Figure 9.16. 
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Figure 9.16: Actual versus predicted density at the centre of the particleboard 

Table 9.7: Analysis of Variance for Density at the centre of the board (coded units) 

Source DF SS MS F P 

Main Effects 7 74774.1 10682.0 1057.88 0.001 

2-Way Interactions 6 14546.8 2424.5 240.11 0.004 

Residual Error 2 20.2 10.1   

Total 15 89341.1    

SS = Sum of Squares            MS = Mean square 
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9.3.7 Modelling the density at ‘5% x thickness’ distance from the board surface 

When the actual vertical density profiles of a three-layer particleboard were considered in 

Chapter 7 (Figures 7. 21 – 7.23), it was clear that the density closer to the surface of the 

particleboard changed significantly in a three-layer particleboard. Therefore, in addition to 

modelling the density at each 10% x thickness levels, the density at ‘5% x thickness’ from the 

surface level was also studied to achieve smooth VDP closer to the board surface.  
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Figure 9.17: Pareto chart of the standardized effects 

It was found that moisture surface, hardener core, interaction of moisture surface with resin 

core, interaction of moisture surface with moisture core, and interaction of moisture surface 

with moisture core and resin core have significant effects on the density closure to the surface 

(at 5% x thickness distance from the surface). Of these variables, moisture surface is 

extremely important for compaction hence density close to the surface (Figure 9.17). Figure 

9.18 shows that the moisture surface, an interaction of moisture surface with moisture core 

and an interaction of moisture surface with resin core have positive effects on the density. 

Hardener core and the interaction of moisture surface, moisture core and the resin core have 

negative effects on the density at this layer. In addition to the variables which have P < 0.05, 
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variables that have some effect (as in Figure 9.17) on the density at this layer were considered 

to develop the regression model shown in equation 9.6. 
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Figure 9.18: Normal probability plot of the standardized effects 

Density at ‘5% x thickness’ from the surface = 846.07+ 62.86*A - 4.98*B + 9.13*C + 

16.68*D - 21.35*E + 16.18*F + 4.59*G + 23.47*A*B + 16.45*A*C + 24.11*A*D - 

10.8*A*E - 18.5*A*F - 11.5*A*G - 22.84*A*B*D    Equation 9.6 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note: all the variables are in the coded units.) 
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9.3.8 Significance of the developed model 

When the model was developed the ANOVA for the model was calculated to test its 

significance (Table 9.8). The ANOVA showed that the model needs to consider the seven 

basic variables, six two-way interactions and one three-way interaction with P < 0.07. The R2 

= 99.97% and the R2 = 99.53% were found for the model. Therefore, the model has 

considered all the significant variables and it should adequately predict the density at ‘5% x 

thickness’ distance from the surface. Then the model was validated using experimental data as 

shown in Table 9.2 and Figure 9.19. Results showed that the model closely predicts the 

density at this level, although one board had 19% deviation.  Unlike the inner layers, the 

actual density close to the surface could easily be affected by experimental errors, such as 

over-cooking (over-curing) the surface resin. Therefore, predicted density and actual density 

may not be the same closer to the surface. 
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Figure 9.19: Actual versus predicted density at the centre of the particleboard 
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  Table 9.8: Analysis of Variance for Density at 5% (coded units) 

Source DF SS MS F P 

Main Effects 7 81227 11603.9 303.83 0.044 

2-Way Interactions 6 32047 5341.1 139.85 0.065 

3-Way Interactions 1 8347 8346.6 218.54 0.043 

Residual Error 1 38 38.2   

Total 15 121659    

SS = Sum of Squares            MS = Mean square 

 

9.3.9 Modelling the thickness of a particleboard 

After developing models to predict the density at each layer along the thickness, these 

predicted densities should be plotted against the distance (in thickness direction) to complete 

the VDP. Experimental results showed that the thickness of each board was different to each 

other due to the change in thickness caused by spring-back after hot pressing. Therefore, the 

thickness of each board should be predicted with respect to process variables first.  

The processing variables affecting board thickness were tabulated in Table 9.1 with P < 0.05 

and are presented in Figure 9.20. It appears that pressing time is the most important factor for 

the thickness. In addition, press temperature, moisture surface, moisture core, resin surface, 

resin core as well as interaction of moisture surface with pressing time, interaction of moisture 

surface with moisture core and moisture surface with press temperature are significant for the 

final board thickness. Of these variables, moisture surface, moisture core and the interaction 

of these two increased particleboard thickness (Figure 9.21). When these factors were 

identified, a regression model was developed using regression coefficients with respect to 

each process variable (Equation 9.7). 
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Figure 9.20: Pareto chart of standardized effects that affect particleboard thickness 
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Figure 9.21: Normal probability plot of the standardized effects that affect thickness of a 

particleboard 
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Thickness of the particleboard = 16.41 + 0.2075*A + 0.54*B - 0.2525*C - 0.19*D + 0.14*E 

- 0.75*F - 0.68*G + 0.305*A*B - 0.37*A*F - 0.195*A*G        Equation 9.7 

Where: 

A = Surface moisture content 

B = Core moisture content 

C = Surface resin load (with respect to dry residue wt) 

D = Core resin (with respect to dry residue wt) 

E = Hardener (core- with respect to resin load) 

F = Pressing time 

G = Press temperature  (Note: all the variables are in the coded units.) 

9.3.10 Significance of the developed model 

The ANOVA was calculated for the developed model to estimate its validity statistically. 

Table 9.9 shows that the model needs to consider all the main effects and three two-way 

interactions to predict the thickness successfully. In addition R2 and R2 adjusted were 

calculated to be over 97.6%. Therefore, this model should adequately predict the thickness of 

a board. 

  Table 9.9: Analysis of Variance for Thickness (coded units) 

Source DF SS MS F P 

Main Effects 7 23.7631 3.39473 62.87 0.001 

2-Way Interactions 3 4.2872 1.42907 26.46 0.004 

3-Way Interactions 1 0.2209 0.22090 4.09 0.113 

Residual Error 4 0.2160 0.05400   

Total 15 28.4872    

SS = Sum of Squares            MS = Mean square 

The usability of the model equation was tested using experimental data (Table 9.10). The data 

in Table 9.10 show that the model can predict the thickness of a particleboard with less than 

10% variation under the present working conditions. These data were plotted in Figure 9.22. 
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Table 9.10: Actual versus predicted thickness 

Board 

Number  

Actual 

Thickness 

Predicted 

Thickness 
Error (%) 

1 15.1 15.16 0.42 

2 14.8 14.59 -1.45 

3 15 13.77 -8.95 

4 14.7 14.07 -4.45 

5 14.5 14.83 2.20 

6 14.5 14.62 0.82 

7 14.8 14.41 -2.71 

8 14.7 14.72 0.16 

9 15.1 15.27 1.15 

10 15.2 14.72 -3.24 

11 14.9 14.28 -4.31 

12 14.9 15.04 0.91 

13 14.7 15.26 3.68 

14 14.7 15.37 4.38 

15 14.2 14.72 3.55 

16 14.9 13.92 -7.02 
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Figure 9.22: Actual thickness versus predicted thickness of a particleboard. 



Chapter 9   Development of composite process models to predict 

the vertical density profile (VDP) of a particleboard 

 

 203 

The ANOVA was calculated in each of the above calculations to predict density at different 

levels of the board or the thickness. Error terms existed in the ANOVA tables. However, the 

SS or MS of those error terms were negligible compared to the SS or MS of the main effects 

and interactions which were considered for model development. That suggests that the main 

effects and interactions which were considered for those models adequately explain the 

behaviour of the predicting variable with negligible error. 

9.4 Predicting the density profile by combining thickness and layer density 

Earlier sections explained how to develop process models to predict the density along the 

thickness of a particleboard. The density near the surface of the board could not be predicted 

very accurately compared to densities in the inner layers. That may possibly be due to the 

density near the surface being affected by external factors such as human error in handling the 

boards, experimental error such as over curing of resin during hot pressing, other than 

processing variables. Therefore, having a predicted VDP is important for quality control 

purposes when manufacturing boards. 
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Figure 9.23: Actual density against the predicted density for particleboard 1 
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The experimental results showed that the actual densities near the surface of the produced 

particleboards were in the range of 170 kg/m3 to 350 kg/m3. Therefore, the density near the 

surface for each predicted VDP was assumed to be 250kg/m3. This assumption was only 

required for the presentation of the predicted VDP in the above plots. Then the predicted 

density along the thickness was plotted against the thickness in Figure 9.23. 

Actual and Predicted Density Profiles for the Board 2
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Figure 9.24: Actual density against the predicted density for particleboard 2 

9.5 Summary and Conclusions  

This chapter discussed the formulation of process models to predict the density at different 

layers of a particleboard along the thickness direction as well as to predict the thickness of the 

same board. The aim of predicting the density at each layer and the thickness was to 

incorporate them to predict the VDP of a particleboard with respect to processing parameters. 

The consistency between actual VDP and model predicted VDP from several particleboards 

from different processing parameters validated the developed models. The results showed that 

these process models could predict the density with less than 15% variation along the 
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thickness. That accuracy increased to less than 10% variation, when predicting the density 

closer to the core of the board.  

Also, using these models it is possible to obtain better understanding of particleboard with 

respect to different process conditions. Therefore, they can be used to study the VDP of a 

particleboard, before producing it in the laboratory. By this means, a particleboard with a 

designed VDP could be produced. That will accelerate the experimental process to produce 

particleboards with optimised VDP. Hence, it will save time, material and labour required for 

experimentation. 

Most commercial production processes use VDP as a measure of quality control. This model 

therefore would be extremely valuable for the progress of the research to the next stage of 

commercialisation. 
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CHAPTER 10  

POSSIBLE APPLICATIONS OF HARDWOOD 

PARTICLEBOARD (Reference to AS/NZS: 1859) 

10.1 Introduction 

Using hardwood particleboard as structural or non-structural panels will be investigated in 

this chapter. As summarised in Chapter 8, particleboards that can be produced using sawmill 

residues have satisfied the strength requirements according to AS/NZS 1859(2004). However, 

AS/NZS (1859:2004) requires that in addition to strength properties, there are number of 

other physical properties that should be satisfied by the particleboard to be used as standard 

particleboard. These properties include surface soundness, surface water absorption and 

thickness swelling properties. This chapter investigates the thickness swelling property of 

particleboard as that has a significant effect on the stability of the particleboard as well as on 

the bond durability, as identified by the literature review (Chapter 2). As reported in Chapter 

2, irreversible thickness swelling is recognized as a problematic characteristic in particleboard 

as it occurs unevenly and is thus aesthetically unappealing. In addition, irreversible thickness 

swell normally happens close to the edges, which results in paint failure of the board on that 

spot.  Furthermore, Kelly et al (1977) showed that this swollen edge absorbs liquid or water to 

a greater degree, which in turn leads to panel decay.  

The particleboard industry uses the emulsion wax (0.5 – 1.0% of the oven dry wt of the wood) 

to improve the stability of the particleboard by improving short term moisture resistance 

(Wood Handbook 1999). A wax composition has water repellent and adhesive properties, is 

cheap and has wide application in the manufacture and treatment of particleboard and other 

cellulose materials (Free Patents Online 2007).  Therefore, the thickness swelling property 

was investigated for particleboard with and without wax. Also, the optimum amount of wax 

required to optimize the thickness swell property will be identified. 
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10.2 Materials and method 

Similar to the experiments performed and discussed in earlier chapters, the same hardwood 

sawmill residues and resin were used for this experiment. In addition, Technimul/VivaShield 

Emulsion: EXP 486 was used as the wax. A multivariate experimental design was developed 

using a full factorial design to make three-layer hardwood particleboards in the laboratory. 

Previously optimized processing parameters were used to prepare boards (Chapter 8). Resin 

load for surface and core layer were kept constant at 18% and 10% respectively. Surface and 

core moisture content were also maintained at 16% and 9%. Pressing time and press 

temperature were controlled to be 240 seconds and 195 0C respectively.  

10.2.1 Test Procedure 

Finished boards were then in a ventilated area for a week to remove formaldehyde. Then, all 

boards were trimmed to obtain 200 mm x 300 mm rectangles by trimming 50 mm wide strips 

along the edges. Two 300 mm x 75 mm specimens for wet bending strength testing and six       

50 mm x 50 mm specimens for thickness swelling testing were cut and prepared from each of 

the final boards. Then those specimens were stored in the humidifier for curing according to 

AS/NZS 4266.5 (2004) for at least 24 hours in a standard climate of 20 ± 2 ºC and relative 

humidity of 65 ± 5% before testing was performed. 

10.2.2 Thickness swelling   

This test was designed to provide information on the durability of the board after moisture 

penetration. Two types of swelling in thickness tests were measured according to AS/NZS 

4266.8(2004) after immersion in water. The first test was swelling in thickness, determined 

after complete immersion in water for one hour. The second test was thickness swelling 

determined after complete immersion for 24 hours. The swelling in thickness of each test 

piece (Gt), expressed as a percentage of the original thickness was calculated using Equation 

10.1 (AS/NZS 4266.8: 2004). 
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%100
1

12 x
t

tt
Gt

−
=         Equation 10.1  

Where: 

t1 = initial thickness of the test sample (mm) 

t2 = thickness of the sample after immersion (mm). 

10.2.3 Wet bending strength 

The method used complied with AS/NZS 4266.10(2004). Test pieces were immersed in a hot 

water bath at a temperature of 70 ± 3 ºC for 2 hours and then tested for their wet bending 

strength (fmax) within 15 minutes. However, once they were removed from the water bath, 

they were left for a few minutes to drain off excess water before testing for fmax. Then, the 

three-point bending test was performed using the Instron Universal testing machine and fmax 

was calculated for each test piece using equation 10.2. 

2

1
max

2

3

bt

Fl
f =          Equation 10.2 

Where 

F = maximum flexure load (N) 

b = test sample before immersion (mm) 

t = test sample thickness before immersion (mm) 

l1 = span between support (mm) 

10.3 Results and discussion 

Tests results obtained from the 1 hour and 24 hours thickness tests and the 2 hour wet bending 

strength test are presented in Table 10.1. These tests were designed to provide information on 

the durability of the board after moisture penetration.  
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Table 10.1:  Results obtained from thickness swell tests and wet bending test 

Sample 

Number 

Wax 

Surface 

Wax 

Core 

1hr Thickness 

swell (%) 

24 hr Thickness 

Swell (%) 

Wet bending 

strength (MPa) 

1 0.5 0.4 1.06 3.93 4.38 

2 0.0 0.0 4.66 11.95 2.20 

3 1.0 0.0 1.76 16.15 2.67 

4 1.0 0.8 3.20 21.58 1.30 

5 0.0 0.8 2.34 12.32 1.26 

AS/NZS 1859:2004 requirements < 12 < 20 > 4.5 
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Figure 10.1: Contour plot of 1 hr thickness swell Vs Wax surface and Wax core 

According to AS/NZS 1859(2004), general purpose particleboard should meet thickness 

swelling requirements in addition to flexural strengths (modulus of rupture (MOR > 12 MPa) 

and internal bond strength (IB > 300 KPa)). The MOR and IB values already complied with 

AS/NZS standards and the results were presented in Chapters 7 and 8. As seen in Table 10.1, 

all the 5 boards have 1 hour thickness swelling values less than 12 % as required by AS/NZS 

1859.1(2004). 
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Figure 10.2: Contour plot of 24 hr thickness swell Vs Wax surface and Wax core 
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Figure 10.3: Contour plot of 2 hr wet bending strength Vs Wax surface and Wax core 

In addition, results show that with the exception of board 4 these particleboards meet the 

AS/NZS 1859.1(2004) requirements for 24 hour thickness swell tests.  Hence, it may be 
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concluded that hardwood particleboard meets the AS/NZS 1859 requirements for standard 

general purpose particleboard that can be used for interior furniture. 

Figures 10.1 and 10.2 explain the relationship between thickness swell with respect to wax 

surface and wax core. The best resistance to moisture can be attained when both surface and 

core wax are in the range of 0.35 % – 0.555%. That is at the middle of the contour plot (dark 

blue area). The addition of excessive wax does not increase the resistance to thickness 

swelling for hardwood particleboard. Suchsland and Woodson (1986) also indicated that the 

wax content for commercial fibreboard does not exceed 0.5% of fibre oven dry weight. The 

Wood Handbook (1999) confirms that the most appropriate amount of wax in a particleboard 

should be maintained between 0.5 percent to 1 percent of the oven dry weight of the wood 

particle. Wax has been used in the particleboard and panel industry for years to reduce 

capillary suction of inter-fibre voids. This reduces water absorption and thickness swell. 

However, Albercht (1968) indicated that an increase in the wax content beyond 1% would 

provide marginal improvement in the water resistance of particleboard.  

In addition to testing the durability of hardwood particleboard for general purposes, tests were 

conducted for moisture resistance for applications such as furniture and cabinets for bathroom 

and kitchen areas which encounter occasional wetting. Figure 3 shows the behaviour of the 

bending strength of hardwood particleboard with respect to surface and core wax, in hot and 

wet conditions. The best results could be obtained at 0.2 – 0.5% core wax with 0.4 – 0.6% 

surface wax which is almost similar to the thickness swelling property. 

However, the wet bending strength required little improvement to meet the AS/NZS 1859 

requirement for moisture-resistant general purpose particleboard (Table 10.1). The wet 

bending results may be expected as the amino-methylene linkage in the UF resin is highly 

susceptible to hydrolysis. Therefore, bond lines are not stable at higher relative humidity, 

especially at elevated temperature (Dunkey 1998). Further, Dunkey (1998) indicated that the 

incorporation of melamine and sometimes phenol improves the low resistance of UF bonds to 

the influence of humidity, water and weather. However, the cost of melamine resin is much 

higher than UF and therefore UF is the more popular resin in the particleboard industry for 

manufacturing standard grade particleboard. However, it is recommended to investigate 

superior resins such as melamine resin for manufacturing particleboards using hardwood 

sawmill residues to further improve moisture resistance. 
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10.4 Summary and Conclusions 

This chapter presented an investigation into the dimensional stability of particleboard for 

relevant applications. 

According to AS/NZS 1859, the durability of the final product is mainly governed by its 

ability to resist different humidity moisture conditions. Therefore, hardwood particleboards 

were tested for thickness swelling after immersion in water for 1 hour and 24 hours. In 

addition, they were tested for wet bending after immersion in a hot water bath at temperature 

of 70 0C for 2 hours. 

Both 1hr and 24 hour thickness swell test results satisfied AS/NZS 1859 (2004) for standard 

general purpose particleboard suitable for the manufacture of interior furniture and shelves. 

However, the wet bending test results indicated that the hardwood particleboard needs further 

improvement for use as moisture-resistant general purpose panels generally used in occasional 

wet areas such as bathrooms or kitchens. That improvement may be achieved by the use of 

melamine resin or phenol resin instead of UF resin, as UF resin generally is not suitable for 

higher moisture conditions especially at elevated temperatures. 
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CHAPTER 11  

CONCLUSIONS AND RECOMMENDATIONS 

11.1 Conclusions 

A considerable quantity of hardwood sawmill residues are produced annually in Australia. 

These residues are typically considered as solid wastes. Hardwood sawmill residue as 

particleboard raw material has neither been investigated nor reported earlier. The possibility 

of particleboard production using hardwood sawmill residue was investigated in this study. A 

series of experiments was carried out in this study to investigate important parameters for the 

properties of both single-layer and three-layer particleboards manufactured using hardwood 

sawmill-residues. Further, process models were developed and validated to predict MOR, 

MOE and the formation of VDP of three-layer particleboards manufactured using hardwood 

sawmill residues. This chapter presents a consolidated body of knowledge developed through 

the work presented in Chapters 1 to 10.  

Hardwood sawmill residue required for this investigation was supplied by Dormit Proprietary 

Limited (Hardwood Saw miller), from their sawmill located in Dandenong, Victoria, 

Australia. The Orica Proprietary Limited provided the urea formaldehyde (E1) resin for this 

study from their chemical division located at Deer Park, Victoria, Australia. 

11.2 Conclusions of the literature review 

• MOR, MOE and IB are the main strength properties which need to be achieved to 

satisfy industry standards for use as general purpose (softwood) particleboard. MOE 

and MOR of a particleboard are mainly dependent on its surface layer whereas IB is 

dependent on the core layer of a three-layer particleboard.  

• Both MOR and MOE of a particleboard can be improved by increasing the 

compaction ratio as well as by increasing the length/thickness ratio for the same wood 

species. The MOR and MOE of a particleboard with the same mean density increase 

with the decrease in the density of the wood species.  
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• IB is a very important property in a particleboard that is highly dependent on the glue 

line strengths. IB reduces with the reduction in core density since the compaction ratio 

is low. IB can be improved by adding extra resin into the core.  

• Board stability is dependent on properties such as thickness swelling or spring-back. 

Increasing the resin content in a particleboard reduces thickness swelling as well as 

spring-back, although high moisture content does the opposite. Additives such as 

paraffin wax are added to the particleboard to reduce water adsorption in order to 

reduce thickness swell.  

• The VDP of a particleboard forms during production due to the interaction of heat and 

mass transfer with rheological properties of furnish and resin. The shape of the VDP 

of a particleboard is important as the MOE and MOR of a particleboard are dependent 

on the surface layers of the particleboard, while IB is dependent on the core. 

11.3 Establishment of a method of making particleboards in the laboratory 

• Chapter 4 explained the methods used in this study to prepare particleboards in the 

RMIT laboratory. Equipment needed to manufacture particleboards in the laboratory 

was designed and manufactured or modified. The study showed that three-layer 

particleboards should be cold pressed before hot pressing to achieve improved strength 

properties. Cold pressing equipment was developed during this study. Using the cold 

press, particleboard properties were improved significantly. Using a cold press 

compacts the wood mat to a certain thickness before hot-pressing and minimises the 

overcooking of the surface layer during hot-pressing. 

• Tools and parts required to hold test samples before testing for (a) MOR and MOE (b) 

IB were designed according to AS/NZS 4266(2004) and manufactured at RMIT 

workshops for testing particleboard samples for this study. 

11.4 Method of experimental design for product development 

Design of experiments (DOE) using partial factorial design was identified as the ideal tool to 

organize experiments with multiple variables applicable to this investigation. Chapter 5 
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explained the selected tools and techniques used in analysing experimental data. The most 

important tools discussed were 

• 2k fractional factorial design and how it can be used to collect data and analysis for 

experiments with multiple variables. 

• ANOVA to identify the most important parameters. 

• regression models to predict important particleboard properties with respect to process 

variables using regression analysis. 

11.5 Identification of significant parameters for single-layer and three-layer 

particleboards 

Chapters 6 and 7 investigated the relationships between single-layer and three-layer 

particleboard properties with respect to their processing variables. It was found that the 

moisture content was very significant on both MOE and MOR of hardwood single-layer 

particleboard. However, using high moisture resulted in spring-back in almost all the single-

layer particleboards.  Also, resin load and pressing time improved the MOE of single-layer 

particleboard. 

From the studies on three-layer particleboard, the following conclusions were drawn. 

• Moisture is a critical variable that needs to be controlled carefully in three-layer 

particleboards to achieve better compaction as well as to transfer heat and mass to the 

core of the board during hot pressing. Moisture as an individual variable has a 

negative effect on the rigidity of the board (MOE) as well as IB. However, the 

interaction of surface moisture with press temperature increased board flexural 

strengths (MOE and MOR).  

• Hardener has a negative impact on the properties of hardwood three-layer 

particleboards. Hardener may not be required for this product as the hardwood 

residues used in this study were found to be inherently acidic.  
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• Resin surface and pressing time significantly influence both mechanical and physical 

properties of hardwood particleboard. Hardwood particleboard has better mechanical 

and physical properties when the surface resin content and pressing time are higher. 

• Although the pressing time and pressing temperature significantly reduced the 

thickness swell, moisture core increased it drastically. Pressing temperature 

significantly affected MOR, MOE and the thickness but it had only a small effect on 

the other properties. Although resin core significantly increased both IB and MOR of 

the board, resin surface was more important for all the properties tested. Therefore, 

resin core was reduced significantly without compromising IB or MOR while keeping 

the resin surface at a higher value. 

• Density profile alone cannot predict the board’s mechanical properties. Inter-particle 

bonding has a significant influence on strength properties. However, results showed 

that particleboards with a surface density of 900 kg/m3 and core density > 600 kg/m3 

produce MOE and MOR which satisfy the AS/NZS 1859 (2004) standards for general 

purpose particleboard. 

11.6 Process modelling of particleboard properties 

Chapter 8 discussed the modelling of the MOR and MOE of hardwood particleboards with 

respect to their processing parameters and important interactions of those variables. It was 

concluded that the MOE and MOR of a particleboard can be predicted successfully using 

processing variables and interactions. The developed MOR and MOE model successfully 

predicted the MOR or MOE of a board with more than 90% accuracy in the designed 

parameter range. Also, these models can be used to optimise the MOR and MOE of 

particleboard with respect to processing parameters. 

11.7 Predicting the VDP of a hardwood particleboard  

Chapter 9 reported the formulation of process models to predict the density at different layers 

of a particleboard along the thickness direction as well as to predict the thickness of the same 

board. The aim was to predict the density at each layer and the thickness of the same layer 
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with respect to processing parameters. Then, these densities with respect to thicknesses were 

incorporated to predict the final VDP of the particleboard. 

The consistency between actual VDP and model predicted VDP from several particleboards 

from different processing parameters was observed. The density of a particleboard could be 

predicted with less than 10% variation of the density closer to the board surfaces. The inner 

densities were also predicted with less than 15% variation. The VDP models can be used to 

predict the VDP of particleboard if the processing variables are known. Commercial 

particleboard producers use VDP as a benchmark for quality control purposes. Therefore, 

predicting VDP would accelerate the experimental process to produce particleboards with 

optimised VDP, as VDP can be used as a benchmark to compare board qualities.  

11.8 Durability of hardwood particleboards and their applications  

According to AS/NZS 1859 (2004), the durability of the final product is mainly governed by 

its ability to resist different humidity conditions and moisture conditions. Chapter 10 reported 

on the investigation of hardwood particleboards for thickness-swelling after immersion in 

water for 1 hour and 24 hours. In addition, they were tested for wet bending after immersion 

in a hot water bath at a temperature of 70 0C for 2 hours. Only the 1hour and 24 hour 

thickness swell test results satisfied AS/NZS 1859 (2004). Therefore, these particleboards can 

be used as standard general-purpose particleboard suitable for the manufacture of interior 

furniture and shelves. 

11.9 Recommendations for future research 

• In this investigation, particleboard production using 100% hardwood sawmill residues 

was studied. Results showed that density of this particleboard was marginally higher 

than the density of conventional softwood particleboard and higher amounts of resin 

and moisture are needed for the surface layer to achieve the same strength properties 

as softwood particleboard. Therefore, further investigation on the possibilities of 

reducing particleboard density without compromising their strength properties is 

recommended.  
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• The flexural strength of three-layer particleboard is mainly dependent on the surface 

layer of the board. Mixing hardwood with softwood flakes, at least for the surface 

layer, is recommended for future studies, in order to examine the possibility of 

maintaining higher flexural strength as well as reducing the particleboard density and 

surface moisture and resin. 

• Urea formaldehyde was the only resin used in this study due to its basic properties as 

well as the cost concerns. However, the use of superior resins such as melamine-urea 

formaldehyde resin or MDI resin may reduce the amount of resin required for the 

surface layer to produce particleboard with the same properties. According to the 

literature review, these superior resins may improve the moisture resistance of 

particleboard and therefore should be explored in future studies. Using melamine-urea 

formaldehyde resin may improve water resistance and the amount of formaldehyde 

emission of the end product may be reduced. 

• Investigation into the efficiency of resin is essential in a future study as this product 

used higher amounts of resin compared to conversational softwood particleboard. A 

microscopic investigation of the final board product using UV-microscopes is 

recommended to investigate the penetration of resin into the wood for the 

understanding of the mechanism of glue line bonds between particles. That will help 

to improve resin efficiency when using hardwood sawmill residue in the production of 

particleboards. Such a study may also be useful to improve the particleboard 

production process, reduce pressing time or reduce the usage of resin. Resin consumed 

and pressing time directly control the production cost of the final product. 

• Resin efficiency with the nozzle size of the spray gun should be studied as smaller 

droplet size may improve resin efficiency. 

• It was found that hardwood residue is inherently acidic and conventional catalysts 

such as NH4Cl are not necessary. Therefore, a suitable type of hardener should be 

investigated in a future study to accelerate resin curing in the core compared to the 

surface resin. Using an alkaline such as NH4OH or NaOH for the surface layer instead 

of an acid for the core layer should be investigated as hardwood residue is inherently 

acidic. 
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• While the structural properties assessed in this thesis, namely MOR, MOE and IB are 

adequate, one of the main applications of particleboards is flooring. In this application 

the board could be in direct compression. Therefore, it would be desirable to assess the 

compressive strength of the new board for completeness. ASTMD 1037-93 (standard 

method of evaluating the properties of wood-based fibre and particleboard panel 

materials) provides a method for assessing the compressive strength. 
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APPENDIX A 

Product Information sheet for UF resin  

Orica Adhesives & Resins 

 Gate 3 Ballarat Road Deer Park 3023 

 Tel: 03 9217 8195  Fax: 03 9217 6845 

 Emergency: 1800 033 111 (All Hours) 

PRODUCT INFORMATION SHEET 

 

1. PRODUCT TYPE 

 

Urea Formaldehyde (UF) liquid resin. 

 

Safety information for this product is available on the Materials Safety Data Sheet, Substance 

Key 000030727965. 

 

2. PRODUCT SPECIFICATIONS 

 

PROPERTY 

 

SPECIFICATION RANGE TEST METHOD 

Viscosity(cPs @ 25°C) 115 - 220 TECH-WI-351 

Solids( % ) 63.1 - 64.9 TECH-WI-352 

pH(25°C) 7.9 - 9.1 TECH-WI-353 

Gelation Time(sec) 50 - 80 TECH-WI-339 

 

3. TYPICAL PROPERTIES 

 

PROPERTY TYPICAL VALUE  TEST METHOD 

SG(25°C) 1.276 TECH-WI-364 Water Dilutability(25°C) 250% TECH-WI-355 
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 For additional Technical Information contact Orica Adhesives Technical Centre.  "All 

information and any advice given by Orica is as up-to-date and accurate as possible.  Orica 

accepts no liability resulting from reliance upon same and gives no warranties other than 

those imposed minatorily by law". 

 

PRODUCT INFORMATION SHEET 

 

4. APPLICATION 

 

The urea formaldehyde resin is formulated for use in the manufacture of standard grade 

particleboard.  It is suitable as both a surface and core resin and has been designed to meet the 

E1 formaldehyde emission standard as defined in AS/NZS 1859.1:1997. 

 

5. PRODUCT STORAGE 

 

The useable life of formaldehyde based resins will be affected by the storage temperature.   

 

The effect of storage temperature on the resin properties is shown in the attached graph of 

viscosity versus time. 

 

Depending on the storage temperature this resin should be used within the times shown 

below: 

 

Storage  Temperature  

1 week  35°C 

3 weeks 25°C 

5 weeks 15°C 
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APPENDIX B  

SPREAD SHEET USED FOR CALCULATING MIX 

PROPORTIONATES 
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RunOrder 16

Pressing Time Press TemperatureMoisture CoreResin Core Hardener CoreMoisture SurfaceResin Surface

120 150 15 5 3 22 20

Grand Total

Board Properties
Target density 710.00

Matt area 400*300 120000

Thickness 15.20

Volume 1824000 cubic mm

Total Wt 1295.04 g

Core Wt 777.02 g 60%

Cum surface layer Wt 518.02 g 40%

One surface Layer Wt 259.01

Variables

Material Properties % Solids density

Wood chips (oven dried) 100.00 Moisture content

Resin 63.10 Resin Loading

Hardner 25.00 Hardner Loading

Layer Properties Surface Core

Gross moisture content (MC) 22.00 15.00

Resin loading (%from dry board wt) (RC) 20.00 5.00 Resin solid wt / Dry wood residue

Hardner loading (%on resin solids) (HC) 0.00 3.00

Calculation for Surface after press add 15%for wastage35%Multch 65%Fine

Water (g) Dry wt (g) Gross wt (g)Measure Wt

Wood residue 0.00 431.68 431.68 496.43 173.75 322.68

Resin 50.49 86.34 136.82 157.35

Hardner 0.00 0.00 0.00 0.00

Water (added) 63.48 0.00 63.48 73.00

Total wt 113.96 518.02 631.98 726.78

Calculation for the Core

after press add 10%for wastage45%Multch 55%Fine

Water (g) Dry wt (g) Gross wt (g)Measure Wt

Wood residue 0.00 738.97 738.97 812.86 365.79 447.08

Resin 21.61 36.95 58.56 64.41

Hardner 3.33 1.11 4.43 4.88

Water (added) 91.62 91.62 100.78

Total wt 116.55 777.02 893.58 982.94

Important For Calculations
.631Wr+Wo = Dry board Wt Wh/Wr = 0.08

.389Wr + Wwa = Weight of Water Wr/Wo = 0.08

Wt of water/ Wt of solid = MC

0.611Wr/Wo = RC Wo = 738.97

Wr - Wt of resin Wr = 58.56

Wo - Wt dry wood residue Wh = 4.43

Wwa - Wt of water added
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Note: 

Wr = Dry weight of resin 

Wo = Dry weight of wood residue 

RC = Resin content (as a percentage of dry weight of wood residue) 

Wwa = Extra water need to be added into the mix 

Wh = Weight of hardener
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APPENDIX C 

Density profile data used for developing VDP 

 
Displa- 

cement ST1R ST2R ST3R ST4R ST5R ST6R ST7R ST8R ST9R ST10R ST11R ST12R ST13R ST14R ST15R ST16R 

0.00 276.06 226.65 186.69 188.19 212.13 253.81 182.59 219.72 236.05 252.79 254.87 254.11 251.49 232.20 210.59 179.20 

0.10 521.24 427.48 401.41 332.54 564.41 479.84 280.02 341.59 399.74 497.88 663.30 365.72 304.00 488.84 512.44 452.86 

0.20 627.68 665.05 613.17 493.59 787.51 658.79 361.91 456.13 564.25 727.12 795.62 488.80 425.89 626.49 641.49 649.30 

0.30 689.95 772.05 753.49 599.58 914.94 758.28 436.07 600.15 635.87 808.26 872.47 580.07 536.81 651.43 641.39 745.27 

0.40 749.73 819.36 793.58 668.61 954.88 763.69 493.44 683.30 658.68 859.19 924.78 678.30 654.89 681.15 668.27 828.54 

0.50 761.56 839.61 829.47 720.90 994.83 752.81 573.54 791.69 662.01 887.59 956.14 747.98 707.07 679.12 708.65 878.46 

0.60 800.32 869.73 860.84 737.88 1018.85 793.97 663.01 830.46 680.12 916.39 933.12 829.79 742.83 694.55 730.60 897.67 

0.70 832.81 896.16 892.82 762.05 1026.93 803.24 689.43 859.83 698.80 925.14 975.03 888.62 765.86 733.07 721.61 928.73 

0.80 843.86 897.48 907.99 777.53 1034.74 794.30 738.17 856.85 696.88 915.81 999.61 950.61 765.51 720.29 717.53 944.65 

0.90 868.90 936.75 923.30 811.91 1078.43 834.06 743.59 883.69 716.63 916.13 1006.22 954.68 786.57 744.23 741.57 942.12 

1.00 878.52 925.45 934.04 812.06 1046.74 847.30 773.44 900.45 753.00 892.77 986.80 985.01 791.70 753.89 763.87 939.98 

1.10 850.84 940.73 941.34 841.60 1049.05 865.18 794.98 896.83 770.22 916.05 1020.68 944.41 805.75 763.50 749.47 927.77 

1.20 869.29 938.93 955.77 843.17 1048.01 864.34 822.25 885.01 738.62 909.28 1005.40 969.66 821.42 750.14 779.09 928.93 

1.30 841.89 946.11 957.20 870.04 1030.68 870.10 809.95 912.41 732.83 867.30 1032.81 964.54 809.50 783.50 778.69 903.40 

1.40 857.54 935.93 954.98 851.59 1028.84 872.47 811.54 887.63 780.76 866.37 1031.91 961.86 835.92 774.59 791.51 921.44 

1.50 834.78 938.77 966.25 859.26 1004.49 877.62 839.20 912.99 779.25 848.41 1035.69 924.36 821.14 753.44 778.87 876.61 

1.60 841.09 938.34 931.80 880.52 1023.60 885.03 840.83 907.80 787.62 850.79 1032.93 917.75 848.83 786.06 800.13 857.36 

1.70 805.08 941.62 944.07 883.71 1027.20 890.39 835.33 896.66 798.90 824.89 1012.02 900.54 855.80 775.15 794.15 839.67 

1.80 798.68 966.56 940.31 891.51 994.78 882.45 851.50 924.27 809.41 822.14 1008.91 890.97 833.86 793.39 815.18 827.12 

1.90 770.98 973.62 926.83 901.10 987.23 910.14 857.81 883.60 816.26 839.21 1020.08 869.72 831.55 786.82 784.35 812.14 

2.00 748.28 963.89 937.17 893.99 987.63 900.17 854.89 918.48 825.23 823.56 989.48 829.78 844.20 801.79 790.78 768.73 

2.10 713.26 944.13 921.69 906.36 971.36 888.80 865.11 882.33 851.42 811.13 995.02 799.60 855.86 824.16 762.68 748.19 

2.20 682.12 959.14 899.56 915.97 967.70 876.82 844.90 890.10 828.12 808.00 988.26 804.75 844.87 804.31 774.66 725.22 
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Displa- 

cement ST1R ST2R ST3R ST4R ST5R ST6R ST7R ST8R ST9R ST10R ST11R ST12R ST13R ST14R ST15R ST16R 

2.30 688.34 952.21 885.22 901.55 961.87 876.36 840.05 881.91 823.76 784.02 970.69 763.40 848.38 792.26 770.73 717.60 

2.40 653.83 955.62 870.03 918.47 937.05 869.58 828.87 900.26 822.22 801.31 972.73 728.16 844.98 784.44 792.31 682.03 

2.50 652.51 974.57 861.80 912.02 927.42 890.46 824.55 856.15 840.64 744.22 962.46 711.51 831.38 779.52 767.82 675.90 

2.60 611.28 947.18 848.67 892.87 950.26 890.73 815.35 846.48 800.77 770.14 969.50 697.89 818.06 773.32 782.40 655.98 

2.70 618.69 918.07 866.13 884.20 929.93 871.62 816.60 832.00 803.60 763.82 945.13 680.99 828.17 788.59 766.50 635.50 

2.80 599.38 887.84 872.28 879.29 919.85 854.29 768.64 826.28 794.19 758.07 953.85 650.80 830.15 753.04 754.62 620.03 

2.90 588.53 874.73 837.32 871.55 921.00 816.56 768.13 797.83 792.84 768.55 904.21 659.20 817.93 735.10 784.59 624.44 

3.00 574.92 849.45 833.42 870.01 915.74 847.96 740.90 798.76 761.59 764.90 901.86 632.72 804.08 751.17 751.23 594.94 

3.10 560.18 850.11 829.10 867.00 908.19 820.21 765.42 781.13 757.32 779.41 912.66 587.77 812.58 738.30 732.16 598.94 

3.20 557.63 829.38 820.05 818.07 892.13 796.51 752.59 761.16 748.34 764.21 891.02 602.80 794.04 692.38 754.15 567.75 

3.30 522.76 824.85 818.93 824.15 879.15 791.55 711.30 756.01 735.35 728.65 868.96 570.73 769.06 722.72 766.00 540.13 

3.40 540.43 819.28 802.94 814.93 863.78 800.00 692.14 758.54 748.64 726.64 855.11 575.09 775.67 690.29 737.48 519.67 

3.50 549.65 805.20 800.79 828.65 851.25 778.47 679.32 733.22 691.12 710.60 859.90 582.07 765.60 704.78 754.33 516.71 

3.60 531.32 787.94 784.08 767.05 853.54 759.09 639.30 736.37 683.97 714.04 829.37 584.56 775.38 680.31 745.33 487.88 

3.70 535.11 797.05 779.05 787.87 817.47 780.81 662.59 737.61 695.60 733.96 830.82 587.12 739.92 695.74 738.99 467.11 

3.80 519.91 771.66 778.39 766.63 812.89 757.29 633.87 715.96 671.30 704.05 786.26 580.19 746.89 669.53 709.05 495.26 

3.90 521.38 773.77 772.89 758.87 777.10 775.53 586.63 694.48 674.10 711.56 790.97 587.33 757.18 675.17 702.74 480.44 

4.00 509.07 771.23 772.53 743.81 767.52 772.60 603.29 715.58 677.12 664.10 780.22 596.74 729.56 649.88 679.54 461.25 

4.10 500.42 764.22 767.25 710.13 769.48 792.16 610.38 697.10 696.21 699.93 783.12 570.36 745.13 647.68 652.13 475.11 

4.20 522.87 760.64 752.60 700.08 780.02 762.40 586.19 706.74 665.49 675.81 745.81 586.02 750.87 633.46 641.13 443.19 

4.30 495.68 737.69 756.54 726.11 742.05 779.77 579.93 700.60 667.34 672.64 753.40 592.38 748.73 636.44 647.79 453.03 

4.40 508.24 722.65 737.29 693.90 736.34 736.97 553.41 688.78 647.83 654.30 759.15 595.44 758.86 634.36 619.87 458.06 

4.50 515.71 731.41 732.36 722.64 735.96 714.92 587.25 653.41 645.96 626.14 757.03 620.17 728.48 619.71 620.01 447.98 

4.60 500.42 728.01 724.40 706.71 697.47 737.45 579.05 669.55 652.03 651.94 740.67 604.26 750.15 606.51 598.76 439.58 

4.70 502.54 751.57 720.16 720.92 707.70 732.00 551.73 659.67 642.14 652.80 737.25 588.94 723.04 597.59 608.97 432.65 

4.80 485.13 737.22 718.71 720.63 720.03 718.56 569.29 649.14 659.33 650.26 732.68 612.43 742.73 612.48 600.04 455.60 

4.90 481.38 724.45 716.00 717.46 708.89 730.04 569.50 648.54 630.29 634.83 726.33 615.64 720.87 585.60 576.51 482.00 

5.00 482.98 730.75 704.59 722.47 712.87 742.77 571.29 638.02 638.01 635.68 727.89 597.10 739.95 597.59 596.97 449.41 

5.10 488.40 731.62 713.59 705.66 719.64 721.76 562.70 669.96 615.15 635.73 718.52 604.15 729.22 599.44 580.45 454.62 

5.20 493.51 720.18 702.82 711.06 699.01 718.53 569.55 643.39 625.56 617.06 730.33 605.25 716.81 590.51 582.75 443.42 

5.30 494.97 708.68 722.63 694.70 686.16 717.77 585.38 650.54 617.92 623.57 707.19 602.98 734.71 595.55 582.63 454.30 

5.40 501.64 727.12 710.61 695.64 697.44 711.06 582.76 627.65 632.37 581.24 724.83 613.75 709.10 588.75 595.17 460.67 
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Displa- 

cement ST1R ST2R ST3R ST4R ST5R ST6R ST7R ST8R ST9R ST10R ST11R ST12R ST13R ST14R ST15R ST16R 

5.50 488.60 727.04 701.96 717.02 718.82 711.89 580.28 638.08 617.29 623.42 711.79 612.62 751.74 589.53 573.92 471.72 

5.60 504.92 697.23 687.52 691.15 676.34 725.66 609.85 635.98 633.18 598.93 708.66 607.09 745.50 576.92 571.09 470.40 

5.70 480.86 687.91 707.49 678.82 701.52 701.00 588.36 622.75 603.45 604.23 703.00 600.22 728.70 570.26 568.74 463.35 

5.80 500.92 692.33 680.31 697.93 703.69 719.16 587.42 618.55 626.69 610.37 717.95 590.82 730.71 562.60 579.20 465.14 

5.90 476.65 718.24 720.19 690.71 689.66 726.25 585.60 625.47 603.45 590.12 681.96 615.65 744.49 591.03 558.30 447.99 

6.00 509.54 689.77 691.26 716.58 702.82 693.77 597.41 614.76 623.67 589.73 705.46 584.13 710.46 598.30 570.60 467.19 

6.10 452.65 701.03 693.85 705.54 681.85 708.58 588.71 615.35 651.55 583.58 694.02 582.67 705.93 578.32 595.45 454.39 

6.20 491.85 680.38 692.57 687.30 666.17 718.68 596.92 582.07 613.44 582.90 671.54 569.39 712.27 598.62 584.81 459.96 

6.30 498.25 670.01 682.53 688.20 660.66 699.74 592.03 623.14 611.48 579.19 689.74 580.68 702.61 596.76 583.66 461.49 

6.40 498.87 673.09 698.90 681.57 654.88 716.54 577.25 640.39 593.43 575.75 669.61 580.33 698.43 590.26 568.80 470.97 

6.50 514.46 679.57 690.17 681.09 657.63 688.95 608.64 622.60 613.05 572.43 657.42 572.03 712.94 599.71 575.78 476.49 

6.60 510.10 669.31 681.32 679.30 643.29 705.39 579.34 625.23 601.30 569.90 659.81 579.54 710.78 593.71 575.91 463.03 

6.70 525.26 663.70 670.50 660.18 675.17 691.88 589.44 640.92 600.57 555.83 646.94 575.53 702.22 583.39 567.43 464.49 

6.80 494.39 672.37 681.94 670.19 649.00 724.39 568.15 641.56 601.95 545.06 683.17 542.75 690.23 596.06 573.55 468.69 

6.90 501.74 667.50 705.08 658.44 636.58 693.38 593.15 618.31 603.24 578.12 666.81 557.27 725.16 587.57 563.21 467.14 

7.00 499.70 669.39 698.43 659.08 658.16 707.48 575.54 632.93 584.31 551.49 685.27 549.69 710.15 604.52 589.32 449.72 

7.10 496.22 658.60 693.01 671.87 672.36 645.25 558.56 637.87 588.14 557.10 684.80 534.64 717.31 615.74 607.19 453.31 

7.20 479.14 648.37 667.23 670.49 650.86 668.96 563.10 631.61 625.04 562.51 697.77 531.87 694.54 609.97 574.90 453.28 

7.30 488.87 669.85 672.07 674.95 650.59 670.49 572.20 638.12 606.26 593.67 696.83 525.18 702.37 615.66 583.53 463.11 

7.40 486.34 688.45 697.60 680.13 670.18 672.87 577.04 634.88 616.35 546.64 687.21 513.17 706.69 616.14 583.35 469.72 

7.50 482.32 683.71 696.75 665.20 670.58 697.70 594.56 609.44 600.63 554.43 680.52 514.35 711.71 628.47 564.19 463.68 

7.60 509.72 674.96 676.80 652.28 688.41 691.05 581.93 622.75 610.67 570.50 661.47 516.96 707.65 597.69 575.25 457.42 

7.70 500.11 693.33 681.76 650.10 688.16 707.82 589.54 619.49 606.85 547.91 672.02 514.57 698.06 605.44 569.58 448.67 

7.80 503.56 678.03 669.90 670.80 668.87 667.90 550.04 603.80 596.31 549.06 673.07 522.27 701.26 579.89 542.29 451.32 

7.90 476.31 682.86 685.27 655.93 667.27 700.42 575.32 637.91 601.42 548.06 656.12 497.10 689.51 591.08 559.01 420.57 

8.00 500.05 659.38 661.80 645.60 664.01 681.92 588.60 613.17 583.32 531.74 691.36 485.10 668.12 583.32 555.39 445.88 

8.10 493.75 675.75 682.72 661.75 658.28 690.01 562.55 621.24 583.01 539.04 683.20 489.89 680.63 592.94 539.19 464.66 

8.20 498.41 669.52 680.59 679.11 681.80 691.09 569.32 645.04 574.87 537.11 666.72 474.23 693.11 575.71 537.26 456.67 

8.30 521.12 692.19 679.16 641.58 650.65 703.24 555.47 635.79 586.36 538.18 660.38 488.56 700.36 593.46 545.04 458.82 

8.40 520.05 666.89 663.17 634.02 672.69 671.64 556.50 634.56 563.10 510.70 667.71 481.10 683.98 610.25 548.84 466.25 

8.50 516.21 676.91 668.59 644.28 657.42 680.55 575.30 631.72 585.60 550.41 669.13 516.07 685.55 596.86 548.59 460.59 

8.60 499.56 668.84 664.54 647.11 667.19 680.82 569.17 615.57 556.62 558.17 666.34 514.34 708.99 617.05 556.61 484.83 



 

 249 

Displa- 

cement ST1R ST2R ST3R ST4R ST5R ST6R ST7R ST8R ST9R ST10R ST11R ST12R ST13R ST14R ST15R ST16R 

8.70 515.58 688.51 658.53 623.19 651.20 680.81 552.37 615.76 553.94 566.25 678.73 525.40 719.12 593.09 531.70 458.34 

8.80 481.66 692.51 677.80 651.57 672.68 680.29 574.91 613.31 555.33 558.64 665.34 536.26 744.42 603.87 546.41 461.16 

8.90 491.27 675.18 662.94 657.09 664.11 671.42 564.57 606.73 582.47 572.70 684.32 534.59 703.63 610.75 527.81 437.23 

9.00 513.05 689.04 667.55 637.65 669.82 689.29 588.34 618.30 568.35 554.77 690.08 536.63 723.89 621.84 519.36 457.12 

9.10 475.02 685.02 660.63 652.94 682.19 688.41 565.82 614.92 575.28 531.86 700.88 540.79 726.32 604.04 543.09 437.83 

9.20 500.77 677.01 665.12 646.46 676.96 694.36 580.29 610.13 582.87 541.97 721.37 550.96 745.71 605.77 527.88 441.48 

9.30 459.57 699.48 683.01 659.51 688.91 704.10 592.06 600.65 568.68 563.42 694.02 524.98 720.60 632.37 537.09 485.58 

9.40 483.20 690.91 686.06 649.69 677.55 722.75 570.67 594.84 580.28 536.91 715.33 527.04 730.54 585.09 563.33 491.64 

9.50 483.91 660.96 653.59 642.94 696.60 725.33 577.30 631.50 583.78 561.87 726.67 496.33 751.65 584.69 586.76 458.34 

9.60 488.81 680.20 694.07 642.70 698.97 714.47 583.58 618.87 590.47 536.65 730.41 539.56 721.95 604.30 554.68 487.89 

9.70 492.47 683.33 679.72 639.24 696.15 714.53 570.58 606.76 555.27 567.86 757.46 509.18 722.37 582.99 568.23 453.00 

9.80 508.27 678.07 678.61 655.78 698.84 705.01 578.01 628.73 590.99 550.19 742.50 500.88 755.73 597.23 575.70 476.07 

9.90 489.38 697.08 699.30 642.34 662.13 706.77 582.90 636.79 573.55 566.65 736.44 503.51 726.16 602.63 548.69 458.89 

10.00 490.03 705.66 687.79 665.74 645.25 716.08 584.02 620.75 581.87 572.30 754.16 517.55 743.91 592.33 554.40 471.09 

10.10 470.63 710.92 713.16 649.53 664.80 710.76 605.85 622.60 577.20 578.36 763.88 521.40 743.04 596.77 557.54 468.20 

10.20 491.10 695.58 699.83 652.28 693.39 690.75 599.53 633.40 563.99 604.00 789.83 516.76 738.89 587.88 535.15 482.91 

10.30 480.35 718.39 705.02 635.82 642.79 713.51 601.04 655.80 598.38 630.54 783.05 501.66 761.56 590.07 536.02 452.73 

10.40 496.16 710.26 679.75 641.29 665.12 711.83 587.52 620.87 584.52 636.39 773.01 499.67 745.99 594.11 544.72 468.67 

10.50 481.17 726.73 712.49 635.16 660.55 701.86 585.51 642.98 589.27 627.03 763.99 495.93 758.08 593.76 535.62 469.56 

10.60 498.90 708.84 738.42 687.23 652.20 719.87 588.72 628.41 589.19 624.54 799.29 501.82 755.85 575.48 555.06 469.27 

10.70 494.56 723.64 720.16 682.56 697.63 714.15 574.52 615.12 573.64 610.95 812.61 508.41 728.97 590.93 545.64 449.91 

10.80 488.46 724.99 713.23 681.60 712.72 727.05 571.56 626.66 584.66 653.24 792.25 526.01 747.50 602.04 564.58 475.83 

10.90 499.60 722.37 718.63 686.93 665.17 736.65 573.56 634.56 563.75 672.97 783.70 524.86 785.06 593.27 542.48 463.07 

11.00 496.76 749.86 700.84 670.61 718.10 716.25 587.96 636.30 590.50 649.21 795.46 550.43 790.56 598.87 556.91 454.19 

11.10 483.61 754.05 730.42 702.94 709.83 724.58 594.38 635.75 600.74 645.50 836.40 528.26 755.62 611.50 547.08 478.31 

11.20 504.03 730.68 732.29 664.61 700.82 753.21 594.04 638.83 587.24 671.30 785.58 524.47 783.74 618.74 547.78 454.53 

11.30 496.05 754.45 723.19 681.78 698.21 761.42 573.92 660.08 584.29 654.33 813.56 543.23 800.31 608.30 542.17 459.32 

11.40 480.31 745.60 743.76 680.57 733.37 740.13 571.26 675.40 616.37 688.66 818.37 542.06 789.90 582.12 557.74 432.99 

11.50 480.76 759.17 752.72 672.06 718.51 740.08 556.42 678.90 623.65 696.74 803.26 568.76 794.10 628.56 549.86 476.08 

11.60 501.70 760.65 756.79 699.85 744.10 774.08 581.67 676.27 627.42 697.89 819.58 547.50 780.03 606.16 546.23 445.74 

11.70 490.63 774.54 748.08 664.62 769.23 774.00 582.46 664.06 602.17 688.57 832.06 544.94 774.05 608.91 551.13 465.60 

11.80 507.30 782.21 763.40 670.64 778.37 764.88 579.63 668.17 608.73 713.97 840.13 551.10 802.77 598.48 556.58 455.74 



 

 250 

Displa- 

cement ST1R ST2R ST3R ST4R ST5R ST6R ST7R ST8R ST9R ST10R ST11R ST12R ST13R ST14R ST15R ST16R 

11.90 510.27 768.76 771.09 700.33 833.17 767.03 588.85 697.31 615.18 709.56 825.44 565.79 797.12 606.25 567.34 454.33 

12.00 485.48 795.24 780.18 682.15 804.80 781.13 581.69 700.80 622.14 697.37 852.69 567.16 820.85 594.80 564.82 442.46 

12.10 490.97 796.69 771.14 689.16 834.56 782.91 578.31 697.69 611.25 703.61 850.63 561.02 829.03 605.28 552.77 451.27 

12.20 507.81 797.13 776.88 705.66 836.05 812.75 590.78 740.96 625.78 700.05 856.75 584.16 831.14 623.13 567.58 445.22 

12.30 490.18 794.48 789.94 710.60 894.27 799.39 581.06 712.73 618.14 714.64 835.89 594.67 828.86 636.75 554.75 435.79 

12.40 502.36 778.18 801.85 712.97 874.39 809.58 582.73 729.23 600.53 720.48 875.36 587.84 854.61 605.28 570.16 440.02 

12.50 501.65 812.89 806.30 723.63 878.82 796.80 596.23 732.65 625.43 737.25 881.19 580.77 853.01 612.03 566.25 447.58 

12.60 528.92 794.83 808.04 731.61 926.12 788.54 585.59 743.07 610.30 703.87 861.38 567.12 859.94 652.11 548.89 447.81 

12.70 500.61 802.28 813.70 722.82 915.81 793.12 590.35 743.61 637.49 732.26 877.26 580.05 866.53 640.08 563.63 464.64 

12.80 495.26 801.32 823.44 742.16 924.92 805.86 592.56 738.60 653.59 743.07 884.36 589.07 885.43 632.07 567.26 448.89 

12.90 510.12 808.99 865.95 730.04 932.45 800.33 577.07 753.31 628.23 752.10 897.21 585.50 888.74 642.38 569.36 460.61 

13.00 524.21 811.75 855.77 750.41 953.01 833.90 593.34 774.91 649.52 758.50 902.73 594.76 913.02 638.78 567.85 451.92 

13.10 523.53 849.44 846.05 767.42 960.92 816.19 572.56 793.22 644.81 785.40 924.16 580.16 931.29 644.10 585.79 453.44 

13.20 535.98 833.26 873.49 776.52 952.58 823.99 584.00 829.37 663.40 797.86 902.86 592.13 932.11 645.30 595.52 431.56 

13.30 549.66 842.00 906.55 777.48 967.06 836.13 571.67 859.46 655.09 775.75 925.13 606.49 940.02 666.74 599.55 414.25 

13.40 534.29 869.96 867.27 818.40 969.06 855.00 600.78 881.54 643.14 792.11 931.52 587.73 947.27 662.34 625.55 427.64 

13.50 541.13 877.04 870.80 842.72 977.39 855.32 601.62 858.72 644.74 820.32 922.06 590.82 959.09 661.56 615.88 424.00 

13.60 537.76 888.13 898.19 816.21 990.92 848.63 622.46 871.42 664.65 790.16 946.87 592.35 979.27 696.46 638.46 425.11 

13.70 542.81 900.95 926.67 836.13 980.22 868.75 631.37 890.61 704.90 828.97 914.58 572.59 974.24 688.11 649.74 428.91 

13.80 544.36 883.15 935.80 849.25 999.13 862.31 654.27 892.18 663.28 799.23 915.13 572.05 945.15 692.80 652.32 426.04 

13.90 571.07 898.06 931.14 867.17 990.16 839.45 653.09 882.92 686.61 833.79 898.26 568.41 946.98 736.40 667.71 443.43 

14.00 557.75 892.75 949.68 845.47 1009.32 851.20 659.02 923.31 698.75 832.65 892.29 586.56 961.58 710.00 669.38 441.11 

14.10 555.83 890.86 942.15 837.46 1028.56 823.00 698.90 912.43 693.75 867.90 877.07 613.47 962.37 737.43 687.31 464.06 

14.20 552.83 879.72 960.02 868.50 1013.30 857.16 682.40 932.02 717.69 858.45 863.12 606.65 931.89 739.80 723.20 425.19 

14.30 591.75 874.16 918.83 829.75 1020.56 856.04 701.91 911.30 730.02 870.84 861.82 612.02 892.60 756.58 728.76 439.86 

14.40 563.39 883.91 946.27 846.39 1000.25 844.96 710.66 937.14 722.85 886.51 819.49 633.54 868.67 788.03 755.00 428.12 

14.50 612.47 856.07 921.44 855.17 980.90 831.91 705.01 923.22 737.91 891.06 820.08 631.36 828.13 769.89 770.38 397.04 

14.60 644.88 824.93 943.98 869.09 975.77 838.80 720.24 895.67 755.03 897.72 772.97 618.37 800.71 776.01 761.49 405.68 

14.70 652.92 788.16 936.79 865.86 967.43 798.41 719.43 920.82 757.23 886.89 734.99 625.26 747.53 768.77 765.71 412.33 

14.80 687.47 769.39 906.75 842.29 907.67 824.26 751.19 937.15 757.34 864.57 697.68 646.33 606.07 768.75 796.51 429.03 

14.90 707.13 730.80 881.17 836.98 857.61 791.97 729.99 928.50 760.93 887.98 629.58 622.44 518.32 783.80 794.25 437.40 

15.00 730.69 654.24 837.47 844.63 819.60 770.49 760.03 925.34 750.62 893.93 410.58 636.37 412.00 776.38 817.39 416.83 



 

 251 

Displa- 

cement ST1R ST2R ST3R ST4R ST5R ST6R ST7R ST8R ST9R ST10R ST11R ST12R ST13R ST14R ST15R ST16R 

15.10 742.64 523.10 811.03 812.46 766.58 745.07 776.49 902.89 763.69 872.11 99.08 620.07 289.48 813.62 835.42 414.71 

15.20 760.27 301.31 754.94 821.22 646.83 730.31 779.27 866.44 786.84 897.58  640.88  809.02 839.36 401.15 

15.30 788.57 77.12 670.68 823.79 457.53 735.74 770.71 893.07 765.33 841.59  640.73  803.34 818.56 409.75 

15.40 816.84  520.17 829.61 178.23 674.20 814.22 793.54 778.13 810.03  637.59  775.82 794.69 413.94 

15.50 821.31  375.31 800.11  540.04 834.89 688.46 750.86 722.96  642.33  791.91 823.35 425.61 

15.60 814.53  190.47 773.93  359.54 847.72 560.52 772.67 589.04  672.25  762.34 818.95 415.03 

15.70 818.92   777.59  192.05 877.25 441.33 763.37 383.23  683.14  756.83 820.91 415.50 

15.80 802.66   723.05   874.61 259.74 752.47 113.22  706.29  770.06 801.64 463.44 

15.90 815.80   704.80   856.64 121.10 735.29   723.16  763.42 811.59 450.51 

16.00 789.22   678.18   880.88  729.24   756.34  771.84 799.16 481.24 

16.10 786.99   661.33   869.92  729.33   759.48  748.47 838.68 472.60 

16.20 789.81   630.77   868.61  724.81   754.75  751.36 817.44 513.92 

16.30 751.43   574.45   845.71  710.57   783.59  719.57 769.33 521.84 

16.40 746.77   471.04   835.99  726.08   808.31  694.18 772.23 527.76 

16.50 710.97   348.84   810.02  705.00   808.97  701.45 773.26 526.95 

16.60 697.43   227.38   830.68  675.49   822.13  696.49 792.44 558.21 

16.70 648.61      787.67  672.40   855.29  703.12 763.94 563.60 

16.80 554.18      773.22  634.81   891.86  671.15 750.36 575.96 

16.90 468.40      754.53  582.21   885.18  645.69 707.07 591.64 

17.00 368.09      703.01  514.96   908.46  649.86 706.26 610.11 

17.10 268.82      674.62  419.94   932.73  604.47 672.77 629.48 

17.20 197.12      614.16  330.18   922.90  573.40 653.48 635.35 

17.30       531.26  222.03   937.15  356.41 596.78 649.04 

17.40       498.80  195.50   975.86  80.46 550.64 702.65 

17.50       394.86     974.45   362.50 700.50 

17.60       256.52     985.19   159.56 724.14 

17.70            971.52    722.14 

17.80            948.15    728.86 

17.90            930.35    722.29 

18.00            851.42    744.79 

18.10            781.37    744.30 

18.20            670.64    754.44 



 

 252 

Displa- 

cement ST1R ST2R ST3R ST4R ST5R ST6R ST7R ST8R ST9R ST10R ST11R ST12R ST13R ST14R ST15R ST16R 

18.30            548.58    742.08 

18.40            422.72    761.70 

18.50            341.13    770.72 

18.60            230.72    801.19 

18.70                808.07 

18.80                794.60 

18.90                816.62 

19.00                840.66 

19.10                862.58 

19.20                905.94 

19.30                882.99 

19.40                875.42 

19.50                894.43 

19.60                907.55 

19.70                918.27 

19.80                895.64 

19.90                880.61 

20.00                868.23 

20.10                831.50 

20.20                733.87 

20.30                601.07 

20.40                406.99 

20.50                226.17 
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APPENDIX D 

Density profile data used to validate VDP 

Displace

ment 

RSM1 RSM2 RSM3 RSM4 RSM5 RSM6 RSM7 RSM8 RSM9 RSM10 RSM11 RSM12 RSM13 RSM14 RSM15 

0.00 280.73 175.67 149.57 167.27 171.67 226.92 214.93 200.43 232.05 223.10 143.97 251.92 201.40 217.46 164.35 

0.10 515.88 647.21 539.62 508.69 511.51 398.38 481.26 361.11 338.41 377.70 441.35 539.96 627.69 615.72 443.44 

0.20 728.37 789.74 801.32 749.86 630.15 569.98 684.37 548.33 426.42 497.92 629.73 680.57 731.42 719.35 613.54 

0.30 789.94 844.91 910.30 896.40 663.86 736.05 820.61 663.20 530.42 653.48 728.35 750.58 808.74 736.65 673.99 

0.40 836.18 889.88 933.75 919.81 734.86 823.46 866.82 719.83 637.27 724.26 795.53 770.18 844.89 776.75 699.59 

0.50 892.54 914.42 957.52 980.22 773.15 894.73 889.81 766.77 678.94 770.64 836.54 781.39 889.70 838.92 731.88 

0.60 914.99 962.54 967.80 1001.41 820.26 918.55 923.84 753.34 706.97 807.71 875.87 815.96 906.22 841.18 772.24 

0.70 942.65 997.84 966.21 998.05 853.03 914.49 935.57 771.87 724.87 857.89 889.56 826.25 919.67 852.81 800.30 

0.80 929.42 1001.37 952.28 1017.46 879.18 913.11 946.86 814.22 754.93 859.73 908.32 868.26 956.22 899.33 816.53 

0.90 959.71 1006.88 954.16 984.54 899.30 928.82 937.51 822.44 772.66 890.93 910.73 888.79 948.04 902.22 847.03 

1.00 909.62 1016.20 943.53 990.72 887.01 941.69 962.27 832.54 770.93 886.40 907.63 866.63 945.82 921.54 855.07 

1.10 926.14 997.11 902.86 984.09 893.40 956.67 948.62 836.00 784.53 896.99 911.82 903.07 907.92 909.52 863.08 

1.20 942.52 991.97 890.81 985.00 910.10 929.98 946.19 854.94 784.50 922.24 927.01 912.68 910.06 927.17 883.26 

1.30 907.58 1014.00 880.46 963.46 916.04 951.18 944.40 835.56 781.09 923.96 895.04 927.43 881.66 916.56 875.52 

1.40 924.24 1009.27 893.47 974.42 887.41 938.04 929.89 844.96 780.90 889.35 914.27 893.87 901.47 938.58 873.88 

1.50 913.11 985.74 865.05 959.42 898.51 932.62 895.84 842.02 802.19 887.00 909.42 886.83 867.16 917.74 869.46 

1.60 915.08 958.46 869.43 957.12 889.84 889.55 930.45 833.77 796.58 881.88 884.71 882.21 877.57 895.62 867.04 

1.70 882.68 979.54 879.70 957.58 884.40 920.78 907.60 830.44 812.47 899.42 901.56 904.36 864.16 891.03 873.68 

1.80 883.11 939.90 844.80 951.85 896.84 896.38 904.38 848.00 828.57 870.75 870.87 900.21 854.17 903.54 872.04 

1.90 899.37 953.65 870.77 949.65 900.69 884.43 893.39 862.25 812.70 862.20 892.88 910.05 887.34 896.06 849.08 

2.00 886.19 949.49 840.10 924.09 871.03 868.67 895.93 846.77 792.39 883.43 885.81 915.33 885.13 908.02 868.71 

2.10 858.92 933.03 849.42 904.47 855.28 890.66 874.23 826.27 815.47 854.19 872.16 864.33 855.13 890.78 819.74 

2.20 873.89 919.55 855.17 910.73 857.68 865.27 888.34 843.02 793.47 847.96 866.33 866.36 862.99 868.11 832.53 

2.30 842.91 893.15 853.90 916.41 842.56 854.06 858.39 838.57 800.56 836.19 856.24 878.80 818.35 852.51 816.18 

2.40 843.73 899.31 851.86 908.64 830.26 853.56 851.29 834.90 811.94 836.36 840.49 861.46 843.38 869.65 829.13 

2.50 860.68 871.99 837.43 913.21 828.78 835.14 832.99 834.02 811.45 830.67 844.74 841.16 842.29 828.85 802.83 
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2.60 818.12 869.27 826.24 883.93 810.43 846.24 831.85 819.02 793.60 828.27 856.59 840.58 833.97 840.33 788.48 

2.70 845.57 837.52 834.03 896.86 821.00 825.51 827.09 792.13 803.21 810.12 835.22 808.42 814.27 853.43 799.95 

2.80 828.95 837.50 820.88 872.46 813.48 820.70 834.59 822.23 813.39 841.09 856.24 831.40 810.89 826.15 799.88 

2.90 789.76 848.83 796.58 878.24 794.14 834.88 835.62 831.30 802.35 815.96 837.59 813.98 808.98 834.27 764.21 

3.00 817.05 823.92 779.98 877.01 783.91 822.94 804.53 780.40 800.04 818.68 845.50 801.10 783.76 842.95 769.87 

3.10 821.93 831.62 790.35 877.15 757.35 825.84 831.02 794.21 797.05 789.71 854.27 806.04 776.60 825.05 748.97 

3.20 797.35 801.59 764.51 860.55 750.41 793.27 798.63 786.19 771.11 746.16 835.22 811.58 770.42 816.40 737.93 

3.30 780.81 812.65 778.97 883.13 741.08 802.00 775.50 768.87 761.27 741.42 829.47 801.52 772.73 827.63 748.29 

3.40 768.41 824.18 752.47 862.46 727.91 785.89 769.01 789.71 777.94 736.30 816.13 777.99 784.82 805.69 727.02 

3.50 737.17 810.18 731.14 847.70 726.87 770.32 772.80 792.48 756.06 744.33 801.95 769.12 774.62 812.20 739.78 

3.60 737.43 775.58 768.63 833.15 719.31 753.71 758.72 787.00 761.08 733.31 800.89 774.41 769.34 813.45 728.22 

3.70 739.04 744.71 745.88 824.95 731.70 748.39 781.00 761.60 769.73 729.19 800.52 762.05 772.07 805.18 724.21 

3.80 728.33 751.64 716.54 829.27 706.42 751.30 754.56 739.42 760.57 720.25 776.15 759.53 733.26 802.12 739.20 

3.90 728.26 786.62 707.98 789.01 706.62 742.46 748.80 783.59 753.97 728.79 799.25 760.58 745.42 800.14 711.56 

4.00 723.61 786.56 703.04 787.97 718.19 727.81 749.64 742.39 733.62 724.43 787.60 748.62 736.41 753.29 702.50 

4.10 716.54 765.11 694.89 802.46 689.87 745.85 746.78 760.13 743.67 757.54 787.09 765.50 752.49 796.96 726.76 

4.20 706.94 775.63 691.29 760.99 691.48 748.08 701.42 763.43 731.10 731.45 770.02 752.25 747.91 751.55 708.58 

4.30 691.75 748.58 689.00 750.22 715.38 748.12 723.09 762.25 723.23 735.09 763.50 738.33 711.48 749.08 730.82 

4.40 699.96 759.48 715.96 738.40 702.60 727.58 712.88 762.78 741.56 741.14 758.01 747.82 713.24 740.73 692.51 

4.50 703.06 751.44 686.38 733.57 667.72 733.24 738.57 745.38 704.38 737.37 747.26 743.95 708.04 754.46 701.66 

4.60 716.04 731.69 687.58 728.21 708.68 729.37 731.63 721.75 736.08 728.09 754.42 723.93 727.67 726.27 681.72 

4.70 679.20 738.72 669.54 728.81 686.87 707.87 715.09 743.37 734.11 723.87 741.89 718.55 718.07 753.28 692.03 

4.80 689.42 735.50 638.48 721.92 674.12 755.10 705.23 742.94 721.83 720.53 734.13 721.01 726.59 722.99 697.27 

4.90 663.01 748.03 633.35 719.44 662.21 720.34 720.84 737.48 716.02 700.28 730.59 683.20 744.83 713.67 673.11 

5.00 700.69 723.05 669.34 730.98 651.16 722.48 699.82 727.93 694.25 699.66 724.46 699.74 703.80 716.00 718.49 

5.10 682.66 739.24 633.98 715.21 649.28 729.64 720.39 732.03 713.17 701.27 709.03 693.72 705.92 747.42 676.54 

5.20 700.59 720.49 652.37 715.26 645.80 699.69 713.76 716.88 676.61 710.92 694.69 703.33 721.28 724.88 698.79 

5.30 697.38 737.03 623.38 733.03 656.36 707.90 727.61 716.12 714.74 703.14 730.77 663.18 705.84 726.00 677.33 

5.40 685.75 722.10 636.25 685.10 660.03 699.49 723.42 706.97 684.91 699.31 715.52 704.71 701.95 733.83 677.13 

5.50 681.17 718.63 641.46 711.49 642.95 716.23 742.83 719.55 691.92 727.73 721.04 691.59 698.46 723.40 678.64 

5.60 679.46 689.54 656.76 697.69 626.43 706.31 708.01 725.53 677.91 718.19 714.73 691.57 713.48 724.43 652.82 

5.70 684.64 708.94 624.87 694.95 626.65 695.45 714.97 699.30 672.29 715.37 719.01 696.14 681.48 722.23 703.91 

5.80 681.98 698.68 637.08 703.59 640.27 679.12 701.99 703.14 661.70 691.02 716.88 693.95 677.08 710.82 674.80 
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5.90 685.48 672.41 629.45 719.98 676.33 681.40 681.66 717.65 682.62 711.46 695.10 708.35 676.84 737.93 688.25 

6.00 665.16 717.09 633.02 690.03 623.37 689.92 703.97 695.80 675.15 712.46 690.98 675.26 681.33 720.17 681.25 

6.10 684.29 686.38 669.55 692.52 653.51 688.30 687.92 685.68 673.97 696.68 692.43 688.52 685.70 709.05 661.14 

6.20 678.68 679.22 631.62 690.72 637.50 687.47 708.03 701.36 691.03 666.41 725.26 675.67 679.83 727.73 686.35 

6.30 684.91 690.00 631.05 679.25 641.82 687.16 686.50 674.00 651.74 682.43 682.92 666.30 689.56 740.91 672.85 

6.40 678.09 707.07 651.01 687.66 634.91 710.50 691.99 676.13 679.16 671.27 705.83 696.70 682.51 729.58 669.91 

6.50 696.50 694.08 628.09 693.96 659.18 688.21 690.54 698.30 652.02 695.71 697.63 683.69 681.75 732.82 650.65 

6.60 692.04 696.66 629.53 670.41 647.84 690.63 695.08 676.03 652.44 687.90 682.10 672.69 671.89 721.17 645.72 

6.70 679.13 692.02 611.96 700.42 626.24 703.21 687.62 677.43 647.45 686.45 695.94 693.46 672.46 731.23 635.10 

6.80 699.82 689.10 651.43 687.66 640.74 683.61 694.49 663.68 663.75 688.11 690.45 684.61 670.67 749.05 659.24 

6.90 659.99 672.00 636.83 672.82 635.86 677.78 668.92 672.34 644.78 671.08 671.58 676.70 661.83 732.43 663.64 

7.00 669.35 704.02 626.51 691.74 647.11 703.78 682.40 673.30 680.10 670.31 697.24 681.62 655.82 728.79 638.36 

7.10 660.07 689.32 613.22 672.82 635.21 686.46 675.11 660.89 667.19 665.84 707.76 669.42 644.81 762.22 663.12 

7.20 676.70 699.84 618.76 690.07 640.17 673.67 695.88 654.03 647.86 698.86 694.26 700.39 637.14 735.76 644.80 

7.30 671.54 673.90 604.85 692.08 648.09 668.30 665.99 670.82 661.89 670.96 683.23 693.36 655.96 731.10 686.66 

7.40 665.86 681.38 614.59 678.89 643.96 685.82 697.72 669.60 662.39 704.08 680.32 695.27 667.88 727.55 648.59 

7.50 687.42 662.49 627.16 684.11 649.12 697.31 689.89 672.59 657.59 672.02 697.07 670.74 661.03 722.11 640.10 

7.60 669.11 672.98 639.35 678.58 635.45 686.31 690.16 671.46 657.22 695.43 678.51 685.07 660.99 740.88 638.27 

7.70 673.88 669.27 640.39 673.27 641.47 671.46 690.49 666.37 656.71 676.08 675.53 673.84 677.34 739.43 637.97 

7.80 680.79 680.25 655.89 676.41 640.70 704.29 669.27 650.94 652.79 703.07 680.42 680.16 681.58 734.63 650.23 

7.90 655.89 690.95 658.84 700.98 639.69 697.76 691.39 675.53 667.75 691.93 669.66 667.18 665.40 747.11 656.94 

8.00 675.01 709.42 646.47 674.52 638.03 689.46 694.29 646.01 665.54 681.20 709.06 709.45 659.97 751.09 644.54 

8.10 664.50 686.86 653.62 688.34 634.44 682.42 696.83 643.99 643.22 666.58 682.56 695.43 669.13 733.82 641.37 

8.20 675.15 691.30 624.55 679.28 653.52 691.61 685.20 659.51 651.12 655.95 719.07 700.41 660.12 730.65 663.23 

8.30 655.18 710.43 655.01 691.36 641.29 698.29 692.42 646.92 638.57 658.26 699.70 697.23 667.07 739.18 623.42 

8.40 665.33 663.83 648.74 690.63 639.73 694.72 685.66 650.09 653.01 682.47 685.08 687.30 651.31 739.01 648.62 

8.50 661.95 696.37 670.48 703.47 654.65 706.14 710.83 674.69 652.68 685.38 716.23 687.87 666.82 732.27 638.20 

8.60 668.82 694.32 657.49 708.82 651.84 722.31 712.34 663.24 679.68 670.94 685.39 703.48 689.09 751.12 656.06 

8.70 660.51 680.25 689.14 721.22 621.82 700.34 685.48 661.43 660.51 661.33 695.05 676.56 685.67 742.69 663.39 

8.80 698.61 704.01 647.12 719.57 645.83 685.65 696.10 661.82 673.69 711.93 691.27 701.05 685.96 716.76 685.34 

8.90 682.13 690.76 648.98 710.12 650.22 706.14 707.01 663.48 628.10 699.53 709.49 689.68 681.45 722.70 660.37 

9.00 678.47 692.60 653.46 711.52 626.03 681.27 702.05 674.06 655.49 685.33 692.96 672.47 672.55 739.94 662.14 

9.10 658.91 706.95 668.90 713.99 628.98 709.05 715.37 670.48 650.53 677.13 702.37 667.62 697.95 732.74 636.90 
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9.20 690.82 693.33 677.50 702.68 634.30 699.76 716.37 678.63 662.36 704.73 709.40 693.15 699.75 735.54 672.01 

9.30 694.06 676.07 634.12 718.85 637.34 729.61 695.96 665.83 669.28 681.19 710.45 693.21 691.74 746.83 681.59 

9.40 650.10 691.54 656.34 694.10 627.57 684.69 698.62 693.22 667.04 692.67 712.76 694.37 718.58 710.77 675.16 

9.50 681.46 682.16 661.74 695.63 637.99 724.33 741.35 678.16 653.98 701.56 707.30 697.70 705.64 723.82 668.43 

9.60 696.95 692.66 671.13 738.93 628.99 710.43 717.06 682.14 675.21 686.64 717.56 700.60 725.26 733.92 693.70 

9.70 716.17 696.49 651.58 735.86 627.23 706.14 740.96 663.30 694.20 692.79 701.32 714.97 711.43 744.65 687.23 

9.80 700.27 708.06 667.31 733.03 627.30 727.56 726.49 704.65 670.14 690.21 717.79 714.94 693.33 725.88 698.59 

9.90 680.60 708.69 666.86 736.85 644.76 719.77 713.57 676.20 678.73 710.40 713.60 709.59 698.60 753.37 679.81 

10.00 696.60 711.22 672.46 728.68 652.42 720.59 722.84 694.26 673.07 702.59 734.68 707.24 707.65 741.23 716.43 

10.10 722.85 718.48 677.16 709.57 670.78 721.73 715.29 700.98 683.92 725.33 727.78 729.60 709.63 734.21 708.34 

10.20 706.06 721.78 676.49 726.54 698.80 720.38 714.90 704.74 664.83 690.69 740.03 721.19 708.92 731.90 701.28 

10.30 705.87 694.92 684.07 745.29 658.23 697.07 704.06 680.78 683.07 693.95 740.45 735.82 726.78 776.49 694.85 

10.40 733.92 729.17 658.68 761.85 693.08 728.63 736.65 719.19 649.03 686.00 722.57 751.00 695.43 756.40 708.35 

10.50 723.55 729.19 680.01 737.58 681.02 725.31 740.06 741.08 681.02 726.13 754.26 730.99 733.16 754.54 698.50 

10.60 727.81 739.26 694.22 748.50 695.27 746.49 722.17 709.92 682.97 712.02 735.82 744.28 743.61 769.86 726.02 

10.70 739.82 749.45 702.02 773.92 681.36 737.74 757.12 714.53 679.66 719.39 746.42 752.98 727.06 758.28 728.31 

10.80 718.48 759.60 670.85 770.05 701.82 736.45 731.99 698.07 663.07 720.25 782.55 746.33 728.18 786.59 727.19 

10.90 742.86 765.19 685.62 764.98 691.40 746.57 738.00 717.30 680.90 711.56 749.40 783.75 745.33 776.88 717.28 

11.00 770.25 749.22 671.76 783.16 707.86 743.74 743.62 741.21 708.74 717.80 774.10 775.93 739.36 787.19 719.62 

11.10 761.81 747.92 665.68 778.36 695.27 739.36 741.78 739.70 687.66 743.70 748.66 776.78 755.03 789.81 724.54 

11.20 765.00 771.80 685.39 812.66 697.27 741.14 738.65 743.91 736.69 742.05 750.97 774.70 739.24 795.41 724.56 

11.30 753.18 755.34 708.03 811.15 706.46 764.12 741.94 730.53 707.11 750.90 741.67 785.83 737.15 780.30 755.73 

11.40 748.90 759.98 703.08 846.68 703.02 743.85 776.17 758.46 707.54 741.11 757.94 810.98 734.19 816.72 756.45 

11.50 764.97 800.41 695.18 835.35 706.47 758.88 753.82 780.55 742.40 759.78 748.72 792.91 754.68 827.51 769.45 

11.60 776.51 770.64 716.61 840.45 719.47 767.01 763.80 772.94 767.39 758.53 772.69 797.46 757.96 818.88 757.79 

11.70 756.36 814.72 719.97 849.43 750.38 754.79 766.48 772.66 757.34 770.09 790.87 812.75 769.27 841.72 763.99 

11.80 753.19 815.34 714.29 864.14 729.81 769.88 777.10 758.67 782.85 786.52 755.44 815.45 800.67 839.40 784.04 

11.90 775.45 821.15 724.54 861.02 735.08 781.64 779.50 792.98 776.53 754.17 799.89 811.65 791.26 839.45 797.15 

12.00 808.26 814.37 732.35 866.71 750.37 817.03 788.20 780.37 767.22 767.66 790.71 824.03 774.07 864.34 791.86 

12.10 799.56 859.61 748.52 893.12 743.48 782.37 795.46 781.63 796.70 764.61 822.68 839.88 824.04 851.84 817.05 

12.20 799.98 863.72 748.94 899.48 762.90 798.99 802.45 786.71 779.62 778.30 808.58 830.74 811.91 869.27 817.66 

12.30 814.30 875.02 769.23 904.20 761.49 802.02 831.81 801.67 784.58 771.89 798.37 839.71 821.93 861.98 835.07 

12.40 811.41 871.36 787.30 922.61 767.68 822.39 817.23 800.81 784.87 778.82 791.39 829.81 840.65 893.27 836.08 
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12.50 828.64 896.88 780.52 929.99 805.74 835.95 837.92 828.00 785.97 773.16 789.81 847.95 857.81 873.06 856.57 

12.60 842.20 896.00 812.27 937.41 780.12 838.17 826.88 828.27 796.36 807.18 771.64 874.73 860.95 876.49 853.13 

12.70 830.32 896.95 836.15 949.23 792.19 850.66 860.18 833.68 811.68 834.40 815.09 851.93 865.40 880.06 871.62 

12.80 848.40 916.09 833.67 973.75 810.06 844.45 873.77 837.90 814.14 814.45 822.80 851.72 885.31 895.67 844.80 

12.90 846.08 915.49 852.42 982.95 842.40 857.60 862.15 860.83 824.09 843.02 818.28 895.73 883.06 878.92 881.97 

13.00 864.95 917.72 843.19 971.38 834.34 886.82 860.84 858.49 818.58 821.64 843.82 885.72 927.03 873.77 875.25 

13.10 852.44 913.43 851.75 973.85 855.25 847.48 892.69 861.80 848.74 841.82 865.81 896.24 918.34 873.10 886.77 

13.20 859.72 934.79 840.03 990.99 878.29 877.86 889.96 873.66 816.02 836.04 883.97 916.83 930.03 852.72 866.32 

13.30 892.54 921.57 865.56 1010.46 883.30 883.90 909.36 885.39 831.23 853.52 850.24 908.30 930.05 868.81 881.41 

13.40 898.14 933.89 866.82 1001.27 880.29 888.91 900.66 869.40 825.55 879.58 878.15 912.02 954.01 846.65 898.70 

13.50 895.42 940.35 884.98 1001.07 893.15 917.83 905.74 881.04 830.22 874.50 871.44 913.25 968.12 850.43 906.64 

13.60 906.71 936.07 890.80 1037.96 895.89 905.59 909.81 868.04 797.52 890.02 890.29 894.93 936.51 830.17 882.25 

13.70 934.61 953.49 893.25 1004.21 883.46 906.55 914.04 880.25 822.49 868.75 870.36 905.19 948.80 790.83 888.82 

13.80 918.59 953.18 933.71 1018.26 882.71 915.04 913.62 875.73 789.45 890.94 883.10 898.32 964.54 791.36 895.26 

13.90 926.42 952.34 904.89 1010.66 904.67 891.87 886.69 898.68 794.36 875.95 913.36 895.01 941.37 742.98 919.17 

14.00 938.28 962.96 919.38 989.27 882.65 920.99 881.58 886.72 784.71 878.60 874.01 860.85 942.99 705.36 894.11 

14.10 933.49 937.72 916.73 993.53 882.81 865.86 880.27 865.46 807.33 850.09 890.20 798.96 932.38 657.13 891.77 

14.20 932.43 885.25 883.16 949.72 854.12 833.08 852.63 833.25 767.76 852.51 871.23 776.98 915.00 418.19 880.61 

14.30 949.73 871.86 868.57 763.21 844.29 774.86 791.39 818.87 766.38 824.38 863.24 741.01 841.87 61.49 860.10 

14.40 922.16 833.76 810.29 530.96 815.79 661.43 677.42 802.09 747.78 817.79 821.88 701.37 796.35  845.07 

14.50 914.95 783.64 680.06 328.41 790.88 557.19 509.66 790.27 718.09 794.62 798.97 660.05 732.67  808.94 

14.60 881.53 744.65 423.79  736.91 399.76 330.30 738.42 727.92 777.05 756.28 637.42 674.62  754.33 

14.70 860.10 652.25 242.92  704.58 285.30 144.97 717.39 724.81 663.79 713.72 434.68 369.91  715.48 

14.80 806.93 269.45   400.13 128.30  646.63 692.77 548.82 643.71 94.92 24.44  704.19 

14.90 753.68    42.08   531.72 610.28 371.10 507.65    558.14 

15.00 445.17       396.25 518.08 291.40 310.44    179.08 

15.10 104.04       198.04 391.67       

15.20         246.91       

15.30         159.35       

15.40                

15.50                

15.60                

15.70                
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APPENDIX E 

Results of the Preliminary (Trial) Boards made using only the hot pressing (with out using the cold press) 

Press Temperature = 195 
o
C Pressing time = 300 Seconds 

 
 

Screw Withdrawal 

  

Target 

Density 

(kg/m
3
) 

  

Actual 

Density 

(kg/m
3
) 

  

Moisture 

Surface 

(%) 

  

Moisture 

Core 

(%) 

  

Resin 

Surface 

(%) 

  

Resin 

Core 

(%) 

  

MOR 

(Mpa) 

  

MOE 

(Mpa) 

  

IB 

(kPa) 

  
Face 

(kPa) 

Edge 

(kPa) 

680   15 9 10.5 8.5 3.51 526.44       

        12.5 10.5 3.97 578.26       

        15 13 6.5 1057.4       

                      

680   15 9 10.5 8.5 2.83 389.91       

        12.5 10.5 2.83 462.73       

        15 13 3.67 564.1       

                      

680   15 9 10.5 8.5 5.51 1343.54       

        12.5 10.5 3.96 1046.66       

        15 13 3.4 479.27       

                      

700       15 13 6.8 1157.4       

                      

680   15 15.7 15 13 7.61 984.75 584.14 740 988.5 

720   15 15.7 15 13 6.12 1035.42       

760 815.26 15 15.7 15 13 9.03 1184.68 517.04 756.00 1187.50 

800   15 15.7 15 13 9.14 1185.76   709 1112.15 
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Screw Withdrawal 

  

Target 

Density 

(kg/m
3
) 

  

Actual 

Density 

(kg/m
3
) 

  

Moisture 

Surface 

(%) 

  

Moisture 

Core 

(%) 

  

Resin 

Surface 

(%) 

  

Resin 

Core 

(%) 

  

MOR 

(Mpa) 

  

MOE 

(Mpa) 

  

IB 

(kPa) 

  
Face 

(kPa) 

Edge 

(kPa) 

680   15 17.25 15 13 9.41 1192.79   684 1053.5 

720 747.29 15 17.25 15 13 6.8 1015.80   650.00 1187.00 

760   15 17.25 15 13 7.78 1123.56       

800 786.26 15 17.25 15 13 8.56 1168.00 503.34 667.00 1141.50 

840 843.32 15 17.25 15 13 9.86 1680.60   831 1330 

                      

800   15 15.7 15 13 9.14 1185.76 584.14 709 1112.15 

800 859.55 18 15.7 15 13 12.00 1650.67 671.04 972.00 1655.00 

800 783.96 21 15.7 15 13 7.91 1392.88 769.00 654.70 1078.00 

800 892.52 24 15.7 15 13 11.95 1715.47 473.54 708.00 1101.00 

                      

680 748.07 15 13 15 13 5.55 785.78 394.61 648.00 1051.50 

720 751.15 15 13 15 13 8.13 1195.43 565.75 524.00 892.50 

760 755.39 15 13 15 13 5.39 757.58   750.70 1333.70 
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APPENDIX F 

Density profile against process parameter used to model VDP 

 

Board 
Number 

Moisture 
Surface 

Resin 
Surface 

Resi
n 
Core 

Hardener 
Load 

Pressing 
Time (s) 

Press 
Temperature 

Density 
at 5% 

Density 
at 10% 

Density 
at 20% 

Density 
at 30% 

Density at 
40% 

Density 
at 50% 

ST 1 11 8 5 1 120 150 810.165 803.870 542.395 495.38 491.045 499.56 

ST 2 11 20 5 3 300 200 876.775 910.960 821.965 725.825 689.02 674.96 

ST 3 22 8 13 3 300 150 899.785 957.965 817.7 719.395 687.79 669.9 

ST 4 11 8 13 3 120 200 750.29 863.455 780.115 711.16 672.52 641.58 

ST 5 22 20 13 1 120 200 1005.25
5 

997.325 905.005 719.86 671.565 688.16 

ST 6 11 20 13 1 300 150 793.135 854.015 814.895 724.125 711.245 667.91 

ST 7 22 8 5 3 120 200 765.63 863.055 669.17 584.055 582.13 574.91 

ST 8 22 20 5 1 300 150 891.095 922.470 749.88 644.58 627.32 637.91 

ST 9 11 20 13 3 120 150 710.815 791.040 694.935 618.405 584.415 553.94 

ST 10 22 8 5 1 300 200 904.87 854.620 791.64 651.005 570.53 531.74 

ST 11 22 20 13 3 300 200 930.715 991.280 876.245 760.51 697.77 680.52 

ST 12 22 8 13 1 120 150 963.1 862.505 611.745 600.925 529.055 524.98 

ST 13 11 8 13 1 300 200 848.875 870.715 820.805 853.875 717.175 711.71 

ST 14 11 20 5 1 120 200 722.84 765.990 721.105 606.82 590.84 617.05 

ST 15 11 8 5 3 300 150 752.755 797.895 738.765 568.69 562.47 531.7 

ST 16 22 20 5 3 120 150 910.99 755.405 501.435 454.15 448.575 471.09 


