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Abstract 

 

The nonlinear free vibration behavior of shear deformable sandwich porous beam is 

investigated in this paper within the context of Timoshenko beam theory. The proposed beam 

is composed of two face layers and a functionally graded porous core which contains internal 

pores following different porosity distributions. Two non-uniform functionally graded 

distributions are considered in this paper based on the equivalent beam mass, associated with 

a uniform distribution for purpose of comparison. The elastic moduli and mass density are 

assumed to vary along the thickness direction in terms of the coefficients of porosity and 

mass density, whose relationship is determined by employing the typical mechanical 

characteristics of an open-cell metal foam. The Ritz method and von Kármán type nonlinear 

strain-displacement relationships are applied to derive the equation system, which governs 

the nonlinear vibration behavior of sandwich porous beams under hinged or clamped end 

supports. A direct iterative algorithm is then used to solve the governing equation system to 

predict the linear and nonlinear frequencies which are presented by a detailed numerical 

study to discuss the effects of porosity coefficient, slenderness ratio, thickness ratio and to 

compare the varying porosity distributions and boundary conditions, providing a feasible way 

to improve the vibration behavior of sandwich porous beams. 

 

Keywords:  

Sandwich beam; functionally graded porous core; nonlinear free vibration; Timoshenko beam 

theory; Ritz method. 

1. Introduction 

Porous materials, such as metal foams, are receiving worldwide interests as advanced 

engineering materials in aerospace engineering, automotive industry and civil constructions 
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due to their excellent multi-functionality offered by low specific weight, efficient capacity of 

energy dissipation, reduced thermal and electrical conductivity, enhanced recyclability and 

machinability [1-10].  

Sandwich structures with a porous core are a form of weight-efficient structures consisting 

of three major parts: two thin face layers that provide the in-plane and bending stiffness and a 

thick core sandwiched between that carries the transverse normal and shear loads as well as 

serves as a heat diffuser or acoustic and vibration damper due to the novel properties of 

porous materials. Over the past few years, the static and dynamic properties of sandwich 

porous beams and plates have been extensively investigated by various theoretical and 

experimental studies [11-26].  

However, most of the studies available in open literature did not consider the possible 

performance improvement offered by a functionally graded (FG) porous structure which 

involves a non-uniform porosity distribution across the thickness. Research work to explore 

this effect is quite limited. Magnucki and Stasiewicz [27] obtained an explicit expression for 

the critical buckling load of a rectangular FG porous beam under a lengthwise compressive 

force. Chen et al. [28] studied the elastic buckling and static bending problems of shear 

deformable FG porous beams within the frame of Timoshenko beam theory, considering two 

different non-uniform porosity distribution patterns and four types of boundary conditions. 

They [29] also employed the Lagrange equation method with Ritz trial functions in the space 

domain and Newmark-β method in the time domain to examine the free and forced vibrations 

of FG porous beams under various loading conditions. 

It should be noted that the above-mentioned studies are all about the linear analysis of FG 

porous structures of which the nonlinear behavior is also crucial owing to their widespread 

use in the practical applications allowing large deformations. Magnucka-Blandzi and 

Magnucki [30] performed the effective design of optimal dimensionless parameters of a 

simply supported sandwich beam with an FG metal foam core based on a nonlinear 

hypothesis of deformation and the theorem of minimum total potential energy. Magnucka-

Blandzi [31] proposed the mathematical modelling of a simply supported rectangular 

sandwich porous plate with differential equations formulated by using the principle of 

stationarity of the total potential energy. Grygorowicz et al. [32] presented analytical and 

numerical studies of elastic buckling of a sandwich beam with FG porous core under a 

broken line hypothesis and a nonlinear hypothesis to define the displacement fields. 

Mojahedin et al. [33] used the higher order shear deformation plate theory and nonlinear 

strain-displacement relations to derive the closed form solution for the critical buckling load 

of a radically loaded circular plate made of FG porous materials saturated with fluid, and 

compared the results with the outcome of classical and first order plate theories. 

The nonlinear vibration behavior is another important property that needs to be fully 

understood, especially for structures that are often subjected to strong dynamic loadings in 

engineering applications. Kitipornchai et al. [34] applied a semi-analytical method to the 

nonlinear vibration analysis of imperfect shear deformable laminated rectangular plates with 

Reddy’s higher-order shear deformation plate theory, and obtained the vibration frequencies 

under different boundary conditions. Rafiee et al. [35] analysed large amplitude free vibration 
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of FG carbon nanotube reinforced composite beams with surface-bonded piezoelectric layers 

under a temperature change and an applied voltage according to the Euler-Bernoulli beam 

theory, von Kármán geometric nonlinearity and the physical neutral surface concept. 

Belouettar et al. [36] developed a simplified and consistent methodology to actively control 

the nonlinear vibration of a piezoelectric-elastic-piezoelectric beams at small and large 

amplitudes using harmonic balance method. However, no previous work has been done for 

the nonlinear vibration of FG porous structures. 

The present study gives a nonlinear free vibration analysis of shear deformable sandwich 

porous beams. The effects of transverse shear deformation and rotary inertia are taken into 

account based on Timoshenko beam theory. The proposed porous core is made of open-cell 

metal foam of which the mechanical property is used to derive the relationship between 

coefficients of porosity and mass density. Ritz method in combination with a direct iterative 

algorithm is employed to obtain linear fundamental and nonlinear vibration frequencies of 

sandwich porous beams. Two non-uniform FG porosity distributions and a uniform 

distribution are considered and the performances of the beam with different porosity 

distributions are compared. Comprehensive numerical results are provided to examine the 

effects of porosity coefficient, slenderness ratio, and thickness ratio as well.  

2. Porosity distributions 

A sandwich porous beam of length L, width b and its x-z Cartesian coordinate system are 

shown in Fig. 1. The total beam thickness is 2t c fh h h  , where ch  denotes the core 

thickness and fh  is the thickness of face layers that are assumed to be perfectly bonded to the 

core material. The internal pores in the core follow either non-uniform FG porosity 

distribution or uniform distribution as shown in Fig. 2, resulting in position-dependent 

variations of Young modulus ( )E z , shear modulus ( )G z and mass density ( )z , described 

by Eq. (1) for distribution 1, Eq. (2) for distribution 2 and Eq. (3) for uniform distribution [28, 

29].  

It is seen from Fig. 2 that porosity distribution 1 is symmetrical about x -axis with elastic 

moduli and mass density decreasing from top/bottom surfaces to the mid-plane while porosity 

distribution 2 is asymmetrical with continuous recession of material properties along 

thickness direction. 
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Fig. 1. A sandwich porous beam. 

 

               
(a) Non-uniform porosity distribution 1           (b) Non-uniform porosity distribution 2 

 

 
(c) Uniform porosity distribution 

Fig. 2. Porous cores with different porosity distributions. 
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where / cz h   ( / 2 / 2c ch z h   ), 1E  and 2E  denote the maximum and minimum values 

of Young’s modulus for non-uniform porosity distributions, respectively, iG  and i  ( 1, 2i  ) 

are the corresponding extremum values of shear modulus and mass density, 0e  and me  

represent the coefficients of porosity and mass density and can be expressed as 

2 2
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    , 00 1e                                                                                                   (4)                
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  , m0 1e                                                                                                               (5)                       

0e  is used as the principal variable to describe the porosity and me  is determined by their 

relationship which is derived according to the typical mechanical characteristic of an open-

cell metal foam. A larger value of 0e  corresponds to lower elastic moduli and mass density 

due to the increased size and density of internal pores. It should be noted that 0 m 0e e   

indicates a special case where no pore exists in the core whereas 0 m 1e e   cannot be 

achieved since in this case, all material property values are reduced to zero. 

The typical mechanical property of an open-cell metal foam [1, 28, 29, 37] expressed in 

Eq. (6) is used to determine the relationship between 0e  and me  in Eq. (7). 
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With uniform porosity distribution, the material properties of the core are constant along 

the beam thickness. On the basis of the equivalent mass of sandwich porous beams, the 

coefficient   in Eq. (3) is obtained as 

2

0

0 0

1 1 2 2
1 1e

e e


 

 
     

 
                                                                                                (8) 

3. Theoretical formulations 

3.1 Total energy of sandwich porous beams 
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Let xu  and zw  be the displacements parallel to x - and z -axes, 0u and 0w  stand for the 

displacements of a certain point on the mid-plane, x  be the mid-plane rotation of transverse 

normal, and t  denotes the time. According to Timoshenko beam theory, the displacement 

fields ( ,x xu w ) that account for the effects of transverse shear strains are of the form as 

0

0

( , , ) ( , ) ( , )

( , , ) ( , )

x x

z

u x z t u x t z x t

w x z t w x t
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


                                                                                                  (9) 

 The geometrically nonlinear normal strain xx  and transverse strain xz  are associated 

with the displacements via von Kármán type nonlinear strain-displacement relationship as 
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The linear elastic strain-stress constitutive law is given as 
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and the related elastic constants are 
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where cv denotes Poisson’s ratio of the porous core. It is worth noting that the value of  cv  

keeps constant along the beam thickness [1], since Poisson’s ratio is the negative ratio of the 

lateral to the axial strain and both of them are proportional to the bending deflection per cell 

length for cellular structures, thus their ratio is a constant [2]. The strain energy U  of the 

beam at an arbitrary instant is calculated by 
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which can be expressed in terms of 0 0, , xu w  as below by making use of Eqs. (10)-(12)  
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The stiffness components 11A , 11B , 11D  and 55A  of the sandwich beam include the 

contribution from both the porous core and face layers and are given by 
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where fE , fv  and fG  ( / 2(1 )f f fG E v  ) are Young’s modulus, Poisson’s ratio and shear 

modulus of the face layers. The shear correction factor 5 / 6k  . The kinetic energy T  of the 

sandwich beam can be written as 
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in which the inertia terms 0I , 1I  and 2I  are also due to the porous core and face layers with 

mass density f  
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Introducing the following dimensionless quantities to facilitate the theoretical formulations 

hereafter 
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where *A  and *I  denote the values of 11A  and 0I  of a sandwich beam with a solid core 

without pores,  stands for the dimensionless form of natural frequency  . 

      For harmonic vibration, the dynamic displacements of the sandwich beam take the form 

of 

   '( , ), '( , ), '( , ) ( ), ( ), ( ) iu w u w e                                                                          (19) 

where  1i   . Substituting Eqs. (18)-(19) into Eqs. (14) and (16) leads to the following 

dimensionless forms of strain energy and kinetic energy 
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The dimensionless total energy of the sandwich porous beam can then be expressed as  

T U                                                                                                                                 (22) 

3.2 Ritz method and iterative algorithm 

The equation system governing the linear and nonlinear free vibrations is derived for 
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for hinged-hinged (H-H) beam 

(25) for clamped-clamped (C-C) beam 

for clamped-hinged (C-H) beam 

 

where N  denotes the total number of polynomial terms, 
1 jR , 

2 jR  and 
3 jR  ( 1, 2, ,j N  ) 

are the undetermined coefficients. Substituting the above dimensionless displacements into 

Eq. (22) and employing the standard Ritz procedure to minimize the total energy give 
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which leads to the governing equation system in matrix form as 

2( ) = 0Linear Nonlinear  K K M d                                                                                               (27) 

in which LinearK  and NonlinearK  are the linear and nonlinear symmetric stiffness matrices 

(3 3N N ), respectively, M stands for the symmetric mass matrix (3 3N N ), d  is the vector 

consisting of undetermined coefficients ( T T T T

1 2 3{{ } { } { } }j j jR R Rd = ).  

A direct iterative algorithm is applied to solve Eq. (27) to obtain the linear and nonlinear 

frequencies of the sandwich porous beam. It should be noted that beams with symmetric 

porosity distribution, i.e., non-uniform porosity distribution 1 and uniform porosity 

distribution, vibrate with same amplitudes at positive and negative cycles due to the equal 

and opposite roots produced from the energy balance equation ( 0U T  ) [38]. By 

following the process from steps A1 to A2, their nonlinear frequencies can be calculated from 

positive deflection cycles by continuously updating the eigenvector from Eq. (27) to make the 

associated eigenvalue approach to the given value.  

A1. Before proceeding to the nonlinear analysis, the dimensionless linear fundamental 

natural frequency l  of the beam needs to be solved from Eq. (27) by neglecting the 

nonlinear matrix NonlinearK . The associated eigenvector is used to calculate the linear 

beam deflection.  

A2. For a given maximum deflection (  0.5maxw w  for H-H and C-C beams, 

 0.57maxw w  for C-H beam), scaling up the calculated eigenvector based on the 

given and calculated maximum deflections then substituting it into NonlinearK  to update 

the governing equation system, which, in turn, yields a new eigenvalue and 

eigenvector which are nonlinear. This iteration progress is repeated until the obtained 

eigenvalues from two consecutive iterations are close enough (relative error 0.1% ) 

to obtain the nonlinear frequency nl . 

For beams with porosity distribution 2 which is asymmetric, the existence of bending-

extension coupling effect within the beam leads to different vibration amplitudes at positive 

and negative half cycles. In this case, steps B1 to B3 need to be followed to calculate their 

nonlinear frequencies based on the identical energy consumed in both positive and negative 

deflection half cycles. 

B1. Based on the calculations from A1 to A2, the maximum potential energy maxU   of the 

sandwich beam during positive half cycle is computed using the final eigenvector 

given in A2 which indicates the largest positive deformation of the beam under free 

vibration.  

B2.  Same calculation procedures from A1 to B1 are conducted repeatedly to determine 

the nonlinear frequency at negative half cycle which produces the identical maximum 

potential energy maxU  as that at positive half cycle ( / 0.1%max max maxU U U    ).  



10 

 

B3. The nonlinear frequencies   and   at positive and negative half cycles are 

combined to obtain the whole cycle frequency nl  as 

             
2

nl

 


 

 

 



                                                                                                      (28)                                                                                    

4. Numerical results 

4.1 Validation analysis 

As no published results for the sandwich porous beams under current consideration are 

available in open literature, three examples concerning the linear free vibration of sandwich 

beams, nonlinear vibration of isotropic beams and nonlinear vibration of FG beams are used 

to validate the present analysis through direct comparisons between our results and the 

existing ones.  

Table 1 considers the linear free vibration of sandwich beams with a homogeneous core 

and composite face layers reinforced by functionally graded and uniformly distributed carbon 

nanotubes (CNTs), represented by FG and UD, respectively. The CNT distribution 

determines the material properties of composite face layers by 

11 1 11

2 22 22

3 12 12

/ / /

/ / /

cnt m

cnt m

cnt m

cnt m

cnt m

cnt m

E V E V E

E V E V E

G V G V G







  


 


 

                                                                                               (29) 

where 11E , 22E  and 12G  are Young’s moduli and shear modulus of the face layers. The 

material constants are 11 5.6466cntE   TPa, 22 7.08cntE   TPa and 12 1.9445cntG   TPa for CNTs, 

2.5mE   GPa and / 2(1 )m m mG E v   for the matrix, i  ( 1,2,3i  ) are CNT efficiency 

parameters, cntV  and 1m cntV V   are the volume fractions of CNTs and matrix materials, 

respectively. It is assumed that cntV  varies linearly along the thickness direction and is given 

as 

 

 

 

*

*

2

2

c

cnt cnt

f

c

cnt cnt

f

z h
V V

h

z h
V V

h

 





 



 

for top surface 

(30) 

for bottom surface 

 

where * 0.12cntV  , and the associated CNT efficiency parameters 1 0.137  , 2 1.022   and 

3 0.715  . In a special case where CNTs is uniformly distributed (UD), cntV  is constant 
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across the thickness, thus *

cnt cntV V . Poisson’s ratio and mass density of the face layers can 

be calculated by 

cnt m

cnt mv V v V v                                                                                                                      (31) 

cnt m

cnt mV V                                                                                                                      (32) 

in which 0.175cntv   and 0.3mv   ( 1400cnt   kg/m
3
, 1190m   kg/m

3
) are Poisson’s 

ratios (mass densities) of CNTs and matrix materials, respectively. The homogeneous core is 

made of Titanium alloy (Ti-6Al-4V) with 113.8cE   Gpa, 4430c   kg/m
3
 and 0.342cv  . 

 

Table 1 

Dimensionless first three linear natural frequencies of sandwich beams with composite face layers  

(
*

0.12
cnt

V  , / 20L h  , / 8
c f

h h  ). 

Mode 

no. 

Face 

sheet 

  Present Wu et al. 

[39] N = 2 N = 4 N = 6 N = 8 N = 10 N = 12 

 H-H beam 

1 
FG 0.1612 0.1454 0.1453 0.1453 0.1453 0.1453 0.1453 

UD 0.1589 0.1433 0.1432 0.1432 0.1432 0.1432 0.1432 

2 
FG 3.2903 0.7216 0.5753 0.5730 0.5730 0.5730 0.5730 

UD 3.2902 0.7117 0.5673 0.5650 0.5650 0.5650 0.5650 

3 
FG 3.3298 1.8122 1.2800 1.2602 1.2599 1.2599 1.2599 

UD 3.3434 1.7891 1.2627 1.2432 1.2429 1.2429 1.2429 

 C-C beam 

1 
FG 0.9136 0.3249 0.3240 0.3240 0.3240 0.3240 0.3240 

UD 0.9126 0.3204 0.3195 0.3195 0.3195 0.3195 0.3195 

2 
FG 3.0045 0.8861 0.8706 0.8704 0.8704 0.8704 0.8704 

UD 3.0044 0.8744 0.8590 0.8588 0.8588 0.8588 0.8588 

3 
FG 3.3298 3.3081 1.7075 1.6534 1.6520 1.6520 1.6520 

UD 3.3434 3.3215 1.6867 1.6326 1.6313 1.6313 1.6313 

 

 

As can be observed, the dimensionless first three natural frequencies converge to exactly 

the same results by Wu et al. [39] based on Timoshenko beam theory and differential 

quadrature method when 10N  . 

    Table 2 compares the nonlinear frequency ratio /nl l   of an isotropic beam with those by 

Marur and Prathap [40] using finite element method and Variationally Correct model. The 

material parameters are: Young’s modulus 80.3 10E    psi, shear modulus 80.1154 10G    

psi, shear correction factor 5/ 6K  , Poisson’s ratio 0.3v  , mass density 
30.1433 10    

ib-sec
2
/in

4
. Excellent agreement can be obtained.  
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                               Table 2 

                               Nonlinear frequency ratio /
nl l

   of an isotropic beam ( / 100L h  ). 

/Wg  * Present Marur and Prathap [40] 

    H-H beam 

1 1.1183 1.1180 

2 1.4142 1.4135 

3 1.8033 1.8027 

    C-C beam 

1 1.0295 1.0283 

2 1.1130 1.1105 

3 1.2377 1.2336 

    C-H beam 

1 1.0596 1.0582 

2 1.2175 1.2150 

3 1.4402 1.4368 

                             *Wg is the given amplitude and   is the radius of gyration. 

 

Table 3 gives the nonlinear frequency ratio /nl l   of functionally graded carbon 

nanotube reinforced composite (FG-CNTRC) and uniformly distributed carbon nanotube 

reinforced composite (UD-CNTRC) beams with following material parameters: 11 600cntE   

Gpa, 22 10cntE   Gpa, 12 17.2cntG   Gpa, 2.5mE   Gpa, 0.19cntv  , 0.3mv  , 1400cnt   

kg/m
3
, 1190m   kg/m

3
, * 0.12cntV  , 1 1.2833  , 2 3 1.0556   . Our results agree well 

with the solutions presented by Ke et al. [41]. 

 

                  Table 3  

                  Nonlinear frequency ratio /
nl l

   of FG- and UD-CNTRC beams  

                    (
*

0.12
cnt

V  , / 10L h  ). 

maxw  
FG-CNTRC UD-CNTRC 

Present Ke et al. [41] Present Ke et al. [41] 

H-H beam  

0.1 1.0061 1.0061 1.0280 1.0278 

0.2 1.0318 1.0320 1.1076 1.1070 

0.3 1.0890 1.0873 1.2282 1.2278 

C-C beam  

0.1 1.0166 1.0165 1.0156 1.0154 

0.2 1.0651 1.0646 1.0608 1.0605 

0.3 1.1420 1.1405 1.1326 1.1318 

C-H beam  

0.1 1.0157 1.0160 1.0209 1.0207 

0.2 1.0615 1.0621 1.0811 1.0805 

0.3 1.1362 1.1396 1.1748 1.1735 
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4.2 Effects of porosity coefficient 

In what follows, parametric studies are undertaken to investigate the effects of porosity 

coefficient, slenderness ratio and thickness ratio on the nonlinear vibration characteristics of 

sandwich porous beams which are stacked as steel/steel foam/steel with the following 

material constants 

1 200fE E  GPa, 1 7850f kg/m
3
, 1/ 3c fv v  , th = 0.1 m. 

Figs. 3-5 illustrate the effects of porosity coefficient 0e  on the nonlinear frequency ratio 

/nl l   of the sandwich beam with different porosity distributions in the porous core. It is 

found that an increase in the vibration amplitude leads to a larger value of nonlinear 

frequency ratio, i.e. a higher nonlinear frequency, which is a typical hardening behavior [38, 

41, 42]. Increasing porosity coefficient results in a lower nonlinear frequency ratio as the 

beam stiffness is weakened by increased size and density of the internal pores. For beams 

with non-uniform porosity distribution 1 and uniform porosity distribution which are 

symmetrical, the nonlinear frequency ratio versus vibration amplitude curve is also 

symmetrical, in other words, the curve is independent of the sign of vibration amplitudes, as 

displayed in Fig. 3 and Fig. 5 in which only the results for H-H beams are given due to the 

fact that H-H, C-C and C-H beams exhibit quite similar behaviour hence the results for C-C 

and C-H beams are omitted herein for brevity. For sandwich beams with non-uniform 

porosity distribution 2 which is asymmetrical, the curves for H-H and C-H beams are also 

asymmetrical since the equal and opposite roots cannot be produced by energy balance 

equation in the presence of bending-stretching coupling effect, as stated before. This effect 

becomes more pronounced at a larger thickness ratio /c fh h  which corresponds to a beam 

with thinner face layers and a thicker core. Meanwhile, the curves for C-C beams with 

asymmetrical porosity distribution 2 are still symmetric because the bending-stretching 

coupling effect is completely counter-balanced by the restoring bending moment produced at 

the clamped ends of the beam.  
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Fig. 3. Nonlinear frequency ratio versus vibration amplitude curves for H-H sandwich porous beams 

with non-uniform porosity distribution 1: effect of porosity coefficient. 
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    (c) C-H beam 

Fig. 4. Nonlinear frequency ratio versus vibration amplitude curves for sandwich porous beams with 

non-uniform porosity distribution 2: effect of porosity coefficient. 
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Fig. 5. Nonlinear frequency ratio versus vibration amplitude curves for H-H sandwich porous beams 

with uniform porosity distribution: effect of porosity coefficient. 

4.3 Effects of slenderness ratio 

Tables 4-6 examine the effects of slenderness ratio on the nonlinear frequency ratio of 

sandwich porous beams together with the dimensionless linear fundamental frequency which 

decreases dramatically with an increased slenderness ratio. The nonlinear frequency ratio also 

drops as the slenderness ratio increases, but unlike the fundamental frequency, its decrease is 

seen to be quite small at smaller vibration amplitudes then become slightly bigger at larger 

vibration amplitudes. 
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                      Table 4 

                      Nonlinear frequency ratio /
nl l

   of sandwich porous beams with non-uniform  

                      porosity distribution 1: effect of slenderness ratio (
0

0.5e  , / 10
c f

h h  ). 

/L h  
l

   
   

max
w  

0.2 0.4 0.6 0.8 1.0 

H-H beam 

20 0.1458 1.0485 1.1820 1.3765 1.6093 1.8654 

30 0.0975 1.0483 1.1812 1.3749 1.6070 1.8626 

40 0.0732 1.0482 1.1809 1.3744 1.6062 1.8616 

50 0.0586 1.0482 1.1808 1.3741 1.6058 1.8611 

C-C beam 

20 0.3248 1.0120 1.0470 1.1026 1.1747 1.2610 

30 0.2193 1.0118 1.0465 1.1015 1.1732 1.2590 

40 0.1653 1.0118 1.0463 1.1012 1.1727 1.2584 

50 0.1325 1.0118 1.0462 1.1010 1.1725 1.2581 

C-H beam 

20 0.2260 1.0242 1.0927 1.1971 1.3278 1.4768 

30 0.1518 1.0240 1.0921 1.1959 1.3269 1.4746 

40 0.1142 1.0239 1.0919 1.1956 1.3263 1.4740 

50 0.0914 1.0239 1.0918 1.1954 1.3260 1.4737 

                      

                     Table 5 

                      Nonlinear frequency ratio /
nl l

   of sandwich porous beams with non-uniform 

                      porosity distribution 2: effect of slenderness ratio (
0

0.5e  , / 10
c f

h h  ). 

/L h  
l

   
   

max
w  

0.2 0.4 0.6 0.8 1.0 

H-H beam 

20 0.1404 1.0516 1.2022 1.4224 1.6801 1.9596 

30 0.0939 1.0513 1.2014 1.4208 1.6788 1.9560 

40 0.0705 1.0512 1.2012 1.4203 1.6780 1.9550 

50 0.0564 1.0512 1.2010 1.4203 1.6776 1.9545 

C-C beam 

20 0.3109 1.0131 1.0512 1.1114 1.1898 1.2823 

30 0.2097 1.0130 1.0507 1.1107 1.1884 1.2804 

40 0.1579 1.0129 1.0506 1.1103 1.1879 1.2798 

50 0.1266 1.0129 1.0505 1.1102 1.1877 1.2796 

C-H beam 

20 0.2164 1.0264 1.1023 1.2183 1.3621 1.5248 

30 0.1453 1.0262 1.1017 1.2169 1.3600 1.5221 

40 0.1092 1.0262 1.1015 1.2165 1.3595 1.5215 

50 0.0875 1.0261 1.1014 1.2163 1.3592 1.5216 
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                      Table 6 

                      Nonlinear frequency ratio /
nl l

   of sandwich porous beams with uniform  

                      porosity distribution: effect of slenderness ratio (
0

0.5e  , / 10
c f

h h  ). 

/L h  
l

   
   

max
w  

0.2 0.4 0.6 0.8 1.0 

H-H beam 

20 0.1383 1.0527 1.1965 1.4041 1.6513 1.9238 

30 0.0925 1.0524 1.1958 1.4031 1.6498 1.9196 

40 0.0694 1.0524 1.1955 1.4026 1.6490 1.9187 

50 0.0556 1.0523 1.1954 1.4023 1.6486 1.9182 

C-C beam 

20 0.3084 1.0130 1.0509 1.1106 1.1884 1.2808 

30 0.2081 1.0129 1.0504 1.1099 1.1870 1.2789 

40 0.1567 1.0128 1.0502 1.1096 1.1865 1.2782 

50 0.1256 1.0128 1.0502 1.1094 1.1863 1.2780 

C-H beam 

20 0.2145 1.0262 1.1005 1.2130 1.3529 1.5118 

30 0.1440 1.0261 1.0997 1.2113 1.3504 1.5097 

40 0.1082 1.0260 1.0995 1.2110 1.3499 1.5078 

50 0.0867 1.0260 1.0994 1.2108 1.3496 1.5075 

4.4 Effects of thickness ratio 

We then look into the effect of thickness ratio /c fh h . As shown in Fig. 6, an increase in 

the thickness ratio only results in a very small drop in nonlinear frequency ratio for sandwich 

beams with non-uniform porosity distribution 1. This is different from the results for beams 

with porosity distribution 2 and uniform distribution depicted in Figs. 7 and 8 which show 

that the nonlinear frequency ratio does have a fairly big increase as the thickness ratio 

increases. It should be mentioned that a smaller thickness ratio corresponds to a sandwich 

beam which is closer to a pure steel beam without internal pores with an increased beam 

stiffness thus higher linear and nonlinear frequencies. In this section, the total beam thickness 

is kept constant while both ch  and fh  are varied.  
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Fig. 6. Nonlinear frequency ratio versus vibration amplitude curves for H-H sandwich porous beams 

with non-uniform porosity distribution 1: effect of thickness ratio. 
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(b) C-C beam 
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   (c) C-H beam 

Fig. 7. Nonlinear frequency ratio versus vibration amplitude curves for sandwich porous beams with 

non-uniform porosity distribution 2: effect of thickness ratio. 

 



20 

 

-1.0 -0.5 0.0 0.5 1.0
1.0

1.2

1.4

1.6

1.8

2.0

 h
c
 / h

f
 = 5

 h
c
 / h

f
 = 10

 h
c
 / h

f
 = 20

 h
c
 / h

f
 = 50

Uniform distribution

(Symmetric)

H-H beam

L / h = 20

e
0
 = 0.5

 

 


n

l /


l

w
min 

                                                  w
max  

Fig. 8. Nonlinear frequency ratio versus vibration amplitude curves for H-H sandwich porous beams 

with uniform porosity distribution: effect of thickness ratio. 

 

4.5 Comparisons between porosity distributions 

Fig. 9 compares the nonlinear vibration performance of beams with different porosity 

distributions and boundary conditions. Results show that non-uniform porosity distribution 1 

yields the highest nonlinear frequency but the lowest nonlinear frequency ratio. It can also be 

seen from Tables 4-6 that the linear fundamental frequency in this case is also the highest. 

This indicates that compared with the other porosity distributions, non-uniform porosity 

distribution 1 offers the best structural stiffness for the sandwich porous beam. As can be 

expected, the fully clamped sandwich beam has the lowest nonlinear frequency ratio and the 

highest linear and nonlinear frequencies. 
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(b) Nonlinear frequency versus amplitude 

Fig. 9. Comparisons of nonlinear frequency ratios and nonlinear frequencies of sandwich porous 

beams with different porosity distributions and boundary conditions 

5. Concluding remarks 

The nonlinear free vibration of shear deformable sandwich beam with a functionally 

graded porous core is studied in this paper within the framework of Timoshenko beam theory, 

von Kármán type geometric nonlinearity and Ritz method. It can be concluded from 

numerical results that  

(1) An increase in the vibration amplitude leads to a larger nonlinear frequency ratio of 

sandwich porous beams; 

(2) As the porosity coefficient increases, the nonlinear frequency ratios for beams with 

different porosity distributions decrease with varying amplitudes;  

(3) The nonlinear frequencies of H-H and C-H sandwich beams with non-uniform porosity 

distribution 2 is dependent on the sign of vibration amplitudes; 

(4) The effect of slenderness ratio is remarkable for linear fundamental frequency but 

relatively small for nonlinear frequency ratio; 

(5) The effect of thickness ratio on the nonlinear frequency ratio is marginal for beams with 

non-uniform porosity distribution 1 but is more significant for beams with non-uniform 

porosity distribution 2 and uniform porosity distribution; 

(6) Non-uniform porosity distribution 1 offers the highest beam stiffness hence the largest 

nonlinear frequency, indicating that an FG porous core in which internal pores are 

symmetrically and non-uniformly distributed can achieve the best vibration performance. 
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