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Abstract 
Today’s society is based on the use of fossil resources for transportation fuels. The result of unli-
mited consumption of fossil fuels is a severe depletion of the natural reserves and damage to the 
environment. Depleting fossil reserves and increasing demand for energy together with environ-
mental concerns have motivated researchers towards the development of alternative fuels which 
are eco-friendly, renewable and economical. Bioethanol is one such dominant global renewable 
transport biofuel which can readily substitute fossil fuels. Conventionally, bioethanol has been 
produced from sucrose and starch rich feedstocks (edible agricultural crops and products) known 
as 1st generation bioethanol; however this substrate conflicts with food and feed production. As an 
alternative to 1st generation bioethanol, currently there is much focus on advancing a cellulosic 
bioethanol concept that utilizes lignocellulosic residues from agricultural crops and residues 
(such as bagasse, straw, stover, stems, leaves and deoiled seed residues). Efficient conversion of 
lignocellulosic biomass into bioethanol remains an area of active research in terms of pretreat-
ment of the biomass to fractionate its constituents (cellulose, hemicellulose and lignin), break-
down of cellulose and hemicellulose into hexose and pentose sugars and co-fermentation of the 
sugars to ethanol. The present review discusses research progress in bioethanol production from 
sucrose, starch and cellulosic feedstocks. Development of efficient technology to convert lignocel-
lulosic biomass into fermentable sugars and optimization of enzymatic hydrolysis using on-site/ 
in-house enzyme preparation are the key areas of development in lignocellulosic bioethanol pro- 
duction. Moreover, finding efficient fermenting microorganisms which can utilize pentose and 
hexose sugars in their metabolism to produce ethanol together with minimum foam and glycerol 
formation is also an important parameter in fermentation. Research has been focusing on the ap-
plication of genetically modified strains, thermoanaerobes and mixed cultures of different strains 
in bioethanol production from sucrose, starch and lignocellulosic feedstocks. 
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1. Introduction 
Energy sources and their utilization determine the economic status and growth of developing countries all over 
the world [1]. The Statistical Review of World Energy estimated that in 2013 the primary sources of energy 
consisted of petroleum 32.9%, coal 30.0%, and natural gas 23.7%, amounting to an 87.0% share for fossil fuels 
in primary energy consumption in the world. In the year 2003 the world consumed 9943.8 million tonnes oil 
equivalent primary as energy; this value increased by 7.8%, 20.2% and 28.0% in 2005, 2010 and 2013, respec-
tively.  

Today’s society is based on the use of fossil resources for transportation fuels and petrochemicals. World 
energy consumption by fuel type is given in Figure 1. It is evident that the consumption of oil, coal and natural 
gas greatly exceeds the consumption of renewable energy and hydroelectricity. The result of unlimited con-
sumption of fossil energy, due to its low cost and ready availability is a severe depletion of the natural reserves. 
However, the use of fossil fuels also leads to environmental damage. The burning of every tonne of fossil-fuel 
adds 180 kg of sulphur oxides to the atmosphere, causing irritation to the respiratory system and adding to the 
formation of acid rain. 

In addition, the burning of fossil fuel produces around 21.3 giga tonnes of carbon dioxide (CO2) per year, but 
it is estimated that natural processes can only absorb about half of that amount, so there is a net increase of 10.7 
billion tonnes of atmospheric carbon dioxide per year (one tonne of atmospheric carbon is equivalent to 44/12 or 
3.7 tonnes of carbon dioxide) (http://www.eia.gov/oiaf/1605/ggccebro/chapter1.html). 

Depleting fossil reserves and increasing demand for energy together with environmental concerns have led to 
focused research on the development of alternative fuels which are eco-friendly, bio-degradable and economical. 
The use of renewable resources to produce liquid biofuels offer attractive solutions to reducing greenhouse gas 
emissions, decreasing reliance on foreign oils, addressing energy security concerns, strengthening rural and 
agricultural economies and increasing the sustainability of the world transportation system [2]. Currently only  
 

 
Figure 1. World energy consumption by fuel type in million tonnes oil equivalent (data collected from statistical review 
of world energy. http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html).                   

http://www.eia.gov/oiaf/1605/ggccebro/chapter1.html
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
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3.0% of global energy consumption is supplied from renewable sources. Yet in 2050, potentially around 20% - 
80% of the world’s primary energy demand could be provided by sustainable renewable resources [Statistical 
Review of World Energy.  
http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html]. 

Bioethanol is the dominant global renewable transport biofuel and offers greenhouse gas savings of up to 80% 
over conventional fossil fuels depending on the feedstock. Other types of biofuels include biodiesel, biometha-
nol, biogas, bio-syngas, bio-oil and bio-hydrogen [3] produced from a wide range of agricultural or waste 
sources.  

2. 1st Generation versus 2nd Generation Biofuel Production 
The raw materials for bioethanol production can broadly be classified as (i) sucrose-containing feedstock (su-
garcane, sugar beet and sweet sorghum), (ii) starch-containing feedstock (wheat, corn and cassava) and (iii) cel-
lulosic feedstock (straw, grasses, wood, stovers, agricultural wastes, paper, etc.). However, bioethanol is cur-
rently produced chiefly from traditional food crops such as corn (USA), sugar cane (Brazil), wheat (France, 
England, Germany, and Spain), cassava (Thailand, Nigeria) and sorghum (India), the feedstock depending on 
location and dominant agricultural product [4]. Most current bioethanol production processes utilize more rea-
dily degradable biomass feedstock such as cereals (corn or grain) and sugar cane juice. However, the utilization 
of edible agricultural crops exclusively for biofuel production conflict with food and feed production [5]. The 
bioethanol produced from these sucrose-and starch-containing feedstock is classified as 1st generation bioethanol 
(ethanol from corn and sugarcane) and those produced utilizing cellulosic feedstock is 2nd generation bioethanol 
(ethanol from corn stover, rice straw, palm empty fruit bunches and other lignocellulosic biomass) 
[https://www.iea.org/publications/freepublications/publication/2nd_Biofuel_Gen.pdf]. 

2.1. Sucrose-Containing Feedstock for Bioethanol Production 
Sugarcane, sugar beet and sweet sorghum are the main sucrose-containing feedstocks for bioethanol production 
with feedstock yields of 62 - 74 tonnes∙ha−1 [6], 54 - 111 tonnes∙ha−1 [7] and 50 - 62 tonnes∙ha−1 [6], respectively, 
and are mostly exploited in Brazil, India, France and Germany. Black strap/sugarcane molasses from sugarcane 
processing, aqueous juice expelled from sugar beets and sweet sorghum stalks were employed as raw material in 
bioethanol production. The proximate composition of sucrose-containing feedstock [8]-[10] and starch-conta- 
ining feedstocks [11]-[13] for bioethanol production are given in Table 1. Sugarcane molasses is composed of 
sucrose (31%) and inverted sugar (15%) [8]. Therefore, sucrose concentration in sugarcane molasses must be 
diluted (to 14% - 18%) before fermentation to facilitate the optimum growth of fermenting microorganism. The 
juice extracted from sugar beet is composed of 16.5% sucrose [9] and in sweet sorghum, stalks are the main 
store of sugar and are mechanically pressed to recover a sugar juice of 12% - 22% concentration [10] which can 
be directly fermented by Saccharomyces cerevisiae (yeast).  
 
Table 1. Proximate composition of starch-containing and sucrose-containing feedstock.                                        

Sugarcane molasses [8] Sugar beet juice [9] Sweet sorghum stalks [10]  Corn grain [11] Wheat grain [12] Cassava [13] 

Component % w Component % w Component % w Component % w % w % w 

Water 18.9 Water 65.6 Cellulose 8.7 Starch 72.0 53.0 - 57.0 77.0 - 94.0 

Sucrose 31.8 Solids 17.3 Hemicellulose 6.3 Fiber 9.5 9.9 - 11.8 1.5 - 3.7 

Invert sugar 15.4 Sucrose 16.5 Lignin 0.6 Sugars 2.6 0.0 0.0 

Ash 13.8 Sugars 0.2 Sucrose 67.4 Protein 9.5 12.5 - 15.1 1.7 - 3.8 

Others 20.1 Impurities 0.3 Glucose 3.7 Oil 4.3 2.1 - 2.6 0.2 - 1.4 

    Ash 0.2 Minerals/Ash 1.4 0.0 1.8 - 2.5 

    Others 13.1 Water 0.0 12.0 59.0 - 70.0 

      Others 0.7 4.9 - 5.8 0.0 

http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
https://www.iea.org/publications/freepublications/publication/2nd_Biofuel_Gen.pdf
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Although bioethanol production using sucrose-containing feedstock has been well reported, research is still 
ongoing, including the testing of different yeast species available in the market and also newly isolated species 
to achieve high ethanol yields and to reduce the formation of foam and glycerol during fermentation. Foaming 
and glycerol formation are the major parameters which can have a significant impact on ethanol production costs. 
A summary of the latest research reports [14]-[23] on ethanol production from sucrose-containing feedstocks 
together with feedstock availability is presented in Table 2. Conventionally, bioethanol production has been carried 
out by anaerobic fermentation using yeast. However, Jayus and co-workers [14] reported the effect of aeration 
during fermentation of sugarcane molasses using commercially available New Aule Alcohol yeast and New 
Aule Baker’s yeast on ethanol production. Among the two species tested Baker’s yeast (0.7 g∙g−1) showed higher 

 
Table 2. Bioethanol production from sucrose-containing feedstock- recent research.                                    

Feedstock Yield, tonnes ha−1 Sugar content, % w/w Fermentation 
organism/conditions Ethanol Reference 

Sugarcane molasses 62 - 74 
(Sugarcane) [6] 

31% sucrose and 
15% invert sugars 

New Aule Alcohol yeast  
and New Aule Baker’s 
yeast; fermentation at 

room temperature, pH 4.3 
for 72 h, inoculum 1% w/v 

Alcohol yeast-74.8 g∙L−1, 
Yp/s 0.4 g∙g−1 and Baker’s 

yeast-102.9 g∙L−1, Yp/s 0.7 g∙g−1 

from 300 g∙L−1 sugar 
concentration 

[14] 

Sugarcane molasses   

Saccharomyces species 
isolated from molasses; 
fermentation at 30˚C for 

144 h, inoculum 0.5 g∙L−1 

128.7 g∙L−1, Yp/s 0.6 g∙g−1 

from 250 g∙L−1 sugar 
concentration 

[15] 

Sugar beet molasses 
and thick juice 54 - 111 [7] 

Total sugars in Sugar 
beet molasses: 53.0% 

and in thick juice: 
60.0% 

Immobilized yeast; 
fermentation at 30˚C, 

pH 5.5, 144 h, 
inoculum 1 g∙L−1 

From molasses: Yp/s 0.5 g∙g−1, 
96.8%, 83.2 g∙L−1 and 

from thick juice: Yp/s 0.4 g∙g−1, 
90.6%, 132.4 g∙L−1 from  

300 g∙L−1 sugar concentration 

[16] 

Sugar beet raw, thin 
and thick juice and  

molasses  

In raw juice:13.4% 
Thin juice:13.0% 

Thick juice: 58.3% 
Molasses: 50.1% 

Commercial yeast strain; 
fermentation at 30˚C, 
60 h, inoculum 3 g∙L−1 

From raw juice: 0.08 v/v Thin 
juice: 0.08 v/v Thick juice: 0.08 
v/v Molasses: 0.07 v/v from an 
initial sugar concentration of 

130 g∙kg−1 media 

[17] 

Sweet sorghum 
stalk juice 50 - 62 [6] Sucrose 12% - 22% 

Immobilized S. cerevisiae 
in bioreactor 5L; 

fermentation at 37˚C, 
pH 5, 12 h, inoculums 

108 cells∙mL−1 

33 mg∙mL−1, 
yield 98.0% [19] 

Sweet sorghum 
stalk juice   

Immobilized S. cerevisiae 
in fluidized bed 

fermenter; fermentation 
at 32˚C, pH 4, 9 h, 

inoculum 108 cells∙mL−1 

Ethanol content 
6.2% v/v; yield 91.6% [20] 

Sweet sorghum 
juice   

S. cerevisiae; fermentation 
at 30˚C, 48 h, inoculums 

5*108 cells∙mL−1 

Ethanol 133.5 g∙L−1, 
87.6% of the theoretical yield [22] 

Sweet sorghum 
juice   

S. cerevisiae strain 
 BY4741; fermentation at 

30˚C, pH 5.2, 48 h, 
inoculum 5*108 cells∙mL−1 

Ethanol 115.2 g∙L−1, 
87.1% of the theoretical 

ethanol yield, Yp/s 0.4 g∙g−1 
[21] 

Sweet sorghum juice 
from three varieties: 
GK-coba; Mn-4508; 

SS-301 
 

GK-cba: 16.9%, 
Mn-4508: 17.4%, 

SS-301: 19.1% 

Zymomonas mobilis and 
S. cerevisiae mixed culture 

(1:1); fermentation at 
30˚C, 4 days, inoculum 5 

mL of 48 h old liquid 
seed cultures 

45.2 mL∙L−1; 1075.4 L∙ha−1  
46.9 mL∙L−1; 1318.2 L∙ha−1  
50.2 mL∙L−1; 1232.6 L∙ha−1 

[23] 
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ethanol formation per unit of substrate consumed (Yp/s, g∙g−1) than alcohol yeast (0.4 g∙g−1). Muruaga et al. [15] 
reported ethanol production from sugarcane molasses using Saccharomyces species isolated from molasses and 
grapes. They achieved ethanol formation of 128.7 g∙L−1 which corresponds to an Yp/s of 0.6 g∙g−1 from molasses 
with initial sugar concentration of 250 g∙L−1.      

Sugar beet molasses and thick juice are the other promising raw sources for ethanol production due to their 
high sugar content i.e. 53.0% and 60.0%, respectively. Razmovski et al. [16] studied the very high gravity 
(VHG) fermentation of sugar beet molasses and thick juice using S. cerevisiae (strain DTN) in free and immobi-
lized form. During VHG fermentation by the immobilized yeast, the maximum ethanol concentrations achieved 
were 83.2 g∙L−1 and 132.4 g∙L−1 from sugar beet molasses and thick juice, respectively, with an initial sugar 
concentration of 300 g∙L−1. The intermediate products (raw juice, thin juice and thick juice) obtained during 
sugar beet processing were also employed as feedstock for bioethanol production along with beet molasses. It 
was reported that little difference was observed in the amount of ethanol formed (v/v) but a significant differ-
ence was reported in terms of fermentation duration. The optimal fermentation duration of intermediates was 36 
h whereas that of molasses was 50 h [17]. Moreover, it was reported that 0.07 kg ethanol can be obtained from 
aqueous sugars extracted from 1 kg sugar beet [18]. Employment of immobilized yeast in different modes of 
fermentations i.e. batch fermentation in a bioreactor [19] and continuous fermentation in a fluidized bed reactor 
[20] were other aspects which improved ethanol yields. Concentration of sweet sorghum raw juice before being 
subjected to fermentation was reported to have a positive effect on improving the ethanol titer. Sasaki and 
co-workers [21] reported improved ethanol titer of 115.2 g∙L−1 corresponding to a Yp/s of 0.4 g∙g−1 after concen-
trating the sweet sorghum raw juice from an initial concentration of 125 g∙L−1 to 278.6 g∙L−1 using nanofiltration. 
Apart from these process improvements, supply of a nitrogen source (87.6% ethanol yield) [22], inorganic car-
bon source (91.6% ethanol yield) [20] and application of mixed culture of fermenting organisms during fermen-
tation were reported to have a significant effect on the fermentation process for bioethanol production. Khalil et 
al. [23] employed a mixed culture of Zymomonas mobilis and S. cerevisiae as fermenting agents on juice ex-
tracted from different varieties of sweet sorghum (GK-coba, Mn-4508 and SS-301) and reported that sweet 
sorghum SS-301 variety gave maximum ethanol yield of 1233 L∙ha−1 among the different varieties of sweet 
sorghum tested.  

2.2. Starch-Containing Feedstock for Bioethanol Production 
Corn, wheat and cassava are the most employed starch-containing feedstocks in bioethanol production in North 
America, Europe and tropical countries. Starch is a polymer of glucose which can be broken into glucose mo-
nomers by the action of α-amylase and gluco-amylase enzymes. The proximate chemical composition of the 
starch-containing feedstock is provided in Table 1. The conversion of starch-containing feedstock to obtain 
fermentable sugars is mainly comprised of three operations which are: (i) milling, (ii) liquefaction and (iii) sac-
charification using enzymes. Commercially, corn grain is converted to ethanol by two methods, wet milling and 
dry milling. In wet milling corn grain is soaked in water to fractionate the grain into starch, fiber and germ in-
volving separate processing of each fractionated component. Dry milling involves processing of whole grain and 
the residual components are separated at the end of the process.  

In corn grain based ethanol production, corn grain variety and quality contribute to the final ethanol yield. 
Research carried out on 258 corn varieties for bioethanol production confirmed that the corn samples with high-
er starch content have lower efficiency of starch saccharification [24]. Corn quality in terms of kernel composi-
tion, endosperm hardness, planting location and the presence of mycotoxins affected ethanol yield, with differ-
ences in ethanol yield ranging between 3% - 23% due to grain quality [25]. Moreover, the high free sugar con-
tent in corn kernels has the potential to decrease enzyme consumption during saccharification resulting in higher 
ethanol yields. A brief description of the latest research on bioethanol production from starch-containing feeds-
tock [4] [12] [26]-[33] is given in Table 3. 

Ethanol production from corn of the high sugary corn genotype, HSG and its parent field corn lines PFC con-
firmed that the enzyme requirement for HSG corn was 1.5 kg∙tonne−1 of dry corn whereas PFC corn consumed 2 
kg∙tonne−1 [26]. Therefore, it is evident that starch content in corn grains is not the only factor which determines 
ethanol productivity.  

Wheat is another main cereal feedstock for grain distilleries and ethanol production and it replaced barley 30 
years ago. Dry milling of wheat to separate bran from grain improves the starch content in flour resulting in a 
high ethanol titer. Sosulki et al. [12] reported ethanol production using wheat flour from dry milling with a  
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Table 3. Bioethanol production from starch-containing feedstock.                                                         

Feedstock Feedstock 
availability Starch content, % w/w Liquefaction and 

Saccharification 
Fermentation 

organism/conditions Ethanol formed Reference 

Corn 
HSG 

and PFC 
varieties 

7.2 tonnes∙ha−1 

HSG: Starch 67.3%, 
total sugar 7.4% 
and PFC: starch 

73.6%, total sugar 1.2% 

SSF; Saccharification using 
STARGEN 002 at  

2 kg∙tonne−1 of corn with 
300 g∙L−1 initial solid 

concentration 

S. cerevisiae ATCC 
96581; fermentation 
at 30˚C, pH 4.2, 96 h 

and inoculum 
2 mL per 100 mL 

media 

From HSG:  
0.4 g∙ethanolg−1 

dry corn, 141.5 g∙L−1 

From PFC:  
0.4 g∙ethanolg−1  

dry corn, 130.5 g∙L−1 

[26] 

Corn 
meal  Starch 70.8% 

Two-step enzymatic 
treatment using commercially 

available α-amylase and 
glucoamylase 

S. cerevisiae; 
fermentation at 

32˚C, pH 5.0, 48 h 
and inoculum  

1.3% w/w 

80% of the theoretical 
ethanol yield [4] 

Wheat 3.6 tonnes∙ha−1 
annum−1 

Total carbohydrates 
69.7% and crude 

fiber 1%  

S. cerevisiae;  
fermentation 

conditions not 
available 

423 L∙tonne−1; 
1560 L∙ha−1∙annum−1 [29] 

Wheat   

Mash obtained under VHG 
conditions at 38% w/v solid 

concentration 

Active dry yeast; 
fermentation at 

20˚C and inoculums 
106 cells per 1 g 

wheat mash 

23.80% v/v after 
200 h at 20˚C [27] 

Wheat  Starch 53% - 57% 

Liquefaction at 95˚C for 2 h 
and 45 min using α-amylase 
and saccharification at 55˚C 
for 2 h using glucoamylase 

at grain/flour to water weight 
ratio of 1:2.7 

S. cerevisiae; 
fermentation 30˚C, 
72 h and inoculum 
1.6*107 cells∙mL−1 

From grain: 10% - 11% 
w/v, 12.7% - 13.8% v/v, 

377 - 399 L∙tonne−1; from 
flour: 12% - 12.7% w/v, 
15.0% - 15.9% v/v and 

344 - 367 L∙tonne−1 

[12] 

Cassava 36.3 tonnes∙ha−1 
annum−1 [29] Starch 76% - 81% 

Liquefaction using Spezyme 
enzyme for 30 min at 90˚C 

followed by SSF using 
Stargen enzyme at 1:100 

w/w ratio of Stargen to starch 
and 10% w/v solid 

concentration 

Dry bake’s Yeast; 
fermentation at 

30˚C, 48 h, pH 5.5, 
and inoculum 10 mL 

yeast suspension 
having O.D  

3.8 - 4.0 at 450 nm 

558 g ethanol∙kg−1 

cassava starch,  
fermentation  

efficiency 98.4% 

[30] 

Cassava 
flour   

Liquefaction at 80˚C for 
90 min using Spezyme 

followed by SSF using alpha 
amylase, beta glucanase and 

two glucoamylases 

S. cerevisiae; 
fermentation at 

 30˚C, pH 5.5, 72 h 
and inoculum  

1.5*107 cells∙mL−1 

At lab scale: 17.2% v/v, 
86.1% of the theoretical 
ethanol yield; At pilot 

scale: 16.5% v/v, 
83.6% of the theoretical 

ethanol yield 

[31] 

Wild 
cassava   

Liquefaction and 
saccharification using 

α-amylase and β-glucanase 

Caloramator 
boliviensis 

(Thermoanaerobe); 
fermentation at  

60˚C, pH 7, 48 h  
and inoculum 50 mL 

overnight culture 
per 240 mL media 

33.0 g∙L−1, 1.7 mol∙mol−1, 
85% of the theoretical 

ethanol yield 
[33] 

 
maximum ethanol concentration of 15% - 15.89% (v/v) at 344 - 367 L∙tonne−1 of wheat flour whereas under 
very high gravity conditions a maximum ethanol titer of 23.8% (v/v) was reported by [27] Thomas and co- 
workers. Moreover, a recent study proposed by [28] Belboom et al. reported that the consumption of 1 MJ bioe-
thanol produced from wheat instead of 1 MJ gasoline can reduce greenhouse gas emissions by 42.5% - 61.2%. 

Cassava is a promising feedstock for bioethanol production due to the high starch yield per hectare and avail-
ability of raw material all year round (36.3 tonnes∙ha−1∙annum−1) [29]. Although several workers have reported 
bioethanol production from cassava, research is still focused on the evaluation of optimum slurry concentration, 
enzyme load and fermentation conditions to obtain high ethanol titer and maximum ethanol yield [30].  

Shanavas et al. reported Spezyme (a highly powerful α-amylase) liquefying enzyme treatment followed by 
saccharification and fermentation of cassava starch (10% w/v slurry concentration) was the best process strategy 
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to obtain 558 g ethanol per kg cassava starch within 48.5 h of duration using Stargen enzyme (granular starch 
hydrolyzing enzyme) at 1:100 w/w ratio of the enzyme to cassava starch and dried baker’s yeast as fermenting 
organism at 30˚C. In another approach simultaneous saccharification and fermentation (SSF) under very high 
gravity (VHG) conditions employing 315 g∙L−1 slurry concentration was reported by Nguyen et al. [31] for bio-
ethanol production from cassava flour at lab and pilot scale level. Liquefied cassava flour at 80˚C for 90 min 
using α-amylase and β-glucanase was subjected to SSF at 30˚C with simultaneous addition of glucoamylase and 
active dry yeast. The ethanol content achieved at lab and pilot scale were 17.2% (v/v) and 16.5% (v/v) corres-
ponding to 86.1% and 83.6% of the theoretical ethanol yield, respectively. VHG technology has some disadvan-
tages due to the high viscosity of starch after liquefaction, which leads to solid-liquid separation problems, in-
complete hydrolysis of starch and lower fermentation efficiency. In order to overcome these drawbacks of VHG 
technology the feedstock can be pretreated using cell-wall degrading enzymes (cellulase and pectinase) and vis-
cosity reduction enzymes (xylanase) which will give low viscosity starch paste from VHG operation [32]. Cur-
rently, the application of thermoanaerobes during fermentation has been gaining attention in bioethanol produc-
tion. The high growth temperatures of thermoanaerobes promote higher rates of starch/cellulose conversion to 
sugars and reduce cooling costs in fermentation. Moshi et al. [33] reported an ethanol titer of 33 g∙L−1 corres-
ponding to 85% of the theoretical ethanol yield from α-amylase and β-glucanase treated cassava subjected to 
fed-batch fermentation under high hydrogen pressure using a thermoanaerobe, Caloramator boliviensis at 60˚C. 

Globally, among the countries which produce bioethanol from sugar and starch containing feedstock the 
United States produces 40 billion liters of bioethanol from corn/wheat while Brazil accounts for 25 billion liters 
from sugar cane. Apart from these two major bioethanol producing countries, China (3 billion liters from corn/ 
cassava/rice), Canada (2 billion liters from corn/wheat), India (1 billion liters from sugarcane/molasses), France 
(1 billion liters from wheat/sugarcane/sugar beet), Germany (750 million liters from wheat/sugarcane/sugar beet) 
and Australia (500 million liters from sugar cane) are the remaining countries producing significant bioethanol 
[http://biofuel.org.uk/major-producers-by-region.html]. To preserve the sustainability of the bioethanol produc-
tion from sugar and starch-containing (1st generation) feedstock and to improve energy economics of the process 
it is necessary to recover intermediate products and to integrate pulp/bagasse fermentation with the process. 

1st generation bioethanol production from food crops have several limitations including the fact that it has a 
direct impact on food production in terms of food price and quality and soil usage for crop growth while pro-
viding only limited greenhouse gas emission reduction benefits [34]. Currently there is much focus on advanc-
ing a cellulosic bioethanol concept (2nd generation) that utilizes lignocellulosic biomass. 2nd generation bioetha-
nol produced from lignocellulosic biomass, non-food crops, industrial and municipal wastes results in greater 
greenhouse gas reductions and does not compete for agricultural land with food crops.  

2.3. Cellulosic Feedstock for Bioethanol Production 
Lignocellulosic biomass represents a promising resource for bioethanol production which is renewable in nature. 
Lignocellulosic biomass is defined as “the biodegradable fraction of products, waste and residues from biologi-
cal origin from agriculture (including vegetable and animal substances), forestry and related industry” 
[http://ec.europa.eu/agriculture/bioenergy/potential/index_en.htm]. Not only an energy source, biomass is also a 
promising raw material for the production of chemicals [35]. As biomass represents a renewable energy source it 
can potentially be utilized without depleting reserves. However, the structural features of lignocellulosic bio-
mass pose challenges to conversion technologies. An effective conversion technology must be developed to en-
able the processing of lignocellulosic biomass that has a very complex and resistant structure and allow the effi-
cient exploitation of every part of the biomass. The relative portions of the different parts of lignocellulosic 
biomass vary greatly depending on the source. There is no current technology for conversion of the biomass to 
bioethanol available. What is now required is to develop techno-economic routes for the production of bio-based 
compounds to make the bio-industry competitive in the market.  

Lignocellulosic biomass is composed of carbohydrate polymers (cellulose and hemicellulose), lignin and a 
small remaining fraction of extractive acid, salts and minerals. Figure 2 depicts the structural components of 
lignocellulosic biomass. 

Cellulose is a homo-polymer of glucose subunits (cellobiose) with a crystalline structure; hemicellulose is a 
heteropolymer of pentose sugars with an amorphous structure, whereas lignin is a highly crystalline and rigid 
component of biomass. Cellulose and hemicellulose typically comprise two-thirds of the dry mass and varies 
with the type of biomass feedstock. The cellulose, hemicellulose and lignin composition of different renewable 

http://ec.europa.eu/agriculture/bioenergy/potential/index_en.htm
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Figure 2. Lignocellulosic biomass structural components (cellulose, hemicellulose and lignin).      

 
feedstocks [36]-[38] is presented in Table 4. These three components of biomass can be converted to various 
value added products through different pathways. There are a number of recent reviews reporting the state of the 
art in biofuel and biochemical production and the use of different feedstock for this developing bioindustry (e.g. 
[39]). 

Bioethanol production from lignocellulosic biomass feedstock typically comprises the following steps:  
 Pre-treatment: process where the structural carbohydrates that compose the biomass are made more accessi-

ble for the subsequent steps; 
 Enzymatic hydrolysis: breakdown of the polymeric carbohydrates into simple sugars that can be fermented 

by the microorganisms into ethanol; 
 Fermentation: conversion of the carbohydrates into ethanol by the selected microorganism or culture; 
 Downstream processing: recovery of the ethanol from the fermentation broth (typically by distillation) and 

management of the remaining streams.  
The economic feasibility of biofuel production from lignocellulosic feedstock largely depends on (i) the type 

of biomass and (ii) the pretreatment process before fermentation. Availability, cost, transportation to the proc- 
essing facility and physical state of the biomass are major factors affecting the selection of feedstock for bioe-
thanol production. Agricultural residues and pulp/bagasse generated from 1st generation bioethanol process repr- 
esent a promising feedstock for 2nd generation bioethanol production. 

A list of different processes for 2nd generation bioethanol production from corn stover [40]-[43], Japanese 
ceder [44], wheat straw [45] [46], cassava residues [47]-[49], sugarcane bagasse [50]-[55], sugar beet pulp [56] 
[57], sweet sorghum bagasse [54] [58]-[61], sweet sorghum stover [62], rice straw [63]-[65] and palm empty 
fruit bunches [66] are presented in Table 5 together with feedstock availability, chemical composition and 
ethanol yield from the process. 

The need for a pre-treatment step is the major distinction between a 1st and a 2nd generation bioethanol process. 
Existing ethanol production processes have (i) separate hydrolysis and fermentation steps (SHF) [67]; (ii) si-
multaneous saccharification and fermentation (SSF) [68] refers to saccharification and fermentation of hexose 
sugars taking place within the same bioreactor; (iii) simultaneous saccharification and co-fermentation (SSCF) 
refers to the saccharification and co-fermentation of both pentose and hexose sugars in a single step and (iv) 
consolidated bioprocessing step (CBP) (Figure 3). In CBP a single organism is used to produce the enzymes 
required and to perform both cellulose hydrolysis and fermentation [69]. CBP is considered potentially the most  
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Table 4. Cellulose, hemicellulose and lignin composition of lignocellulosic biomass feedstocks [36]-[38].                          

Lignocellulosic biomass 
% of total dry weight 

Cellulose Hemicellulose Lignin 

Bamboo 49 - 50 18 - 20 23 

Corn cobs 45 35 15 

Corn stover 35 - 40 21 - 25 11 - 19 

Grasses 25 - 40 35 - 50 10 - 30 

Hardwood stems 40 - 50 24 - 40 18 - 25 

Nut shells 25 - 30 25 - 30 30 - 40 

Rice straw 29 - 35 23 - 26 17 - 19 

Softwood stems 45 - 50 25 - 35 25 - 35 

Sugar cane bagasse 25 - 45 28 - 32 15 - 25 

Switch grass 30 - 50 10 - 40 5 - 20 

Wheat straw 33 - 40 20 - 25 15 - 20 

 

 
Figure 3. Process steps in lignocellulosic ethanol production reproduced from [71].                                    

 
cost-effective process as the processes, namely enzyme production, hydrolysis and fermentation are taking place 
within the same bioreactor making the capital cost lower [70].  

Lignocellulosic biomass represents a promising but challenging substrate for ethanol production. Hydrolysis 
of lignocellulosic substrates results in the formation of both hexose and pentose sugars from cellulose and he-
micellulose, respectively. Ethanol is produced primarily by the fermentation of glucose liberated from cellulosic 
feedstock using fermentative microorganisms, principally yeasts, S. cerevisiae [72]. The most common microbe 
used has been S. cerevisiae which, as Lin and Tanaka [73] reported, can produce ethanol at concentrations as 
high as 18% in the fermentation broth. It is a relatively easy microbe to handle as it is generally recognized as 
safe. Z. mobilis, a Gram-negative bacterium, can also be used in fermentation of glucose into ethanol [74]. Bio-
mass formed during fermentation using S. cerevisiae and Z. mobilis are recognized as safe for fodder, making 
these organisms suitable for metabolic engineering for application in co-fermentation of both pentose and hex-
ose sugars. Recent reports suggest that some white rot fungi [75], namely Agaricus bisporus, Bjerkandera adus-
ta and Iprex lacteus, are able to produce ethanol from glucose under semi-aerobic conditions. Jung and 
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Table 5. 2nd generation bioethanol production from agricultural residues and residues from 1st generation bioethanol process.  
Feedstock 

Feedstock availability 
Composition, 

% w/w Pretreatment Hydrolysis and fermentation Ethanol Reference 

Corn stover (agricultural 
by-product 80 - 100 
million dry tonnes 

annum−1 [40] 

Glucan-41.0% 
Xylan-25.3% 

Arabinan-6.1% 
Galactan-3.0% 
Lignin-21.0% 

Steam pretreatment of 
SO2 impregnated corn 

stover at 200˚C for 
5 min 

SSF at 10% WIS using 
cellulase and β-glucosidase 
mixture and S. cerevisiae  

(Baker’s yeast); 
fermentation 

at 30˚C, pH 5, 72 h and 
inoculum 2 g yeast∙L−1 

74% of the 
theoretical 

ethanol yield, 
ethanol 25 g∙L−1 

[41] 

Corn stover 

Glucan-42.2% 
Xylan-19.6% 

Arabinan-2.9% 
Galactan-1.1% 
Lignin-20.8% 

Steam pretreatment 
as described in [41] 

Pre enzymatic hydrolysis  
using Thermo-active 

enzyme mixture followed 
by SSF using S. cerevisiae 
(Baker’s yeast) at 11.50% 

WIS; fermentation at 35˚C, 
pH 5, 96 h and inoculum 

1.8 g yeast 100 mL−1 

Ethanol 33.8 g∙L−1,  
80.2% overall 
ethanol yield 

[42] 

Corn stover  

Steam pretreatment as 
described in [41]  

Ohgren et al., 2006 

8% WIS and 10 FPU/g WIS 
SSF Vs. SHF; S. cerevisiae 
in fermentation at 35˚C, pH 
5, 144 h and inoculum 1 g 

dry yeast L−1 

Theoretical ethanol 
yield in SSF-72.4 % 
and in SHF-59.1 % 

[43] 

Japanese cedar  
(Cryptomeria japonica) 

7.6 million tonnes 
annum−1 forest residues 

 

Crushed to 20 micron 
of particle size using 

Cogwheel mill 

SSF using commercial 
cellulase and S. cerevisiae 
after 24 h. Fermentation 
conditions not available 

270 L ethanol 
tonne−1 of Japanese 
cedar, 0.2 g ethanol 

g−1 of Japanese 
cedar 

[44] 

Wheat straw 84.5 million 
dry tonnes of wheat 

straw annum−1 at residue 
to wheat grain ratio of 

1.3 - 1.7:1 [45] 

Cellulose 33.5%, 
Hemicellulose 22.4%, 
Klason lignin 16.4%, 

Ash 5.8%, 
Residual 21.8% 

A three step 
pretreatment: 

Presoaking at 80˚C for 
20 min followed by 
thermal treatment at 
170˚C - 180˚C for 

7.5 - 15 min then steam 
treatment at 195˚C for 

3 min 

Enzymatic hydrolysis of 
the solid residue using 
Cellubrix L enzyme 

203 - 205 kg ethanol 
tonne−1 of straw 
from cellulose 

fraction; 350.5 kg 
tonne−1 from both 

cellulose and 
hemicelluloses 

fractions (calculated 
based on sugars 

obtained in 
hydrolysis step) 

[46] 

Cassava stems and 
peelings Cassava stems 

and peelings:  
403 tonnes∙ha−1 

Cellulose 28.9%, 9.7% 
Hemicellulose 21.1%, 
32.3% Klason lignin 

30.6%, 16.9% Proteins 
1.4%, 3.7% Ash 7.3%, 

11.3% Lipids 0.7%, 1.7% 
others 9.9%, 24.2% in 

stems, peelings, 
respectively 

Thermohydrolysis at 
225˚C for 50 min 

Enzymatic hydrolysis using 
Cellulase followed by 
fermentation using S. 

cerevisiae or Rhyzopus 
spp. at 1 g dry biomass 
inoculum per 100 mL 
hydrolyzate and other 

fermentation conditions 
not available 

Stems: 5.2 g ethanol 
100 g−1 stems 
Peelings: 2.6 g 
ethanol 100 g−1 

peelings 

[47] 

Cassava cellulosic wastes 
from starch processing 
Liquid waste (1% total 

solids): 8.9 - 10.6 tonnes 
and Wet cassava bagasse: 

0.9 - 1.1 tonnes from 1 
tonne of dry cassava 

processed [48] 

Carbohydrate 76.6% 
Starch 60.8% 
Fibre 15.8% 
Protein 0.8% 

Hydrolysis using 
α-amylase for 1 h at 

97˚C - 100˚C followed 
by Dilute HCl 

hydrolysis 

Saccharification of  
hydrolyzed starch using  

amyloglucosidase at 
50˚C - 60˚C followed by 

fermentation using S. 
cerevisiae at 40˚C - 50˚C, 

pH 4.6 - 5.5, 8 h and 
inoculum 0.2 g dry biomass 

per 100 mL hydrolyzate 

2.7 g ethanol 15 g−1 

cassava cellulosic 
waste, 32.4% w/w 

ethanol 
concentration 

[49] 

Sugar cane bagasse 
276 kg bagasse∙tonne−1 of 

sugarcane; Sugarcane 
harvest in South Central 

Brazil 516 million tonnes 
in 2011/2012 [50] 

Cellulose 52%  
Hemicellulose 20%  

Lignin 24% [51] 

Delignification using  
NaOH (1N) at reflux 
temperature for 2 h 

SSF using cellulase and S. 
cerevisiae using 1 g 

de-lignified bagasse per 20 
mL medium; fermentation 5 

days and other conditions 
not available 

11.8 g ethanol∙L−1 [52] 
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Continued 

Egyptian sugarcane 
bagasse 

Cellulose 41.3% 
Hemicellulose 27.4% 

Lignin 12.1% 

Chipped, ground 
bagasse autoclaved at 

121˚C for 20 min 

Separate hydrolysis and 
fermentation: (i) Biological 

hydrolysis using Trichoderma 
viride and fermentation using 

Candida tropicalis; (ii) 
Biological hydrolysis using 

Aspergillus terreus and 
fermentation using S. 

cerevisiae Fermentation at 
30˚C, 48 h and inoculum 

10% v/v 

(i) 249 kg of 
ethanol tonne−1 

bagasse; (ii) 204 kg 
of ethanol tonne−1 

bagasse 

[53] 

Sugar cane bagasse 
Cellulose 42% 

Hemicellulose 25% 
Lignin 20% [54] 

Dilute sulphuric acid 
(1% v/v) treatment at 

121˚C for 45 min with a 
solid to liquid ratio of 
1:2 followed by NaOH 
(4% w/v) treatment at 

121˚C for 30 min with a 
solid to liquid ratio of 

1:20 

Simultaneous 
Saccharification using  
enzyme prepared using 

Pencillium funiculosum ATCC 
11797 and pretreated 

sugarcane bagasse substrate 
followed by fermentation 

using S. cerevisiae at 37˚C, 
pH 5, 144 h and inoculum 

15 g∙L−1 

Ethanol 100 g∙L−1, 
121.2 L of ethanol 

tonne−1 of sugarcane 
bagasse 

[55] 

Sugar beet pulp 
4717360 tonnes annum−1 

from US, Europe and Asia 
[56] and 17 million tonnes 

sugar beet annum−1 

Total carbohydrate 80%: 
Rhamnose 2.4% 
Arabinose 23.0% 
Galactose 6.2% 
Glucose 25.9% 
Mannose 1.0% 
Xylose 1.7% 

Galacturonic acid 14.4% 

Steam pretreatment at 
152˚C - 175.5˚C and 
4 - 8 bar(g) pressure 

Enzymatic hydrolysis using 
commercially available 

cellulase at 50˚C for 24 h 
followed by fermentation 

using S. cerevisiae at 30˚C 
for 24 h and other 

conditions not available 

0.5 g ethanol per g of 
glucose from sugar 

beet pulp 
[57] 

Sweet sorghum bagasse 
(SSB) 

36.0 - 45.4 tons/ha [58] 

Carbohydrates 58.3% 
Lignin 18.6% 

Ash 1.9% 
Extractives 21.2% 

Steam pretreatment of 
2.5% SO2 impregnated 
bagasse at 200˚C for 

7.5 min 

Enzymatic hydrolysis using  
commercial cellulase and 
β-glucosidase at 50˚C for 

72 h followed by 
fermentation using S. 

cerevisiae at 30˚C, pH 6, 
48 h and inoculum 3 - 5 g∙L−1 

15.3 g ethanol 
100 g−1 SSB, 72.7% 

conversion of 
hexose sugars to 

ethanol 

[59] 

Sweet sorghum 
bagasse (SSB) 

Cellulose 34% - 45% 
Hemicellulose 25% - 27% 
Lignin 18% - 21 % [54] 

SSB in dilute NaOH 
solution (2% w/v) 

autoclaving at 121˚C 
for 60 min and H2O2 

immersing 

Enzymatic hydrolysis at 50˚C 
using Celluclast supplemented 
with β-glucosidase followed 
by fermentation using Active 

dry yeast at 30˚C and 
inoculum at 1:10 volume 
ratio of yeast medium to 

fermentation broth 

Total sugar yield 
of 90.9 g sugar 

100 g−1 dry SSB, 
Ethanol 6.1 g∙L−1 

[60] 

Sweet sorghum 
bagasse (SSB)  NaOH pretreatment 

Enzymatic hydrolysis using 
commercial cellulase and 
xylanase from Novozyme 

followed by fermentation using 
Zymomonas mobilisat 32˚C, 
pH 6, 30 h and inoculum Z. 
mobilis culture at 10% v/v 

61.8% of the 
theoretical 

ethanol yield 
[61] 

Sweet sorghum stover  

Dilute sulphuric acid 
(0.37% v/v) treatment in 
a high pressure reactor at 

150˚C for 15 min 

Enzymatic hydrolysis using 
commercial cellulase (Zytex) 
at 50˚C for 48 h followed by 

fermentation using S. 
cerevisiae at 30˚C, 48 h 
and inoculum 0.27 g∙L−1 

91.9 g ethanol∙kg−1 
native sorghum [62] 

Rice straw 
34.3 million tonnes 

annum−1 from Thailand 

Cellulose 32% - 47 %  
Hemicellulose 

13% - 27 % 

Aqueous ammonia (27% 
w/w) treatment at 1:12 

solid: liquid ratio at 
room temperature 

(25˚C ± 3˚C) 
for 14 days followed 

by washing 

SSF using cellulase (Cellic 
Ctec2) and xylanase (Cellic 
Htec2) and S. cerevisiae and 
Candida tropicalis at 37˚C 
for 72 h and inoculum 1.2 g 
yeast in 10 mL YP medium 

25.1 g∙L−1, 
Yp/s 0.4 g∙g−1 [63] 
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Continued 

Rice straw 
Glucan 44.8% 
Xylan 20.8% 
Lignin 18.3% 

0.5 M Na2CO3 
pretreatment at 
100˚C for 3 h 

SSF using cellulase (Celluclast 
 1.5 L), β-glucosidase 

(Novozyme 188) and Mucor 
hiemalis as fermenting 

organism at 37˚C, pH 5.5, 
72 h and inoculum 1 g dry 

biomass L−1 

12.8 g∙L−1, 154 g 
ethanol k∙g−1 rice 

straw, 83% ethanol 
yield 

[64] 

Rice straw  

Two step pretreatment 
Step1: Dilute sulphuric 

acid (1% w/w)  
treatment at 100˚C for 
2 h at 10% w/v ratio of  

rice straw; Step2: 
Sulphomethylation 

treatment at 160˚C for 
5 h at 15% w/v of acid 

treated rice straw 

SSF using cellulase (Onozuka 
R-10) and β-glucosidase and S. 

cerevisiae at 40˚C, 72 h and 
inoculum 5 mL yeast culture of 

1.5*108 cells∙mL−1 

Ethanol concentration 
40.6 g∙L−1; 

Ethanol yield 86.4% 
[65] 

Palm empty fruit bunch 
6.7 million tonnes annum−1 

Cellulose 50.3% 
Hemicellulose 23.3% 

Lignin 23.5%  
Ash 3.0% 

Dilute H2SO4 (1% v/v) 
treatment at 125˚C for 

90 min followed by 
NaOH (1% w/v) 

treatment at 100˚C,  
for 60 min 

Enzymatic hydrolysis using  
Cellulase (Novozymes) at  
50˚C for 72 h followed by 

fermentation using S.  
cerevisiae at 30˚C, pH 4.0, 
72 h and inoculum 10% v/v 

Ethanol 12.1 g∙L−1; 
89.1% of the 

theoretical ethanol 
yield 

[66] 

 
co-workers [76] reported the use of Kluyveromyces marxianus for ethanol fermentation from empty palm fruit 
bunches. Much research continues in this field in search of efficient fermentative microorganisms for application 
in the simultaneous fermentation of pentose and hexose sugars. S. cerevisiae can readily ferment hexose sugars 
but it is not able to use pentose sugars in its metabolism to produce ethanol. Therefore, the co-fermentation of 
hexose and pentose sugars is expected to improve ethanol yields from lignocellulosics which can be possible by 
applying engineered/recombinant yeast strains in the fermentation of ethanol, an area of active research at the 
present [77].    

3. Lignocellulosic Biomass Pretreatment Techniques 
The main aim of lignocellulosic biomass pretreatment is to separate the biomass components i.e. cellulose, he-
micellulose and lignin and eventually to remove lignin without losing hemicellulose while decreasing the crys-
tallinity of cellulose and increasing the porosity of the biomass material. A number of techniques are available 
for the pretreatment of biomass; these include hot water treatment, steam explosion, ammonia fiber explosion, 
alkali treatment, organic solvent treatment and enzymatic hydrolysis. A brief description of the pretreatment 
methods is presented here. 

3.1. Hot Water Treatment [78]  
This type of pretreatment is also termed aqua-solve, aqueous fractionation, hydrothermolysis, and uncatalyzed 
solvolysis. In hot water treatment, biomass is treated with liquid hot water at elevated temperature and the 
treatment uses pressure to maintain the water in the liquid state. Water at high temperatures acts as an acid in the 
fractionation of the biomass rigid structure. The main component of the operating cost for this method is the 
energy required to feed the water as a saturated liquid. The treatment time for this process is 15 - 20 minutes at 
temperatures in the range of 200˚C - 230˚C. Approximately 40% - 60% of the total biomass is dissolved in this 
process. 

3.2. Steam Explosion [79]  
Steam explosion is the most commonly used method for the pretreatment of biomass. In this method, biomass is 
treated with high-pressure saturated steam, and then the pressure is suddenly reduced, which makes the materials 
undergo an explosive decompression. 

Steam explosion is initiated at a temperature of 160˚C - 260˚C for several seconds to a few minutes before the 
material is exposed to lower pressure. The process causes hemicellulose degradation and lignin transformation 
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due to high temperature, thus improving cellulose hydrolysis. Addition of acid ≤3% (w/w) in steam explosion 
can decrease time and temperature, effectively improving hydrolysis, and leads to the complete removal of he-
micellulose.  

3.3. Ammonia Fiber Explosion [80] 
Ammonia fiber explosion is a physicochemical pretreatment process in which lignocellulosic biomass is ex-
posed to liquid ammonia at high temperature and pressure for a period of time, and then the pressure is suddenly 
reduced. The process is very similar to steam explosion. During pretreatment only a small amount of the materi-
al is solubilized. The structure of the material is changed, resulting in increased water holding capacity and 
higher digestibility in subsequent processing. Ammonia fiber explosion has been reported to be ineffective for 
biomass with higher lignin content (~25%).   

3.4. Carbon Dioxide Explosion [81] 
In the carbon dioxide explosion method biomass is treated with supercritical carbon dioxide at comparatively 
lower temperatures than steam explosion. It is hypothesized that CO2 forms carbonic acid when dissolved in 
water, increasing the hydrolysis rate. Increased rate of penetration of CO2 molecules into the crystalline structure 
of biomass is facilitated by an increase in pressure. Carbon dioxide hydrolyzes hemicellulose as well as cellulose. 
Moreover, the low temperature treatment helps in preventing the decomposition of monomer sugars formed 
during the treatment. However the yields are relatively low compared to those of other pretreatment methods. A 
comparative study on the pretreatment of sugar cane bagasse and recycled paper and its re-pulping waste using 
different treatment methods including CO2 explosion, steam explosion and ammonia fiber explosion concluded 
that CO2 explosion is more cost-effective than other methods.   

3.5. Organosolvation [82] 
In the organosolvation process biomass is treated with a mixture of organic/aqueous organic solvents and acid 
catalysts (inorganic and organic). The most commonly used solvents are methanol, ethanol, acetone, ethylene 
glycol, triethylene glycol and tetrahydrofurfuryl alcohol. The process facilitates simultaneous hydrolysis and de-
lignification of lignocellulosic biomass. Lignin can be recovered as a fine precipitate by flash exposure of the 
liquor to atmospheric pressure, followed by rapid dilution with water. Other products such as sugars and sugar 
degradation products can be recovered from the water soluble stream. Solvents from the process can be recycled 
to reduce the cost. 

3.6. Alkaline Hydrolysis [83] 
Alkaline hydrolysis processes use lower temperature and pressures than other pretreatment methods. The most 
commonly employed alkaline pretreatment agents are sodium hydroxide, potassium hydroxide, calcium and 
ammonium hydroxides. Alkali pretreatments carried out under mild conditions require long pretreatment times, 
in the order of hours to days. However, treatment at mild temperatures (25˚C - 55˚C) selectively removes lignin 
and hemicellulose while cellulose is unaffected. Lignin removal increases enzyme effectiveness by increasing 
access to cellulose and hemicellulose and by eliminating non-productive adsorption sites. The effect of alkaline 
pretreatment of different biomass feedstocks depends on the lignin content of the materials. 

4. Hydrolysis of Lignocellulosic Biomass 
In bioethanol production from lignocellulosic biomass the pretreated feedstock must be hydrolyzed to convert 
cellulose and hemicellulose fractions to simple sugars. Therefore, a pre-hydrolysis of the feedstock is needed to 
improve the conversion of cellulose and hemicellulose to free sugars for application in further bioethanol pro-
duction. Hydrolysis of lignocellulosic biomass for sugars synthesis can be carried out using either acid or en-
zyme treatment and a brief discussion is presented in the following sections.  

4.1. Acid Hydrolysis of Lignocellulosic Biomass  
Acid hydrolysis is a process in which biomass is treated with water in the presence of acid to give sugars. The 
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treatment process converts the cellulose and hemicellulose to sugars. Acid hydrolysis is the most common me-
thodology for biomass conversion to fermentable sugars, where virtually any acid (H2SO4, HCl, H3PO4) can be 
used. Hydrolysis of biomass for the release of sugars takes place through either a dilute acid treatment or con-
centrated acid treatment. Existing acid hydrolysis processes consists of two stage acid hydrolysis [84], using 
double acids and heterogeneous acids. Important parameters such as reaction temperature, acid concentration, 
reaction time and particle size determine the conversion and yield of sugars obtained. Dilute acid hydrolysis can 
be carried out at lower temperature with longer reaction times and at higher temperatures with shorter reaction 
times. Longer reaction time results in the degradation of monomers released from hemicellulose; this observa-
tion was reported by Cruz and coworkers with barley husks [85].  

Different biomass feedstocks such as bark rich saw mill waste, rice straw, grass, silage press cakes, sugar 
maple wood extract, oil palm empty fruit bunch [86], wood shavings, sweet sorghum bagasse [87] and nitrogen 
rich dairy manure [88] have been processed using dilute acids for sugar release from the feedstock. Reports on 
the dilute acid hydrolysis processes, carried out in two steps with different acid concentrations at each stage [84] 
[89] [90], varying from 0.05% to 2.5% state that yields reached around 80% - 85% of the sugars available in the 
biomass. For example, a pre-extraction step with water at low/high temperature [91] followed by acid hydrolysis 
of maple wood resulted in around 160 g sugar∙L−1 concentrated wood extract [92]. 

A range of acids have been employed for the breakdown of the crystalline structure of biomass constituents; 
these include sulfuric acid, hydrochloric acid, phosphoric acid and H-USY zeolite treated with oxalic acid [93]. 
The specific interest in the use of H3PO4 in acid hydrolysis is that after neutralization with sodium hydroxide, it 
will yield sodium phosphate which will remain in the hydrolyzate and subsequently be used as a nutrient by mi-
croorganisms in the fermentation for ethanol production negating the requirement for filtration [94]. However, 
hydrolysis with H3PO4 does require higher temperatures and increased acid loading compared to hydrolysis with 
sulphuric acid. 

The use of concentrated acid hydrolysis represents a promising process for the hydrolysis of biomass for both 
biofuel and bio-refinery applications, with high sugar yields, lower levels of fermentation inhibitors, good fer-
mentability and a general robustness towards changes in raw material quality. The treatment of cellulose with 
concentrated sulphuric acid solution (50% - 60%) at room temperature [95] resulted in good solubility and the 
recovered cellulose had an amorphized structure characterized by high enzymatic digestibility. This regenerated 
cellulose had reduced crystallinity (25% - 30%), and a lower degree of polymerization (40% - 50%). A two 
stage concentrated acid hydrolysis [96] of soft wood biomass resulted in good sugar yields and a low concentra-
tion of fermentation inhibitors. However, concentrated acid hydrolysis has some major drawbacks, namely: 
 Consumption of large quantities of concentrated acids. 
 High costs of neutralization. 
 Gypsum disposal problems. 

Concentrated acid hydrolysis requires expensive materials for process equipment construction and to make 
the process economically feasible acid recovery is needed which itself represents an energy consuming step. 
Therefore, dilute acid hydrolysis is a more suitable option compared to concentrated acid hydrolysis.   

Currently, biomass treatment technologies are energy intensive due to the large amount of water usage and the 
requirement for heating the process material to pretreatment temperatures of 100˚C - 200˚C [97]; in addition, the 
conversion process results in the accumulation of salts and inhibitors that are toxic to subsequent bio-refinery 
processes. Therefore, conversion of lignocellulosic biomass to biofuels requires efficient pretreatment technol-
ogy, achieved through optimization of pre-hydrolysis in terms of both maximizing the sugar yield and minimiz-
ing the energy requirement.  

4.2. Enzymatic Hydrolysis of Lignocellulosic Biomass  
The use of enzymes in biomass conversion processes can often eliminate the requirement for high temperatures, 
chemicals and extremes of pH, while at the same time offering increased reaction specificity, product purity and 
reduced environmental impact. Enzymatic hydrolysis of cellulose and hemicellulose components of lignocellu-
losic biomass is carried out by cellulase and hemicellulase enzymes which are highly specific. Cellulases are 
mainly a mixture of endoglucanases, exoglucanases, and β-glucosidases and catalyze the hydrolysis of cellulose 
to simple sugars. Xylanases and β-xylosidases are the enzymes that attack the backbone of hemicellulose result-
ing in the production of xylose monomers. Pretreatment of lignocellulosic biomass is a prerequisite to achieve 
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better conversion in the enzymatic hydrolysis of biomass. The role of pretreatment is that it usually breaks down 
the lignin structure, as shown in Figure 4 [36] [98], thereby facilitating the hydrolysis of cellulose and hemicel-
lulose, resulting in the production of hexose and pentose sugars. Lignin acts as physical barrier limiting the ac-
cessibility of enzymes to cellulose and hemicellulose substrates. The available techniques for the pretreatment of 
biomass have been discussed in the previous section [71]. Biological pretreatment can represent an ecofriendly 
and a low cost alternative to physico-chemical and chemical pretreatments of lignocellulosic biomass. However, 
biological pretreatment requires an appropriate microorganism-biomass combination, as for example it is re-
ported that fungal treatment can cause carbohydrate loss [75]. Pretreatment results in increased porosity in the 
biomass substrate due to the removal of the lignin, disruption of hemicellulose, size reduction of the particles 
and reduction in the crystallinity of cellulose depending on the specific pretreatment technology. Enzymatic de-
lignification can also be achieved using laccase and lignin peroxidase enzymes but the technique is limited by 
long residence times. Improvements in enzymatic hydrolysis for the production of bioethanol from sustainable 
biomass are necessary in order to reduce enzyme requirements and the overall processing times. 

The other major limiting factor in the enzymatic conversion of biomass to biofuels is the cost of cellulase en-
zymes for use in the hydrolysis of pretreated biomass [99]. Techno-economic analysis of lignocellulosic bioe-
thanol production costs report that the enzymes cost about $ 132 per cubic meter of ethanol when the enzymes 
are supplied by commercial enzyme manufacturers, such as Novozymes [100]. However in the case of on-site 
enzyme production the overall cost of enzymes was reported to be $ 90 per cubic meter of ethanol, significantly 
lower than Novozymes. Therefore, to achieve cost effective biomass conversion for biofuel production an 
on-site/in house enzyme production for the continuous supply of cellulases to the process appears as one of the 
most economically attractive options. 

Much information is available on the preparation of cellulase enzymes using different substrates and a variety 
of cellulolytic microorganisms for application in lignocellulosic bioethanol production have been reported. Both 
bacteria (e.g. Bacillus, Bacteriodes, Cellulomonas, Clostridium, Streptomyces) and fungi (e.g. Phanerochaete 
chrysosporium [101], Tricoderma reesei, Aspergillus niger [102], Gracibacillus species [103], Penicillium oxa-
licum [104]) can produce cellulases. A variety of substrates have been employed in cellulase production; for in-
stance Humbird et al. [105] reported cellulase preparation using corn syrup substrate and T. reesei; Jing et al. 
[106] used hydrolyzed sugarcane bagasse residue as substrate for cellobiohydrolase production using P. oxali-
cum; Vijayaraghavan & co-workers [107] reported carboxymethyl cellulase production from cow dung by Ba-
cillus halodurans ID 18. The use of cheap lignocellulosic biomass substrates for enzyme production can signifi-
cantly reduce the production cost of cellulases. Wheat bran has been reported to be an effective substrate for the 
preparation of cellulases using T. reesei and A. niger [102]. Other potential woody and herbaceous substrates 
used in cellulase production by white rot fungi and brown rot fungi via solid state fermentation include eucalyp-
tus wood chips, pine wood chips, beech leaves, wheat straw, wheat bran, corn fiber, corn stover, reed grass, bean  
 

 
Figure 4. Pretreatment for the breakdown of the rigid structure of biomass [36] [98].                                     
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stalk and sago waste. Solid state fermentation for enzyme production is the most adopted technology as it re-
quires less infrastructure and less skilled manpower to operate and has lower operational costs.     

5. Conclusion 
Depleting fossil reserves and deleterious effects of fossil fuel burning on the environment led to the search for 
alternate fossil fuels which must be ecofriendly and renewable. Bioethanol is a promising renewable biofuel 
produced from agricultural crops (sugarcane, sugar beet, corn, wheat) and cellulosic feedstock. Conventional 
bioethanol (1st generation) production based on edible agricultural products conflicts with food supply and 
causes food price increase. As an alternative to edible agricultural feedstock, lignocellulosic biomass (2nd gener-
ation) has been gaining attention as a sustainable feedstock (pulp, stover, stalk, stems and leaves) for bioethanol 
production. Ligncellulosic biomass based bioethanol requires a multi-step complex conversion technology due 
to its rigid structure, comprised of milling (size reduction), pretreatment, hydrolysis and fermentation. Optimiza-
tion of the pretreatment strategy aimed at reducing the formation of degradation products and optimization of 
enzyme mixtures for efficient conversion of pretreated biomass together with improving fermentation efficiency 
using genetically modified strains, mixed cultures and the application of thermoanerobes which can ferment 
hexose and pentose sugars to improve ethanol yield are key areas of future research. On-site/in-house enzyme 
preparation in solid state fermentation is also gaining significant research attention in the 2nd generation bioe-
thanol process as commercial enzymes are expensive, representing a significant barrier to the commercialization 
of this technology. 
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