
José Gilmar Nunes de Carvalho Filho

Multi-Robot Exploration with Constrained

Communication

Florianópolis, Brasil

28 de Junho de 2016

José Gilmar Nunes de Carvalho Filho

Multi-Robot Exploration with Constrained Communication

Tese submetida ao Programa de Pós-
Graduação em Engenharia de Au-
tomação e Sistemas para a obtenção do
Grau de Doutor.

Universidade Federal de Santa Catarina - UFSC

Orientador Jean-Marie Alexandre Farines, Dr.
Coorientador José Eduardo Ribeiro Cury, Dr.

Florianópolis, Brasil
28 de Junho de 2016

,

Multi-Robot Exploration with Constrained Communication : / José Gilmar

Nunes de Carvalho Filho; orientador, Jean-Marie Alexandre Farines,

Dr. ; coorientador, José Eduardo Ribeiro Cury, Dr.. - Florianópolis,

Brasil 2016.

150 p.

- Universidade Federal de Santa Catarina - UFSC, Centro Tecnológico –

CTC. Programa de Pós - Graduação em Engenharia de Automação e Sistemas -

PPGEAS.

Inclui Referências

1.Multi-Robot exploration. 2. Constrained communication. 3. Map

sharing. 4. Coordination. I. , . II. , . III. Universidade

Federal de Santa Catarina - UFSC. Programa de Pós - Graduação em

Engenharia de Automação e Sistemas - PPGEAS. III. Multi-Robot

Exploration with Constrained Communication.

Esta Tese foi julgada adequada como TESE DE DOUTORADO no
Curso de Doutorado em Engenharia de Automação e Sistemas e aprovada em
sua forma final pela Banca Examinadora designada.

Dr. Jean-Marie Farines
Orientador

Dr. José Eduardo Ribeiro Cury
Coorientador

Dr. Daniel Ferreira Coutinho
Coordenador do PPGEAS

Banca Examinadora:

Dr. Jean-Marie Farines
Orientador

Dr. Luiz Chaimowicz

Dr. André Bittencourt Leal

Dr. Ubirajara Moreno

Dr. Fabio Baldissera

Dr. Edson Roberto de Pieri

Dr. Claude Martinez

“When we are not sure, we are alive.”

(Graham Greene)

À mulher da minha vida, Tamires, pelo apoio incondi-

cional em todos os momentos, principalmente naqueles onde as

dúvidas, o cansaço e o estresse ofuscavam a linha de chegada.

Sem você nenhuma conquista valeria a pena.

ACKNOWLEDGEMENTS

Primeiramente a Deus, que sempre iluminou a minha caminhada.

Sem Ele, nada somos, nada podemos.

À minha esposa Tamires, pela dedicação, amor e inexaurível

paciência.

À minha mãe, fonte inesgotável de amor, fé, caridade, temper-

ança e ética. Ao meu pai (in memorian), pelo carinho e amor que sempre

me teve.

À “Nin”, minha segunda mãe, por todos os anos de cuidados,

atenção, carinho e amor incondicional.

Às minhas irmãs, Livia e Letícia, pela amizade incondicional e

pelo apoio que nunca me foi negado.

Aos meus sobrinhos Ana Flávia, Ana Sofia, Ruan e Yan, pelo

afeto.

Aos meus avós, Vovô Dezinho (in memorian), que proporcionou

meus primeiros contatos com o mundo da eletrônica e a Vovó Castália

pelo carinho e amor. A “Vô Tonho” e “Vó Gilza” (in memorian), pelo

modelo de simplicidade, honestidade, carinho e amor à família.

Agradeço também aos amigos do DAS, em especial ao Luciano,

“Faixa”, Lange, Odilson, Renan, Rattus, Thiago e Toscano pela amizade,

compartilhamento e aprimoramento das ideias.

Aos meus Orientadores, Jean-Marie e Cury, sem a ajuda dos

quais, esse trabalho não haveria de ser realizado.

Aos meus Orientadores estrangeiros, Domenc e Miguel Angel,

pelo acolhimento e atencão enquanto estive na Espanha e após minha

volta ao Brasil.

Por fim agradeço ao CNPq e a CAPES pelo apoio financeiro que

tornou possível a realização deste trabalho.

ABSTRACT

Over the last two decades, several methods for exploration with Multi-Robot
Systems (MRS) have been proposed, most of them based on the allocation
of frontiers (exploration targets) and typically applying local optimization
policies. However, communication issues have usually been neglected. This
thesis investigates multi-robot exploration by considering that robots have
limited communication radius. Two methods, one based on a flat network
architecture (DSM) and another based on a hierarchical architecture (HSM),
were proposed to share map information. While DSM considers a propaga-
tion scheme to share information and synchronize the map of robots, HSM or-
ganizes robots in a hierarchical architecture where some robots act as leaders
(clusterheads) and are responsible for synchronizing the maps of the robots in
the network. Formal proof that both methods guarantee the synchronization
of the map of all robots in a network is presented. In addition, experiments
were conducted by considering systems with different number of robots, net-
work topologies and different map’s sizes. The results show that both meth-
ods are able to synchronize the map of the robots when they can lose commu-
nication links, but HKM usually presents smaller convergence time, number
of exchanged messages and amount of transmitted data. We also propose Hi-
erarchical K-Means (HKME), a method for multi-robot coordination in ex-
ploration tasks that handles communication problems, such as link losses. To
handle communication among robots, HKME arranges them into clusters and
elects leaders for each. Clusters evolve dynamically as robots lose or estab-
lish communication with their peers. HKME uses HSM to guarantee that the
map of the robots are synchronized and also uses the hierarchical organiza-
tion of the robots to coordinate them in order to minimize the variance of the
time at which they reach all regions of the workspace, while balancing their
workload and decreasing the exploration time. Experiments were conducted
by considering different types of workspace and communication radius. The
results show that HKME behaves like a centralized algorithm when com-
munication is granted, while being able to withstand severe degradation in
communication radius.

Keywords: Multi-Robot exploration, Constrained communication, Map shar-
ing, Coordination

LIST OF FIGURES

Figure 1 – Exploration diagram. 26

Figure 2 – Example of occupancy grid map. 27

Figure 3 – Flat and hierarchical networks. 29

Figure 4 – Voronoi diagram and graph representation. 38

Figure 5 – Example of a DSM’s execution. 50

Figure 6 – Sharing process execution. 56

Figure 7 – Network topology. 76

Figure 8 – Sequence diagram of a simple sharing execution. 77

Figure 9 – Sequence diagram considering simultaneous detection . . 79

Figure 10 – Network topology. 82

Figure 11 – Sequence diagram of a LAV synchronization. 83

Figure 12 – Networks topologies in experiment A. 87

Figure 13 – Results obtained in experiment A.1 88

Figure 14 – Results obtained in experiment A.2 89

Figure 15 – Results obtained in experiment A.3 90

Figure 16 – Network topologies in experiment B. 91

Figure 17 – Results obtained in experiment B.1 92

Figure 18 – Results obtained in experiment B.2 94

Figure 19 – Results obtained in experiment B.3 95

Figure 20 – Results obtained in experiment C.1 96

Figure 21 – Results obtained in experiment C.2 97

Figure 22 – Results obtained in experiment C.3 98

Figure 23 – Description of the HKME. 103

Figure 24 – Example of HKME execution. 106

Figure 25 – Network changes. 107

Figure 26 – Example of sectors partitioning. 111

Figure 27 – Example of local partitioning iteration. 113

Figure 28 – Workspaces considered in the experiments. 120

Figure 29 – Paths of robots in experiment A 124

Figure 30 – Explored area in experiment A 125

Figure 31 – Deviation in the regions size over time in experiment A . 125

Figure 32 – Results obtained in experiment A 126

Figure 33 – Paths of robots in experiment B 127

Figure 34 – Explored area in experiment B 128

Figure 35 – Deviation of the regions size in experiment B 129

Figure 36 – Results obtained in experiment B 130

Figure 37 – Paths of robots in experiment C 131

Figure 38 – Explored area in experiment C 132

Figure 39 – Deviation of the regions size in experiment C 132

Figure 40 – Results obtained in experiment C 133

LIST OF TABLES

Table 1 – Example of the raw map of a robot Rk. 33

Table 2 – Comparison of different exploration approaches. 46

Table 3 – Example of the raw map of a robot Rk. 52

Table 4 – Example of the local application view of a robot Rk 53

Table 5 – Fitting functions. 134

CONTENTS

1 INTRODUCTION . 19

1.1 Objective . 21

1.1.1 Specific Objectives . 21

1.2 Thesis Organization 23

2 MULTI-ROBOTS EXPLORATION 25

2.1 Exploration Problem 25

2.1.1 Map representation 27

2.2 Communication in Distributed Solutions 28

2.3 Map Sharing . 30

2.3.1 Sheng’s Method . 32

2.4 Coordination in Multi-Robots Exploration 34

2.4.1 Robot Assignment Policies 35

2.4.2 Target Assignment Policies 39

2.4.3 Global Optimization: K-Means for MRS exploration . 44

2.5 Conclusions . 46

3 PROPOSED METHODS FOR MAP SHARING . . . 49

3.1 Problem Description 49

3.2 Distributed Synchronization Method 49

3.2.1 DSM Illustrative Example 50

3.2.2 Local Application View Concept 51

3.2.3 Relations and Operations on LAVs 53

3.2.4 Sharing Process . 55

3.2.5 Processes Coordinator Algorithm 58

3.3 LAV convergence on an execution of DSM 60

3.3.1 DSM Convergence: Single Robot 67

3.3.2 DSM Convergence: Multiple Robots 69

3.3.3 On the parallel execution of several sharing process . 71

3.4 Hierarchical Synchronization Method 72

3.4.1 HSM Dynamics . 73

3.4.2 Simple Sharing Scheme 74

3.4.3 LAV Synchronization Scheme 79

3.5 Conclusions . 82

4 EVALUATION OF MAP SHARING METHODS . . . 85

4.1 Experimental setup . 86

4.2 Experiment A: Influence of the Number of Robots . . 87

4.3 Experiment B: Influence of Network Topology 91

4.4 Experiment C: Influence of the Size of Maps 94

4.5 Discussions . 98

5 HIERARCHICAL K-MEANS 101

5.1 Problem Description 101

5.2 Hierarchical K-Means for Multi-Robots Exploration . 103

5.3 Phases of Hierarchical K-Means 105

5.3.1 Network Formation and Management 105

5.3.2 Global Partitioning . 108

5.3.3 Local Partitioning . 112

5.3.4 Frontier Allocation . 114

5.3.5 Allocating Frontiers to Robots with Explored Regions 115

5.4 Conclusions . 116

6 HKME EVALUATION 119

6.1 Experimental setup . 119

6.2 Criteria for HKME Evaluation 119

6.3 Experiment A: Empty Workspace 123

6.4 Experiment B: Workspace with Scattered Obstacles . 127

6.5 Experiment C: Office-like Workspace 128

6.6 Discussions . 131

7 CONCLUSIONS . 139

7.1 Future work . 141

Bibliography . 143

19

1 INTRODUCTION

Many mobile robotics applications require that multiple robots

cooperate to perform specific tasks in an unknown workspace. However,

the execution of those tasks depends in general of information about

the environment where the robots are placed. When the workspace

is initially unknown, the robots must perform an exploration task to

generate a suitable model of the environment (VISSER et al., 2013).

The aforementioned exploration task requires that robots of

a Multi-Robot System (MRS) move over the entire workspace in

a coordinated way, using their sensors to collect data about static

(walls, obstacles, etc.) and dynamic (people, vehicles, etc) elements

(BUTZKE; LIKHACHEV, 2011). The key question in multi-robot ex-

ploration is what place each robot must explore in order to minimize

aspects such as the time necessary to generate a complete map of the

workspace.

In general, it is natural to expect that multiple robots could

execute a task, such as exploration, faster than a single robot. How-

ever, some problems usually arise when multiple robots are used in

exploration tasks. First, depending on the number of robots and the

workspace in which they are deployed, they can be forced to move to-

gether. As a consequence, they can interfere with the motion of other

robots or even collide. Second, some robots may move towards the same

non-explored area or one already explored (PUIG; GARCÍA; WU,

2011). Third, exploration can be executed in an unbalanced way, with

some robots doing most of the work while others being underused. To

deal with these problems, the robots in a MRS need to be properly

coordinated in order to execute exploration tasks in a balanced and

efficient way.

To coordinate MRS in exploration tasks, most methods iden-

tify exploration targets, usually points in the frontier between already

explored areas and non-explored ones, and assign them to the robots

minimizing aspects such as the sum of the distances that all robots

have to travel or the time necessary for the robots reach their targets

20 Chapter 1. INTRODUCTION

(BAUTIN; SIMONIN; CHARPILLET, 2012; BURGARD et al., 2005;

MATIGNON; JEANPIERRE; MOUADDIB, 2012). To assign the best

targets for each robot, the coordination mechanism, which can be ran

by a single robot (centralized) or several ones (distributed), needs as

much information as possible about the environment, so it can identify

which areas are not explored yet and define and assign new exploration

targets to all robots correctly.

Most methods for MRS coordinated exploration consider per-

fect communication, with all robots always having a direct com-

munication link with the others and being always able to send or

receive messages instantaneously. These methods usually propose

centralized schemes where all robots send all information that they

collect about the workspace to a leader or an operational base.

Then, the leader (or the base) synchronizes all information in a sin-

gle and most complete map of the workspace, detects new explo-

ration targets and assigns them to the robots (SIMMONS et al., 2000;

BURGARD et al., 2005; STACHNISS; MOZOS; BURGARD, 2008;

SENTHILKUMAR; BHARADWAJ, 2012).

However, there are many situations where perfect communica-

tion among robots cannot be assumed, such as outdoor applications

and exploration of large and unstructured workspaces. In that case,

robots rely on others to forward messages to the final destination and

the MRS can be viewed as a mobile ad hoc network. In addition, robots

may lose communication and be separated in several unconnected net-

works. In this context, most centralized exploration methods are un-

able to coordinate the robots. Even straightforward extensions where

leaders execute the centralized scheme independently in each network

do not guarantee neither balance nor global efficiency. Moreover, as

the exchange of messages among robots become harder to accomplish,

they need a mechanism to share map information that ensures that all

robots in the same network have the same map during the allocation

of exploration targets.

This thesis investigates multi-robot exploration by considering

that robots have limited communication radius. Thus, the existence

1.1. Objective 21

of a link between two robots depends on the distance between them.

Communication problems such as message losses, delay in message ex-

changing, and losses of a message’s packages are not addressed in this

work.

Thus, the objective is to develop a method that avoids explo-

ration of already explored areas, reduces the time necessary to ex-

plore the entire workspace (exploration time), disperses robots over the

workspace quickly and balances the exploration workload among the

robots. Next, the thesis objectives are described.

1.1 OBJECTIVE

During the PhD, we investigate multi-robots exploration and our

goal is to develop an efficient method for exploration that handles the

possibility of link losses. Efficiency of the method is defined by the

following aspects:

Reduction of exploration time: Robots must complete the

workspace map as soon as possible.

Avoidance of redundant exploration: The method must avoid that

robots explore areas already explored by others.

Balancing of the workload of robots: Workload of exploration

must be divided fairly among robots.

Quick spreading of robots: Robots must disperse through the

workspace in order to reach all regions of it as soon as possible.

(PUIG; GARCÍA; WU, 2011).

1.1.1 Specific Objectives

To handle all efficiency aspects, we define two specific objec-

tives: developing an efficient method for map sharing and developing a

method for multi-robots coordination in exploration tasks.

22 Chapter 1. INTRODUCTION

Development of an efficient method for map sharing

The first objective of the PhD is to propose a method for map

sharing that handles constrained communication. The method must

guarantee that all robots in the same network have the same map. By

knowing all explored areas, robots can calculate better paths from its

position to the next exploration target. Also, they can avoid exploring

already explored areas.

Other important feature is that the method must avoid the ex-

changing of unnecessary information, which could increase significantly

the amount of data transmitted in the network. As the amount of

transmitted data increases, robots need better communication chan-

nels, with a higher bandwidth (rate of data transfer), to share their

maps. Additionally, the proposed solutions must be able to share maps

avoiding information inconsistency problems. In this work, an informa-

tion inconsistency problem occurs when robots in the same network

have different maps of the workspace.

In this thesis, we consider solutions based on ad hoc networks

with flat and hierarchical architectures. Also, we investigate the use of

raw maps (SHENG et al., 2005) to represent the map of robots.

Simulated experiments were performed to evaluate the proposed

methods regarding the time, number of messages and amount of data

necessary for sharing maps in different conditions. Experiments with

Sheng’s method were also performed and the results used to compare

the performance of the methods.

Development of a method for multi-robots coordination

The second objective of the PhD is to propose a method to co-

ordinate multiple robots in exploration tasks, considering robots with

limited communication radius. The method must assign exploration

targets to robots in order to minimize the time necessary to explore

the entire workspace. Beside this, robots must be coordinated in order

to quickly spread over the workspace and balancing the exploration

workload fairly among them.

1.2. Thesis Organization 23

Specifically, robots must be assigned to explore areas with sim-

ilar sizes. Also, the method must avoid that some robots travel much

longer than the others. Regarding the objective of quickly spreading the

robots, some strategies in which robots explore completely closer areas

before moving to farther ones might generate maps quicker. However,

when robots quickly spread over the workspace, they can find specific

objects faster. In the context of search and rescue applications, for

instance, potential victims in one region will not have to wait for assis-

tance much longer than victims in regions close to the initial position

of robots.

We investigate the partitioning of workspace in regions and the

assignment of regions to robots as a strategy to quickly disperse robots

through workspace and fairly distribute the workload among them. A

hierarchical organization of robots is considered to handle communica-

tion problems and define leaders to coordinate groups of robots.

We assume the following premises: 1) the workspace boundaries

are known; 2) robots communication system has a limited radius; 3)

messages sent to robots within this radius are always received; 4) robots

do not fail.

Several experiments are performed using the robot simulator

Player/Stage (GERKEY; VAUGHAN; HOWARD, 2003) to verify if

robots always complete (and how long it takes) a map of the workspace,

how long it takes for each region to be reached by a robot and how

fairly the workload was divided among robots. Instead of a com-

parison with other methods, we evaluate how much the performance

of the method degrades when communication radius decreases. A

baseline, corresponding to the execution of the method proposed in

(PUIG; GARCÍA; WU, 2011) when communication is granted, is used

to evaluate the performance of the method proposed in this thesis.

1.2 THESIS ORGANIZATION

This thesis is organized as follows. Chapter 2 introduces the

multi-robots exploration problem and presents the main works on map

24 Chapter 1. INTRODUCTION

sharing and coordination of multi-robots systems in exploration tasks.

Chapter 3 presents the methods we propose for map sharing. In chapter

4, we present experiments with the proposed methods for map sharing

and discuss the results. Chapter 5 presents the method we propose

for coordination in multi-robots exploration and chapter 6 the experi-

ments and their results. Finally, chapter 7 presents the conclusions and

perspectives of the work.

25

2 MULTI-ROBOTS EXPLORATION

In robotics, the exploration problem arises when robots have to

construct a model of the environment in which they are placed. To

do so, robots must move efficiently through the entire workspace in

order to create a complete map of it. In next section, we describe

the exploration problem, focusing in how robots can exchanged the

workspace information they detected using their sensors and how they

can be coordinated in order to execute exploration tasks efficiently.

Sections 2.3 and 2.4 present several works on the problems of

map sharing and multi-robots coordination. The methods proposed in

this thesis extend the works proposed by Sheng et al. (SHENG et al.,

2006) and Puig et al. (PUIG; GARCÍA; WU, 2011) and we present

these works in sections 2.3.1 and 2.4.3, respectively.

2.1 EXPLORATION PROBLEM

Exploration problem requires that robots move systematically

through the workspace in order to create suitable environmental mod-

els or maps from the data collected by their sensors. Even when a

single robots is used, exploration is a very complex problem, involving

aspects as robot’s localization and world features’ detection through

noisy sensor data (SIM; ROY, 2005).

It is natural to expect that several robots can explore an environ-

ment faster than a single robot. However, when multi-robots system

are used in exploration, other aspects as robot’s coordination and infor-

mation sharing make the problem more complex (CARVALHO et al.,

2013; FLOCCHINI et al., 2013).

The key question in multi-robots exploration is which place

each robot must explore in order to minimize aspects as the time

necessary to generate a complete map of the workspace. In

this work, we define this problem as the Coordination problem

(HAUMANN; WILLERT; LISTMANN, 2013).

Different centralized and distributed methods have been pro-

26 Chapter 2. MULTI-ROBOTS EXPLORATION

posed to coordinate robots in exploration tasks (BURGARD et al.,

2000; BURGARD et al., 2005). In centralized methods, a central unit

defines which places (named exploration targets) each robot will explore.

In distributed approaches, robots interact with the others to choose the

places they will explore.

In both approaches, coordination schemes consider several as-

pects, such as which areas of the workspace were already explored and

the current position of robots, to select new targets for robots. To do

so, robots must share the information they detect while exploring the

workspace. Otherwise, robots can be assigned to explore targets in al-

ready explored areas, which can decrease significantly the efficiency of

exploration.

In this thesis, we focus on the map sharing and coordination

problems, so, exploration can be viewed as presented in figure 1.

Navigation

and

Sensing

Map

Sharing
Coordination

New Information

detected

Maps updated

New targets

assigned

Figure 1 – Exploration diagram.

In figure 1, we represent that robots execute a cycle based on

three states: map sharing, coordination and navigation and sensing. Af-

ter robots detect new areas of the workspace, they share the new in-

formation with the other robots (state map sharing). Then, they are

coordinated in order to define which place each robot is going to explore

(state coordination). Next, robots start to move through the workspace,

using their sensors to detect new areas of the workspace (state naviga-

tion and sensing).

Navigation and sensing involves aspects, such as robot’s lo-

2.1. Exploration Problem 27

calization, navigation and fusion of sensor data and is com-

monly referred to as Simultaneously Localization and Mapping (SLAM)

(MONTEMERLO; THRUN, 2003). There is a number of systems

that can be reliably used for SLAM (DISSANAYAKE et al., 2001;

FEI et al., 2013; SU, 2008; THRUN; LEONARD, 2008; KUO et al.,

2011) and we do not address them in this thesis.

2.1.1 Map representation

There are several forms to represent the knowledge that

robots have about the workspace, such as occupancy grid maps

(ELFES, 1989), variable grid maps (KAPLOW; ATRASH; PINEAU,

2010), and road maps (HSU; LATOMBE; KURNIAWATI, 2006;

KAVRAKI; LATOMBE, 1998). Occupancy grid is one of the most

common approaches to represent the workspace and we present it in

this thesis.

In a grid map, workspace is represented by a two-dimensional

(or even three-dimensional) array of cells, as shown in figure 2. Cells

correspond to discrete positions in the workspace and can be classified

as: occupied, free or unknown.

Unknown cell Occupied cellFree cell

Figure 2 – Example of occupancy grid map.

To define the state of cells, robots employ an approach based

on probabilistic models of their sensors (ELFES, 1989). Considering

28 Chapter 2. MULTI-ROBOTS EXPLORATION

models of sensors and the data collected by their own sensors or sent

by other robots in the system, robots calculate the probability of each

cell is occupied by an obstacle, occupancy probability. If the probability

is higher than a threshold OCC, the cell is considered occupied. If it is

smaller than a threshold FREE, the cell is considered free. Otherwise,

the state of the cell is considered unknown.

How robots can perform data fusion in order to create a map

of the workspace, reducing errors caused by sensor uncertainties, is

defined the mapping data fusion problem. We do not address this prob-

lem and refer to (AHMED; SAMPLE; CAMPBELL, 2013; ELFES,

1989; KUBELKA et al., 2015; LUO; LAI, 2012; RODGER, 2012;

SHALAL et al., 2015) and other works for more information about

mapping data fusion.

2.2 COMMUNICATION IN DISTRIBUTED SOLUTIONS

In many situations, robots must perform an exploration task in

a workspace where there is not a pre-existing network infrastructure

(routers, access points, etc). Since the exchange of messages among

robots is necessary to share map information and also for coordination,

they have to act as routers and relay messages to the final destination.

So, regarding the communication, MRS can be view as a mobile ad hoc

network.

In mobile ad hoc networks, communication between two nodes

(robots in our application) is performed by direct connection or through

multiple hop relays, when there is not a direct link between them. If

all nodes play the same role in the network, we say that the network

has a flat network architecture.

In a flat network, when the number of nodes increases, rout-

ing schemes do not scale well in terms of performance. Also,

problems related to message losses are harder to solve in flat net-

works (DHURANDHER; SINGH, 2005). Efficient solutions based

on grouping nodes into clusters have been widely proposed by the

research community to handle the scalability problem in networks

2.2. Communication in Distributed Solutions 29

(ABBASI; YOUNIS, 2007). In these solutions, leaders (named cluster-

heads) are elected for each cluster and the networks have a hierarchical

architecture. Due to the existence of leaders, problems as message losses

become easier to detect and handle in hierarchical networks.

Several schemes have been proposed to group the robots

in clusters and elect the clusterheads, such as the Lowest

ID (EPHREMIDES; WIESELTHIER; BAKER, 1987), the High-

est Degree (GERLA; TSAI, 1995) and the Weighted Clustering

(CHATTERJEE; DAS; TURGUT, 2002).

In most methods, members of a cluster have a direct link with

their clusterhead and can exchange messages only with it. The clus-

terheads handle the communication inside the cluster and with other

clusters. Thus, networks can be represented just in the level of the clus-

ters. Also, most of the changes in the network topology can be handled

internally by the clusterheads. However, some application might use

multi-hop communication inside the cluster due to specific requirements

(ABBASI; YOUNIS, 2007).

In figure 3, we present an example of flat and hierarchical net-

works.

Ordinary node Clusterhead

Flat network structure Hierarchical network structure

Gateway

Figure 3 – Flat and hierarchical networks.

The light gray nodes in figure 3 represent the gateways, members

of cluster that are used by their leaders to send and receive messages

30 Chapter 2. MULTI-ROBOTS EXPLORATION

from other clusters. Next, we present the simplest algorithm for cluster

formation and maintenance: the lowest ID.

Lowest ID

In (EPHREMIDES; WIESELTHIER; BAKER, 1987), the au-

thors propose a simple algorithm for cluster formation and maintenance

based on the robots ID, a unique integer identifier that is associated

with each robot. The cluster formation is performed as described be-

low.

• Each node (robot in this work) broadcasts a message with its ID

to its neighbors1;

• If all messages that a robot receives are from robots with a higher

ID, it becomes a clusterhead. As a clusterhead, it will add to its

cluster all neighbors which request membership to its cluster;

• Otherwise, it identifies the neighbor with the lowest ID and tries

to join its cluster. If the neighbor is not a clusterhead, the robot

tries to join the cluster of its neighbor with the next smallest ID,

and so on.

In the maintenance phase, which starts to be executed after the

cluster formation phase, each node periodically broadcasts a message

with its ID to its neighbors and verifies if it lost any link. When a node

loses the link with its clusterhead it tries to join another cluster. If the

node does not have a link with other clusterhead the cluster formation

phase is executed again(CAMBRUZZI; FARINES; JUNIOR, 2009).

In the following sections, we present the main approaches for

map sharing and multi-robots coordination in exploration tasks.

2.3 MAP SHARING

The simplest approach for map sharing, which is used by most

multi-robots exploration methods, is described next. All robots can
1 The neighbors of a node are the ones with what they have a direct communication link

2.3. Map Sharing 31

communicate directly with a central unit (a robot leader or an opera-

tional base) and, every time they reach exploration targets, robots send

the collected data to the central unit. After receives new information

about the workspace, the central unit updates the map of the system

and sends it to all robots.

In exploration methods as the ones proposed in

(BURGARD et al., 2000; SIMMONS et al., 2000), for instance,

robots rely on a central unit to generate the workspace’s map and

coordinate them. Every time a robot reaches an exploration target,

it sends the information collected to the central unit, which updates

the map, identifies new exploration targets and assigns them to the

robots.

Other methods, such as (LAGOUDAKIS et al., 2004;

YAMAUCHI, 1998), use a distributed scheme to share map in-

formation. In these methods, each robot has its own map of workspace

and uses an auxiliary map to store the data it collects while moving to

an exploration target. When the robot reaches the target, it updates

its workspace map with the information in the auxiliary map. Then,

it sends the auxiliary map to the other robots in the system. Next,

the robot chooses another target and resets the auxiliary map before

starting to move toward it.

These approaches (centralized and distributed) allow robots to

share the information they detect about the workspace, avoiding the

exchanging of unnecessary information (robots share only new informa-

tion). However, they do not handle communication problems as link

losses.

As robots share an information only once (when they detect it),

if the central unit (in centralized approaches) or some robots (in dis-

tributed approaches) do not have a link with the robot that is sharing

collected data, they will never get this piece of information, even if com-

munication between them is reestablished. When robots have different

maps, we have an information inconsistency problem.

To handle this problem, other authors use simple schemes in

which robots share their entire maps. In (BURGARD et al., 2005;

32 Chapter 2. MULTI-ROBOTS EXPLORATION

STACHNISS; MOZOS; BURGARD, 2008), for instance, the authors

propose a scheme where all robots that can communicate form a group

and define a leader. Every time a robot reaches a target (named fron-

tiers), it sends its entire map to the current leader, which updates its

own map and share it with the other robots in the group. By doing so,

robots guarantee that any information obtained before they had estab-

lished communication with the current leader will be shared. Similarly,

leaders share their entire maps to guarantee that robots get any infor-

mation detected before they joined the group.

In distributed approaches as the ones proposed in

(SARIEL; BALCH, 2005; SARIEL; BALCH, 2006; ZLOT et al.,

2002), robots broadcast their entire map to all robots with what they

can communicate. After receiving maps from another robot, robots

update their own maps.

Although these approaches, where robots exchange their entire

maps, can handle information inconsistency problems, they force robots

to exchange a large amount on unnecessary data.

Other methods (FRANCHI et al., 2007; FRANCHI et al., 2009),

propose schemes where, every time two robots establish a communica-

tion link, they exchange their entire maps. Then, while the robots

can communicate, they exchange only the new information they detect

about the workspace. Although this scheme reduces the amount of

unnecessary information exchanged, when robots establish a link, they

still send information that the others already have.

Sheng et al. (SHENG et al., 2005; SHENG et al., 2006) propose

an efficient method for map sharing, defining a map representation that

allows robots to easily identify which information others do not have

yet and send only this information. In the following subsection we

present Sheng’s method.

2.3.1 Sheng’s Method

In (SHENG et al., 2005; SHENG et al., 2006), Sheng et al. pro-

pose a method for multi-robots exploration, whose main contribution

2.3. Map Sharing 33

is a scheme to synchronize the maps of robots. Authors do not assume

any pre-existing network infrastructure (routers, access points, etc) in

the workspace and robots can act as routers and relay messages to the

final destination. So, regarding the communication, the MRS can be

view as a mobile ad hoc network.

In Sheng’s method, robots in the same network have the same

map and, when a robot reaches its target and detects new information

about the workspace, it shares this information with the others through

a propagation scheme. Specifically, the robot broadcasts the new in-

formation to robots with what it has a direct communication link, its

neighbors. Next, the neighbors update their maps and broadcast the

information to their own neighbors, and so on. At the end, all robots

in the network get the information and converge to the same map.

The main contribution in Sheng’s method is a scheme to syn-

chronize maps when robots in different networks establish a link and

the networks merge in a single one.

Let’s consider that robots in the system are separated in two

unconnected networks N1 and N2. If two robots Ra ∈N1 and Ru ∈N2

establish a link, they interact to identify which information the other

does not have yet. Next, the robots send only the information the other

still lacks. After Ra and Ru update their own maps, they broadcast

the information they got to their neighbors. Next, their neighbors

broadcast the information to their own neighbors, and so on. At the end

of the synchronization scheme, all robots in the new network converge

to the same and most up to date map.

To allow robots to synchronize their maps without exchanging

unnecessary information, Sheng et al. propose the concept of raw map.

Every time a robot Rk reaches a frontier (the exploration target in

Sheng’s method), it defines a set ∆Mkq with the state of all cells it

detected while moving toward the frontier and adds ∆Mkq to its raw

map. The index q indicates that ∆Mkq corresponds to the set of cells

detected by Rk while it was exploring its q-th frontier.

Each robot has its own raw map, which has ∆Mkq sets detected

by itself and shared by other robots. Table 1 shows an example of raw

34 Chapter 2. MULTI-ROBOTS EXPLORATION

map for a robot Rk.

Table 1 – Example of the raw map of a robot Rk.

A raw map has n columns, each of them associated with a robot

of the system. For example, in table 1, the column associated with

robot R2 has the sets ∆M21 · · ·∆M2p generated by robot R2 and shared

with Rk.

To synchronize their raw maps, two robots send an array with

the last index of each column in their raw maps. Based on the received

array, each robot identifies what ∆Mkq sets (of all columns) the other

does not have yet and sends only these information.

Generating Occupancy Grid Maps

Using raw maps to represent the workspace, robots can efficiently

share map information. However, raw maps are not so useful when

robots need to calculate paths to specific positions in the workspace.

To handle this problem, robots can convert their raw maps in

occupancy grid maps, for which there are several methods that can be

applied to calculate paths, such as A⋆ (HART; NILSSON; RAPHAEL,

1968) and Value Iteration (HOWARD, 1960; BURGARD et al., 2005).

To do so, robots can create a two-dimensional array to represent the

grid map. Then, based on the data in ∆Mkq sets from their raw maps,

robots calculate the state of cells in the grid map.

2.4. Coordination in Multi-Robots Exploration 35

2.4 COORDINATION IN MULTI-ROBOTS EXPLORATION

Over the last decades, a wide variety of methods to coordinate

exploration tasks with multiple robots have been proposed. The sim-

plest approach for multi-robot exploration was proposed by Yamauchi

(YAMAUCHI, 1998), which defines frontier cells as the exploration tar-

gets. Frontiers are cells free of obstacles that have at least one non-

explored (or unknown) adjacent cell. Each robot chooses its closest

frontier cell regardless of the actions of the other robots. After explor-

ing its frontier, the robot shares the detected cells with the other robots

and chooses another frontier cell. This method implements a greedy

strategy with no coordination among robots. It also assumes direct

communication among all robots.

Because of the lack of coordination among robots, they can ex-

plore the same frontier simultaneously, which can significantly decrease

the efficiency of exploration. Furthermore, this method does not con-

sider any dispersion of robots. Thus, they may concentrate their ex-

ploration in some parts of the workspace. In that case, robots have to

move close to each other, constantly recalculating their paths to avoid

collision. In addition, when robots concentrate exploration in some re-

gion, they tend to take longer to generate a complete map of the whole

workspace.

Several approaches have been proposed to handle these prob-

lems. They can be classified based on their optimization policies as:

robot assignment policy, task assignment policy and region assignment

policy.

Methods that consider the robot assignment policy allocate an

exploration target (usually frontier cells) to each robot in order to avoid

that robots explore the same target or too close targets. The objective

is to assign a task (target to explore) to each robot. When there are

more targets than robots, some targets can be left without an assigned

robot.

In methods that consider task assignment policies, the goal is to

allocate all exploration targets among the robots, minimizing the time

36 Chapter 2. MULTI-ROBOTS EXPLORATION

or distance necessary to explore all targets. In these methods, robots

can be assigned to more than one target when there are more targets

than robots.

At the end of this section, the method proposed by Puig et al.

(PUIG; GARCÍA; WU, 2011), which considers a global exploration

policy based on the assignment of regions to the robots, is summa-

rized. In (PUIG; GARCÍA; WU, 2011), the workspace is partitioned

in regions, and the regions and frontiers are allocated in order to dis-

perse the robots over the entire workspace, exploring it efficiently and

balancing the exploration workload among all robots. Next, we present

the main methods for multi-robot exploration, organizing them accord-

ing to their optimization policies.

2.4.1 Robot Assignment Policies

The method proposed by Burgard et al. (BURGARD et al.,

2000; BURGARD et al., 2005) coordinates the robots of an MRS in

order to explore the entire workspace as fast as possible. This is done

through a centralized scheme that considers frontiers as targets and as-

sociates costs and utilities to them. Frontiers are assigned by a central

unit that sequentially chooses targets for robots with the best trade-off

between utility and cost, and updates the utility values based on the

proximity to assigned frontiers.

The authors also describe how the proposed scheme can be used

when robots have a limited communication radius. In that case, each

group of connected robots executes the algorithm independently. Nev-

ertheless, the authors do not discuss the loss of efficiency caused by the

local execution of the centralized algorithm or other issues related to

the execution in the context of several ad-hoc unconnected networks.

In (STACHNISS; MOZOS; BURGARD, 2006;

STACHNISS; MOZOS; BURGARD, 2008), the authors propose

an extension of the previous method that classifies the areas of the

workspace into rooms or corridors, and prioritizes the exploration of

frontiers in corridors through the assignment of higher utility values.

2.4. Coordination in Multi-Robots Exploration 37

In (SIMMONS et al., 2000), the authors propose a method

the improves the one presented in (BURGARD et al., 2000;

BURGARD et al., 2005) in two ways: considers estimated the amount

of data that will be detected exploring a frontier cell to assign frontiers;

and uses a bidding scheme to execute the algorithm in a distributed

way, decreasing the computational cost for the central unit.

Instead of defining the initial utility as 1, the method proposed

by Simmons et al. (SIMMONS et al., 2000) defines it based on the

amount of cells with “unknown” state that will be detected exploring

the frontier. The robots calculate the cost to reach the frontiers and the

utilities of frontiers to define the “bids” and send the bids to a central

unit responsible to allocate the frontiers. Iteratively, the central unit

identifies the highest bid and allocate the frontier to the robot. Then,

it reduces the utilities of frontiers based on the overlap with the area

of the last assigned frontier.

As happens in (BURGARD et al., 2000; BURGARD et al., 2005),

the proposed method implements a greedy strategy instead of a scheme

that optimizes the overall assignment performance, although tends to

disperse, locally, the robots over the environment. The paper does not

address any communication problems.

Fox et al. (FOX et al., 2006) propose a method that approaches

the exploration problem considering that the robots do not know the

other robots relative position. To be able to merge the information

collected by the robots in one map, the robots exchange the collected

data and define a hypothesis about the other robot position. Robots

verify the hypothesis using a rendezvous technique and, if it is true, they

form a group with the robot with smaller ID as the leader. Otherwise,

they keep exchange information to refine the hypothesis.

In (FOX et al., 2006), the authors define two types of targets:

frontiers cells and position hypothesis. A decision-theoretic scheme that

assigns cost and utility for the targets, similar to the one proposed

in (BURGARD et al., 2000; BURGARD et al., 2005). The costs are

length of the smallest path between the robot and the frontier or the

rendezvous position. The utility is defined as the frontiers associated

38 Chapter 2. MULTI-ROBOTS EXPLORATION

area and, in the case of the hypothesis targets, the amount of data

in the other robot map. A linear program solver is used to find the

optimal assignment, which maximizes the targets’ trade off. However,

it does not force the robots dispersion over the environment.

As occurs in (BURGARD et al., 2000; BURGARD et al., 2005),

the proposed method can be executed in centralized way by the leaders

of each robots connected group to handle limited communication.

In turn, Franchi et al. (FRANCHI et al., 2007; FRANCHI et al.,

2009) propose a method for multi-robot exploration in which each robot

explores the workspace almost regardless of the actions of the other

robots. Each robot has a map, represented as a Sensor-based Random

Graph (SRG), whose nodes correspond to the positions of explored

frontiers and whose root is the initial position of the robot. Every time

the robot explores a new frontier, it creates a new node and defines an

edge connecting that node with the one from where it started exploring

that frontier.

Robots select their exploration targets (frontiers) using a biased

random policy that assigns higher probabilities to targets with larger

areas and closer to the robot’s position. Robots also cooperate by

exchanging the information they detect about the environment every

time they can communicate with each other. When some robots are

within a predefined distance, they form a group and select a leader

to coordinate their actions in order to avoid collisions. Moreover, to

decrease the distance among nodes, the SRG map is enriched with new

edges, named bridges.

Targets are selected using a biased random scheme with no ex-

plicit mechanism to force the robots to disperse through the environ-

ment. However, there is a local mechanism that coordinates the robots

to avoid collision when they are too close to each other. Another im-

portant feature is that the method can handle communication problems

caused by limited communication radius, such as link losses.

In (WURM; STACHNISS; BURGARD, 2008), Wurm et al. pro-

pose a method where the workspace map is segmented and represented

as a Voronoi diagram. Figure 4 presents an example of Voronoi diagram

2.4. Coordination in Multi-Robots Exploration 39

1

2

3

4

5

6

7

8

9

10

10

11

12

13

14 15 16 17

Voronoi Diagram

1

2

3

4

5

6

7

8

9

10

10

11

12

13

14 15 16 17

Graph Representation

Figure 4 – Voronoi diagram and graph representation.

for a partially explored workspace and its corresponding graph-based

representation. Dark gray indicates the non-explored areas, whereas

obstacles are shown in red. The green lines represent frontier cells. For

the example presented in figure 4, segments 4, 7, 10, 13 and 17 are

the only ones that have frontier cells and correspond to the exploration

targets.

The method proposed in (WURM; STACHNISS; BURGARD,

2008) coordinates the robots to avoid that they explore the same (or

close) frontiers simultaneously, thus reducing the risk of collision and

the amount of redundant explored area. Particularly, a central unit

calculates the costs Ci
s of exploring a segment s with a robot i, for all

robots and segments with frontier cells. Ci
s is the length of the smallest

path between robot i and the closest frontier cell in segment s. The

central unit then uses the Hungarian Method (KUHN, 1955) to assign a

robot to each segment. In (WURM; STACHNISS; BURGARD, 2008),

several robots can be assigned to the same segment when there are more

robots than segments with frontier cells. As the authors define a cen-

tral unit to allocate exploration targets to robots, that method cannot

handle limited communication, which could prevent the communication

between robots and the central unit depending on the distance among

them.

In general, methods that consider robot assignment policies allo-

cate a single exploration target (frontier, segment, etc.) to each robot

40 Chapter 2. MULTI-ROBOTS EXPLORATION

in a way that avoids the exploration of a target by several robots si-

multaneously, which could decrease the exploration efficiency.

Despite robots tend to disperse over the workspace, since the

aforementioned methods only consider the identified exploration tar-

gets, the degree of dispersion is local. Another problem is that those

methods consider the assignment of a single target to each robot and

cannot minimize the exploration of all identified targets.

2.4.2 Target Assignment Policies

To improve exploration efficiency, some methods consider the

assignment of all targets to the robots. By doing so, they avoid prob-

lems caused by the greedy behavior of methods that only consider the

assignment of one target per robot.

Zlot et al. (ZLOT et al., 2002) propose a distributed scheme for

MRS exploration based on a market architecture. Instead of using

frontiers cells, in the method proposed in (ZLOT et al., 2002), the ex-

ploration targets are cells with unknown state that can be chosen by

three different schemes: random; greedy exploration, which chooses a

point centered in the closest non-explored region (of a fixed size); space

division by quadtree, in which the unknown cells are represented us-

ing a quadtree and targets are located at the center of the quadtree

leafs. Also, the method tries to improve globally the efficiency of the

exploration by considering future targets in the assignment.

Each robot detects its own targets and tries to sell all of them

sequentially (one auction at a time) to the robots it can communicate.

The owner calculates the minimum price that it will accept for each

target based on the distance to reach the target (cost) and the informa-

tion gain expected (revenue), similar to (SIMMONS et al., 2000). The

other robots also calculate their bids based on the cost and the revenue

and send to the auctioneer (the target owner). If the auctioneer receive

a bid greater than the minimum price, it “sells” the target to the robot

with the higher bid.

After the robot tries to sell all targets, it inserts all remain targets

2.4. Coordination in Multi-Robots Exploration 41

in its tour (sequence of targets to be visited by the robot) greedily

minimizing the distance between the last target in the tour and the

remaining targets. Then, it starts to move to the first target in the

tour. When the robot reach a target, it detects new targets, adds them

in its targets set and start a new auctioning process.

In (BERTSEKAS, 1990), Bertsekas showed that his auction al-

gorithm can effectively find an optimal solution that maximizes the

total benefit (utility-cost). Although the market economy method is

based on the above described optimization of total benefit, it has two

problems. There is no mechanism that forces the robots to disperse

through the workspace. Second, some robots will obtain more targets

since they are closer to them (their costs are lower than those of the

robots which are farther away from their goals). Consequently, the

workload is not balanced among the robots.

Also, the auctions consider only the distance between the targets

and the robots, not the entire tour, and the size of the targets. Thus,

this approach will behave like the greedy strategy proposed by Ya-

mauchi (YAMAUCHI, 1998), in which robots always choose the closest

targets.

In (FAIGL; KULICH; PŘEUČIL, 2012; FAIGL; KULICH,

2015), Faigl et al. proposes a centralized method for multi-robot ex-

ploration based on goals clustering. In the proposed method, a central

unit synchronizes the maps of all robots and identifies the exploration

targets (similar to frontiers). Then, instead of assign a target to each

robot, it aggregates the goals in K clusters, where K is the number of

robots in the system. To do so, a K-Means based algorithm is used

(ASGHARBEYGI; MALEKI, 2008).

Instead of clustering the frontiers in K groups and, then,

assigning robots to each of them, the method proposed in

(FAIGL; KULICH; PŘEUČIL, 2012; FAIGL; KULICH, 2015) defines

the position of the robots as the seeds2 of the clusters, thus forming

clusters already in the vicinity of the robots that will explore them.

2 The seed of the frontier cluster is its initial center of mass.

42 Chapter 2. MULTI-ROBOTS EXPLORATION

Then, each robot identifies the closest target in its cluster, calculates a

path to it and starts to move toward it.

Although this method minimizes the distance traveled by robots

to reach their clusters of goals, it uses a simple greedy strategy to ex-

plore the goals in the clusters. Thus, exploration can become inefficient.

In addition, it can find solutions where some robots do not get any tar-

get, leading to an unbalanced exploration. In that case, the method

states that the robots must move toward the closest non-explored area,

which can lead to a robot “following” the one that was assign to goals in

that area. The method also assumes that all robots can communicate

with the central unit to allocate targets and cannot handle link losses.

In (CARVALHO et al., 2013), Carvalho et al. proposes a

method for multi-robot exploration that considers a partially explored

workspace where there is a number of targets. Some of the targets are

known while others are in the non-explored areas of the workspace.

Thus, robots have to perform two types of tasks: exploring known

targets and wandering through the workspace in order to detect the

remaining targets.

The method proposes a scheme where all known targets must

be assigned to robots first. Then, the remaining robots of the system

wander through the workspace in order to find the targets in non-

explored areas. To assign robots to targets, robots execute a distributed

scheme based on graph coloring (KUBALE et al., 2002), where targets

are defined as nodes of a graph and robots as colors. Robots execute

the distributed graph coloring algorithm proposed in (KUBALE et al.,

2002) to paint all nodes of the graph, defining which nodes each of them

will explore. The algorithm minimizes the number of colors necessary

to efficiently paint the entire graph, in order to leave as many robots

as possible to wander through the workspace looking for targets in

non-explored areas.

The method proposed in (CARVALHO et al., 2013) minimizes

the time necessary to explore all known targets in a partially explored

workspace, also minimizing the number of robots. However, Carvalho

et al. do not present a contribution for the problem of exploring the

2.4. Coordination in Multi-Robots Exploration 43

unknown workspace, defining a random mechanism to explore it using

the remaining robots.

In (BERHAULT et al., 2003), the authors propose a distributed

scheme based in market economy to explore a number of given targets

in a partially unknown environment. Instead of considering single-item

auctions, Berhault et al. propose a scheme where the robots bid on

bundles of targets and an auctioneer (a virtual agent) determines the

winners.

Different schemes are proposed to group the targets in the bun-

dles. The results presented in the paper show that the Graph-Cut

strategy is the one with the closest to optimal traveling cost. The

Graph-Cut strategy defines a initial bundle that contains all targets

and, recursively, create additional bundles using a maximum cut algo-

rithm to split the graph.

Since the environment on which the experiments are carried out

was only a partially unknown terrain and the number of robots was very

small (only 3 robots), some conclusions in the paper need to be further

examined. The method considers only the exploration of predefined

targets and robots dispersion over the environment is not addressed.

Also, the method centralizes the decisions in the auctioneer and the

authors do not address problems related to communication link losses.

In (CAVALCANTE; NORONHA; CHAIMOWICZ, 2013), Cav-

alcante et al. improved the scheme proposed in (BERHAULT et al.,

2003) by defining three strategies that improve combinatorial

auctions for multi-robots task. Two strategies are based on

packages-tree and a heuristic for the Traveling Salesman Prob-

lem (TSP). The third is based on a sorting scheme. However,

the problems in (BERHAULT et al., 2003) are still present in

(CAVALCANTE; NORONHA; CHAIMOWICZ, 2013).

Lagoudakis et al. (LAGOUDAKIS et al., 2004), for instance,

propose a method to allocate a number of exploration tasks (or tar-

gets) to a multi-robot system. This method is based on the concept of

Minimum Spanning Tree (MST) and its goal is to allocate the targets to

the MRS minimizing the total traveled distance.

44 Chapter 2. MULTI-ROBOTS EXPLORATION

The exploration problem is represented by a weighted undirected

graph G, whose vertices correspond to the location of targets and

robots. Every edge keeps the cost of moving from one place to the

other. A subgraph of G that contains all vertices and whose edges have

the minimum cost is an MST.

An MST is defined for each robot through the Prim Allocation

algorithm. The MST’s root keeps the location of its corresponding

robot. At each iteration, the robots bid on the non-assigned vertices

that are closest to their MSTs. A central auctioneer decides the winning

bids.

Although this method minimizes the total cost of edges, it does

not consider the cost to jump from one branch of the MST to another.

Thus, exploration can become inefficient. In addition, it can find solu-

tions where some robots do not get any target, leading to an unbalanced

exploration. The method also assumes that all robots can communi-

cate with the central unit to allocate targets. Thus, this method cannot

handle limited communication radius.

Sariel and Balch (SARIEL; BALCH, 2005; SARIEL; BALCH,

2006) also propose a method to allocate a number of exploration targets

based on the concepts of MST and Minimum Spanning Forest3 (MSF).

However, instead of a combinatorial market-based scheme, single-item

auctions are used to allocate targets. To avoid greedy behaviors, the

authors propose schemes to calculate bids based on near optimal so-

lutions for the TSP. However, this method is not efficient enough and

the target sets can be very unbalanced, with some robots owning many

targets while others just a few (PUIG; GARCÍA; WU, 2011). An im-

portant feature of this method is that it defines some mechanisms to

handle communication link losses.

In (ROGERS; NIETO-GRANDA; CHRISTENSEN, 2013;

NIETO-GRANDA; ROGERS; CHRISTENSEN, 2014), Nieto-Granda

et al. define the exploration targets as clusters of frontier cells and

propose a method for multi-robot exploration that allocates teams

3 A Minimum Spanning Forest is a set of MSTs

2.4. Coordination in Multi-Robots Exploration 45

of robots to explore each target. To allocate targets to teams, the

method implements a greedy exploration strategy similar to the one

proposed in (BURGARD et al., 2000), where the pairs 〈team-target〉

with the shortest distance are assigned first. The main contribution of

the paper is the set of three coordination strategies for team formation:

reserve, divide and conquer and buddy system.

In the first strategy, unassigned robots are called from reserve

every time a new branch of the workspace (a new room, for instance)

is discovered. In the divide and conquer strategy, the exploration starts

with all robots belonging to a single team and, every time a new branch

is discovered, the team splits. Finally, in the buddy system strategy,

teams of two robots are assigned to explore the targets, splitting when-

ever a new branch of the workspace is detected. When a team has a

single robot, it recruits a new team of two robots from the reserve to

explore new branches. All targets are allocated among the teams and,

when a team does not have enough robots to explore all targets that it

owns, it sequentially explores the closest ones.

Regardless of the strategy being used, the method exhibits

a greedy behavior and runs similarly to the one proposed in

(BURGARD et al., 2000), assigning the robots to the closest targets.

In addition, the coordination strategies only improve the exploration

by decreasing the risk of collisions (reserve and buddy system strategies)

or the exploration time by preventing idle robots (divide and conquer

strategy). Moreover, this method does not address communication is-

sues.

Methods that consider target assignment policies can explore the

workspace quicker than the ones that only consider robot assignment

policies. This occurs because, when methods assign the targets con-

sidering the exploration of all them, robots can calculate the smallest

paths that take them through all targets assigned to them. However,

these methods still consider just local optimization. Since robots ex-

ploring the workspace have only a partial map of it, even when the

methods minimize the exploration of all identified targets, they cannot

guarantee the optimization of the exploration as a whole.

46 Chapter 2. MULTI-ROBOTS EXPLORATION

2.4.3 Global Optimization: K-Means for multi-robot exploration

In (PUIG; GARCÍA; WU, 2011), Puig et al. propose a multi-

robot exploration method based on centralized K-means (KME), which

implements a policy that optimizes the exploration at a global level.

The method improves the exploration efficiency by minimizing three as-

pects: the sum of traveled distances, the variance of the length of paths

and the variance of the arrival times at all regions of the workspace. In

the context of search and rescue applications, for instance, if all regions

can be explored with similar arrival times, potential victims in one re-

gion will not have to wait for assistance much longer than victims in

other regions (PUIG; GARCÍA; WU, 2011).

To minimize these three aspects and improve the exploration,

the authors propose a centralized scheme with two stages: workspace

partitioning and assignment, and frontier allocation. The workspace

partitioning and assignment stage is periodically run by a central unit.

First, K-means is applied to segment the non-explored areas of the

workspace into K regions, where K is the number of robots. Then, KME

assigns a region to each robot in a way that minimizes the distance that

all robots have to travel to reach their assigned regions.

The central unit executes the frontier allocation stage every time

a robot reaches its last assigned frontier. The new frontiers are selected

in such a way that robots tend to get closer to their corresponding

regions. Thus, regions can be viewed as global exploration targets

and KME uses them to guide the exploration process. By assigning

frontiers to robots considering these global targets, KME avoids the

greedy behavior of previous methods, which only consider the identified

frontiers or other local aspects.

KME implements a global optimization strategy to avoid

problems of unbalanced exploration that occur in previous

works, such as (SIMMONS et al., 2000; BERHAULT et al.,

2003; LAGOUDAKIS et al., 2004; BURGARD et al., 2005;

SARIEL; BALCH, 2006; STACHNISS; MOZOS; BURGARD, 2008;

VISSER; SLAMET, 2008). However, it assumes that robots can

2.4. Coordination in Multi-Robots Exploration 47

Table 2 – Comparison of different exploration approaches.

always communicate directly with the central unit. Thus, KME

cannot handle limited communication.

Table 2 summarizes the main features of all methods reviewed in

this section. The different exploration approaches are compared with

respect to four features: exploration target, coordination scheme, com-

munication and objectives. The communication feature indicates if the

method handles limited communication or assumes guaranteed commu-

nication among robots. The objectives are: (a) minimize completion

time, (b) minimize the total path lengths traveled by a team of robots

and (c) minimize the variance of regional waiting time.

Most methods only consider local aspects to coordinate the

robots, such as frontiers in the partially known map. By doing so,

robots tend to explore the workspace greedily, which can decrease ef-

ficiency and lead to problems of unbalanced exploration. On other

hand, KME can balance the workload among the robots and perform

exploration efficiently, but cannot handle communication link losses.

48 Chapter 2. MULTI-ROBOTS EXPLORATION

2.5 CONCLUSIONS

This thesis approaches the problem of multi-robots exploration,

focusing on how robots can share the information they detect and how

they can be coordinated in order to explore the workspace efficiently.

Regarding the map sharing problem, several authors pro-

pose schemes (BURGARD et al., 2000; SIMMONS et al., 2000;

STACHNISS; MOZOS; BURGARD, 2008) where robots broadcast

their entire maps, exchanging a large amount of unnecessary data.

Other authors (YAMAUCHI, 1998; LAGOUDAKIS et al., 2004;

FRANCHI et al., 2009) propose schemes in which robots send only new

information, but these schemes rely on perfect communication channels.

Sheng et al. (SHENG et al., 2005; SHENG et al., 2006) propose

an efficient method for map sharing, which allows robots to synchronize

their maps without exchanging unnecessary information. However, the

method uses a propagation scheme to share information with other

robots in the network, where robots broadcast any new information

to all neighbors. As robots can have links with several robots in the

network, it can receive the same information many times, increasing

the amount of unnecessary exchanged data.

In chapter 3, we propose two methods for map sharing based

on Sheng’s raw map that avoids robots exchanging unnecessary map

information.

Regarding the coordination problem, most methods consider

only local aspects to coordinate the robots, such as frontiers in the par-

tially known map. By doing so, robots tend to explore the workspace

greedily, which can decrease efficiency and lead to problems of unbal-

anced exploration.

The KME (PUIG; GARCÍA; WU, 2011) implements a global

optimization strategy to avoid problems of unbalanced explo-

ration that occur in previous works, such as (SIMMONS et al.,

2000; BERHAULT et al., 2003; LAGOUDAKIS et al.,

2004; BURGARD et al., 2005; SARIEL; BALCH, 2006;

STACHNISS; MOZOS; BURGARD, 2008; VISSER; SLAMET,

2.5. Conclusions 49

2008). However, in (PUIG; GARCÍA; WU, 2011), the authors assume

that robots can always communicate directly with the central unit and

cannot handle problems associated with link losses.

In chapter 5, we propose the Hierarchical K-Means (HKME)

method for multi-robots exploration, an extension of the KME that

handles situations where, due to the limited communication radius,

the existence of a communication link between two robots depends on

the distance between them.

51

3 PROPOSED METHODS FOR MAP SHARING

3.1 PROBLEM DESCRIPTION

Map sharing is an important part of multi-robots exploration.

If robots do not share the information they collect while exploring the

workspace, other robots might go to places already explored. More-

over, when robots have more information about the workspace, they

can calculate better paths to reach their exploration targets, avoiding

obstacles already detected by other robots.

The work presented in this thesis does not assume any pre-

existing network infrastructure in the workspace. In addition, we con-

sider that robots have a limited communication radius, so, two robots

only have a direct communication link if the distance between them is

smaller than the radius.

Depending on how the robots are scattered over the workspace,

they can even be separated in several unconnected network. So, how

can the robots share the information they collected in order to guaran-

tee that at least robots in the same network have the same map?

In this chapter, two map sharing methods for multi-robots ex-

ploration under limited communication are proposed: Distributed Syn-

chronization Method (DSM) and Hierarchical Synchronization Method

(HSM). Both methods are based on the raw map concept proposed in

(SHENG et al., 2006) and can be used to share maps efficiently, in

terms of time, number of exchanged messages and transmitted data.

In the following sections, DSM and HSM are presented. Chapter

4 presents the result of experiments with DSM, HSM and Sheng’s

method.

3.2 DISTRIBUTED SYNCHRONIZATION METHOD

In order to allow robots to exchange messages and share map

information (state of cells detected while exploring a frontier) in a scal-

able way, we propose a method based on a flat network architecture, the

Distributed Synchronization Method. In mobile ad hoc networks, com-

52 Chapter 3. PROPOSED METHODS FOR MAP SHARING

munication between two nodes (robots in our application) is performed

by a direct connection or through multiple hops relays, when there is

not a direct link between them. If all nodes play the same role in the

network, we say that the network has a flat network architecture.

DSM does not assume that robots know the network topology

and is based on three aspects: Local Application View (LAV); Sharing

Processes; and Processes Coordinator Algorithm (PCA). The LAV is a

structure that robots use to store their maps, which include a repre-

sentation of the static environment and information about the positions

and frontiers assigned to each robot in the system.

Sharing processes are the mechanisms that robots use to share

LAV information with their neighbors. Because robots can participate

of several sharing processes at the same time, we propose PCA to co-

ordinate their execution. Next, an example is presented to illustrate

an execution of DSM. Then, each part of DSM is described.

3.2.1 DSM Illustrative Example

To illustrate how DSM works, we present an example where 14

robots are separated in two networks N1 and N2, shown in figure 5. In

the example, we consider that robot R7 finished exploring a frontier.

While explores a frontier, a robot (R7 in this example) detects

the state of adjacent cells and, after reaches the frontier’s position, the

robot has to share the information it collected about the environment.

To do so, R7 creates a sharing process (sharing processes are de-

fined in subsection 3.2.4) of which its neighbors participate (figure 5.2).

At the end of R7’s sharing process, all neighbors obtain the information

and create their own sharing processes to share the new information

with their neighbors (figure 5.3), and so on. Thus, information propa-

gates over the entire network and, after all robots in the network get

the new information (figures 5.4), they do not create sharing processes

anymore and the execution of DSM ends.

Using this propagation scheme, robots do not need to know

the network topology, only their own neighbors. By doing so, DSM

3.2. Distributed Synchronization Method 53

R1

R3

R2

R4

R5

R6

R7

R10

R9

R8

R11

Robot with outdated application view

Robot with most updated application view

Member of a sharing process

Ra

Rb

Rc

R1

R3

R2

R4

R5

R6

R7

R10

R9

R8

R11

Ra

Rb

Rc

R1

R3

R2

R4

R5

R6

R7

R10

R9

R8

R11

Ra

Rb

Rc

R1

R3

R2

R4

R5

R6

R7

R10

R9

R8

R11

Ra

Rb

Rc

1 2

3 4

Figure 5 – Example of a DSM’s execution.

does not have to handle problems such as network formation and

management and message routing, which can become complex in

robotics applications, where the connections can change quickly as

the robots move over the workspace (CHATTERJEE; DAS; TURGUT,

2002; DHURANDHER; SINGH, 2005).

As illustrated in figure 5, R7 cannot communicate with robots

in N2 and they will not get the new information that R7 is sharing.

However, if in the future, a robot in N2 establishes a link with a robot

in N1, the networks merge and, in the next DSM’s execution, the map

of all robots will converge.

The following sections describe the structure that robots use to

represent their knowledge about the workspace (the Local Application

View - LAV), how a sharing process is executed and the Processes

Coordinator Algorithm (PCA).

3.2.2 Local Application View Concept

Local Application View is the structure that robots use to repre-

sent their knowledge about the workspace. A robot’s LAV has three

types of information: raw map, which represents the static workspace;

54 Chapter 3. PROPOSED METHODS FOR MAP SHARING

the last frontier assigned to each robot; and the last known position of

each robot.

Both DSM and HSM use the raw map concept proposed by

Sheng et al. (SHENG et al., 2005; SHENG et al., 2006) to decrease the

amount of data exchanged to share maps, guaranteeing information

consistency. We highlight that the raw map can be easily converted

into an occupancy grid map (further details are presented in section

2.3). Table 3 shows an example of raw map for a robot Rk.

Table 3 – Example of the raw map of a robot Rk.

The raw map of each robot has n columns, each of them associ-

ated with a particular robot of the system. For instance, in table 3, the

column associated with robot R j has all sets of cells (∆M jx) detected

by R j and shared with Rk.

Definition 1. A set ∆M jx is defined as a set containing the information (po-

sition and occupancy probability) about all cells detected by R j while it was

exploring its x-th frontier.

In addition to Sheng’s raw map, the LAV of a robot has the sets

of assigned frontiers and position of robots and a tag. Table 4 presents

the elements of a robot Rk’s LAV, except the raw map (already shown

in the table 3).

Line frontiers, in table 4, represents Rk’s knowledge about the

frontier that each robot in the system is exploring. Similarly, line posi-

tions represents Rk’s knowledge about the position of all robots. When

3.2. Distributed Synchronization Method 55

Table 4 – Example of the local application view of a robot Rk

robots are separated in several networks, the information that Rk has

about robots in other networks can be outdated. Specifically, robots

can have ∆M jx sets that Rk does not have and can be in other positions

and exploring other frontiers.

The last line in table 4 defines the LAV tag, which is based on

the last indexes of the raw map columns (table 3). The tag indicates

how much the information that Rk has about other robots is up to date.

Considering the raw map presented in table 3, Rk’s tag has qR1 = m,

qR2 = p and so on.

3.2.3 Relations and Operations on LAVs

In this work, some relations and operations on LAVs are defined

and used in both DSM and HSM to synchronize the LAVs of the robots.

The relations are: equivalence(≡) and contains (⊒). The operations

are: difference (⊖) and addition (⊕). In addition, we define attribute

LAV(Ri) to represent the LAV of a robot Ri.

Equivalence (≡)

If the LAVs of two robots Ri and R j have the same information,

we say that they are equivalent, LAV(Ri) ≡ LAV(R j). To verify if the

LAV of two robots are equivalent, one just need to compare their LAV

tags. If they are equal, the LAVs are equivalent (LAV(Ri) ≡ LAV(R j)).

Otherwise, the LAVs of the robots are different (LAV(Ri) 6= LAV(R j)).

Difference (⊖)

The difference between the LAVs of two robots is the set with

the information that the first robot has and the other does not have.

56 Chapter 3. PROPOSED METHODS FOR MAP SHARING

Let LAV(Ra) be the LAV of a robot Ra and LAV(Rb) be the LAV of

Rb. The operation LAV(Ra)⊖LAV(Rb) results in the set of information

that Ra has and Rb does not have (or has an outdated version). For

simplicity, let’s define the difference between the LAVs of a robot Ra

and another robot Rb as Ra ⊖Rb.

Let 〈qa1 ,qa2 , · · · ,qan〉 be the tag of Ra’s LAV and 〈qb1 ,qb2 , · · · ,qbn
〉

the tag of Rb. The difference Ra ⊖Rb is defined as:

Ra ⊖Rb =

∆Mi j ∈ LAV(Ra) | (∀Ri ∈ S)(∀ j ≤ qai
), (j > qbi

)

fRi
∈ LAV(Ra) | (∀Ri ∈ S), (qai

> qbi
)

PRi
∈ LAV(Ra) | (∀Ri ∈ S), (qai

> qbi
)

(3.1)

where S is the set of all robots of the system and PRi
= (xRi

,yRi
).

Notice, in equation 3.1, that the difference Ra ⊖Rb results in the

set of ∆Mi j such that ∆Mi j ∈LAV(Ra) and ∆Mi j /∈LAV(Rb). Ra⊖Rb also

has the set of assigned frontiers (fRi
) and positions (PRi

) from LAV(Ra),

such that qai
> qbi

. That is, the frontiers and positions that are more

up to date in Ra’s LAV than in Rb’s. If Rb already has all information

that Ra has, then Ra ⊖Rb =∅.

Addition (⊕)

The addition between the LAVs of two robots Ra and Rb corre-

sponds to a LAV Ra⊕Rb with all information that Ra or Rb have. Let

〈qa1 ,qa2 , · · · ,qan〉 be the tag of Ra’s LAV and 〈qb1 ,qb2 , · · · ,qbn
〉 be the

tag of Rb. The addition Ra⊕Rb is defined as:

Ra⊕Rb =

∆Mi j | (∀Ri ∈ S)
(

∀ j ≤max(qai
,qbi

)
)

, ∆Mi j ∈ LAV(Ra)

or ∆Mi j ∈ LAV(Rb)

fRi
| (∀Ri ∈ S), fRi

∈ LAV(Ra) if qai
≥ qbi

and

fRi
∈ LAV(Rb) if qai

< qbi

PRi
| (∀Ri ∈ S), PRi

∈ LAV(Ra) if qai
≥ qbi

and

PRi
∈ LAV(Rb) if qai

< qbi

(3.2)

where max(x,y) is an operation that return the biggest integer between

x and y.

3.2. Distributed Synchronization Method 57

Notice that, in equation 3.2, the addition Ra⊕Rb results in a

LAV whose raw map have all ∆Mi j sets, such that ∆Mi j ∈ LAV(Ra) or

∆Mi j ∈LAV(Rb). Also, in Ra⊕Rb, for each robot Ri of the system, if the

index qai
≥ qbi

, then the information about the last frontier assigned to

Ri (fRi
) and its known position (PRi

) come from Ra’s LAV. Otherwise,

fRi
and PRi

come from Rb’s LAV.

Because Rb ⊖Ra has all information that Rb has and Ra does not

have (or have an outdated version), Ra⊕ (Rb ⊖Ra)≡ Ra⊕Rb.

The addition operation also satisfies the following properties:

Commutative: Ra⊕Rb ≡ Rb⊕Ra

Associative: Ra⊕ (Rb⊕Rc) ≡ Rb⊕ (Ra⊕Rc) ≡ Rc⊕ (Ra⊕Rb)

Identity: Ra⊕∅ ≡ Ra

Idempotent: Ra⊕Ra ≡ Ra

Contains (⊒)

Relation contains, Ra ⊒ Rb, indicates that the LAV of a robot Ra

has all the information that the LAV of another robot Rb has. If Ra has

all the information that Rb has, then the difference Rb⊖Ra =∅ and the

addiction Ra⊕Rb ≡ Ra. So, the relation Ra ⊒ Rb is true if and only if

LAV(Ra)≡ LAV(Ra⊕Rb) (or Rb ⊖Ra =∅).

Lemma 1. Let Ra, Rb and Rc be three robots. If the LAV of Ra contains all

information that the LAV of Rc has, Ra ⊒ Rc, then

Ra⊕ (Rb ⊖Rc)≡ Ra⊕Rb

Proof. Ra⊕ (Rb⊖Rc)≡ Ra⊕Rb if and only if Ra⊕Rb ⊒ Ra⊕ (Rb ⊖Rc) and
Ra⊕ (Rb ⊖Rc)⊒ Ra⊕Rb. Ra⊕ (Rb ⊖Rc) has all information that Ra has and
some information from the LAV of Rb. Thus, Ra⊕Rb ⊒ Ra⊕ (Rb ⊖Rc).

Since Ra ⊒ Rc, the LAV of Ra already have any information from the
LAV of Rc that is not in the set Rb ⊖Rc. Thus, Ra⊕ (Rb ⊖Rc)⊒ Ra⊕Rb and,
as a consequence, Ra⊕ (Rb ⊖Rc)≡ Ra⊕Rb.

58 Chapter 3. PROPOSED METHODS FOR MAP SHARING

3.2.4 Sharing Process

Every time a robot gets new LAV information (detected by itself

or shared by another robot), it creates a sharing process to share the

new information with its neighbors. The robot that creates the pro-

cess also manages it, becoming the sharing process’s manager, and its

neighbors become the members of the process.

A sharing process has four states: creation, setup, synchronization

and end. In figure 6, we describe the dynamics of a sharing process.

2

Legends

1
- Answer Membership 4

(Creation)

Manager

(Setup) (Synchronization)
(End)

1 3 4

new information

- Notification new sharing process

2

3 - Sends additional information and LAV tag

- Sends the information that each member lacks

Figure 6 – Sharing process execution.

When a robot Ri creates a sharing process shk, it starts in cre-

ation state. In this state, the manager sends a broadcast notifying its

neighbors about the new process shk and waits until its neighbors reply

the broadcast. In notification messages (messages of type 1, in figure

6), the manager also informs its LAV tag, allowing neighbors to verify

if the manager has any information they do not have yet.

Neighbors can answer the manager (messages of type 2) either

acknowledging their participation in shk or “declining the invitation”,

when the manager does not have any additional information.

After all neighbors answer Ri’s notification, the sharing process

goes to setup state, where shk stays until all members (neighbors that

acknowledge Ri’s notification) send a message informing that they are

3.2. Distributed Synchronization Method 59

“ready” to execute shk (messages of type 3). Each member Ru also sends

any additional information it has, Ru ⊖Ri. Whenever the manager, Ri,

receives additional information from a member Ru, it updates its LAV

to Ri⊕Ru.

After setup state, shk goes to state synchronization, where the

manager sends a synchronization message (messages of type 4, in fig-

ure 6) to the members of its cluster. For each member R j, Ri sends a

message with the information that R j does not have yet, Ri⊖R j. Then,

the sharing process goes to end state and all members (and the man-

ager) become free again to synchronize their LAVs in another sharing

process.

In algorithm 1, we describe the sharing process algorithm exe-

cuted by its manager.

Algorithm 1: Sharing Process manager algorithm.

Data: shk is the process
Data: Ri is the robot that created shk

Data: LAV is manager’s local application view
1 inform_newprocess(shk);
2 members← identify_members();
3 Until ∀R j ∈ members| R j is ready wait

4 LAV ← update_LAV(members);
5 for each R j ∈ members do

6 new_info← Ri ⊖R j;
7 send(new_info, R j);

When a robot Ri creates a sharing process shk, it sends a broad-

cast notifying its neighbors about the new process (line 1). After the

neighbors reply the notification, Ri define shk members as the neighbors

that acknowledge their participation (line 2). Then, the manager waits

until all members are ready to execute shk (line 3).

In order to avoid information inconsistency problems, DSM de-

fines that robots can synchronize their LAVs only in one sharing process

at a time. So, even if a robot R j is member of n sharing processes, it can

send a message “ready” to only one sharing process. After this shar-

60 Chapter 3. PROPOSED METHODS FOR MAP SHARING

ing process ends (reaches end state), R j can send a message “ready” to

another sharing process, and so on. To select the next sharing process

for what the robot will be “ready”, each robot executes the PCA (we

describe the PCA in the following section).

After receiving “ready” from all members of shk, Ri updates its

LAV (line 4) and sends to each member the information that it does

not have yet (lines 5-7). Then, shk ends and all robots become free to

execute other processes. Moreover, after getting new information in a

sharing process, robots create new sharing process with themselves as

managers.

3.2.5 Processes Coordinator Algorithm

During an execution of DSM, robots can be member of many

sharing processes at the same time. To avoid information inconsistency

problems, DSM defines that robots can synchronize their LAVs with a

single manager at a time. In addition, a sharing process cannot reach

synchronization state until all members are “ready” to execute it.

Thus, in DSM context, the “ready” confirmation can be viewed

as a token. Each robot has a single token and, to leave setup state

and go to synchronization, the manager of a sharing process needs the

tokens of all members (including its own token). After the sharing

process finishes, all robots get their tokens back.

If robots do not consider any policy to select the next manager

that they will give their tokens, situations where a sharing process waits

indefinitely for members executing other sharing processes can happen.

In this work, we refer to these situations as an unfairness problem.

A worse situation occurs when two (or more) sharing processes

have some members in common and some of them give their tokens to

one process while the other robots give their tokens to the other sharing

process. In this case, both processes will block, waiting that the other

finishes and free its members. This situation is defined as deadlock.

To avoid unfairness problems and deadlocks, each robot runs

a simple Processes Coordinator Algorithm (PCA) that coordinates its

3.2. Distributed Synchronization Method 61

participation in all sharing processes of what it is member. PCA is

presented in algorithm 2.

Algorithm 2: Processes Coordinator Algorithm.

Data: Ri robot’s ID
Data: proc_list list of process

1 if new data detected then

2 if ∃shk ∈ proc_list| Ri is shk.manager then

3 cancel();

4 new_process←create_newprocess();
5 proc_list.add(new_process);

6 else if process shi informed then

7 proc_list.add(shi);
8 sort(proc_list);

9 else if process shi finished then

10 proc_list.remove(shi);
11 start(proc_list.first_element);

Each robot of the system has its own PCA and executes it when-

ever it gets new information (detected by its own sensors or received

from other robots) or a manager informs the robot about a new sharing

process. Robots also have a list of sharing processes of which they are

members or the manager.

When a robot Ri gets new information (lines 1-5), PCA verifies

if it is already the manager of a sharing process shk in the processes list,

proc_list (line 2). If yes, it cancels shk before creating a new process

(line 3). Then, the PCA creates a new sharing process that has Ri as

its manager (line 4) and adds this process to the end of the list (line

5).

When a manager informs Ri about a new sharing process shi

(lines 6-8), the algorithm adds shi to the processes list (line 7) and

sorts the list (line 8). The goal of the sorting mechanism is to define

a total order relation (the proof is presented next) among the sharing

processes, such that the following properties are satisfied.

62 Chapter 3. PROPOSED METHODS FOR MAP SHARING

1. Let Ri and R j be two robots in a network and sha and shb two

sharing processes. If sha ≺ shb in Ri’s list, then sha ≺ shb in R j’s

list.

2. Let Ri, R j and Rk be three robots in a network and sha, shb and

shc three sharing processes. If sha ≺ shb in Ri’s list, shb ≺ shc in

R j’s list and Rk’ list has sha, shb and shc, then sha ≺ shb ≺ shc in

Rk’s list.

where the sha ≺ shb means that the sharing process sha precedes shb in

the list.

To do so, the sorting mechanism considers the time at which the

managers create the processes and, in case of “draws”1, the ID of the

managers.

Robots also execute their PCA when the process that it was

executing ends or is canceled by the manager (lines 9-11). In this

case, the algorithm removes the finished (or canceled) process from the

robot’s list (line 10) and starts the next process scheduled (line 11).

3.3 LAV CONVERGENCE ON AN EXECUTION OF DSM

The goal of a DSM’s execution is that, at the end of it, all

robots in the same network converge to the same LAV. To guarantee

that the LAVs will always converge, DSM was designed to satisfy three

properties:

Property 1. A sharing process always ends.

Property 2. At the end of a sharing process, all members converge to a LAV

that contains all information known by all members of the sharing process.

Property 3. If a robot Ri gets new information and there is a route that con-

nects Ri to a robot R j, then R j eventually gets the new information.

Property 1 assures us that DSM will not be in deadlock because

some robots are blocked executing a sharing process that never ends.

1 A draw occurs when, due to discretization of time, two process are considered as created at
the same time.

3.3. LAV convergence on an execution of DSM 63

Property 2 guarantees that if some robots in the network, despite they

had not initiated the DSM’s execution, have additional information (e.g

robots that were not in the network during the last DSM’s execution),

this information will be shared with other robots in the network.

Finally, since there is at least one route that connects each robot

to the others in the same network and because of property 3, DSM

guarantees that if a robot Ri detects new information, eventually all

robots in the network converge to the most up to date LAV version.

Next, we show the proofs, step by step, that these three proper-

ties are valid. Then, those three properties are used to prove that the

LAVs of the robots always converge at the end of a DSM’s execution.

First Property

A sharing process always ends.

Property 1 can be described by temporal logic formula 3.4, which

means that: if a sharing process shk is in the creation state, eventually

it reaches end state.

�

(

Creation(shk)→ ♦ End(shk)
)

(3.4)

where the attribute Creation(shk) indicates that the sharing process shk

is in creation state and End(shk) indicates that shk is in end state.

To prove that equation 3.4 is true, and the property 1 is valid,

equation 3.4 is rewrote in three parts:

�

(

Creation(shk)→ ♦Setup(shk)
)

(3.5a)

�

(

Setup(shk)→ ♦Synchronization(shk)
)

(3.5b)

�

(

Synchronization(shk)→ ♦Ended(shk)
)

(3.5c)

Equation 3.5a defines that if a process is created (it is in creation

state), it eventually goes to setup state. Likewise, equation 3.5b means

that, if a process is in setup state, it eventually goes to synchronization

64 Chapter 3. PROPOSED METHODS FOR MAP SHARING

state. Finally, equation 3.5c states that, if a process is in synchroniza-

tion state, it eventually goes to end state and the process finishes. Next,

we prove that the properties described in these equations are true.

Theorem 1. If a sharing process is created, it eventually goes to setup state.

Creation(shk)→ ♦ Setup(shk)

Proof. After a sharing process shk is created, its manager (Ri) sends a broad-
cast informing all neighbors about the new process. After receiving the broad-
cast, the neighbors send a message to Ri acknowledging or declining their
participation in shk.

This work assumes that robots do not fail and that, if two robots have a
communication link, messages sent by one are always received by the other.
So, if Ri broadcasts a message to notify its neighbors about a new process,
all members will get the message and reply it. Likewise, Ri will receive all
replies. Thus, if a process shk is created, it eventually goes to setup state and
property 3.5a is true.

Theorem 2. If a sharing process is in synchronization state, it eventually

goes to state end.

Synchronization(shk)→ ♦ End(shk)

Proof. In synchronization state, the manager Ri updates its LAV with any
additional information sent by the members. Next, it sends to each member
R j only the information that it does not have yet, Ri⊖R j, and shk ends (goes to
end state). Thus, if a sharing process is in synchronization state, it eventually
ends and property 3.5c is true.

The proof that a sharing process eventually goes from setup to

synchronization state is based on the fact that the Processes Coordi-

nator Algorithm (PCA) defines a total order relation Ct on the set of

active sharing processes, SPactive.

Let time(shi) ∈ R be the time at which the sharing process shi

was created, Ct is defined as:

Ct = {(shi,sh j)|time(shi)≤ time(sh j)} (3.6)

It is clear that Ct is a total order relation on SPactive and sat-

isfies the reflexive, antisymmetric and transitive properties. In ad-

3.3. LAV convergence on an execution of DSM 65

dition, all elements in SPactive are, in pairs, comparable by Ct

(ROSEN; KRITHIVASAN, 1999).

Theorem 3. If a sharing process shk is in setup state, it eventually goes to

synchronization state.

Setup(shk)→ ♦ Synchronization(shk)

Proof. Each robot runs a PCA to sort the processes of which it is a member.
For a robot Ri that is currently member of n sharing processes, the list of shar-
ing processes of which it is a member is defined as listi = {shi1 ,shi2 , · · · shin}.
Also, every time the robot finishes executing a process (the process reaches
state end), PCA removes it from the robot’s list and selects the next process
to be executed.

Since Ct is a total order relation on SPactive, it satisfies the following
properties:

(Reflexivity) if a ∈ SPactive, then (a,a) ∈Ct

(Antisymmetry) if (a,b) ∈Ct and a 6= b, then (b,a) /∈Ct

(Transitivity) if (a,b) ∈Ct and (b,c) ∈Ct , then (a,c) ∈Ct

(Total Comparability) if a,b ∈ SPactive, then (a,b) ∈Ct or (b,a) ∈Ct

Let a,b ∈ SPactive be two active sharing processes. If (a,b) ∈ Ct, a

precedes b or a� b. As a result of the transitivity property, if a,b,c ∈ SPactive

and a � b and b � c, then a � c. In addition, as all elements in SPactive are
comparable by Ct, there is a minimum element emin ∈ SPactive and a maximum
element emax ∈ SPactive. So, a sorted list with all sharing processes can be
defined as follows:

emin � a� b� ·· · � emax (3.7)

With no loss of generality, let’s redefine the list 3.7 as:

sh1 � sh2 � sh3 � ·· · � shx (3.8)

As sh1 is the minimum element, there is no active process that pre-
cedes it (∄shi ∈ SPactive|shi 6= sh1 and shi � sh1) and the members of sh1

(Msh1 = {R j|sh1 ∈ list j}) cannot be busy synchronizing their LAV in another
process. Thus, sh1 goes to synchronization state.

From theorem 2, if a sharing process is in the state synchronization, it
eventually ends. So, sh1 will reach end state and all members will be free to
execute another active sharing process.

66 Chapter 3. PROPOSED METHODS FOR MAP SHARING

When sh1 ends, its former members remove it from their lists and sh2

becomes the new minimum element in SPactive. Then, regardless of which
robots are the members of sh2 (Msh2), they are ready to synchronize their
LAVs in sh2 and this process goes to synchronization state. Again from
theorem 2, if sh2 goes to synchronization state, it eventually ends. Then
the sharing process sh3 becomes the new minimum element in SPactive and
goes to synchronization state, and so on. Let shk be a process in SPactive and
sh1, · · · ,shk−1 ∈ SPactive all processes that precede shk. If all sharing processes
sh j, such that j < k, ends, then shk goes to synchronization state.

By mathematical induction (sh2 base case; and shk the induction step),
if a robot Ri creates a sharing process shm, eventually all members of shm will
be ready to synchronize their LAV in it and shm goes to synchronization state.
So the property described in equation 3.5b is true.

As the properties described 3.5a, 3.5b and 3.5c are true, property 1 is
valid.

Second Property

At the end of a sharing process, all members converge to a LAV that contains

all information known by all members of the sharing process.

When a robot Ri gets new information and creates a sharing

process, at the end of this process, the LAVs of the manager and of

all members converge to the most up to date version, in context of the

sharing process. In other words, the new version has all information

that Ri has and any additional information that the members shared

with Ri, which consist in all information known by the group (members

and manager).

Let LAVk be the most up to date LAV version considering all

robots participating of a sharing process shk. LAVk can be defined as:

LAVk = LAV(Ri)⊕LAV(Rm)⊕·· ·⊕LAV(Ru) (3.9)

where Ri is the manager of shk and Mshk
= {Rm, · · · ,Ru} is the set mem-

bers of shk.

3.3. LAV convergence on an execution of DSM 67

Theorem 4. At the end of a sharing process shk, all members of shk converge

to LAVk.

∀R j ∈
(

Mshk
∪{Ri}

)

End(shk)→ LAV(R j)≡ LAVk (3.10)

Proof. Let Ri be the manager of a sharing process shk. When a member R j of
shk becomes ready to execute shk, it sends a “ready to go” message (message
of type 3 in figure 6) to Ri with any additional information. The addition
information from R j to Ri is defined by R j ⊖Ri.

Since all members send any additional information to Ri, we have that:

∀R j ∈Mshk
, Ri gets R j ⊖Ri

After receiving the “ready to go” messages from all members, the
manager updates its own LAV with any information sent by them. Let LAV ′Ri

be the LAV of Ri after the update, LAV ′Ri
can be described as:

LAV ′Ri
= Ri⊕ (Rm ⊖Ri)⊕·· ·⊕ (Ru ⊖Ri) (3.11)

where Rm, · · · ,Ru ∈Mshk
are the members of shk.

Let Ra, Rb and Rc be three robots. Section 3.2.3 shows that Ra⊕(Rb⊖

Ra) ≡ Ra⊕Rb. Moreover, Ra⊕Rb⊕Rc ≡ Rb⊕Ra⊕Rc ≡ Rc⊕Ra⊕Rb.
Thus, equation 3.11 can be simplified to:

LAV ′Ri
= Ri⊕Rm⊕·· ·⊕Ru (3.12)

Thus, from equations 3.9 and 3.12, LAV ′Ri
≡ LAVk.

After updating its LAV, Ri identifies which information from its new
LAV each member R j still lacks, Ri ⊖R j, and sends it to R j. Next, the mem-
bers update their LAVs with the information sent by Ri. Let R j be a member
of shk, its updated LAV will defined by:

LAV ′R j
= R j⊕ (Ri ⊖R j)≡ R j⊕Ri (3.13)

As LAVRi
≡ LAVk, R j’s LAV is defined as:

LAV ′R j
= R j⊕LAVk (3.14)

Since LAVk contains all information that the LAV of R j has (LAVk ⊒

R j), LAV ′R j
≡ LAVk. Thus,

∀R j ∈
(

Mshk
∪{Ri}

)

, LAV ′R j
≡ LAVk

and equation 3.10 is true. Thus, property 2 is true.

68 Chapter 3. PROPOSED METHODS FOR MAP SHARING

Third Property

If a robot Ri gets new information and if there is a route that connects Ri to a

robot R j, then R j eventually gets the new information

Let N be a network represented by the graph N = G(V,E),

where the nodes are the robots in the set V ⊆ S (S is the set of all

robots in the system) and the edges E represents direct links between

the robots in V . If a robot Ri ∈ V detects new information and there

is a route that connects a robot R j ∈ V to Ri (and that route is kept

during the execution of DSM), R j eventually gets the new information.

Let info(Ri) be an attribute that indicates that the robot Ri has

new information to share. Also, let route(a,b) : 〈 ea−v1 , ev1−v2 , · · · , evn−b〉

be a route that connects the nodes (robots in the context of this work)

a and b, where ei− j represents an edge between nodes i and j.

Theorem 5. If a robot Ri detects new information and there is a route con-

necting Ri to a robot R j, R j eventually gets all information Ri has.

(∀Ri,R j ∈V) info(Ri)and route(Ri,R j)→ ♦ R j ⊒ Ri (3.15)

where R j ⊒ Ri indicates that the LAV of R j contains all information that the

LAV of Ri has.

Proof. Let route(Ri,R j) : 〈ei−v1 ,ev1−v2 , · · · ,evn− j〉 be a route that connects
the robots Ri and R j. So, there is a robot Rv1 that has a direct link with Ri and
a robot Rv2 that has a link with Rv1 and so on. The route ends in a robot Rvn

that has a link with R j.
Assuming that the connections between the robots are kept during the

execution of DSM, if Ri gets new information, it creates a sharing process sh0

of which Rv1 will be a member. From the properties 1 and 2, DSM guarantees
that sh0 ends and Rv1 gets any information that Ri and others members have.

Let’s consider now that two robots Rvk
and Rvk+1 have a direct link

between them and are in the middle of the route between Ri and R j. If Rvk

gets the information detected by Ri, it creates a sharing process shk of which
Rvk+1 will be a member. Again from properties 1 and 2, DSM guarantees that
sharing process shk ends and Rvk+1 gets any information that Rvk

and others
members of shk have.

Thus, by mathematical induction (base case: if Ri gets new informa-
tion, then Rv1 will get the information; induction step: if Rvk

gets the infor-

3.3. LAV convergence on an execution of DSM 69

mation, then Rvk+1 will get the information), we have that if Ri detects (or
receives from another robot) new information, a sequence of sharing pro-
cesses 〈sh0,sh1, · · · ,shn〉 initiating in Ri and reaching R j will be executed and
R j eventually gets any information that Ri has.

Since property 2 guarantees that all members of a sharing process
shu converge to LAVu, a local application view that contains all informa-
tion known by the manager and the members of shu. After sharing process
sh0 ends, the LAV of Rv1 contains any information that the LAV of Ri has,
Rv1 ⊒ Ri. Likewise, after a sharing process shk that has Rvk

as manager and
Rvk+1 as member ends, the LAV of Rvk+1 contains any information that the
LAV of Rvk

has, Rvk+1 ⊒ Rvk
.

By mathematical induction (base case: after sh0 ends, Rv1 ⊒ Ri; induc-
tion step: after shk ends, Rvk+1 ⊒ Rk), we have that after sharing process shn,
which has Rvn as manager and R j as member, ends,
R j ⊒ Rvn ⊒ ·· · ⊒ Rv2 ⊒ Rv1 ⊒ Ri. Thus, the LAV of R j contains all infor-
mation that Ri has and property 3 is true.

3.3.1 DSM Convergence: Single Robot Detecting new Information

Let LAVnet be the application view that has all information known

by all robots in the network. LAVnet can be defined by equation 3.16.

LAVnet = R1⊕R2⊕·· ·⊕RN (3.16)

where R1,R2, · · · ,RN ∈V are the robots of network N = G(V,E).

Because DSM is a distributed scheme, the system (and even the

network) does not have a leader (or an operational base) that syn-

chronizes the LAV of all robots. However, whenever a robot gets new

information, it starts a new execution of DSM and, at the end of it, all

robots in the network converge to the same and most up to date LAV

version, which corresponds to LAVnet .

Theorem 6. Let N = G(V,E) be a network and Ri ∈ V a robot of this net-

work that detected new information. If N does not lose connectivity during a

DSM’s execution, all robots will converge to the most up to date LAV version,

LAVnet .

[∃Ri ∈V |info(Ri)]→ ♦ [∀R j ∈V |LAV(R j) = LAVnet] (3.17)

70 Chapter 3. PROPOSED METHODS FOR MAP SHARING

Proof. Since Ri is a robot of network N , there is at least a route that connects
Ri to the other robots in V . From property 3, if there is a route between two
robots Ra and Rb and Ra gets new information, Rb eventually gets this infor-
mation and any additional information that Ra has, so LAV(Rb)⊒ LAV(Ra).

If the network does not lose connectivity during a DSM’s execution,
Ri always has a route to the other robots. Thus, if Ri detects new information,
each robot R j ∈V eventually converges to a local application view LAV(R j),
such that LAV(R j)⊒ LAV(Ri).

Since Ri detected the information, initially, there is no robot in the
network that already has this information. So, when each robot gets this
information (in a sharing process managed by other robot), it will create a
sharing process. If some robots of the network have a LAV with additional
information that Ri does not have yet (e.g. a robot that was not part of the net-
work during the last DSM’s execution), when they create a sharing process,
they will share the additional information with their neighbors. Likewise, the
neighbors will share this information with their own neighbors, and so on.
Thus, at the end of a DSM’s execution, if a robot Rk has additional infor-
mation, all robots in the network eventually get this information, including
Ri.

Let Rk be a robot that has additional information that Ri does not
have yet. As Rk and Ri are in the same network, there is at least one route
r〈: ei−a,ea−b, · · · ,et−k〉 connecting both robots. So, despite the fact that Rk

was not the robot that initiated the DSM’s execution, Rk eventually gets the
information detected by Ri and creates a sharing process. Since there is at
least one route that connects Rk with the other robots in the network, property
3 guarantees that any additional information that Rk has will be shared with
the other robots in the network. Thus, at the end of the DSM’s execution,
(∀R j ∈V)LAV(R j)⊒ LAV(Rk).

Let V6=Ri
⊂ V be the set of robots whose LAV have additional infor-

mation that the Ri does not have. The set V6=Ri
can be described as:

V6=Ri
=
{

R j ∈V |(∀R j ∈V), R j ⊖Ri 6=∅
}

(3.18)

Equation 3.18 defines V6=Ri
as the set of robots R j ∈ V , such that the

difference between the LAVs of R j and Ri is not empty.
From property 3, we have that all robots in V gets the information that

Ri detected:

(∀R j ∈V), LAV(R j)⊒ LAV(Ri) (3.19)

As each robot creates a sharing process every time it gets new infor-
mation, also from property 3, we have that all robots in V gets the information

3.3. LAV convergence on an execution of DSM 71

that any robot Rk ∈V6=Ri
have:

(∀R j ∈V)(∀Rk ∈V6=Ri
), LAV(R j)⊒ LAV(Rk) (3.20)

where Ri is the robot that detected new information and started the DSM’s
execution.

Based on equations 3.19 and 3.21, the LAV of any robot R j ∈V satisfy
the following property after the DSM’s execution:

(∀R j ∈V), R j ⊒ Ri⊕Rk⊕·· ·⊕Rp (3.21)

where V6=Ri
= {Rk, · · · ,Rp}.

Let’s consider that L = Ri⊕Rk⊕ ·· ·⊕Rp is not equivalent to LAVnet ,
L 6= LAVnet . Since LAVnet contains all information from the LAVs of all robots
in the network (see equation 3.16), LAVnet ⊒ L. If L 6= LAVnet and LAVnet ⊒ L,
then L ⊒/ LAVnet . So, there must exist a robot Rm ∈ V such that, LAVnet ⊒
LAV(Rm) and L ⊒/ LAV(Rm).

If such robot Rm exists, it has information that neither Ri nor the robots
in V6=Ri

have. So, Rm⊖Ri 6=∅. However, if Rm ⊖Ri 6=∅, then Rm ∈V6=Ri
and

L⊒LAV(Rm). Thus, it is absurd that exists a robot Rm ∈V such that, LAVnet ⊒
LAV(Rm) and L ⊒/ LAV(Rm). Therefore, L ⊒ LAVnet and, as LAVnet ⊒ L, L ≡

LAVnet .
Thus, from equations 3.17 and 3.21, we have that the robots in the

network always converge to the most up to date LAV version, LAVnet , at the
end of a DSM’s execution.

3.3.2 DSM Convergence: Multiple Robots Detecting Information

Let’s consider now the case where several robots detects new

information and creates sharing processes simultaneously. As soon as

the first robot creates a sharing process to share its new information,

the DSM’s execution begins and lasts until all robots in the network

get all information known by all robots in the network, which includes

the information detected by the other robots.

To prove that, at the end of the DSM’s execution, the LAVs of

all robots in the network converge to most up to date version (LAVnet ,

defined in equation 3.16), we show that DSM also satisfies properties

1, 2 and 3 when several robots detect new information simultaneously.

72 Chapter 3. PROPOSED METHODS FOR MAP SHARING

First Property

Property 1, a sharing process always ends, can be separated in

three parts: if a sharing process is created, it eventually goes to setup

state; if a sharing process is in setup state it eventually goes to syn-

chronization state; and if a sharing process is in synchronization state,

it eventually ends.

A sharing process goes from creation to setup state when the

neighbors of the manager answer its notification about the new pro-

cess. As this work assume that robots do not fail and that messages

sent between robots with a communication link are always received, a

sharing process eventually goes from creation to synchronization state.

Similarly, a process in synchronization state eventually ends.

Finally, the sorting mechanism defined in the PCA algorithm

enforces that a sharing process in setup state eventually goes to syn-

chronization. As the sorting mechanism does not consider the origin

of the information that will be shared in a sharing process, only the

time at which the sharing process was created, relation Ct is total order

relation on SPactive even when several robots detects information simul-

taneously. Thus, property 1 is also valid for situations where multiple

robots detects new information simultaneously.

Second Property

Property 2 states that at the end of a sharing process, all members

converge to a LAV that contains all information known by all members of the

sharing process.

Theorem 4 states that, at the end of a sharing process shk, the

LAVs of the manager and the members converge to LAVk, a LAV that

contains all information known by the manager and the members of

shk. Thus, even when several robots detects new information simul-

taneously, which could lead to situations where every member of a

sharing process has additional information, the LAVs of the manager

and members converge to a LAV version that contains all information

known by the manager and all members of the sharing process. There-

3.3. LAV convergence on an execution of DSM 73

fore, property 2 is also true for situations with simultaneous information

detection.

Third Property

Property 3 states that if a robot Ri gets new information and if there

is a route that connects Ri to a robot R j, then R j eventually gets the new

information.

This property is based on the existence of a communication route

between two robots and properties 1 and 2 (both valid in cases where

several robots detect new information). As the detection of new infor-

mation by several robots simultaneously does not change the network

topology, property 3 is still valid.

Convergence

Likewise the case where a single robot detects new information,

property 1 guarantees that the sharing processes always end and DSM

will not be in deadlock because some robots are blocked executing

a sharing process that never ends. Moreover, property 2 guarantees

that even when some members of a sharing process have LAVs with

additional information, all members of the sharing process converge to

a LAV version that contains all information known by all members and

the manager of the sharing process.

Finally, since there is at least one route that connects each robot

to the others in the same network, property 3 assures us that if a set of

robots {Ra, · · · ,Ru} detects new information simultaneously, all robots

in the network eventually converge to the most up to date LAV version

(LAVnet).

3.3.3 On the parallel execution of several sharing process

An important aspect regarding DSM is that two (or more) shar-

ing process can be in the synchronization state simultaneously. How-

ever, they must satisfy the following requirements.

74 Chapter 3. PROPOSED METHODS FOR MAP SHARING

Let sha,shb ∈ SP be two different sharing processes such that

sha � shb. DSM allows sha and shb to be in synchronization simultane-

ously if and only if there is no member of shb that is also a member of

a process sh j, such that sha � sh j and sh j � shb. This requirement is

described in equation 3.22.

∀Ri ∈Mshb
,∄sh j ∈ SPactive|sh j ∈ listi and sha � sh j and sh j � shb (3.22)

If this requirement is not satisfied and there is a robot Ri such

that, ∃sh j ∈ listi|sha � sh j andsh j ≺ shb, Ri will not be ready to execute

shb while sh j is active. Thus, shb cannot go to synchronization state.

3.4 HIERARCHICAL SYNCHRONIZATION METHOD

This work proposes a second method for map sharing, the Hi-

erarchical Synchronization Method (HSM) that is also based on the

LAV concept. Instead of using sharing processes and PCA, HSM con-

siders a hierarchical architecture for the ad hoc network and exploits

the advantages of this kind of organization to synchronize the LAV of

robots.

In hierarchical networks, robots are grouped in clusters and lead-

ers (named clusterheads) are elected for each cluster. Due to the ex-

istence of leaders, problems as message losses become easier to detect

and handle. Moreover, routing schemes for multi-hop communication

scales well in hierarchical networks (ABBASI; YOUNIS, 2007).

In HSM, there are two situations where robots need to share

their maps: after a robot explores a frontier; and after two networks

merge. In the first case, the robot that finished exploring its frontier

needs to share the new information it detected with the other robots

in the network. In the second case, robots in one network may have

information that robots in the other do not have. So, these robots need

to identify which LAV information the others still lack and send it to

them. In DSM, robots do not know the network topology and, thus,

3.4. Hierarchical Synchronization Method 75

cannot identify when two networks merge and use this event to trigger

map sharing.

In next sections, we present HSM dynamics and define the

schemes HSM uses to handle these two situations.

3.4.1 HSM Dynamics

The main goal of HSM is to keep the LAV of all robots in a

network synchronized. In other words, HSM’s goal is to share the

information in the LAVs of robots in order to guarantee that, in a

network, all robots have the same and most up to date LAV version.

Let’s consider that the LAV of all robots in a network N is

LAVnet and property 4 is true.

Property 4. All robots in a network N have the same LAV, LAVnet.

∀Ri ∈N : LAV(Ri)≡ LAVnet

When a robot Ru finishes exploring a frontier and updates its

LAV, Ru needs to share the information it detected with the other

robots in the network. To do so, it sends the new information, which

corresponds to Ru ⊖R, to its clusterhead.

After a clusterhead receives an update from a member of its

cluster, it shares the information with the other members and with the

other clusterheads in the network. If another clusterhead sent the LAV

update, the clusterhead shares the information only with its cluster

members. We name this scheme HSM simple sharing.

When two (or more) networks merge, clusterheads of the new

network exchange their LAV tags. Then, they send to each clusterhead

the information it still lacks. We name this second sharing scheme HSM

LAV synchronization.

Algorithm 3, executed by clusterheads, summarizes an execution

of HSM.

Because of property 4, the LAVs of all robots in the network

are the same (LAVnet), until a robot detects new information. After

Ri (clusterhead of a cluster cli) receives an update from a member of

76 Chapter 3. PROPOSED METHODS FOR MAP SHARING

Algorithm 3: HSM execution.
Data: Ri robot’s ID
Data: LAVnet LAV of all robots in the network

1 if Ru ∈N sends Ru ⊖LAVnet then

2 simple sharing(Ru ⊖LAVnet);

3 else if networks merge then

4 LAV synchronization(N);

its cluster or from another clusterhead (line 1), Ri executes the simple

sharing scheme. After two networks merge (line 3), Ri executes the LAV

synchronization scheme (line 4).

Next, in sections 3.4.2 and 3.4.3, we define the simple sharing

and LAV synchronization schemes, respectively, and how these scheme

are used to enforces property 4. In each section, we also present an

example of the scheme execution.

3.4.2 Simple Sharing Scheme

In HSM, whenever a robot Ru explores a frontier, it shares the in-

formation detected with its clusterhead. Next, the clusterhead shares

the information with the other members of the cluster and with the

other clusterheads in the same network using the simple sharing scheme.

At the end, all robots in the network get the new information. Algo-

rithm 4 summarizes the simple sharing execution. Next, an illustrative

example is presented in order to help the reader understanding the

simple sharing scheme.

Let N be a network such that ∀Rk ∈N , LAV(Rk)≡LAVnet. Af-

ter a robot Ru ∈N explores a frontier, it updates its LAV and LAV(Ru)

becomes the most up to date in the network, LAV(Ru)⊒ LAVnet. The

additional information that Ru has corresponds to Ru ⊖LAVnet.

In the simple sharing scheme, after receiving an update from

Ru’s LAV (Ru ⊖LAVnet), a clusterhead Ri shares the information that it

got with the members of its cluster (lines 1-2). Then, if the robot

that detected the information (Ru) is a member of Ri’s cluster, it also

3.4. Hierarchical Synchronization Method 77

Algorithm 4: Simple Sharing Scheme.

Data: Ri robot’s ID
Data: LAVnet LAV of all robots in the network
Data: Ru ⊖LAVnet Information sent

1 for all R j ∈ cli do

2 send(Ru ⊖LAVnet, R j)

3 if Ru ∈ cli then

4 for all clv ∈N do

5 send(Ru ⊖LAVnet, Rv)

sends the information to the other clusterheads in the network using

multi-hop communication (lines 3-5). In this work, we name clusters

based on their clusterheads ID, so, a cluster that has Rx as clusterhead

is named clx.

At the end of a simple sharing execution, all robots in the net-

work get the information in Ru⊖LAVnet and their LAV converge to the

most up to date version. Thus, simple sharing scheme keeps all robots

with the same LAV and enforces property 4 whenever a robot detects

new information.

Theorem 7. At the end of a simple sharing scheme, started to share informa-

tion detected by a robot Ru, the LAV of all robots in the network converge to

LAV(Ru).

Proof. Let LAVnet be the LAV of all robots in the network before Ru finishes
exploring its frontier. After update its LAV, Ru sends Ru ⊖LAVnet to its clus-
terhead. Next, its clusterhead shares the information with the other members
and with the other clusterheads. Finally, each clusterhead will send the infor-
mation to its own cluster’s members. Thus, at the end of the simple sharing
scheme all robots get the new information.

∀Rk ∈N , Rk gets Ru ⊖LAVnet

After a robot Rk gets the new information, it updates its LAV to:

LAV(Rk)≡ Rk⊕ (Ru ⊖LAVnet)

78 Chapter 3. PROPOSED METHODS FOR MAP SHARING

From property 4, the LAV of all robot in the network (except Ru) are
equal to LAVnet. So, Rk’s new LAV is given by equation 3.23.

LAV(Rk)≡ LAVnet⊕ (Ru ⊖LAVnet) (3.23)

From operations ⊖ and ⊕ definitions (section 3.2.3), we have that:

LAV(Rk)≡ LAVnet⊕Ru (3.24)

Since LAV(Ru)⊒LAVnet), from relation contains definition, we have
that:

LAV(Rk)≡ LAV(Ru) (3.25)

Thus, as all robots in the network get the information detected by Ru,
Ru ⊖LAVnet, the LAVs of all robots converge to LAV(Ru), which becomes
the new LAVnet.

Illustrative Example

Figure 7 presents an example of simple sharing execution where

14 robots are separated in two networks, N1 and N2. N1 has 11 robots

and is organized in two clusters, cl4 and cl9, and N2 has a single cluster

with 3 robots, cla. The example considers that robot R7, in N1, finished

exploring its frontier. Figure 7 presents the organization of robots and,

to illustrate the steps of the simple sharing scheme, figure 8 presents a

sequence diagram summarizing the execution.

R1

R3

R2

R4

R5

R6

R7

R10

R9

R8

R11

Ordinary robot

Ra

Rb

Rc

Clusterhead robot Cluster

Figure 7 – Network topology.

3.4. Hierarchical Synchronization Method 79

Figure 8 – Sequence diagram of a simple sharing execution.

Let LAVnet be the local application view of all robots in N be-

fore R7 detects new information. After R7 explores a frontier, it sends

only the new information (R7 ⊖LAVnet) to its clusterhead, R4, which is

indicated in figure 8 by the arrow from R7’s column to R4’s. Next, R4

sends the information to its cluster members (R1, R2, R3, R5 and R6)

and to R9 (using multi-hop communication), the other clusterhead in

the network. Then, R9 shares the information with its cluster mem-

bers, R8, R10 and R11. Thus, at the end of HSM simple sharing scheme,

all robots in N1 converge to the same LAV. As robots in N2 cannot

communicate with robots in N1, they do not get the new information.

Simultaneous Detection

If several robots finish exploring their frontiers at the same time,

each detection triggers a simple sharing execution and all robots con-

verge to the most up to date LAV version.

Let RdetIn f o = {R1,R2, · · · ,Rn} be the set of robots that finished

exploring their frontiers at the same time. Each robot in RdetIn f o sends

the information that it detected to its clusterhead, which will share the

information with the other members of the cluster and with the other

clusterheads in the network. Hence, at the end of the simple sharing

scheme, all robots get all information.

Let LAVnet be the LAV of all robots in the network before the

80 Chapter 3. PROPOSED METHODS FOR MAP SHARING

robots in RdetIn f o finished exploring their frontiers. At the end of the

simple sharing, all robots get the information detected by all robots in

RdetIn f o and their LAVs are updated to the one presented in equation

3.26.

LAV′net ≡ R1⊕R2⊕·· ·⊕Rn (3.26)

Theorem 8. At the end of the simple sharing execution with simultaneous

information detection, the LAV of all robots converge to LAV′net.

Proof. Let Rk be a robot in network N and R1 a robot in RdetIn f o. After Rk

receives the information detected by R1, Rk’s LAV is updated to the one given
by equation 3.27.

LAV(Rk)≡ LAVnet⊕ (R1 ⊖LAVnet) (3.27)

As LAV(R1) ⊒ LAVnet, the properties of operations ⊖ and ⊕ allows
us to simplify equation 3.27 as:

LAV(Rk)≡ R1 (3.28)

With no loss of generality, after receiving information detected by an-
other robot R2 ∈ RdetIn f o, LAV(Rk) is updated to:

LAV(Rk)≡ R1⊕ (R2 ⊖LAVnet) (3.29)

As LAV(R2)⊒ LAVnet, equation 3.29 can be simplified to:

LAV(Rk)≡ R1⊕R2 (3.30)

Considering that Rk got information from m robots in RdetIn f o, its LAV
can be defined by:

LAV(Rk)≡ R1⊕R2⊕·· ·⊕Rm (3.31)

After gets the information detected by Rm+1 ∈ RdetIn f o, Rk’s LAV is
updated to:

LAV(Rk)≡ R1⊕R2⊕·· ·⊕Rm⊕ (Rm+1 ⊖LAVnet) (3.32)

As LAV(Rm+1)⊒ LAVnet, equation 3.32 can be simplified to:

LAV(Rk)≡ R1⊕R2⊕·· ·⊕Rm⊕Rm+1 (3.33)

3.4. Hierarchical Synchronization Method 81

From the base case (equation 3.28) and the iteration step (equation
3.33), we have that, after receiving information from all robots in RdetIn f o,
Rk’s LAV is given by:

LAV(Rk)≡ R1⊕R2⊕·· ·⊕Rn ≡ LAV′net (3.34)

Thus, as all robots in N get the information detected by all robots in
RdetIn f o, the LAV of all robots converge to LAV′net.

Considering again the network topology presented in figure 7, an

illustrative example in which two robots, R7 and R11, finish exploring

their frontiers simultaneously is presented. Figure 9 shows a sequence

diagram summarizing the execution when multiple robots detects new

information.

Figure 9 – Sequence diagram of a simple sharing execution with simultane-
ous detection.

Let LAVnet be the local application view of all robots in N before

R7 and R11 detect new information. R7 sends R7 ⊖LAVnet to its cluster-

head, R4, which is indicated in figure 9 by the arrow from R7’s column

to R4’s. Similarly, R11 sends R11 ⊖LAVnet to its clusterhead, R9. Next,

each clusterhead sends the information that they got to the other mem-

bers of their cluster and to the other clusterhead. Then, they share the

information received from the other clusterhead with their members.

Thus, at the end of HSM simple sharing scheme, all robots in N1 get

the information detected by R7 (R7 ⊖LAVnet) and by R11 (R11 ⊖LAVnet)

and converge to the most up to date LAV, LAV′net ≡ R7⊕R11.

82 Chapter 3. PROPOSED METHODS FOR MAP SHARING

3.4.3 LAV Synchronization Scheme

Clusterheads execute HSM LAV synchronization scheme to syn-

chronize the LAVs after two or more networks merge. Algorithm 5

presents the algorithm ran by clusterheads to execute the LAV syn-

chronization.

Algorithm 5: LAV synchronization scheme.

Data: Ri clusterhead’s ID
1 for all R j ∈ cli do

2 send(LAV(Ri).tag, R j);

3 Until ∀R j ∈ cli| R j sent R j ⊖Ri wait

4 for all R j ∈ cli do

5 LAV(Ri) = Ri⊕ (R j ⊖Ri);

6 for all cla ∈N do

7 send(LAV(Ri).tag, Ra);

8 Until ∀cla ∈N | Ra sent LAV(Ra).tag wait

9 for all cla ∈N do

10 send(Ri ⊖Ra, Ra);

11 Until ∀cla ∈N | Ra sent Ra ⊖Ri wait

12 for all cla ∈N do

13 LAV(Ri) = Ri⊕ (Ra ⊖Ri);

14 for all R j ∈ cli do

15 send(Ri ⊖R j, R j);

Before synchronizing its LAV with other clusterheads, each clus-

terhead needs to get any additional information that its cluster mem-

bers might have. In lines 1-2, a clusterhead Ri sends to members of its

cluster a message with its LAV tag. Then, the members send to Ri any

additional information. Let R j be a member of cluster cli, which has

Ri as clusterhead. R j sends to Ri the set R j ⊖Ri.

After all members answer Ri (line 3), it updates its LAV with

the information sent by the members (line 4-5). Let R1,R2, · · · ,Rn be

the members of a cluster cli. Ri’s updated LAV to LAV(R′i), defined in

3.4. Hierarchical Synchronization Method 83

equation 3.35.

LAV(R′i) = Ri⊕R1⊕R2⊕·· ·⊕Rn (3.35)

Next, Ri shares its new LAV tag with the other clusterheads

(lines 6-7). After Ri receives the tags of all clusterheads in the net-

work (line 8), it sends to each clusterhead any additional information

it has (lines 9-10). Let cla be the clusters in network N , Ri sends the

information Ri ⊖Ra to Ra.

After receiving the sets of information from all clusterheads

in the network (line 11), Ri updates its LAV (lines 12-13). Let

cla,clb, · · · ,cli, · · · ,clu be the clusters in network N , Ri’s updated LAV

is defined by:

LAV(R′′i) = Ri⊕Ra⊕Rb⊕·· ·⊕Ru (3.36)

Since the LAV of the clusterheads contains all information known

by all members of the cluster, LAV(R′′i) contains the information known

by all robots in the network, which corresponds to the most up to date

LAV version.

Finally, Ri sends to its members the information that each of

them still lacks (lines 14-5). So, all robots in the networks converge

to the most up to date LAV version. Thus, the LAV synchronization

scheme enforces property 4 whenever two (or more) networks merge.

Illustrative Example

Figure 10 presents an example where robots R9 and Ra (from

the previous example presented in figure 7) establish a link. Figure

10.1 shows the new link and figure 10.2 presents the new network, N ,

formed from robots in N1 and N2. Network N has 14 robots and is

organized in three clusters, cl4, cl9 and clb. As in the first example, a

sequence diagram is presented in figure 11 to illustrate the execution

of HSM LAV synchronization scheme.

84 Chapter 3. PROPOSED METHODS FOR MAP SHARING

R1

R3

R2

R4

R5

R6

R7

R10

R9

R8

R11

Ra

Rb

Rc

1

R1

R3

R2

R4

R5

R6

R7

R10

R9

R8

R11

Ra Rb

Rc

2

Or robot Clusterhead robot

Cluster New link

Figure 10 – Network topology.

In the sequence diagram presented in figure 11, we illustrate the

execution of LAV synchronization considering the viewpoint of R9. The

execution by the other clusterheads is similar.

At the first step of HSM LAV synchronization scheme, cluster-

heads send their LAV tags to their members (R9’s LAV tag message in

figure 11). Then, each member R j sends any additional information to

its clusterhead (R j ⊖R9). Next, clusterheads update their LAVs and,

through multi-hop communication, exchange their new LAV tags (cli’s

LAV tag messages among clusterheads). Then, each clusterhead sends

to the others any information they still lack (cli⊖cl j messages). Finally,

each clusterhead sends to members of its cluster the information that

they need to update their LAVs (cl9⊖R j messages). At the end of HSM

LAV synchronization scheme, all robots in N converge to the same

and most up to date LAV version.

3.5. Conclusions 85

Figure 11 – Sequence diagram of a LAV synchronization.

3.5 CONCLUSIONS

In this chapter, we propose two methods for map sharing, one

considering a flat ad hoc network (DSM) and a second method (HSM)

that considers a hierarchical network architecture. Both methods are

based on the concept of raw maps and can be used to share maps

efficiently, in terms of time, number of exchanged messages and trans-

mitted data. In addition, DSM and HSM can handle limited commu-

nication, guaranteeing that all robots in the same network will always

converge to the most up to map of the workspace.

In DSM, robots are organized in a flat network and, whenever

they get new information, they use sharing processes to share it with

their neighbors, propagating the information over the network. In ad-

86 Chapter 3. PROPOSED METHODS FOR MAP SHARING

dition, they use processes coordinators (PCAs) to avoid deadlock and

fairness problems. However, in DSM, robots cannot notice when new

robots join the network and synchronize their maps in these situations.

Moreover, the propagation scheme considered in DSM can increase sig-

nificantly the number of messages exchanged among the robots.

On the other hand, HSM organizes robots in a hierarchical ar-

chitecture and the leaders (clusterheads) become responsible for syn-

chronize the LAVs. When robots of two network establish a link, these

two networks merge in one and, next, the clusterheads synchronize the

LAVs of all robots in the new network. In addition, by centralizing

information exchanging in the leaders, HSM avoids the exchange of

unnecessary messages.

Next, in chapter 4, we present the result of experiments with

DSM and HSM. Experiments were also performed with Sheng’s

method. At the end of chapter 4 we discuss the results.

87

4 EVALUATION OF MAP SHARING METHODS

Both Distributed Synchronization Method and Hierarchical Syn-

chronization Method have been extensively tested in simulation. The

goal of experiments is to validate and evaluate the performance of DSM

and HSM. Results of these experiments are also compared with the

method proposed by Sheng et al. (SHENG et al., 2005; SHENG et al.,

2006).

We run the experiments by considering systems with different

number of robots (Experiment A) and network topologies (Experiment B).

Another parameter that we consider in the experiments is the amount

of data in the maps (size of maps) of robots (Experiment C).

Moreover, each experiment considers three situations: a robot

finishes exploring its frontier and detects new information; two net-

works merge; and several networks merge simultaneously. In the first

situation, we consider a network N with n robots, where all robots

have the same map (LAV in DSM and HSM) until a single robot de-

tects new information. In the second situation, two networks N1 and

N2 merge, forming a network N with n robots. Finally, in the third

situation, we consider that there are n networks, each of them with

a single robot, and they merge in a single network N with n robots.

This is an extreme case of multiple networks merging simultaneously

and we consider it to evaluate the worst case for DSM and HSM ex-

ecution. As Sheng’s method does not handle situations where several

networks merge simultaneously, we do not present results for such ex-

periments.

In multi-robots exploration based on frontiers allocation, the

main goal of map sharing is to guarantee that all robots have the same

information about the workspace, avoiding information inconsistency

problems. So, in experiments, we verify if all robots in the network get

the information and converge to the same map. Also, we measure three

parameters: the convergence time (TC), number of exchanged messages

(Nmsg) and amount of transmitted data (DT).

This chapter is organized as follows. Section 4.1 presents the

88 Chapter 4. EVALUATION OF MAP SHARING METHODS

experimental setup. Sections 4.4, 4.2 and 4.3 present the result of

experiments. Finally, section 4.5 discusses the results.

4.1 EXPERIMENTAL SETUP

Experiments were performed using implementations in java of

DSM, HSM and Sheng’s method. A simple communication channel

simulator was also implemented to allow the experiments. Based on

the robots’ positions and their communication radiuses, the simulator

determines which robots can exchange messages. The experiment pa-

rameters, number of robots, network topology and amount of data in

the maps of robots (size of maps), are also defined in the simulator.

Varying these parameters, we can artificially simulate different condi-

tions of robots exploration.

The size of a map, in DSM, HSM and Sheng’s method, is defined

by the number of frontiers explored by each robot and the number of

cells detected in each exploration. The number of frontiers explored by

a robot Ri corresponds to the number of sets of detected cells associated

with Ri, ∆Miq. From the number of cells detected by the robots, we can

estimate the average size (number of cells) of ∆Miq sets. Based on these

information, we can generate maps for robots in order to simulate the

maps of robots at different instants of exploration.

From experiments with the multi-robots exploration method pro-

posed in this thesis (presented in chapter 6) performed in a 100×50m2

workspace, we estimate the number of frontiers explored by each robot

in the end of exploration as NFmax = 150± 30, where 150 corresponds

to the average value and 30 indicates the deviation in the number of

frontiers explored by each robot. The average size of ∆Miq sets was

estimated as 20 cells.

In the following sections, we present three experiments, which

evaluate how the number of robots in the system, network topology

and size of maps can influence the performance of the map sharing

schemes.

4.2. Experiment A: Influence of the Number of Robots 89

4.2 EXPERIMENT A: INFLUENCE OF THE NUMBER OF ROBOTS

In experiment A, we evaluate how increasing the number of robots

influences the performance of the methods for map sharing. To do so,

we run experiments considering systems ranging from 5 to 30 robots.

Moreover, three situations are considered in experiment A: a robot fin-

ishes exploring its frontier and detects new information; two networks

merge; and several networks merge simultaneously. Figure 12 shows

the network topologies considered in the experiments.

5 10 15 20 25 30

Figure 12 – Networks topologies in experiment A.

Figure 12 presents robots as network nodes (gray dots) and their

communication links with other robots (black lines).

Regarding the size of maps, we consider that robots explored

75±15 (0.5NFmax) frontiers, which corresponds to situations where 50%

of the workspace was already explored by robots. Let n be the number

of robots in the system, this means that the raw maps of robots have

n columns, each of them with a number of ∆Mik sets ranging from 60

to 90 (75±15). In experiments, we used a simple generator of random

numbers to define the number, within the range 60− 90, of ∆Miq sets

for each robot. The size of ∆Mik sets is 20 cells.

For each configuration, we ran 20 trials and calculate the average

values and standard deviation of each metric. Figures 13, 14 and 15

present the results.

In figure 13, we present the convergence times (TC, in millisec-

90 Chapter 4. EVALUATION OF MAP SHARING METHODS

onds), number of exchanged messages (Nmsg) and transmitted data (DT ,

in Kilobytes) when a single robot detects new information.

0

100

20

40

60

80

120

140

160

180

10 20 305 15 25
N����� o� �obots

Sheng
D��
H��

(a) Convergence times.

0

100

20

40

60

80

120

140

160

180

10 20 305 15 25
�	
�� �� obots

Sheng
���
���

c
h
a

(b) Exchanged messages.

0

20

40

10

30

50

5

15

25

35

45
Sheng

���

���B
)

10 20 305 15 25
������ �� ���� !

(c) Transmitted data.

Figure 13 – Results obtained in experiment A considering that a robot detects
new information.

Figure 13a shows that, regarding the convergence time (TC), both

HSM and Sheng’s method scale well with the number of robots, while TC

tends to increase faster in experiments with DSM. On the other hand,

the number of exchanged messages and the amount of transmitted data

increases significantly with the number of robots in all methods, with

HSM and Sheng’s method having the best performance (figures 13b

and 13c).

In figure 14, we present the result of experiments that considers

two networks merging. Because the amount of transmitted data is

much higher in Sheng’s method than in DSM and HSM, we present it

4.2. Experiment A: Influence of the Number of Robots 91

separately in figure 14d.

0

100

20

40

60

80

120

140

160

10 20 305 15 25
"#$%&' () '(%(*+

S,&-.

/S0
1S0

(a) Convergence times.

200

400

600

800

100

300

500

700

900

10 20 305 15 25
234567 89 7858:;

<=6>?

@<A
B<A

0

(b) Exchanged messages.

2

CEF

CEG

IEJ

IEK

JEF

JEK

0
10 20 305 15 25

Number LM OLPLQR

TUV

WUV

(c) Transmitted data.

200

400

600

100

300

500

50

150

250

350

450

550

0
10 20 305 15 25

Number XY ZX[X\]

^_`ab

(d) Transmitted data in Sheng’s
method.

Figure 14 – Results obtained in experiment A considering that two networks
merge.

Figure 14 shows that HSM have the best performance when two

networks merge, considering the topology and amount of data in ex-

periment A. Sheng’s method have the worst performance in number of

exchanged messages and transmitted data. Both Nmsg and DT increase

faster with the number of robots in Sheng’s method. In addition, the

number of exchanged messages and, as a consequence, the amount of

transmitted data can variate significantly in the trials of experiments

with Sheng’s method, as shown in figures 14b and 14d.

In figure 15, we present the result of experiments that consid-

ers several networks merging. In this experiment, we considered the

92 Chapter 4. EVALUATION OF MAP SHARING METHODS

extreme case where each network has a single robot. Because Sheng’s

method cannot handle situations where several networks merge, we

present only results of experiments with DSM and HSM.

0

200

400

100

300

50

150

250

350

450

DSM
HSM

10 20 305 15 25
Number cd ecfcgh

(a) Convergence times.

0

2 000

1 000

200

400

600

800

1 200

1 400

1 600

1 800

10 20 305 15 25
Number ij kilimn

DSM
HSM

(b) Exchanged messages.

10 20 305 15 25
0

20

40

60

10

30

50

70

DSM
HSM

T
(M

B
)

Number pq rpsptu

(c) Transmitted data.

Figure 15 – Results obtained in experiment A considering that several net-
works merge.

Regarding the experiment where all networks merge, figure 15

shows that, despite HSM has had a better performance in terms of

convergence time, the number of messages and transmitted data can

increase faster with the number of robots in HSM than in DSM (figures

15b and 15c).

4.3. Experiment B: Influence of Network Topology 93

4.3 EXPERIMENT B: INFLUENCE OF NETWORK TOPOLOGY

In experiment B, we evaluate how the topology of networks influ-

ences the performance of the methods for sharing maps. Specifically,

the performance of DSM, HSM and Sheng’s method are evaluated by

considering network with different distances, in communication hops,

among robots. To do so, we perform experiments considering a system

with 25 robots, ∆Mik sets with 20 cells and that each robot explored

75± 15 frontiers. Figure 16 presents the topology of networks consid-

ered in the experiments.

21 3 4 5

Figure 16 – Network topologies in experiment B.

In topology 1, the average distance among the robots is dcomm1
=

4.16 hops while the maximum distance is dmax
comm1

= 8 hops. For topolo-

gies 2, 3, 4 and 5, the average and maximum distances are dcomm2
=

4.29, dcomm3
= 4.62, dcomm4

= 5.62 and dcomm5
= 9.28 hops and dmax

comm2
=

9, dmax
comm3

= 10, dmax
comm4

= 13 and dmax
comm5

= 24 hops, respectively.

For each configuration, we ran 20 trials and figures 17, 18 and

19 present the average values and standard deviation of each metric.

In figure 17, we present the convergence times, number of ex-

changed messages and transmitted data (in Kilobytes) when a single

robot detects new information.

Figure 17a shows that the convergence time increases signifi-

94 Chapter 4. EVALUATION OF MAP SHARING METHODS

0

200

100

300

50

150

250

350

Sheng
vwx

ywx

2 z1 3 5
T{|{}{~�

(a) Convergence times.

0

100

20

40

60

80

120

140

160

180

Sheng
���

���

2 41 3 5

��������

(b) Exchanged messages.

20

40

60

30

50

15

25

35

45

55

65

Sheng
���
���

Tr
a
n
s

�
��
��
�
�
�
��
��
�
�

2 41 3 5
T�������

(c) Transmitted data.

Figure 17 – Results obtained in experiment B considering that a robot de-
tected new information.

cantly with the distance among robots. The performance of HSM and

Sheng’s methods is similar for this metric and better than DSM’s per-

formance. On the other hand, both the number of exchanged messages

and transmitted data decreases when the distance increases in experi-

ments with DSM and Sheng’s method, while it increases for HSM.

This occurs because DSM and Sheng’s method are based on

propagation schemes, instead of relying on multi-hop communication.

Thus, the amount of unnecessary messages can increase when robots

have more neighbors. As a consequence, robots can share their maps

efficiently using DSM and Sheng’s method in topologies as the one

shown in figure 16.5, where there is a single possible flow for informa-

tion sharing.

4.3. Experiment B: Influence of Network Topology 95

When robots have multiple links, there are several possible flows

of information and robots can receive the same information from dif-

ferent sources. In that case, the number of unnecessary exchanged

messages and the amount of transmitted data increases in experiments

with DSM and Sheng’s method. As DSM uses the PCAs to coordinate

the execution of sharing processes, the amount of transmitted data do

not increase as much as the number of messages. In Sheng’s method,

where robots propagate all new information they get, both the number

of messages and the amount of transmitted data can increase signifi-

cantly (figures 17b and 17c).

Regarding HSM, the method considers a hierarchical network

structure and multi-hop communication. So, robots have to relay mes-

sages to allow the communication between clusterheads in different

sides of the network. Thus, in situations where the networks topology

is similar to a chain (as the one presented in figure 16.5), the number

of relayed messages can increase significantly (figure 17b).

In figure 18, we present the result of experiments that considers

two networks merging. Because the values of the amount of transmitted

data can be very high in Sheng’s method, we present them in figure

18d.

Figure 18 shows that HSM have the best performance in terms of

convergence time, number of exchanged messages and transmitted data

when two networks merge. Sheng’s method have the worst performance

in number of exchanged messages and transmitted data. Both Nmsg

and DT can be very large in Sheng’s method when robots have many

neighbors. In addition, the number of exchanged messages and, as a

consequence, the amount of transmitted data can variate significantly

in the trials of experiments with Sheng’s method, as shown in figures

18b and 18d.

In figure 19, we present the result of experiments that consid-

ers several networks merging simultaneously. As in experiment A, we

present only the results of experiments with the DSM and HSM.

Regarding the experiment where all networks merge, figure 19

shows that, despite HSM has had a better performance in terms of

96 Chapter 4. EVALUATION OF MAP SHARING METHODS

200

100

300

50

150

250

2 41 3 5
T��� �¡¢

£¤¥¦¡

DSM
HSM

0

(a) Convergence times.

1 000

200

400

600

800

1 200

100

300

500

700

900

1 100

0
2 41 3 5

T§¨§©§ª«

¬

®
¯
°
±
²
³
´
µ
³
¶
¶
°
²
³
¶

·¸¹ºª

DSM
HSM

(b) Exchanged messages.
2

1

»¼½

»¼¾

¿¼À

¿¼Á

¿¼½

¿¼¾

2 41 3 5
TÂÃÂÄÂÅÆ

T
(M

B
) DSM

HSM

(c) Transmitted data.

20

40

60

80

10

30

50

70

90

2 41 3 5
TÇÈÇÉÇÊË

0

T
(M

B
)

(d) Transmitted data in Sheng’s
method.

Figure 18 – Results obtained in experiment B considering that two networks
merge.

convergence time, the number of messages and transmitted data can

increase exponentially with the distance among robots in experiments

HSM (figures 15b and 15c). On the other hand, the number of ex-

changed messages and transmitted data is not significantly influenced

by the network topology in experiments with DSM.

4.4 EXPERIMENT C: INFLUENCE OF THE SIZE OF MAPS

In experiment C, we evaluate how the size of maps influences the

methods for map sharing. To do so, we consider that sets ∆Miq have 20

cells and the number of frontiers explored by each robot ranges from 1%

of NFmax (rounded to 2±1) to 100% of NFmax (150±30). I addition, we

4.4. Experiment C: Influence of the Size of Maps 97

0

200

400

600

100

300

500

700

DSM
HSM

2 41 3 5
TÌÍÌÎÌÏÐ

(a) Convergence times.

2 000

1 000

3 000

800

1 200

1 400

1 600

1 800

2 200

2 400

2 600

2 800

3 200

DSM
HSM

2 41 3 5
TÑÒÑÓÑÔÕ

(b) Exchanged messages.

20

40

60

80

10

30

50

70

90

DSM
HSM

2 41 3 5
TÖ×ÖØÖÙÚ

TÛ
Ü
Ý
Þ
ß
àá
áâ
ã
ä
Ü
áÜ

(M
B

)

(c) Transmitted data.

Figure 19 – Results obtained in experiment B considering that several net-
works merge.

consider a system with 10 robots. The network topology is the same

presented in figure 12 (experiment A) when the number of robots is

10. For each configuration, we ran 20 trials and figures 20, 21 and 22

present the average values and standard deviation of each metric.

In figure 20, we present the convergence times, number of ex-

changed messages and transmitted data (in Kilobytes) when a single

robot detects new information.

Figure 20 shows that HSM has the best performance in terms of

exchanged messages and transmitted data, while having convergence

times similar to Sheng’s. As the robot that detected information is

fixed in experiment C, the number of exchanged messages is always the

same for all methods. Since the amount of data detect is the same in all

trials (a set ∆Mi j with 20 cells), the transmitted data is not influenced

98 Chapter 4. EVALUATION OF MAP SHARING METHODS

20

40

60

80

10

30

50

70

805 20 40 60 1001 10 30 50 70 90
Map size (%)

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

m
s
)

Sheng
DSM
HSM

(a) Convergence times.

20

40

10

30

5

15

25

35

45

0
805 20 40 60 1001 10 30 50 70 90

Map size (%)

å
æ

c
h
a

ç
è
é
ê
ë
é
ì
ì

a
g
e
s

Sheng
DSM
HSM

(b) Exchanged messages.

805 20 40 60 1001 10 30 50 70 90
4

6

8

5

7

4í5

5í5

6í5

7í5

Map size (%)

T
ra

n
s
m

iî
î e

ï

 D
a

î a

(ð

ñ

)

Sheng
DSM
HSM

(c) Transmitted data.

Figure 20 – Results obtained in experiment C considering that a robot detects
new information.

by the amount of data previously detected either.

In figure 21, we present the result of experiments that considers

two networks merging simultaneously. As in experiment A, figure 21

presents only the average values of DT in Sheng’s method. Figure

21d shows the average values and standard deviation of the amount of

transmitted data in Sheng’s method.

Figure 21 shows that HSM has the best performance in terms

of convergence time, number of exchanged messages and transmitted

data when two networks merge. As in experiment A and B, Sheng’s

method have the worst performance in number of exchanged messages

and transmitted data. Both the number of exchanged messages and, as

a consequence, the amount of transmitted data can variate significantly

4.4. Experiment C: Influence of the Size of Maps 99

20

40

60

80

10

30

50

70

805 20 40 60 1001 10 30 50 70 90
Map size (%)

ò
ó
ô
õ
ö
÷ g

e
n
c
e
 T

im
e
 (

m
s
)

Sheng
DSM
HSM

(a) Convergence times.

100

20

40

60

80

120

10

30

50

70

90

110

805 20 40 60 1001 10 30 50 70 90
Map size (%)

0

Sheng
DSM
HSM

ø
ù

c
h
a

ú
û
ü
ý
þ
ü
ÿ
ÿ

a
g
e
s

(b) Exchanged messages.

0

2

1

3

0.5

1��

2��

805 2� 40 60 1��1 1� 30 50 70 9�
Map size (%)

Tr
a
n
s

m
��
��
�
�
�
��
(

�

Sheng
DSM
HSM

(c) Transmitted data.

0

20

10

30

5

15

25

805 20 40 60 1001 10 30 50 70 90
Map size (%)

Tr
a
n
s

�
�
��
�
�
�
��
��
�
�

Sheng

(d) Transmitted data in Sheng’s
method.

Figure 21 – Results obtained in experiment C considering that two networks
merge.

in the trials of experiments with Sheng’s method, as shown in figures

21b and 21d.

In figure 22, we present the convergence times, number of ex-

changed messages and transmitted data when several networks merge

simultaneously. As in experiments A and B, we present only the results

of experiments with the DSM and HSM.

Regarding the experiment where all networks merge, figure 19

shows that HSM has a better performance in terms of convergence time

and the number of messages than DSM (figures 22a and 22b). However,

the amount of transmitted data can increase faster in experiments with

HSM (figure 22c).

100 Chapter 4. EVALUATION OF MAP SHARING METHODS

100

20

40

60

80

120

140

160
C

o
n
v
e
rg

e
n
c
e
 T

im
e
 (

m
s
)

DSM
HSM

805 �� 40 60 1001 10 30 50 70 ��
Map size (%)

(a) Convergence times.

200

100

120

140

160

180

110

130

150

170

190

210

805 20 40 60 1001 10 30 50 70 90
Map size (%)

E
�
c
�
�
n
�
�
�

�
!
!
�
�
�
!

DSM
HSM

(b) Exchanged messages.

2

4

6

8

1

3

5

7

805 20 40 60 1001 10 30 50 70 90
Map size (%)

0

Tr
a
n
s

 (
M

B
)

DSM
HSM

(c) Transmitted data.

Figure 22 – Results obtained in experiment C considering that several net-
works merge.

4.5 DISCUSSIONS

The results obtained from experiments allowed us to verify that

both the DSM and HSM are able to share map information efficiently,

keeping the LAVs of robots in the same network synchronized.

In situations where a robot finishes exploring its frontier, only

the new information is shared and HSM and Sheng’s method have

a similar performance (except in experiment B). On the other hand,

DSM usually presents the worst convergence time, number of exchanged

messages and transmitted data.

When two networks merge, the amount of map information that

needs to be exchanged depends on the size of maps. In these situa-

tions, the efficiency of Sheng’s method decreases significantly when the

4.5. Discussions 101

number of robots or the size of maps increases. DSM and HSM have

similar performances in these situations, with HSM usually having bet-

ter results than DSM. However, in cases where several networks merge,

DSM can surpass HSM.

Sheng et al. (SHENG et al., 2006) propose the raw map concept

and a synchronization scheme that allows two robots to exchange map

information efficiently when their networks merge. However, as robots

use a propagation scheme to share the information with other robots

in the network, they exchange a large number of unnecessary messages

with map information. Thus, the amount of data transmitted by robots

executing Sheng’s method usually is much higher than in DSM and

HSM, as shown in figures 14c, 14d, 18c, 18d, 21c and 21d.

Regarding the DSM, this method is based on the execution of

several sharing processes, which need to be coordinated (by the Pro-

cesses Coordinator Algorithm) in order to avoid deadlocks and infor-

mation inconsistency. Thus, DSM can take longer to converge and

exchange more messages than Sheng’s method and HSM.

However, most messages exchanged by robots executing DSM

have only LAV tag information, an array of integers with size n (number

of robots). So, even when robots executing DSM exchange a large

number of messages, the amount of transmitted data is usually smaller

than in Sheng’s method. In extreme situations, where several networks

(with a single robot each) merge, the amount of transmitted data in

DSM can be even smaller than in HSM (figures 15c, 19c and 22c).

In HSM, leaders coordinate the map sharing schemes. So, be-

cause HSM does not use propagation schemes or sharing processes that

need to be coordinated, the LAVs of robots converge quickly and usu-

ally with the smallest amount of exchange messages and transmitted

data.

When several networks with a single robot each merge (extreme

situation evaluated in the experiments, whose results are presented in

figures 15c, 19c and 22c), HSM’s performance can be worse than the

performance of DSM. This occurs because, in HSM, clusterheads rely

on multi-hop communication to share maps with other clusterheads.

102 Chapter 4. EVALUATION OF MAP SHARING METHODS

Thus, depending on the network topology and number of networks

merging, robots might need to relay a large number of messages with

map information and HSM can be less efficient than DSM.

However, we highlight that, the most common situations found in

multi-robots exploration are robots sharing information after explores

a frontier and two networks merging. In these situations, HSM is more

efficient than both DSM and Sheng’s method.

103

5 PROPOSAL OF A HIERARCHICAL METHOD FOR MULTI-

ROBOT EXPLORATION

This chapter proposes a method to coordinate multiple robots

in exploration tasks considering robots with limited communication

radius, Hierarchical K-Means (HKME) method for multi-robots explo-

ration, an extension of KME (PUIG; GARCÍA; WU, 2011) that han-

dles link losses due to limited communication radius. HKME considers

that robots in a network have the same LAV version and uses HSM

method for map sharing to guarantee that.

Section 5.1 presents the problem description. Next, both a gen-

eral description of HKME (section 5.2) and a detailed description of its

phases (section 5.3) are presented.

5.1 PROBLEM DESCRIPTION

Coordination of robots is the core of exploration tasks, defining

strategies that robots will use to explore the workspace. Coordination,

which can be achieved in centralized or distributed ways, involves the

identification and assignment of exploration targets to robots, fulfilling

specific aspects of the application.

The main objective of this work is to develop an exploration

method that minimizes exploration time, avoids redundant exploration,

balances the workload of robots and disperse the robots quickly through

the workspace. In addition, we consider that robots have limited com-

munication radius and we do not assume any communication infras-

tructure in the workspace. So, robots can be separated in several un-

connected ad hoc networks.

Due to the possibility of link losses, robots can be

separated into different unconnected networks. Several works

based on centralized schemes, such as (BURGARD et al., 2000;

BURGARD et al., 2005; STACHNISS; MOZOS; BURGARD, 2008;

WURM; STACHNISS; BURGARD, 2008), handle this problem by

executing their centralized methods independently in each network.

Specifically, they define a leader for each network and use routing

104 Chapter 5. HIERARCHICAL K-MEANS

schemes to allow the exchange of messages between robots and leaders.

However, routing schemes do not scale well and problems related to

message losses are difficult to handle in flat networks. Therefore, these

methods can be very costly in terms of both communication and compu-

tational power (DHURANDHER; SINGH, 2005; ABBASI; YOUNIS,

2007).

Other methods, such as (YAMAUCHI, 1998; SARIEL; BALCH,

2006; FRANCHI et al., 2009), use fully distributed schemes to coor-

dinate the robots instead of relying on central units. However, most

authors do not address problems related to multi-hop communication

in ad hoc networks. Moreover, these methods can be costly in terms of

number of messages and amount of data transmitted.

In (PUIG; GARCÍA; WU, 2011), Puig et al. propose a multi-

robot exploration method based on centralized K-means (KME), which

implements a policy that optimizes the exploration at a global level.

The method improves the exploration efficiency by minimizing three as-

pects: the sum of traveled distances, the variance of the length of paths

and the variance of the arrival times at all regions of the workspace.

Despite KME can balance the workload among the robots and perform

exploration efficiently, it cannot handle communication link losses.

This work proposes Hierarchical K-Means (HKME), a method

for multi-robot exploration that extends KME (PUIG; GARCÍA; WU,

2011) in order to handle communication losses due to limited communi-

cation radius. No pre-existing communication infrastructure (routers,

access points, etc.) is assumed in the workspace to allow the exchange

of messages among robots. Instead, communication has to be achieved

using the robots themselves to relay messages, thus acting as nodes of

a mobile ad hoc network.

In HKME, cluster formation and maintenance algorithms group

robots into clusters, defining a hierarchical network architecture. By

doing so, we define a scalable mechanism to handle robots communi-

cation. This hierarchical organization of the robots also helps improve

efficiency, making clusterheads responsible for executing workspace par-

titioning and for assigning regions and frontiers to the members of their

5.2. Hierarchical K-Means for Multi-Robots Exploration 105

clusters.

Since robots in different networks cannot exchange messages,

HKME runs independently in each network. However, HKME guaran-

tees that, even when robots are separated in several networks, regions

assigned to different robots do not overlap, which could decrease effi-

ciency by assigning robots to the same areas.

In this work, the following premises are assumed:

• The workspace boundaries are known. Despite robots do not

known the workspace, they known its limits.

• Robots communication system has a limited radius. If the dis-

tance between two robots is smaller than the communication ra-

dius, they a direct communication link.

• Messages sent to robots within this radius are always received.

• Robots do not fail.

5.2 HIERARCHICAL K-MEANS FOR MULTI-ROBOTS EXPLORATION

Similarly to KME, the basic idea of HKME is to partition the

workspace into regions and allocate them to robots. Then, robots are

assigned to explore frontiers that take them closer to their regions.

This scheme coordinates the robots in order to reach all regions of the

workspace as soon as possible. The phase diagram presented in figure

23 summarizes the execution of HKME.

HKME partitions the workspace into two levels: cluster sectors

and regions. As in KME, a region is the area assigned to a robot. A

cluster sector is the union of all regions assigned to the members of a

cluster (cluster sectors are described in subsection 5.3.2).

In the global partitioning phase, clusterheads execute an iterative

scheme to partition the workspace into cluster sectors. Then, HKME

enters the local partitioning phase, where each clusterhead partitions its

corresponding sector into as many regions as robots in the cluster and

assigns each region to a single robot. The workspace partitioning and

106 Chapter 5. HIERARCHICAL K-MEANS

Fro"#$%& 'x)*o&ed

r

g

or d

Managem

Wo&+,)-.% e-&#$#$o"$"g

-"a /,,$0"3%"#

e%&oa.-**4

C5-"0%, $" #5% "%#work

Figure 23 – Description of the HKME.

assignment task is executed periodically, reshaping the regions assigned

to the robots as they explore the workspace.

After all regions have been assigned, clusterheads assign new

frontiers to members of their clusters in the frontier allocation phase.

Next, robots calculate a path to their frontiers and start to move toward

them (navigation and sensing phase). When a robot reaches its assigned

frontier, it scans its surroundings, updates its local map and removes

the detected cells from its corresponding region. Then, HKME enters

the frontier allocation phase and the clusterhead assigns a new frontier

to the robot.

As the robots move through the workspace, communication links

can be lost or established, hence changing the network. In that case, the

robots in the network go to the network formation and management phase,

in which common algorithms for cluster formation and maintenance

are used to redefine the network. After handling the changes in the

network, HKME enters the global partitioning phase.

Since HKME assumes that robots always have an assigned re-

gion, it executes the centralized K-means algorithm at the beginning of

the exploration to define an initial partitioning and assignment of the

workspace. This setup phase is run off-line.

5.3. Phases of Hierarchical K-Means 107

Figure 25 illustrates the execution of HKME, showing how the

clusterheads partition the workspace, assign regions and allocate fron-

tiers to the robots. In this work, clusters and sectors are named based

on their clusterhead identifiers. In figure 25, for instance, cs8 is the

sector associated with cluster cl8, whose clusterhead is R8. The ex-

ample assumes that two robots, R2 and R3, lose communication when

the robots of the system have reached the configuration shown in fig-

ure 24a. Due to this link loss, robots are separated in two networks:

N1 and N2. When the network changes, HKME enters the network

formation and management phase and the robots update the network.

Figure 24c shows the previous organization of the robots (network N)

and the result after R2 and R3 lose communication (networks N1 and

N2).

After updating the network, HKME enters the global partition-

ing phase, where clusterheads redefine the sectors of clusters. Figures

24b and 24d show those sectors before and after the global partition-

ing of the workspace, respectively. Afterwards, HKME enters the local

partitioning phase, where each clusterhead partitions its sector into re-

gions and assigns them to its cluster members, yielding the workspace

partitioning and assignment shown in figure 24e.

Next, HKME enters the frontier allocation phase, were cluster-

heads assign new frontiers to the members of their clusters. Figure

24f presents the frontiers identified in the partially explored workspace

(light green dots) and the frontiers allocated to each robot (symbol x).

Then, robots enter the navigation and sensing phase, where they move

through the workspace until they reach the new assigned frontier.

The different phases of HKME are fully described in the next

section.

5.3 PHASES OF HIERARCHICAL K-MEANS

5.3.1 Network Formation and Management

As robots move through the workspace, they can lose

or establish new communication links, thus changing the net-

108 Chapter 5. HIERARCHICAL K-MEANS

6

6

6

6
6

6

6
6

(a) Workspace partitioning. (b) Previous cluster sectors.

(c) Network formation and manage-
ment.

(d) New global partitioning.

(e) New local partitioning.

x x x

x

x

x
x

x

(f) New frontier allocation.

Figure 24 – Example of HKME execution.

5.3. Phases of Hierarchical K-Means 109

work configuration. In that case, the robots run a cluster

formation and maintenance algorithm to reorganize the network.

Any method that organizes the MRS in a hierarchical topol-

ogy, such as Lowest ID (EPHREMIDES; WIESELTHIER; BAKER,

1987), Highest Degree (GERLA; TSAI, 1995) and Weighted Clustering

(CHATTERJEE; DAS; TURGUT, 2002), can be applied to execute

the network formation and management phase in HKME.

In this work, changes in the network are classified as internal or

connective. An internal change occurs when the establishment or loss of

links do not add or remove robots from the network. Only the internal

structure of the network changes. Connective changes occur when the

establishment or loss of links results in two networks being merged into

one, or in a network being split in two unconnected ones. Figure 25

illustrates the two types of network changes.

In figure 25a, we represent the loss of the link between nodes

A and B and the establishment of a new link between nodes C and D

of network N . Despite the changes, the network remains connected

and with the same robots. In figure 25b, the loss of the link between

nodes A′ and B′ partitioned network N in two unconnected ones, Na

and Nb. The first network contains the robots in clusters cla, clb and

clc, and the second one is formed by the robots in cld . The example

presented in figure 25c shows the case in which two robots (nodes A′′

and B′′) from different networks (Na and Nb) establish a link. In that

case, Na and Nb will merge in a single network, N .

Subsections 5.3.2, 5.3.4 and 5.3.3 point out how the different

types of network changes influence the workspace partitioning, region

assignment and frontier allocation phases.

5.3.2 Global Partitioning

In the global partitioning phase, clusterheads execute a dis-

tributed algorithm to partition the workspace into cluster sectors, whose

size is proportional to the number of members in every cluster. The

following steps are executed:

110 Chapter 5. HIERARCHICAL K-MEANS

A
B

C

D
A

B

C

D

Unchanged link Lost link New link

(a) Internal changes.

78

:8

78

:8

Unchanged link Lost link New link

(b) Connective changes: link loss.

Unchanged link Lost link New link

;<<

=<<

;<<

=<<

(c) Connective changes: new link.

Figure 25 – Network changes.

1. Each clusterhead defines its cluster sector;

2. The clusterheads share the weight ωi (presented next) and cen-

troid coordinates with the other clusterheads in the network;

3. Based on the weights and centroids of all sectors, each clusterhead

redefines the ownership of its cells, giving away the ones that are

closer to other sectors;

4. Each clusterhead updates its sector, calculates the new centroid

5.3. Phases of Hierarchical K-Means 111

as the sector’s center of mass and shares the new centroids;

5. If the exit condition is satisfied, end the global partitioning phase,

otherwise, iterate from step 3.

Cluster Sector Definition

A cluster sector cs j associated with cluster cl j is defined by the

tuple 〈Cs j,ct j,ω j〉, where Cs j is the set of cells belonging to the regions

of all robots in cl j, ct j is the sector’s centroid and ω j its weight. Cs j

and ω j are defined as:

Cs j =
⋃

Ci

Ri∈cl j

(5.1)

ω j =
√

|cl j| , (5.2)

where Ci is the set of cells in the region ri assigned to robot Ri and |cl j|

is the number of robots in cluster cl j at the instant in which the global

partitioning is executed.

At the beginning of the global partitioning phase, each cluster-

head defines its cluster sector cs j, with Cs j and ω j defined as (5.1) and

(5.2). The initial coordinates of the sector’s centroid (ct j), referred to

as seed, are defined as the mean value of the positions of the robots

belonging to the cluster (the cluster centroid). The coordinates of the

cluster centroid are calculated as:

ct j =

(

1
|cl j|

∑
Ri∈cl j

xRi
,

1
|cl j|

∑
Ri∈cl j

yRi

)

, (5.3)

where xRi
and yR1 are the 2D coordinates of robot Ri.

Redefining ownership of cells

The basis of HKME global partitioning is the redefinition of the

ownership of cells, which allows clusterheads to partition the workspace

into sectors proportional to the number of robots in their clusters, while

112 Chapter 5. HIERARCHICAL K-MEANS

avoiding that sectors overlap when robots are separated in several net-

works.

In HKME, each sector csi has a weight ωi, defined in (5.2), as-

sociated with the number of robots in the cluster. To redefine the

ownership of cells, each clusterhead verifies if there are cells in its sec-

tor that should be transferred to another cluster sector. In that case, it

sends them to the respective clusterhead. Let cs j be the cluster sector

associated with cluster cl j and c a cell in cs j (c ∈Cs j). The new owner

of c will be the sector cs′j that fulfills:

∀clk ∈N :
dist(c,ct ′j)

ω ′j
≤

dist(c,ctk)

ωk

, (5.4)

where dist(c,ctk) is the Euclidean distance between cell c and the cen-

troid of csk.

By using (5.4) to redefine the ownership of cells, clusterheads

minimize function D, defined as:

D = ∑
cli∈N

∑
j∈C

ai, j
dist(j,cti)

ωi
(5.5)

C =
⋃

clk∈N

Csk , (5.6)

where cli is a cluster from network N and C is the set of cells owned

by all clusters in N . Coefficient ai, j is one if cell j belongs to sector csi

and zero otherwise.

By minimizing D, HKME minimizes the sum of the weighted

distances between cells and centroids. Moreover, since HKME considers

weighted distances, it generates larger sectors for clusters with more

robots. Figure 26 illustrates the influence of the weighting parameter

ωi in the global partition.

Let cti and ct j respectively be the centroids of sectors csi and cs j,

and ωi and ω j their weights. If ωi = ω j, csi and cs j will have similar

areas, figure 26a. However, if ωi > ω j, some cells that are closer to ct j

will be transferred to csi, which will end up having a larger area than

cs j, figure 26b. A particularity of the weighted partitioning scheme

5.3. Phases of Hierarchical K-Means 113

(a) Sectors when ωi = ω j.

(b) Sectors when ωi > ω j .

Figure 26 – Example of sectors partitioning.

proposed in this work is the rounded shape of the resulting sectors. In

KME, the workspace partitions (regions) are always polygons, usually

with four or five sides.

Exit Condition

Let D(T) be the value of D, defined in (5.5), at iteration T of

the global partitioning phase. The exit condition is satisfied when one

of the following conditions is satisfied:

1. The maximum number of iterations M is reached;

2. The variation of D(T) is smaller than a threshold ∆ > 0:

D(T)−D(T − 1)≤ ∆

In centralized approaches, the above conditions are verified by

a central unit. In HKME, maximum consensus is used to verify the

first condition, while average consensus is used to verify the second.

To do so, after step 4, clusterheads exchange the number of iterations

114 Chapter 5. HIERARCHICAL K-MEANS

that have already been executed and their D(T) partial values, D j(T),

defined as:

D j(T) = ∑
c∈Cs j

dist(j,cti)

ωi
(5.7)

Based on this information, each clusterhead can verify if at least

one of the exit conditions is satisfied. The first condition is true if, for

all clusterheads in the network, the number of executed iterations is

greater than or equal to M. To verify the second condition, clusterheads

use the D j(T) values received from the other clusterheads to calculate

the value of D(T) as:

D(T) = ∑
cl j∈N

D j(T) (5.8)

Then, if the average value of the variation of D(T), according to

(5.9), is equal to or smaller than ∆, the second condition is valid:

D(T − 1)−D(T)

|cl(N)|
≤ ∆ , (5.9)

where |cl(N)| is the number of clusters in the network.

5.3.3 Local Partitioning

After partitioning the workspace into sectors, each clusterhead

partitions its corresponding sector into regions and assigns them to its

cluster members. Let R j be the clusterhead of a cluster cl j, and cs j its

associated sector. R j executes the centralized K-means algorithm pro-

posed in (PUIG; GARCÍA; WU, 2011) within the cluster scope, thus

partitioning cs j into |cl j| regions and assigning them to its cluster mem-

bers using the Hungarian algorithm.

In (PUIG; GARCÍA; WU, 2011), a central unit executes the it-

erative K-means algorithm to partition the workspace into K regions,

where K is the number of robots. The workspace is represented by an

occupancy grid map (ELFES, 1989), whose cells with unknown state

are clustered into regions according to the following iterative process:

5.3. Phases of Hierarchical K-Means 115

1. Randomly choose K unknown cells ci, 1 ≤ i ≤ K, as region cen-

troids;

2. For every unknown cell in the workspace, calculate its Euclidean

distance to the K centroids, identify the closest centroid cti and

define the cell as part of region ri;

3. Calculate the center of mass cmi of each region ri;

4. If ∀i∈ {1..K}, cti = cmi (convergence condition), the process ends.

Otherwise, substitute every cti for its corresponding cmi and pro-

ceed from step 2.

When the above process terminates, all unknown cells are parti-

tioned into K stable disjoint regions. In KME, a region ri can be defined

by the tuple 〈Ci,cti,cci〉, where Ci is the set of cells of the region, cti

is the centroid and cci is the set of contour cells1. Figure 27 shows an

example of the K-means algorithm iteration.

Figure 27a presents the regions and centroids corresponding to

iteration T − 1 of the algorithm. The colored circles represent the po-

sitions of the robots. In iteration T , the partition of the workspace

changes to the one showed in figure 27b (green lines indicate the pre-

vious partition) after the execution of step 2. Figure 27c shows the

centroids cti (symbol +) and the centers of mass (calculated in step

3) cmi (black circles) of the regions. The arrows in figure 27c indicate

that the centers of mass will become the new centroids at the end of

iteration T . In figures 27a, 27b and 27c, the gray lines separating the

regions correspond to their contour cells.

In (PUIG; GARCÍA; WU, 2011), the assignment of regions to

robots is formulated as a Linear Programming (LP) problem. An LP

solver is applied to obtain the region assignment that minimizes the

distances between robots and regions. Let d(ri,R j) be the distance

between robot R j and region ri, which corresponds to the minimum

1 Contour cells are the cells that at least have one neighbor of another region or of the free
space.

116 Chapter 5. HIERARCHICAL K-MEANS

+

+

+

+

+

+

(a) Previous regions. (b) K-means iteration.

+

++

+

+

+

+

++

++

+

(c) New centroids.

Figure 27 – Example of local partitioning iteration.

distance between R j and any cell in cci (contour of ri). The assignment

problem is described as:

min
K

∑
i

K

∑
j

ai jd(ri,R j)

s.t.
K

∑
i

ai j = 1

K

∑
j

ai j = 1 ,

(5.10)

where K is the number of robots and regions. Coefficient ai j is one if

region ri is assigned to robot R j and zero otherwise.

5.3.4 Frontier Allocation

In HKME, frontiers are allocated by considering an on-demand

scheme: every time a robot completes the exploration of a frontier, its

clusterhead allocates a new frontier to it, such that the robot tends to

5.3. Phases of Hierarchical K-Means 117

get closer to its assigned region. To do so, the clusterhead calculates

the distance isbetween the robot and all frontiers and assigns the closest

one. Let F be the set of identified frontiers. The clusterhead will assign

the frontier fl to a robot Ri iff

∀ f ∈ F : d(Ri, fl)≤ d(Ri, f) , (5.11)

where d(Ri, fl) is the distance between Ri and f j, described below:

d(Ri, f j) = δ (Ri, f j)+g(f j,ccRi
)+σ1(f j,ccRi

)+σ2(f j) , (5.12)

where δ (Ri, f j) is the distance between robot Ri and frontier f j, con-

sidering a path calculated using the A∗ algorithm (or a similar path

planning algorithm). g(f j,ccRi
) is the Euclidean distance between fron-

tier f j and ccRi
, the cell from the contour of ri that is closest to Ri,

σ1(f j,ccRi
) is a penalization equal to the workspace diagonal L if there

is an obstacle between f j and ccri
or zero otherwise, and σ2(f j) is a pun-

ishment equal to a constant v (defined by the designer of the system)

if f j is already assigned or zero otherwise.

Notice that the frontier allocation phase is executed in an on-

demand scheme, which considers the allocation to one robot at a time.

If several robots finish exploring their frontiers at the same time, the

clusterhead will allocate new frontiers sequentially, based on the time

it was informed by each robot.

Since a frontier can be allocated to more than one robot, de-

pending on the number of robots and frontiers, the state space of the

frontier allocation problem can grow exponentially. Therefore, the clus-

terhead allocates the closest frontier to each robot instead of using an

optimal method such as the Hungarian algorithm, which would have a

prohibitive computational cost in this context.

5.3.5 Allocating Frontiers to Robots with Explored Regions

An important aspect of HKME is what happens after a robot

explores all cells from its associated region. Let ri : 〈Ci,cti,cci〉 be the

118 Chapter 5. HIERARCHICAL K-MEANS

region assigned to robot Ri. After Ri explores its region, Ci =∅, cci =∅

and cti becomes the position of Ri. If other robots in the cluster still

have non-empty regions (C j 6= ∅), the clusterhead can repartition the

cluster sector and assign a new region to Ri. Otherwise, the robot

remains with a region ri in which Ci =∅ and cci =∅.

For robots with explored (or empty) regions, the values of

g(f j ,ccRi
) and σ1(f j ,ccRi

) in (5.12) are always zero and the compu-

tation of the distance between Ri and a frontier f j can be simplified

to:

d(Ri, f j) = δ (Ri, f j)+σ2(f j) (5.13)

Thus, after a robot Ri explores its region, its clusterhead will

assign frontiers to it only by considering the length of the smallest

path between Ri and the frontiers, δ (Ri, f j), and which frontiers were

already assigned to other robots, σ2(f j).

From this exploration with empty regions, two important aspects

of HKME emerge. First, robots do not stay idle after exploring their

regions. Instead, they start exploring the workspace greedily, helping

other robots to explore their regions. This behavior can also take robots

with already explored regions closer to clusters that still have areas

pending to be explored. After a robot joins such a cluster, a new

region can be assigned to it.

The second aspect is that, even if a robot fails, the cells from its

region will be explored. In HKME, the workspace partitioning is based

on the exchange of cells. Therefore, if a robot fails, its region’s cells will

not be assigned to other robots. However, after robots explore their

regions, they will start to greedily explore the unknown cells owned by

other robots. Thus, eventually, robots that did not fail will explore the

entire workspace.

5.4 CONCLUSIONS

In this chapter, we propose an extension of KME

(PUIG; GARCÍA; WU, 2011), the Hierarchical K-Means method

5.4. Conclusions 119

for multi-robots exploration. The main difference between HKME

and KME is that the first defines a hierarchical scheme to handle the

possibility of link losses.

In KME, a central unit partitions the workspace in regions and

assigns regions and frontiers to robots. In HKME, robots in the same

network are grouped in clusters and clusterheads interact to partition

the areas they own in sectors. Then, each clusterhead partitions its

sector in regions and assigns regions and frontiers to members of its

cluster.

Depending on the distance among robots and the communication

radius, all robots can have a direct link with the others. In situations

like those, all robots are grouped in a single cluster and, as there is

a single clusterhead, its sector corresponds to the entire non-explored

workspace. So, the clusterhead acts as KME central unit, partition-

ing the workspace in regions and assigning regions and frontiers to all

robots in the system.

Thus, KME can be view as a particular case of HKME, where the

communication radius is large enough to guarantee that robots always

have a direct link with the others.

In the next chapter, we present experiments with HKME, where

the method’s efficiency is evaluated when the communication deterio-

rates. Specifically, we define the case where all robots always have a

direct link with the others as the baseline. Then, experiments are per-

formed with different communication radius and the results compared

with the ones of baseline.

121

6 HKME EVALUATION

HKME has extensively been tested in simulation by considering

different types of workspace and communication radius. Sections 6.1

and 6.2 present the experimental setup and measures used to evalu-

ate the proposed method, respectively. In turn, sections 6.3, 6.4 and

6.5 present the results of the experiments for each type of workspace.

Finally, section 6.6 discusses the results.

6.1 EXPERIMENTAL SETUP

HKME was implemented in Java and run using the Player/Stage

simulator (GERKEY; VAUGHAN; HOWARD, 2003). Experiments

were conducted by considering an MRS with 10 simulated Pioneer2DX

robots equipped with a 360◦ (a sample per 2◦) laser sensor with a range

of 3 meters. The robots’ velocity bounds are 1.6m/s (translation) and

2.5rad/s (rotation), but the implemented controller limits velocities to

1m/s and 2rad/s. Since the goal is multi-robot coordination, no localiza-

tion method was implemented. Instead, the controller simply obtains

the position of the robots from the simulator.

Three different types of workspace were considered in the ex-

periments: empty (100× 50m2), scattered obstacles (100× 50m2) and

office-like (63×50m2). Figure 28 depicts them. For each workspace, ex-

periments were performed by considering communication systems with

different radius: from L to 0.05L (or 100% to 5%), where L is the

workspace’s diagonal. For each combination of workspace and commu-

nication radius, 10 trials were ran. The results are presented in sections

6.3, 6.4 and 6.5. The performance criteria used to analyze HKME are

presented below.

6.2 CRITERIA FOR HKME EVALUATION

During each trial, the path of each robot (pathi) and the amount

of explored area1 (Ai) was recorded, as well as the relative size of the

1 The area explored by a robot is the number of unknown cells it sensed

122 Chapter 6. HKME EVALUATION

e with scattered obstacles

O eEmpty Workspace

Figure 28 – Workspaces considered in the experiments.

regions assigned to each robot during the exploration, rsi(t), and the

percentage of explored workspace over time, w(t). The relative size of

a region corresponds to the number of unexplored cells in the region

divided by the total number of cells in the workspace.

To evaluate HKME, the following measures were considered: ex-

ploration and arrival times, traveled distance, explored area, size of

regions and exploration quality. These measures are described below.

Exploration and arrival times

An important aspect about multi-robot exploration is that, at

its last stages, robots may have to travel long distances to explore

small areas scattered over the workspace. Thus, the time necessary to

completely explore the workspace can be much longer than the time

necessary to explore most of it.

In this work, three exploration times were measured: expT 90,

expT 95 and expT 100. They represent the instants at which 90% (expT 90),

95% (expT 95) and 100% (expT 100) of the workspace was explored.

6.2. Criteria for HKME Evaluation 123

In addition, the workspace was partitioned into K (number of

robots) areas and we verify how long the robots take to disperse and

reach them. The arrival time for a region r j is the time elapsed until

a robot reaches r j. T max
arrival is the arrival time of the last region to be

reached in the trial and Tarrival is the average value of the arrival times

for all regions. Let T
r j

arrival be the instant at which region r j was reached

by a robot. T max
arrival and Tarrival can be calculated as:

T max
arrival = max

j={1..K}
(T

r j

arrival) (6.1)

Tarrival =
1
K

K

∑
j=1

T
r j

arrival (6.2)

Traveled distance

Regarding the traveled distances, the average and standard de-

viation of the distances traveled by the robots were analyzed. As with

the exploration time, the average traveled distance (length of the paths)

was considered at three instants: when 90% (td90) , 95% (td95) and

100% (td100) of the workspace was explored. Let tdX
i be the length of

the path traveled by Ri until instant expT X . The values td90, td95 and

td100 can be calculated as:

tdX =
1
K

K

∑
i=1

tdX
i (6.3)

The standard deviation of the distance traveled by all robots,

σtd , is defined as:

σtd =

√

1
K

K

∑
i=1

(td100− td100
i)2 (6.4)

The relative deviation of the traveled distance (σ rel
td), defined in

(6.5), is also used to evaluate the performance of the MRS:

σ rel
td =

σtd

td100
(6.5)

124 Chapter 6. HKME EVALUATION

Explored Area

When robots move to two close frontiers, they can sense the

same area simultaneously. Moreover, due to communication losses,

robots can explore areas already explored by others. In both cases, the

exploration is redundant and the sum of the areas explored by each

robot will be higher than the area of the workspace. Let AT be the

workspace area and Ai the area explored by robot Ri. The percentage

of redundant explored area, ra, is defined as:

ra =

[

1
AT

K

∑
i=1

Ai

]

− 1 (6.6)

Let Ai
r =

Ai

AT
be the percentage of workspace explored by Ri.

The average percentage of workspace explored by the robots, Ar, and

its standard deviation, σAr, are defined as:

Ar =
1
K

K

∑
i=1

Ai
r (6.7)

σAr =

√

1
K

K

∑
i=1

(Ar−Ai
r)

2 (6.8)

Size of regions

Another indicator of the exploration’s balance (or fairness) is the

standard deviation of the size of regions assigned to the robots. Let

rsi(t) be the relative size of the region assigned to Ri at instant t. The

average region size over time, rs(t), and its standard deviation, σrs(t),

are defined as:

rs(t) =
1
K

K

∑
i=1

rsi(t) (6.9)

σrs(t) =

√

1
K

K

∑
i=1

(

rs(t)− rsi(t)
)2

(6.10)

6.3. Experiment A: Empty Workspace 125

Exploration quality

In (ZLOT et al., 2002), Zlot et al. propose a measure based on

the workspace area and the sum of distances traveled by all roots to

calculate the quality of exploration, Q:

Q =
AT

∑K
i=1 tdi

(6.11)

The maximum exploration quality, Qmax, is defined as the area

that can be explored by a robot when it moves one meter, considering

the range of its sensors. In this work, robots are assumed to have a

laser sensor with a 3 meters range. Thus, the maximum exploration

quality is Qmax = 6m2/m. To evaluate the performance of HKME, the

relative exploration quality, Qr, is considered instead of Q. The relative

exploration quality is defined as:

Qr =
Q

Qmax
(6.12)

6.3 EXPERIMENT A: EMPTY WORKSPACE

Several experiments were performed over a 100×50m2 workspace

with no obstacles. Six different communication radiuses were consid-

ered: 100%, 50%, 30%, 20%, 10% and 5% of the workspace diagonal

(L = 111.8m). Figure 29 shows examples of robot paths for different

communication radiuses.

Figure 30 shows that the percentage of explored area over time,

w(t), increases when the radius decreases. For communication radiuses

greater than 50%, the exploration does not improve significantly. More-

over, for all communication radiuses, the time necessary for the robots

to explore 100% (expT 100) of the workspace is much greater than the

time to explore 90% (expT 90). For instance, when the communication

is 30% of L, expT 90 is close to 200s while expT 100 is almost 280s.

Likewise, figure 31 shows that the standard deviation of the size

of regions over time, σrs(t), also increases when the communication

radius decreases. For simplicity, only three curves are presented. The

126 Chapter 6. HKME EVALUATION

Figure 29 – Paths of robots in empty workspace for different communication
radiuses.

other measures, presented in figure 32, are: exploration times expT 90,

expT 95 and expT 100, figure 32a; maximum and average arrival times,

T max
arrival and Tarrival, figure 32c; traveled distances td90, td95 and td1000,

figure 32b; relative standard deviation of traveled distance, σ rel
td , figure

32d; redundant explored area, ra, figure 32e; and relative exploration

quality, Qr, figure 32f.

In figure 32, bars represent the standard deviation of the mea-

sures for all the trials, summed and subtracted from the average value.

Figures 32a and 32c show that both the exploration and arrival

times increase when the communication radius decreases. Likewise,

the traveled distance, figure 32b, and its standard deviation, figure

32d, also increase when the communication radius decreases.

Figure 32e shows that the percentage of redundant explored area

is close to 4% for communication radiuses greater than 20% of L, being

almost 80% when the radius is 5%. Regarding the exploration quality,

6.3. Experiment A: Empty Workspace 127

0

Time (s)

0

100

20

40

60

80

10

30

50

70

90

E
x
p

lo
re

d
 A

re
a

 (
%

)

100%
50%
30%
20%
10%
5%

200 400 600100 300 500

Figure 30 – Explored area in empty workspace for different communication
radiuses.

R
e

g
io

n
's

 s
iz

e
 d

e
v
ia

ti
o

n
 (

%
)

0
0

200 400 600100 300 500

2

4

6

1

3

5

0.5

1.5

2.5

3.5

4.5

5.5 100%
30%
5%

Time (s)

Figure 31 – Deviation of size of regions over time in empty workspace for
different communication radiuses.

figure 32f shows that Qr decreases with the communication radius.

128 Chapter 6. HKME EVALUATION

400

600

100

300

500

150

250

350

450

550

200

>?@@DGiHIJi?G KILiDM NOP
Q RSSTS US VS XSRS YS QS ZS [S

(a) Exploration times.

c
e
 (

m
)

\]]

^]]

_]

\`]

\b]

\d]

__]

_`]

_b]

_d]

^_]

^`]

_]]

fghhjkication rlpqjr stu
v \]]_] `] b] d]\] ^] v] w] y]

(b) Traveled distances.

0

200

100

20

40

60

80

120

140

160

180

220

240

260

z{||}~ication r���}� ���
� ����� �� �� ���� �� �� �� ��

im
e
 (

s
)

(c) Arrival times.

������ication r����� ���
5 ����� �� � ¡��� ¢� £� ¤� ¥�

��

��

��

¢�

£�

5

�£

�£

¢£

�£

�

)

(d) Standard deviation of the distance.

R
e
d
u
n
d
a
n

¦§§

¨§

©§

ª§

«§

¦¨§

¦§

¬§

§

®§

¯§

¦¦§

°±²²³´ication rµ¶·³¸ ¹º»
5 ¦§§¨§ ©§ ª§ «§¦§ ¬§ § ®§ ¯§

§

ra

(e) Redundant explored area.

E
x
p
lo

ra
ti

o
n
 Q

u
a
li
ty

 (
%

)

20

40

60

10

30

50

5

15

25

35

45

55

0

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(f) Relative exploration quality.

Figure 32 – Results obtained in the experiment with an empty workspace.

6.4. Experiment B: Workspace with Scattered Obstacles 129

Figure 33 – Paths of robots in a workspace with cluttered obstacles for differ-
ent communication radiuses.

6.4 EXPERIMENT B: WORKSPACE WITH SCATTERED OBSTACLES

Experiments were also performed over a 100× 50m2 workspace

with scattered obstacles. As in experiment A, six different communi-

cation radiuses were considered: 100%, 50%, 30%, 20%, 10% and 5%

of the workspace diagonal (L = 111.8m). Figure 33 illustrates the tra-

jectories executed by the robots for different communication radiuses.

Figures 34 and 35 present the percentage of explored area over

time, w(t), and the standard deviation of the size of regions over time,

σrs(t), respectively. As in experiment A, both the exploration time

and the deviation in the size of regions increase when the communica-

tion radius increases. For communication radiuses greater than 50%,

the time necessary to complete the exploration does not significantly

decrease.

Figure 36 presents the exploration times, maximum and aver-

age arrival times, traveled distances, standard deviation of traveled

130 Chapter 6. HKME EVALUATION

0

Time (s)

0

100

20

40

60

¼½

10

30

50

¾½

¿½
E

x
p

lo
re

d
 A

re
a

 (
%

)

50 200 400100 300150 250 350 450

100%
50%
30%
20%
10%
5%

Figure 34 – Explored area in a workspace with cluttered obstacles for differ-
ent communication radiuses.

distance, redundant explored area and relative exploration quality for

that workspace.

The performance of HKME in experiment B is similar to the one

presented in experiment A. Figure 36 show that the exploration and

arrival times, the traveled distance and its standard deviation increase

when the communication radius decreases. As in experiment A, the

redundant explored area is close to 5% for communication radiuses

greater than 20% of L, approaching to 80% when the radius is 5%,

figure 36e. Moreover, the exploration quality also decreases with the

communication radius.

6.5 EXPERIMENT C: OFFICE-LIKE WORKSPACE

Experiments were also performed over a 63× 50m2 office-like

workspace. As in experiments A and B, six different communication

radiuses were considered: 100%, 50%, 30%, 20%, 10% and 5% of the

workspace diagonal (L = 80.4m). Figure 37 illustrates the trajectories

executed by the robots for different communication radiuses.

The exploration over time, w(t), and the standard deviation in

6.5. Experiment C: Office-like Workspace 131

R
e

g
io

n
's

 s
iz

e
 d

e
v
ia

ti
o

n
 (

%
)

0

Time (s)
50 200 400100 300150 250 350 450

0

2

4

6

1

3

5

0.5

1.5

2.5

3.5

4.5

5.5 100%
30%
5%

Figure 35 – Deviation of the size of region in a workspace with cluttered ob-
stacles for different communication radiuses.

the size of regions over time, σrs(t), for the office-like workspace are

respectively presented in figures 38 and 39. Figure 40 present the other

measures.

As in experiments A and B, both the exploration time and the

standard deviation in the size of regions increase when the commu-

nication radius increases. However, figures 38 and 39 show that the

explored area over time, w(t), and the deviation in the size of regions,

σrs(t), do not significantly differ for communication radiuses between

10% and 30% of L.

Regarding the exploration and arrival times, figures 40a and 40c,

they also increase when the communication radius decreases. However,

those figures show that the exploration and arrival times do not signif-

icantly differ for communication radiuses smaller then 20%.

Other significant differences in experiment C are shown in figures

40e and 40f. The redundant explored area is much larger in experiment

C than in A and B. Moreover, the exploration quality is worse in ex-

periment C.

132 Chapter 6. HKME EVALUATION

E
x
p
lo

ra
ti

o
n
 T

im
e
 (

s
)

400

300

500

150

250

350

450

200

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(a) Exploration times.

c
e
 (

m
)

ÀÁÁ

ÂÁÁ

ÀÃÁ

ÀÄÁ

ÀÅÁ

ÀÆÁ

ÃÃÁ

ÃÄÁ

ÃÅÁ

ÃÆÁ

ÂÃÁ

ÂÄÁ

ÃÁÁ

ÇÈÉÉÊËication rÌÍÎÊÏ ÐÑÒ
5 ÀÁÁÃÁ ÄÁ ÅÁ ÆÁÀÁ ÂÁ ÓÁ ÔÁ ÕÁ

(b) Traveled distances.

im
e
 (

s
)

Ö××

100

300

50

150

ÖØ×

350

ÙÚÛÛÜÝÞßàáÞÚÝ âàãÞÜä å%)
5 100Ö× 40 60 8010 30 50 70 æ×

0

(c) Arrival times.

Tr
a
v
e
le

d
 D

is
ta

n
c
e
 D

e
v
ia

ti
o
n
 (

%
)

20

10

30

5

15

25

35

0

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(d) Standard deviation of the distance.

R
e
d
u
n
d
a
n

çèè

éè

êè

ëè

ìè

çéè

çè

íè

îè

ïè

ðè

ççè

è

ñòóóôõication rö÷øôù úûü
5 çèèéè êè ëè ìèçè íè îè ïè ðè

ra

(e) Redundancy in the exploration.

E
x
p
lo

ra
ti

o
n
 Q

u
a
li
ty

 (
%

)

20

40

60

10

30

50

5

15

25

35

45

55

0

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(f) Relative exploration quality

Figure 36 – Results obtained in the experiment with a workspace with clut-
tered obstacles.

6.6. Discussions 133

Figure 37 – Paths of robots in office-like workspace for different communi-
cation radiuses.

6.6 DISCUSSIONS

The results obtained from the previous experiments indicate

that, even when robots have a limited communication radius, HKME

is able to coordinate them to explore unknown workspaces and build

a complete map in an online fashion. In general, the exploration effi-

ciency decreases with the communication radius as expected. Specif-

ically, when the radius decreases, the exploration times, arrival times

134 Chapter 6. HKME EVALUATION

0

Time (s)

0

100

20

40

60

ýþ

10

30

50

ÿþ

9þ
E

x
p

lo
re

d
 A

re
a

 (
%

)

100%
50%
30%
20%
10%
5%

200 400 600100 300 500

Figure 38 – Explored area in office-like workspace for different communica-
tion radiuses.

R
e

g
io

n
's

 s
iz

e
 d

e
v
ia

ti
o

n
 (

%
)

0
0

200 400 600100 300 500

2

4

6

1

3

5

0.5

1.5

2.5

3.5

4.5

5.5 100%
30%
5%

Time (s)

Figure 39 – Deviation of the size of regions in office-like workspace for dif-
ferent communication radiuses.

and traveled distances increase, whereas the exploration quality de-

creases.

Measures such as the exploration times, traveled distances and

redundant area decay exponentially when the communication radius

6.6. Discussions 135

E
x
p
lo

ra
ti

o
n
 T

im
e
 (

s
)

400

600

100

300

500

150

250

350

450

550

200

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(a) Exploration times.

100

300

120

140

160

180

220

240

260

280

320

200

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(b) Traveled distances.

im
e
 (

s
)

2��

100

2�

40

60

80

12�

140

160

180

22�

2��

0

C�����i���i�� 	�ai�
 �%)
5 1002� 40 60 8010 30 50 70 ��

(c) Arrival times.

Tr
a
v
e
le

d
 D

is
ta

n
c
e
 D

e
v
ia

ti
o
n
 (

%
)

20

40

10

30

50

5

15

25

35

45

0

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(d) Standard deviation of the distance.
200

100

20

40

60

80

120

140

160

180 ra

0

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

R
e
d
u
n
d
a
n

(e) Redundancy in the exploration.

E
x
p
lo

ra
ti

o
n
 Q

u
a
li
ty

 (
%

)

20

10

30

5

15

25

35

0

Communication radius (%)
5 10020 40 60 8010 30 50 70 90

(f) Relative exploration quality.

Figure 40 – Results obtained in the experiment with an office-like workspace.

136 Chapter 6. HKME EVALUATION

decreases and can be fitted by a function f (x) =αe−β x+γ. In turn, the

exploration quality, Qr, can be approximated to the function f (x) =

γ−αe−β x. Table 5 shows the parameters of the exponential functions

f (x) that approximate the measures considered in our experiments, and

the average and maximum errors between these fitting functions and

the real data.

Table 5 – Fitting functions.

Measure Exp. α β (×10−2) γ e emax

A 132.6 5.05 164.4 3.3% 4.8%
expT 90 B 122.7 4.87 176.3 3.4% 5.5%

C 99.1 3.22 170.2 5.1% 12.3%
A 145.3 5.31 179.5 4.3% 5.6%

expT 95 B 147.11 5.10 191.4 3.4% 5.5%
C 112.2 3.45 197.8 6.1% 12.1%
A 205.0 6.10 219.8 6.9% 10.1%

expT 100 B 203.0 5.27 231.4 3.1% 4.3%
C 169.7 3.90 238.7 6.9% 12.3%
A 59.1 7.22 124.6 2.4% 4.4%

td90 B 67.2 7.42 131.3 1.1% 1.6%
C 41.3 5.10 130.2 4.7% 8.2%
A 81.8 8.96 138.1 3.1% 6.2%

td95 B 81.1 7.89 145.0 1.5% 2.0%
C 61.5 5.32 145.0 6.0% 9.4%
A 118.5 1.00 173.1 5.1% 10.5%

td100 B 125.8 9.10 174.5 2.9% 5.2%
C 70.9 51.6 180.2 5.0% 8.6%
A 516.3 37.8 1.8 1.1% 1.1%

ra B 385.5 31.9 2.4 1.1% 1.4%
C 796.7 40.7 17.0 8.8% 12.9%
A 25.7 9.58 41.1 5.1% 7.8%

Qr B 20.4 7.53 44.7 2.3% 4.3%
C 10.0 7.10 29 3.9% 6.3%

The coefficients α, β and γ associated with the measures in ex-

periments A and B are similar, but significantly differ from the ones

associated with experiment C. The office-like workspace considered in

experiment C is quite different from the ones considered in A and B,

suggesting that there is a relationship between the values of the coef-

ficients of the fitting functions and the workspace characteristics, such

as its size and how much cluttered it is. However, the data gathered

in this work are not sufficient to draw further conclusions about the

impact of the workspace on the values of those coefficients. Thus, new

6.6. Discussions 137

experiments must be conducted to analyze and define the relationship

between the values of α, β and γ and different characteristics of the

workspace (size, percentage of area occupied by obstacles, average dis-

tance among obstacles, etc.).

For most fitting functions whose coefficients are presented in ta-

ble 5, the average error is usually smaller than 4%, with the maximum

error usually smaller than 6%. However, for some measures in exper-

iment A and most of them in experiment C, the error is much larger,

almost reaching 13% in the worst case. The larger error in those cases

is associated with the larger deviation in the value of the measures

for the different trials, indicated by triangles (△ and ▽) in the figures

where these measures are presented.

Regarding the exploration efficiency, the main reason for its ex-

ponential decay when the communication radius is reduced is that

the robots tend to be separated in several unconnected networks.

Since robots in different networks cannot exchange messages, they

cannot share information or coordinate themselves. Furthermore, the

workspace partitioning becomes less efficient.

In HKME, instead of running a centralized scheme to partition

the entire unexplored workspace, clusterheads of a network exchange

cells from their own sectors to reshape the workspace global partition-

ing. Then, they partition their sectors in regions and assign the regions

to the members of their clusters.

If all robots always have a communication link with each other,

HKME behaves like KME. When the robots are in a network with

several clusters, the efficiency of HKME may degrade. This occurs be-

cause, after the global partitioning phase, clusterheads partition their

sectors into regions locally. Clusterheads also assign regions and allo-

cate frontiers locally, considering only members of their clusters. Fi-

nally, if robots are separated in several unconnected networks, HKME

is executed independently in each network. Therefore, clusterheads

generate sectors during the global partitioning phase, only considering

the areas owned by the robots in their network, which can significantly

decrease the efficiency of the workspace partitioning.

138 Chapter 6. HKME EVALUATION

As the partitioning efficiency decreases, regions can be generated

in a way that their cells spread over large areas. In those situations,

robots may need to move long distances through already explored areas

to reach all parts of their regions. Figures 29, 33 and 37 show that, as

the communication radius decreases, the robots’ paths become longer

and with a higher degree of intersections2 with both the paths of other

robots and their own paths.

Despite the aforementioned partitioning efficiency problems and

the difficulty to share information, figures 32e, 36e and 40e show that

the percentage of redundant explored area is usually small and almost

constant. This occurs because HKME disperses the robots through the

workspace quickly (Tarrival is usually close to 25% of the exploration

time and T max
arrival close to 50%), even when the communication radius

decreases. Redundancy significantly increases only for small values of

radius (10% and 5% of L), which can prevent even nearby robots from

exchanging information and coordinating the exploration together.

Regarding the topology of the workspace, robots take more time

(and travel longer distances) to explore more cluttered workspaces.

This occurs because in some workspaces, such as the office-like, robots

can be forced to move close to each other and go back through already

explored areas when they reach a dead-end. On the other hand, in

empty workspaces, robots can move freely, decreasing both the explo-

ration time and traveled distance.

In the experiments, the exploration efficiency in the office-like

workspace (experiment C) is worse than in the experiments with other

workspaces. Despite the size of the office-like workspace (63×50m2) is

smaller than the others (100×50m2), the exploration and arrival times

and the traveled distances are the worst in experiment C. Furthermore,

the relative exploration quality in experiment C is significantly smaller

than in the others.

The office-like workspace is made of rooms and corridors, hence

2 The paths of two robots intersect if they move through the same position (at different instants
of the simulation) or through positions that are so close that the areas sensed from them are
highly overlapped.

6.6. Discussions 139

forcing some robots to move close to each other in several moments,

which can be noticed in the robots’ paths (figure 37). As a result,

the redundant explored area is also very high. Figures 32e and 36e

show that the redundant explored area in experiments A and B is close

to 5% for most communication radiuses, reaching 80% in the worst

case. On the other hand, in the office-like workspace (figure 40e), the

redundancy is close to 20% for communication radiuses above 20% of

L, approaching 140% in the worst case.

Another parameter that is affected by the structure of the

workspace is the relative standard deviation of traveled distances (σ rel
td).

In experiments A and B, σ rel
td increases when the radius decreases, fig-

ures 32d and 36d. In experiment C, however, figure 40d shows that

σ rel
td does not follow a monotonic rising curve. Instead, all values of

σ rel
td are close to 6% (except for a communication radius of 5%). This

occurs because the disposition of obstacles (walls) in the workspace can

unbalance the distance traveled by the robots more than the problems

associated with the communication radius itself.

141

7 CONCLUSIONS

This thesis approaches the problem of multi-robots exploration,

focusing on how robots can share the information they detect and

how they can be coordinated in order to explore the workspace effi-

ciently. Specifically, we approach multi-robots exploration considering

that robots have a limited communication radius and can be separated

in several unconnected networks.

The multi-robots exploration was divided in two problems: map

sharing, which allows robots to share the information they detect

about the environment and synchronize their maps as the explore the

workspace; and allocation of exploration targets, which allows robots

to coordinated themselves in order to fairly distribute the workload

among them and quickly spread over the workspace. Thus, during the

PhD, two complementary goals were pursued: to develop an efficient

method for map sharing and to develop a method for multi-robots co-

ordination in exploration tasks. Next, we present a summary of the

contributions on each problem.

MAP SHARING

Two methods, one based on a flat network architecture (DSM)

and another based in a hierarchical architecture (HSM), were proposed

to share map information when robots have limited communication.

In Distributed Synchronization Method (DSM), robots use a

propagation scheme to share information and there is no need for net-

work formation and maintenance, making the method easier to im-

plement. The Hierarchical Synchronization Method (HSM) organizes

robots in a hierarchical architecture, which can make robots lose time

executing cluster formation algorithms. However, the HSM surpass

DSM performance in most situations and also makes easier for robots

to handle problems as message losses.

The methods were also compared with Sheng’s method. Only

in situations where a robot finishes exploring a frontier, the HSM and

142 Chapter 7. CONCLUSIONS

Sheng’s method have a similar performance, while the DSM usually

presents the worst performance, with higher convergence times, num-

ber of exchanged messages and transmitted data. When two networks

merge, the efficiency of Sheng’s method decreases significantly when the

number of robots or the size of maps increases. Also, Sheng’s method

do not guarantee convergence when several networks merge.

On the other hand, both the DSM and HSM scale well when two

(or more) networks merge, with the HSM performing better than the

DSM in most scenarios.

COORDINATION IN ROBOTS EXPLORATION

This thesis also proposes Hierarchical K-Means (HKME), a new

distributed method for multi-robot exploration under constrained com-

munication. The basis of HKME is the workspace partitioning scheme

and the assignment of regions and frontiers in a way that minimizes

aspects such as the variance of arrival time and the traveled distance.

In HKME, robots are grouped in clusters, and clusterheads are respon-

sible for managing the communication in the network, partitioning the

workspace and assigning regions and frontiers to the members of their

clusters. In addition, HKME considers that robots in a network have

the same LAV version and uses HSM method for map sharing to guar-

antee that.

Experiments with HKME by considering different types of

workspace and communication radiuses have been conducted, show-

ing that HKME is able to explore the entire workspace efficiently. The

smaller the communication radius, the less efficient HKME becomes,

takinglonger to complete the exploration. In these situations, the trav-

eled distance, arrival times and deviation in the size of regions also

become larger.

The main influence of the communication radius in HKME is on

the quality of the workspace partition and region assignment, which are

sub-optimal when the robots are separated in several unconnected net-

works. When robots have a small communication radius, the detected

7.1. Future work 143

information takes longer to be shared within the system, leading to

redundant exploration.

The topology of the workspace has also a big impact on the

efficiency of HKME. In office-like workspaces, for instance, a region can

have areas in two or more rooms, which will force its assigned robot

to travel a long distance to fully explore that region. This problem is

reduced by the periodic partitioning and assignment of regions.

Another important benefit of HKME is that, after exploring their

regions, robots do not remain idle and start exploring regions of other

robots. Besides improving the exploration efficiency, this feature makes

HKME robust to robot failures, thus relaxing the initial assumption

that robots cannot fail.

7.1 FUTURE WORK

Regarding the workspace boundaries

Future work can explore issues related to the workspace bound-

aries, region exploration and robot failures. With respect to the first

issue, we plan to extend HKME to handle unbounded workspaces or

situations where the boundaries are unknown.

Regarding regions exploration

Regarding regions exploration, we will investigate the use of cov-

erage methods by robots that already reached their assigned regions.

Currently, we use a greedy strategy to assign frontiers for robots that

already reached their regions, assigning the closest one. Using a cover-

age method to calculate the shortest path that takes the robot through

all areas of its region, we can improve exploration quality and decrease

exploration time. Another aspect that will be investigated is the possi-

bility of assigning more than one robot per region, which might improve

the exploration by given more freedom to robots explore the workspace.

144 Chapter 7. CONCLUSIONS

Regarding robot failures

Regarding robot failures, the mechanisms the HKM uses to as-

sign frontiers to robots make it robust to robot failures. However, in

this thesis, we do not investigate the influence of robot failures in the

exploration efficiency. In future work, we will evaluate the HKM’s in

scenarios with robot failures.

Regarding the workspace characteristics

Finally, we plan to further investigate the influence of the

workspace in the performance of HKME. To do so, new experiments

will be conducted in order to analyze the impact of the workspace

characteristics on the exploration efficiency and the relationship be-

tween them and the values of the coefficients α, β and γ of the fitting

functions presented in chapter 6.

145

BIBLIOGRAPHY

ABBASI, A. A.; YOUNIS, M. A survey on clustering algorithms for
wireless sensor networks. Computer communications, Elsevier, v. 30, n. 14,
p. 2826–2841, 2007. 28, 29, 72, 102

AHMED, N. R.; SAMPLE, E. M.; CAMPBELL, M. Bayesian
multicategorical soft data fusion for human–robot collaboration. IEEE

Transactions on Robotics, IEEE, v. 29, n. 1, p. 189–206, 2013. 28

ASGHARBEYGI, N.; MALEKI, A. Geodesic k-means clustering. In: IEEE.
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on.
[S.l.], 2008. p. 1–4. 40

BAUTIN, A.; SIMONIN, O.; CHARPILLET, F. Minpos: A novel
frontier allocation algorithm for multi-robot exploration. In: SPRINGER.
International Conference on Intelligent Robotics and Applications. [S.l.],
2012. p. 496–508. 19

BERHAULT, M. et al. Robot exploration with combinatorial auctions. In:
IEEE. Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003

IEEE/RSJ International Conference on. [S.l.], 2003. v. 2, p. 1957–1962. 42,
45, 47

BERTSEKAS, D. P. The auction algorithm for assignment and other network
flow problems: A tutorial. Interfaces, INFORMS, v. 20, n. 4, p. 133–149,
1990. 40

BURGARD, W. et al. Collaborative multi-robot exploration. In: IEEE.
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International

Conference on. [S.l.], 2000. v. 1, p. 476–481. 25, 30, 35, 36, 37, 43, 44, 46,
101

BURGARD, W. et al. Coordinated multi-robot exploration. Robotics, IEEE

Transactions on, IEEE, v. 21, n. 3, p. 376–386, 2005. 19, 20, 25, 31, 34, 35,
36, 37, 45, 47, 101

BUTZKE, J.; LIKHACHEV, M. Planning for multi-robot exploration
with multiple objective utility functions. In: IEEE. Intelligent Robots and

Systems (IROS), 2011 IEEE/RSJ International Conference on. [S.l.], 2011.
p. 3254–3259. 19

CAMBRUZZI, W. E.; FARINES, J.-M.; JUNIOR, W. K. Um algoritmo
baseado em peso para formaçao e manutençao de agrupamentos em
redes veiculares ad hoc. Anais do 27ö Simpósio Brasileiro de Redes de

Computadores e Sistemas Distribuıdos, 2009. 30

146 Bibliography

CARVALHO, F. F. et al. A multi-robot exploration approach based on
distributed graph coloring. In: IEEE. Robotics Symposium and Competition

(LARS/LARC), 2013 Latin American. [S.l.], 2013. p. 142–147. 25, 41

CAVALCANTE, R. C.; NORONHA, T. F.; CHAIMOWICZ, L. Improving
combinatorial auctions for multi-robot exploration. In: IEEE. Advanced

Robotics (ICAR), 2013 16th International Conference on. [S.l.], 2013.
p. 1–6. 42

CHATTERJEE, M.; DAS, S. K.; TURGUT, D. Wca: A weighted clustering
algorithm for mobile ad hoc networks. Cluster Computing, Springer, v. 5,
n. 2, p. 193–204, 2002. 28, 51, 105

DHURANDHER, S. K.; SINGH, G. Weight based adaptive clustering in
wireless ad hoc networks. In: IEEE. Personal Wireless Communications,

2005. ICPWC 2005. 2005 IEEE International Conference on. [S.l.], 2005. p.
95–100. 28, 51, 102

DISSANAYAKE, M. G. et al. A solution to the simultaneous localization
and map building (slam) problem. IEEE Transactions on robotics and

automation, IEEE, v. 17, n. 3, p. 229–241, 2001. 26

ELFES, A. Using occupancy grids for mobile robot perception and
navigation. Computer, IEEE, v. 22, n. 6, p. 46–57, 1989. 27, 28, 112

EPHREMIDES, A.; WIESELTHIER, J. E.; BAKER, D. J. A design concept
for reliable mobile radio networks with frequency hopping signaling.
Proceedings of the IEEE, IEEE, v. 75, n. 1, p. 56–73, 1987. 28, 29, 105

FAIGL, J.; KULICH, M. On benchmarking of frontier-based multi-robot
exploration strategies. In: IEEE. Mobile Robots (ECMR), 2015 European

Conference on. [S.l.], 2015. p. 1–8. 40

FAIGL, J.; KULICH, M.; PŘEUČIL, L. Goal assignment using distance cost
in multi-robot exploration. In: IEEE. Intelligent Robots and Systems (IROS),

2012 IEEE/RSJ International Conference on. [S.l.], 2012. p. 3741–3746. 40

FEI, W. et al. A comprehensive uav indoor navigation system based on
vision optical flow and laser fastslam. Acta Automatica Sinica, Elsevier,
v. 39, n. 11, p. 1889–1899, 2013. 26

FLOCCHINI, P. et al. Computing without communicating: Ring exploration
by asynchronous oblivious robots. Algorithmica, Springer, v. 65, n. 3, p.
562–583, 2013. 25

Bibliography 147

FOX, D. et al. Distributed multirobot exploration and mapping. Proceedings

of the IEEE, IEEE, v. 94, n. 7, p. 1325–1339, 2006. 36, 37

FRANCHI, A. et al. A randomized strategy for cooperative robot exploration.
In: IEEE. Robotics and Automation, 2007 IEEE International Conference

on. [S.l.], 2007. p. 768–774. 32, 37

FRANCHI, A. et al. The sensor-based random graph method for cooperative
robot exploration. Mechatronics, IEEE/ASME Transactions on, IEEE, v. 14,
n. 2, p. 163–175, 2009. 32, 37, 46, 102

GERKEY, B.; VAUGHAN, R. T.; HOWARD, A. The player/stage project:
Tools for multi-robot and distributed sensor systems. In: Proceedings of the

11th international conference on advanced robotics. [S.l.: s.n.], 2003. v. 1,
p. 317–323. 23, 119

GERLA, M.; TSAI, J. T.-C. Multicluster, mobile, multimedia radio network.
Wireless networks, Springer, v. 1, n. 3, p. 255–265, 1995. 28, 105

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the
heuristic determination of minimum cost paths. Systems Science and

Cybernetics, IEEE Transactions on, IEEE, v. 4, n. 2, p. 100–107, 1968. 34

HAUMANN, D.; WILLERT, V.; LISTMANN, K. D. Discoverage: From
coverage to distributed multi-robot exploration. IFAC Proceedings Volumes,
Elsevier, v. 46, n. 27, p. 328–335, 2013. 25

HOWARD, R. A. Dynamic programming and markov processes. 1960. 34

HSU, D.; LATOMBE, J.-C.; KURNIAWATI, H. On the probabilistic
foundations of probabilistic roadmap planning. The International Journal of

Robotics Research, SAGE Publications, v. 25, n. 7, p. 627–643, 2006. 27

KAPLOW, R.; ATRASH, A.; PINEAU, J. Variable resolution decomposition
for robotic navigation under a pomdp framework. In: IEEE. Robotics and

Automation (ICRA), 2010 IEEE International Conference on. [S.l.], 2010. p.
369–376. 27

KAVRAKI, L. E.; LATOMBE, J.-C. Probabilistic roadmaps for robot path
planning. Citeseer, 1998. 27

KUBALE, M. et al. A better practical algorithm for distributed graph
coloring. In: IEEE. null. [S.l.], 2002. p. 72. 41

KUBELKA, V. et al. Robust data fusion of multimodal sensory information
for mobile robots. Journal of Field Robotics, Wiley Online Library, v. 32,
n. 4, p. 447–473, 2015. 28

148 Bibliography

KUHN, H. W. The hungarian method for the assignment problem. Naval

research logistics quarterly, Wiley Online Library, v. 2, n. 1-2, p. 83–97,
1955. 38

KUO, B.-W. et al. A light-and-fast slam algorithm for robots in indoor
environments using line segment map. Journal of Robotics, Hindawi
Publishing Corporation, v. 2011, 2011. 26

LAGOUDAKIS, M. G. et al. Simple auctions with performance guarantees
for multi-robot task allocation. In: IEEE. Intelligent Robots and Systems,

2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference

on. [S.l.], 2004. v. 1, p. 698–705. 31, 42, 45, 46, 47

LUO, R. C.; LAI, C. C. Enriched indoor map construction based on
multisensor fusion approach for intelligent service robot. IEEE Transactions

on Industrial Electronics, IEEE, v. 59, n. 8, p. 3135–3145, 2012. 28

MATIGNON, L.; JEANPIERRE, L.; MOUADDIB, A.-I. Coordinated
multi-robot exploration under communication constraints using decentralized
markov decision processes. In: AAAI 2012. [S.l.: s.n.], 2012. p. p2017–2023.
19

MONTEMERLO, M.; THRUN, S. Simultaneous localization and mapping
with unknown data association using fastslam. In: IEEE. Robotics and

Automation, 2003. Proceedings. ICRA’03. IEEE International Conference

on. [S.l.], 2003. v. 2, p. 1985–1991. 26

NIETO-GRANDA, C.; ROGERS, J. G.; CHRISTENSEN, H. I. Coordination
strategies for multi-robot exploration and mapping. The International

Journal of Robotics Research, SAGE Publications, p. 0278364913515309,
2014. 43

PUIG, D.; GARCÍA, M. A.; WU, L. A new global optimization strategy
for coordinated multi-robot exploration: Development and comparative
evaluation. Robotics and Autonomous Systems, Elsevier, v. 59, n. 9, p.
635–653, 2011. 19, 21, 23, 25, 35, 43, 44, 45, 47, 101, 102, 112, 114, 116

RODGER, J. A. Toward reducing failure risk in an integrated vehicle
health maintenance system: A fuzzy multi-sensor data fusion kalman filter
approach for ivhms. Expert Systems with Applications, Elsevier, v. 39, n. 10,
p. 9821–9836, 2012. 28

ROGERS, J. G.; NIETO-GRANDA, C.; CHRISTENSEN, H. I. Coordination
strategies for multi-robot exploration and mapping. In: SPRINGER.
Experimental Robotics. [S.l.], 2013. p. 231–243. 43

Bibliography 149

ROSEN, K. H.; KRITHIVASAN, K. Discrete mathematics and its

applications. [S.l.]: McGraw-Hill New York, 1999. 62

SARIEL, S.; BALCH, T. Real time auction based allocation of tasks for
multi-robot exploration problem in dynamic environments. In: Proceedings

of the AAAI-05 Workshop on Integrating Planning into Scheduling. [S.l.:
s.n.], 2005. p. 27–33. 31, 43

SARIEL, S.; BALCH, T. R. Efficient bids on task allocation for multi-robot
exploration. In: FLAIRS Conference. [S.l.: s.n.], 2006. p. 116–121. 31, 43,
45, 47, 102

SENTHILKUMAR, K.; BHARADWAJ, K. Multi-robot exploration and
terrain coverage in an unknown environment. Robotics and Autonomous

Systems, Elsevier, v. 60, n. 1, p. 123–132, 2012. 20

SHALAL, N. et al. Orchard mapping and mobile robot localisation using
on-board camera and laser scanner data fusion–part a: Tree detection.
Computers and Electronics in Agriculture, Elsevier, v. 119, p. 254–266,
2015. 28

SHENG, W. et al. Distributed multi-robot coordination in area exploration.
Robotics and Autonomous Systems, Elsevier, v. 54, n. 12, p. 945–955, 2006.
25, 32, 46, 49, 52, 85, 99

SHENG, W. et al. Efficient map synchronization in ad hoc mobile robot
networks for environment exploration. In: IEEE. Intelligent Robots and

Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on.
[S.l.], 2005. p. 2297–2302. 22, 32, 46, 52, 85

SIM, R.; ROY, N. Global a-optimal robot exploration in slam. In: IEEE.
Proceedings of the 2005 IEEE International Conference on Robotics and

Automation. [S.l.], 2005. p. 661–666. 25

SIMMONS, R. et al. Coordination for multi-robot exploration and mapping.
In: AAAI/IAAI. [S.l.: s.n.], 2000. p. 852–858. 20, 30, 36, 39, 45, 46, 47

STACHNISS, C.; MOZOS, O. M.; BURGARD, W. Speeding-up multi-robot
exploration by considering semantic place information. In: IEEE. Robotics

and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International

Conference on. [S.l.], 2006. p. 1692–1697. 36

STACHNISS, C.; MOZOS, Ó. M.; BURGARD, W. Efficient exploration
of unknown indoor environments using a team of mobile robots. Annals of

Mathematics and Artificial Intelligence, Springer, v. 52, n. 2-4, p. 205–227,
2008. 20, 31, 36, 45, 46, 47, 101

150 Bibliography

SU, H. FastSLAM An Improved Particle Filtering Algorithm for Simultaneous

Localization and Mapping: A Survey. [S.l.], 2008. 26

THRUN, S.; LEONARD, J. J. Simultaneous localization and mapping. In:
Springer handbook of robotics. [S.l.]: Springer, 2008. p. 871–889. 26

VISSER, A. et al. Discussion of multi-robot exploration in communication-
limited environments. Max Planck Institute for biological Cybernetics, 2013.
19

VISSER, A.; SLAMET, B. A. Balancing the information gain against
the movement cost for multi-robot frontier exploration. In: SPRINGER.
European Robotics Symposium 2008. [S.l.], 2008. p. 43–52. 45, 47

WURM, K. M.; STACHNISS, C.; BURGARD, W. Coordinated multi-robot
exploration using a segmentation of the environment. In: IEEE. Intelligent

Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference

on. [S.l.], 2008. p. 1160–1165. 38, 101

YAMAUCHI, B. Frontier-based exploration using multiple robots. In: ACM.
Proceedings of the second international conference on Autonomous agents.
[S.l.], 1998. p. 47–53. 31, 34, 40, 46, 102

ZLOT, R. et al. Multi-robot exploration controlled by a market economy.
In: IEEE. Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE

International Conference on. [S.l.], 2002. v. 3, p. 3016–3023. 31, 39, 123

	Title page
	Approval
	Epigraph
	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	INTRODUCTION
	Objective
	Specific Objectives

	Thesis Organization

	MULTI-ROBOTS EXPLORATION
	Exploration Problem
	Map representation

	Communication in Distributed Solutions
	Map Sharing
	Sheng's Method

	Coordination in Multi-Robots Exploration
	Robot Assignment Policies
	Target Assignment Policies
	Global Optimization: K-Means for MRS exploration

	Conclusions

	PROPOSED METHODS FOR MAP SHARING
	Problem Description
	Distributed Synchronization Method
	DSM Illustrative Example
	Local Application View Concept
	Relations and Operations on LAVs
	Sharing Process
	Processes Coordinator Algorithm

	LAV convergence on an execution of DSM
	DSM Convergence: Single Robot
	DSM Convergence: Multiple Robots
	On the parallel execution of several sharing process

	Hierarchical Synchronization Method
	HSM Dynamics
	Simple Sharing Scheme
	LAV Synchronization Scheme

	Conclusions

	EVALUATION OF MAP SHARING METHODS
	Experimental setup
	Experiment A: Influence of the Number of Robots
	Experiment B: Influence of Network Topology
	Experiment C: Influence of the Size of Maps
	Discussions

	HIERARCHICAL K-MEANS
	Problem Description
	Hierarchical K-Means for Multi-Robots Exploration
	Phases of Hierarchical K-Means
	Network Formation and Management
	Global Partitioning
	Local Partitioning
	Frontier Allocation
	Allocating Frontiers to Robots with Explored Regions

	Conclusions

	HKME EVALUATION
	Experimental setup
	Criteria for HKME Evaluation
	Experiment A: Empty Workspace
	Experiment B: Workspace with Scattered Obstacles
	Experiment C: Office-like Workspace
	Discussions

	CONCLUSIONS
	Future work

	Bibliography

