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1. Introduction

Fractional calculus is nowadays one of the most intensively devel-
oping areas of mathematical analysis (Jahanshahi et al., 2015;
Machado et al., 2011; Tarasov, 2015), including several definitions
of fractional operators like Riemann-Liouville, Caputo, and
Griinwald—Letnikov. Operators for fractional differentiation and
integration have been used in various fields, such as signal process-
ing, hydraulics of dams, temperature field problem in oil strata,
diffusion problems, and waves in liquids and gases (Benkhettou
et al., 2015; Boyadjiev and Scherer, 2004; Schneider and Wyss,
1989). Here we introduce the notion of conformable fractional
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derivative on a time scale T. The notion of conformable fractional
derivative in T = [0,00) is a recent one: it was introduced in
Khalil et al. (2014), then developed in Abdeljawad (2015), and is
currently under intensive investigations (Batarfi et al., 2015). In
all these works, however, only the case T = [0, o) is treated, pro-
viding a natural extension of the usual derivative. In contrast, here
we introduce the conformable natural extension of the time-scale
derivative. A time scale T is an arbitrary nonempty closed subset
of R. It serves as a model of time. The calculus on time scales was
initiated by Aulbach and Hilger (1990), in order to unify and
generalize continuous and discrete analysis (Hilger, 1990, 1997).
It has a tremendous potential for applications and has recently
received much attention (Agarwal et al., 2002). The reader inter-
ested on the subject of time scales is referred to the books
(Bohner and Peterson, 2001, 2003).

The paper is organized as follows. In Section 2, the con-
formable fractional derivative for functions defined on arbitrary
time scales is introduced, and the respective conformable
fractional differential calculus developed. Then, in Section 3, we
introduce the notion of conformable fractional integral on time
scales (the a-fractional integral) and investigate some of its basic
properties. We end with Section 4 of conclusion.

1018-3647 © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
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2. Conformable fractional differentiation

Let T be a time scale, t € T, and 6 > 0. We define the o-
neighborhood of 7 as V,:=]t—90, t+6[NT. We begin by
introducing a new notion: the conformable fractional deriva-
tive of order « € ]0, 1] for functions defined on arbitrary time
scales.

Definition 1. Letf: T — R,z € T, and « €]0,1]. For ¢ > 0,
we define T,(f)(¢) to be the number (provided it exists)
with the property that, given any e >0, there is a
0- neighborhood V,cT of t 6d>0, such that
[f0() — A9 — T (@) [o(t) — 5| < elo() =5 for al
s € Vt We call T,(f)(¢) the conformable fractional derivative
of f of order « at ¢, and we define the conformable fractional
derivative at 0 as T,(f)(0) = lim,_+ T,,(f) (7).

Remark 2. If o = 1, then we obtain from Definition 1 the delta
derivative of time scales. The conformable fractional derivative
of order zero is defined by the identity operator: Ty(f) := f.

Remark 3. Along the work, we also use the notation
()™ = T.()(0).

The next theorem provides some useful relationships con-
cerning the conformable fractional derivative on time scales
introduced in Definition 1.

Theorem 4. Let o €]0,1] and T be a time scale. Assume
f:T — Randlet t € T". The following properties hold.

(1) If f is conformal fractional differentiable of order o at
t > 0, then f is continuous at t.

(ii) If fis continuous at t and t is right-scattered, then f'is con-
formable fractional differentiable of order o at t with

v :‘W’H‘ (1)

(i) If't is right-dense, then f is conformable fractional differ-
entiable of order o at t if, and only if, the limit
lim,_,, £0= /)(5) t'=* exists as a finite number. In this case,

(-
mf(t) _f(s) Zl—u‘ (2)

(v) If f is fractional differentiable of order o at t, then
f(a(t)) = f(t) + (u() " T ()(1).

Proof.

T,()(1) = li

s—t r—s

(i) Assume that f'is conformable fractional differentiable at
t. Then, there exists a neighborhood V, of ¢ such that
[ (a(0)) = f()]t'* = Tu(f)(0)[o(t) — s]| < €l (t) —s| for
s € V. Therefore, (@) =) <|If (a(2) = f(s)]—
T.(f)(@0)a(6) = s)e | + [ (a(6) = f O]+ | (1) ][l (6)
s]||#*—1] for all s € V,N]t—¢,t+¢[ and, since ¢ is a right-
dense point,

If1) < I () — /A
<ed+ |ﬁ 1}\@ )\a.

(0) = 5| + /(e

(O]t — 5|

fit € T>£ € R we have T,(f)(t) = ()"

Since 6 — 0 when s — ¢, and 7 > 0, it follows the conti-
nuity of f at ¢.

(ii) Assume that f'is continuous at ¢ and ¢ is right-scattered.
By continuity,

lim @) =A9) 1oy o) =D 1 _
s—t o(f) —s a(t) —t u(r)

Hence, given € > 0 and o €0, 1], there is a neighbor-
hood V), of ¢ such that

Ao() ~A(s) 1u Ao = A0 1| _
| o) —s u(1) h
for all s € V,. It follows that

syt—r SO =0 v
— )l w0 =)

[fla())

< ela(r) —s]

for all s € V,. The desired equality (1) follows from
Definition 1.

(iii) Assume that f'is conformable fractional differentiable of
order o at ¢ and ¢ is right-dense. Let € > 0 be given. Since
fis conformable fractional differentiable of order o at ¢,
there is a neighborhood V, of ¢ such that
1£(6(t) = £ = Tu(F) (1) (0(0) = 8)| < elot) — 5]

foralls € V,. Because g(t) =1,

‘,/(t) —f(S) tl—oc _ Ta(f)([) <e
t—s

foralls € V,, s # t. Therefore, we get the desired result
(2). Now, assume that the limit on the right-hand side of
(2) exists and is equal to L, and ¢ is right-dense.
Then, there exists V, such that |[(f(z) —f(s))'*—
L(t—s)| <e€lt—s| for all s € V,. Because ¢ is right-
dense,

|(fla(0)) = i)' = L(a(r) = )| < ela(r) =],

which leads us to the conclusion that f is conformable
fractional differentiable of order « at ¢ and T, (f)(¢) = L.
(iv) If ¢ is right-dense, i.e., o(f) =t then u(f) =0 and
fla() = f(t) = f(t) + w()T(f)()t'=*. On the other
hand, if ¢ is right-scattered, i.e., o(¢) > ¢, then by (iii)

o SO) = 110) 1,

0] =0) + ()" T.(N(1),

fa(t)) = fl1) + u(0)t
and the proof is complete. [

Remark 5. In a time scale T, due to the inherited topology of
the real numbers, a function f'is always continuous at any iso-
lated point ¢ € T.

Example 6. Let 7 >0 and T =hZ:={hk:k € Z}. Then
o(t)y=t+h and pu(r)=nh for all ¢ € '[F For function

= (2t 4 h)t'™.

Example 7. Let ¢>1 and T=¢%7:=¢”U{0} with
¢ :={¢* 1 k € Z}. In this time scale

¢ if#0
(r(t):{g !

ift=0

(g—1Det ift#0

and “(’):{0 ifr=0



Fractional calculus on arbitrary time scales

95

Here 0 is a right-dense minimum and every other point in T is
isolated. Now consider the square function f of Example 6. It
follows that

T, (0 = (A)” = { (g+ D) ift#0

0 ift=0

Example 8. Let ¢ > 1 and T = ¢ := {¢" : n € Ng}. For all
t € T we have o(f)=¢qt and pu(t)=(¢—1)t. Let
fit € Tiolog(t) € R Then T,(f)(1) = (log(1))” = ;&
forallt € T.

Proposition 9. If f: T — R is defined by f(t)=c for all
t €T, ce R, then T,()(1) = (c)” =0.

Proof. If ¢ is right-scattered, then by Theorem 4 (ii) one has
T,(N(t) = %t"“ = 0. Otherwise, ¢ is right-dense and,
by Theorem 4 (iii), T,(f)(1) = lim,_, <=7~ = 0. O

Proposition 10. [f f: T — R is defined by f(t) =1t for all
t € T, then

" 1 ifa#l,
now=0"={" 12

Proof. From  Theorem 4  (iv), it follows that
olt) = 1+ w(OP TN, 1t = p(Oe T 1 () # 0,
then T,(f)(¢) =t and the desired relation is proved.
Assume now that u(r) =0, ie., o(r) =¢ In this case ¢ is
right-dense and, by Theorem 4 (i), T,(f)(z)=
lim,_, =5 ¢'=* = ¢'=* Therefore, if o =1, then T,(f)(r) = 1; if
0 <a<l,then T,(N(t) == O

Now, let us consider the two classical cases T = R and
T =hZ, h>0.

Corollary 11. Function f: R — R is conformable fractional
differentiable of order o at point t € R if, and only if, the limit

lim‘H,‘WN‘“ exists as a finite number. In this case,
. t) — f(s

L) = lim[ =/ )t f(‘) -, (3)
§—1 —

Proof. Here T = R, so all points are right-dense. The result
follows from Theorem 4 (iii). [

Remark 12. The identity (3) corresponds to the conformable
derivative introduced in Khalil et al. (2014) and further studied
in Abdeljawad (2015).

Corollary 13. Let h > 0. If f: hZ — R, then f is conformable
fractional differentiable of order o at t € hZ with

T(f)() ([+h11 f()tl—x.

Proof. Here T = hZ and all points are right-scattered. The
result follows from Theorem 4 (ii). O

Now we give an example using the time scale T = P,,,
which is a time scale with interesting applications in Biology
(Fenchel and Christiansen, 1977).

Example 14. Let a,b >0 and consider the time scale

Pap = Urolk(a + b), k(a+b)+ a]. Then

t ifr € [j[k(a—O—b)7 k(a+b)+ a),
O'(t) _ kO:CO
t+b ift € | J{k(a+b)+a}

and
0 ifr e G[k(a+b), k(a+b)+a),
ulr) = .
b ift e | J{k(a+b)+a}.
k=0

Let f: P,, — R be continuous and « €]0, 1]. It follows from
Theorem 4 that the conformable fractional derivative of order
o of a function f defined on P, is given by

hmf(g Lyl if t e U[ka+b) k(a+b) + a),

TN = .
A0 =it 1 e | J{k(a+b) +a}.

k=0

For the conformable fractional derivative on time scales to
be useful, we would like to know formulas for the derivatives
of sums, products, and quotients of fractional differentiable
functions. This is done according to the following theorem.

Theorem 15. Assume f,g: T — R are conformable fractional
differentiable of order o. Then,

(i) the sum f + g : T — R is conformable fractional differen-
tiable with T,(f + g) = T,(f) + T.(g),

(ii) for any 2 € R,Af: T — R is conformable fractional dif-
ferentiable with T,(Af) = AT,(f);

(iii) if f and g are continuous, then the product fg: T — R is
conformable fractional differentiable with
T.(fe) = Tu(f)g +(f 0 0)T(g) = Tu(f)(g 0 0) + T, (2):

(iv) if [ is continuous, then 1/f is conformable fractional dif-
ferentiable with

n(5) =~
f)— fifea)
valid at all points t € T* for which f(t)f(a(t)) # 0;

(v) if f and g are continuous, then /g is conformable frac-

tional differentiable with

“\g glgoo)
valid at all points t € T* for which g(t)g(a(t)) # 0.

Proof. Let us consider that o €]0, 1], and let us assume that f
and g are conformable fractional differentiable at r € T*.
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(i) Let € > 0. Then there exist neighborhoods V, and U, of ¢ (i) If f(t)y=(t—c)", then T,(f)(t)= tl—acz;’;o' (a(t) —
for which C)mflfp(t c),,‘
|[f{a(r) = A = Tu(N()(a(t) = 5)| (ii) 1f g(t) = =g and (t — ¢)(a(1) — ) #0,
<3lo()—s| foralls € V, then T.(8)() = 1 Y G
and
Hg(a( ) — g()]f'* — Tu(g)(1)(a(t) — s)| Proof. We prove the first formula by induction. If m = 1, then
¢ f(t) =t — c and T,(f)(¢) = '=* holds from Propositions 9 and
§| o(t) —s| foralls € U,. 10 and Theorem 15 (i). Now assume that
Let W, =V, NU,. Then |[(f+ g)(a (1)) — (f + g)(s)]' *— el
(TN + T (D)a(0) =) < ela(r) —s|  for —all  T,(N() =1 (a(t) = )" (1 =)
s € W. Thus, f+ g is conformable differentiable at ¢ »=0
and T.(f+8)(1) = T.O(0) + Tu(e) (1) s for (1 oy o
0L I - Ve _ olds for f{(t) = (t — ¢)" and let F(¢) = (1 — )" = (t — )f(¥).
(t) Let >0 en [[/{o() =/ () L) @)(e () We use Theorem 15 (iii) to obtain (F(1))” =

s)| < €|a(t) —s| for all s in a neighborhood V, of . It
follows that

[(2N)(e (1) = (AN ($)] ™ = 2T(N(0) (0 (1) = 5)|
< €eli||a(t) —s| foralls € V,.

Therefore, Afis conformable fractional differentiable at ¢
and T,(4f) = AT,(f) holds at .
(iii) If 7 is right-dense, then

Tu(fg)([) — lim |E/(t) —f(S) tl—oc:| g(l) + lim |:g(t) — g(é) [l—ac:|f(s)

s—t r—s 5=t [
= T,("(0)g(1) + T,(g) () (1)
= T,(N(0)gla (1)) + T,(g)()A(2).

If ¢ is right-scattered, then

O e [0
[ =50,y
— T 0s(e0) + A TA)(0).

The other product rule formula follows by interchanging
the role of functions f and g.

(iv) We use the conformable fractional derivative of a con-
stant (Proposition 9) and property (iii) of Theorem 15
(just proved): from Proposition 9 we know that

T, ( r ._%) (£) = (1) = 0. Therefore, by (iii)

1 1
T, @ (Oe(0) + T(0) 5 =

Since we are assuming f(o (7)) # 0, T, (})( )= —%

(v) We use (ii) and (iv) to obtain

n(D)w=r(r-D) o =ror.(3) 0+ o0

g(a(1))
_ LNW0e(t) =) Tu(g) (1)
g(t)g(a(1)) '

This concludes the proof. [

Theorem 16. Let ¢ be a constant, m € N, and o € ]0,1].

T.(t = o)f(a(t) +
c)’. Hence, by

1 _
"

TN (t—c)= 1~ azm (o) — )" P (1 —

mathematical induction, part (i) holds. (ii) Let g(¢) = i

ﬁ. From (iv) of Theorem 15,

W LW LK 1
& (t) f(l)f(a(t)) ! pz:; (o’(l) _ C)pﬂ(t _ C)miﬂ )

provided (1 —¢)(a(t) —c¢) #0. O

We show some examples of application of Theorem 16.

Example 17. Let o € ]0,1] and  f{r)=¢".  Then
T,(N(1) =13 'o(1)" "7, Note that if 7 is right-dense,
then 7, (f)(r) = mt™*. If we choose T = R and o = I, then we
obtain the usual derivative: Ty (f)(f) = me"' = f(£).

Example 18. Let o € ]0,1] and  f(t)=-%  Then

T,(N(t) = _,17a22:01 ”H”Ulm”]. If ¢ is right-dense, then
T,(f)() = — . Moreover, if o=1, then we obtain
TN = - %

Example 19. If )= (1=1), then T,(N(t) =

(= [(0(0) + 1)+ (0(0) + 1) e+ 1)+ (1+1)°] for all 2 € 10,1,

The chain rule, as we know it from the classical differential
calculus, does not hold for the conformable fractional deriva-
tive on times scales. This is well illustrated by the following
example.

Example 20. Let o € (0, 1); T=N={1,2,...}, for which
o(t)=t+1 and u(r)=1; and f, g: T —T be given by
Jl) =g(t)=1. Then,  T,(fog)(r) # T.(/)(g(1) Tx(g) (1) :
To(fog)(1) = 1'~*, while T,(/)(g(r) Tu(g) (1) = .

We can prove, however, the following result.

Theorem 21 (Chain rule). Let o € 10,1]. Assume g: T — Ris
continuous and conformable fractional differentiable of order o
att € T, and f: R — R is continuously differentiable. Then
there exists c in the real interval [t,o(t)] with

T.(fo g)(1) = £ (g(c)) Tu(g)(1). “)
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Proof. Let s € T". First we consider ¢ to be right-scattered. In
this case,

1o g =TECD ZIED)

If g(a(1)) = g(1), then we get T,(fo g)(r) = 0 and T,(g)(¢) = 0.

Therefore, (4) holds for any ¢ in the real interval [z, 0(7)]. Now
assume that g(o(7)) # g(¢). By the mean value theorem we have

: Mg(a(1)) = /1g(®) gla(1)) —2(1) -
T.(fog)(t) = . r
QIO RO
=/ (&) T.(g)(1),

where ¢ €]g(1), g(a(t))[. Since g: T — R is continuous, there
is a ¢ €[t,0(r)] such that g(c) =&, which gives the desired
result. Now let us consider the case when ¢ is right-dense. In
this case

_ im0 —fle(s) 8(1) —8(s) 1o

ot g(1) — g(s) t—s
By the mean value theorem, there exists & €]g(7), g(a(7))[ such
that

T,(fog)(t) = 1311}{f(58) .Mﬂﬁ}.

t—s

T.(fo g)(1)

By the continuity of g, we get that lim, ¢, = g(¢). Then
T.(fog)(t) =f(g(t)) - T.(g)(t). Since ¢ is right-dense, we con-
clude that ¢ = 1 = o(¢), which gives the desired result. O

Example 22. Let T = 2", for which ¢(r) = 2 and (1) = ¢. (i)
Choose f(f) = * and g(¢) = . Theorem 21 guarantees that we
can find a value ¢ in the interval [z, o(¢)] = [¢,21], such that

T,(fog)(t) =/ (g(c)) Tu(g)(1). (5)
Indeed, from Theorem 4 it follows that T,(fo g)(¢) = 3¢'~2,
T.(g)(1) =%, and f(g(c)) =2¢. Equality (5) leads to
37 =2¢1'™* and so ¢ =3¢ € [1,24]. (i) Now let us take
f(H)y=g(t) = for all t € T. We obtain 15/ *=T,(fog)(t)=

£((c)To(g) (1) =237, Therefore, c:\/gze (.24,

To end Section 2, we consider conformable derivatives of
higher-order. More precisely, we define the conformable frac-
tional derivative T, for o € (n, n+ 1], where n is some natu-
ral number.

Definition 23. Let T be a time scale, « € (n, n+1],n € N,
and let f be n times delta differentiable at 1 € T*". We define
the conformable fractional derivative of f of order o as

T, (N)(t) := Tys (jA")(z). As before, we also use the notation
()™ = T,

Example 24. Let T =hZ,h > 0,/(t) = 2, and o = 2.1. Then,
by Definition 23, we have Ty,(f) = Ty, (fA2> Since
o(t)=t+h and u(t) =h, To(N(1) = ()" = (61 + 6h) "V,
By Proposition 9 and Theorem 15 (i) and (ii), we obtain that
Ty, (/)(1) = 6(1)". We conclude from Proposition 10 that
T (f) (1) = 6:1°.

Theorem 25. Let o € (n, n+ 1],n € N. The following rela-
tion holds:

AI +n

T,(N)(1) = (7 (1), (6)

Proof. Let f be a function n times delta-differentiable. For
o € (nn+1], there exist f € (0,1] such that «a=n+p.

Using Definition 23, T,(f) = Tj <fA”>. From the definition of
(higher-order) delta derivative and Theorem 4 (ii) and (iii), it

follows that T,(f)(1) = t'~* (fA”>A(t). O

3. Fractional integration

Now we introduce the a-conformable fractional integral (or a-
fractional integral) on time scales.

Definition 26. Let /: T — R be a regulated function. Then the
o-fractional integral of f, 0<a<1, is defined by

JA)A" = [f(r)r—" At

Remark 27. For T =R Definition 26 reduces to the con-
formable fractional integral given in Khalil et al. (2014); for
o = 1 Definition 26 reduces to the indefinite integral of time
scales (Bohner and Peterson, 2001).

Definition 28. Suppose f: T — R is a regulated function.
Denote the indefinite o-fractional integral of f of order
a,o0 € (0, 1], as follows: F,(t) = [f({)A%t. Then, for all
a,b € T, we define the Cauchy o-fractional integral by

[P ANt = F,(b) — F,(a).

Example 29. Let Then

flloz/if(t)A“t = 6.

T=R, a=1% and

20

J) =t

Theorem 30. Let o € (0, 1]. Then, for any rd-continuous func-
tion f: T — R, there exists a function F,: T — R such that
T, (F,)(t) =f(1) for all t € T*. Function F, is said to be an o-
antiderivative of f.

Proof. The case =1 is proved in Bohner and Peterson
(2001). Let o € (0, 1). Suppose f is rd-continuous. By
Theorem 1.16 of Bohner and Peterson (2003), f is regulated.
Then, F,(t) = [f(¢)A"t is conformable fractional differentiable
on T Using (6) and Definition 26, we obtain that

TE)(0) = () =), t € TS O

Theorem 31. Let o € (0, 1], a,b,c € T, L€R, and f,g be
two rd-continuous functions. Then,

(i) [} 1)+ g0)At = [ f(OA + [ g(t)A;
(ii) [T OA =[] f()A",

(i) [7f(O)A" =~ [ f(0)A";

(iv) [P fON = [CF(ON T+ [P f()A

(v) [l (At =0;
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(vi) if there exist g:T — R with |f(¢)| <g(t) for all
t € la, b, then ‘ [P FOA] < [ ge)a;
(vii) if f(t) >0 for all t € |a, b, then [ f(1)A*t > 0.

Proof. The relations follow from Definitions 26 and 28, anal-
ogous properties of the delta-integral, and the properties of
Section 2 for the conformable fractional derivative on time
scales. [

Theorem 32. If f: T" — R is a rd-continuous function and
t € T, then

a(t)
(9)A%s = ().

t

Proof. Let f be a rd-continuous function on T*. Then f'is a
regulated function. By Definition 28 and Theorem 30, there
exist an antiderivative F, of f satisfying

a(t)
(A% = F,(0(1)) — Ft) = T,(F) (0u(1)'~

— (.
This concludes the proof. [

Theorem 33. Let T be a time scale, a,b € T with a <b. If

T.(f)(t) = 0 forallt € [a,b]NT, then f is an increasing func-
tion on [a,b]NT.

Proof. Assume T5,(f) exist on [a,b] N T and T, (f)(¢) = 0 for all

t € [a,b]NT. Then, by (i) of Theorem 4, T,(f) is continuous

on [a,b]NT and, therefore, by Theorem 31 (vii),

[T f(E)AE >0 for s,¢ such that a<s<t¢<b. From
O

Definition 28, f(£) = f(s) + [ T,A(E)A*E = f(s).

4. Conclusion

A fractional calculus, that is, a study of differentiation and
integration of non-integer order, is here investigated via the
recent and powerful calculus on time scales. Our new calculus
includes, in a single theory, discrete, continuous, and hybrid
fractional calculi. In particular, the new fractional calculus
on time scales unifies and generalizes: the Hilger calculus
(Bohner and Peterson, 2001; Hilger, 1990), obtained by choos-
ing o=1; and the conformable fractional calculus
(Abdeljawad, 2015; Khalil et al., 2014; Batarfi et al., 2015),
obtained by choosing T = R.
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