SÍNTESE DE UM COMPLEXO MONONUCLEAR DE Cu(II) COM ATIVIDADE DE CATECOLASE

RHANNANDA COPETTI PIVETTA

Florianópolis
Novembro/2016
SÍNTESE DE UM COMPLEXO MONONUCLEAR DE Cu(II) COM ATIVIDADE DE CATECOLASE

Relatório apresentado ao Departamento de Química da Universidade Federal de Santa Catarina, como requisito parcial da disciplina de Estágio Supervisionado II (QMC 5512)

Prof. Dr. ADEMIR NEVES (Orientador)
Prof. Dr. BERNARDO DE SOUZA (Coorientador)

Florianópolis
Novembro/2016
Rhannanda Copetti Pivetta

SÍNTESE DE UM COMPLEXO MONONUCLEAR DE Cu(II) COM ATIVIDADE DE CATECOLASE

Prof. Dr. Luciano Vitali
Coordenador de Estágio do Curso de Química-Bacharelado

Banca Examinadora:

Prof. Dr. Ademir Neves
Orientador

Prof.ª Dr.ª Hérica Aparecida Magosso

Prof.ª Dr.ª Rosely Aparecida Peralta

Florianópolis
Novembro/2016
Agradecimentos

Agradeço e dedico este trabalho a minha mãe Denise que sempre esteve me apoiando e incentivando. Todo o amor e carinho dado ao longo dos anos me ajudaram a chegar até aqui.

Agradeço ao Professor Bernardo de Souza pela orientação e paciência em todos os momentos, e ao Professor Ademir Neves pela oportunidade, ambos fizeram este trabalho se tornar realidade.

Agradeço a minha amiga Ariane, que mesmo longe sempre me escutou e me incentivou em busca do melhor.

Agradeço aos amigos que ajudaram a tornar o curso melhor, aos momentos felizes dentro da sala de aula e fora dela também. Breno, Carol, Caetano, Fe, Igor, Marina, Natan, Nico, Roger e Scheide agradeço pelo apoio, horas de estudo, conhecimento e alegria divididos, vocês são incríveis e espero ter vocês sempre por perto.

Agradeço ao André, que me aturou nos momentos que achei que estava tudo dando errado, sempre me ajudando e me alegrando. Fez com que os dias no laboratório fossem sempre melhores.

Agradeço a Graciela e a Bruna, a amizade de vocês foi importante em todas as horas, dentro e fora do laboratório. Obrigada pela parceria.

Agradeço ao Thiago, que sempre me apoiou e ajudou, todo carinho, compreensão, companhia e paciência foram muito importantes, mais ainda nesta etapa final.

Agradeço aos labinquianos pelo convívio no dia a dia. Cacau, Thaisy, Filipy, Sarita, Cláudia, obrigada pela ajuda e companhia no laboratório.

Agradeço ao CNPq e demais órgãos, por viabilizarem a execução deste projeto.
SUMÁRIO

1 INTRODUÇÃO .. 7
2 REVISÃO DA LITERATURA .. 8
 2.1 Bioinorgânica ... 8
 2.2 Enzimas .. 9
 2.3 Metaloenzimas de Cobre ... 10
 2.4 Catecol Oxidase ... 14
 2.5 Complexos mononucleares de cobre para atividade de catecolase 16
3 OBJETIVOS .. 20
 3.1 Objetivo Geral ... 20
 3.2 Objetivos Específicos ... 20
4 METODOLOGIA .. 21
 4.1 Materiais e Reagentes ... 21
 4.2 Métodos de Caracterização ... 21
 4.2.1 Ponto de Fusão .. 21
 4.2.2 Espectroscopia vibracional na região do infravermelho – IV 21
 4.2.3 Espectroscopia de ressonância magnética nuclear – RMN 22
 4.2.4 Espectroscopia eletrônica na região do ultravioleta-visível – UV-Vis 22
 4.2.5 Espectrometria de massa ... 22
 4.2.6 Medidas eletroquímicas .. 22
 4.2.7 Difractometria de raios X ... 23
 4.2.8 Condutividade molar ... 23
 4.2.9 Cinética de oxidação ... 23
 4.3 Sínteses ... 25
 4.3.1 Síntese do N-bis-(2-piridilmetil)amina (bpma) ... 25
 4.3.2 Síntese do 1-((bis(2-piridilmetil)amino)metil)2-naftol (naftolbpma) ... 25
 4.3.2 Síntese do complexo [Cu(naftolbpma)(OAc)].3H₂O (1) 26
5. RESULTADOS E DISCUSSÃO ... 28
 5.1. Caracterização do bpma ... 28
 5.1.1 Espectroscopia vibracional na região do infravermelho (IV). 28
 5.1.2 Ressonância magnética nuclear de hidrogênio (RMN ¹H) 29
 5.2 Caracterização do ligante naftolbpma ... 32
 5.2.1 Ponto de fusão ... 32
5.2.2 Espectroscopia vibracional na região do infravermelho (IV) 32
5.2.3 Ressonância magnética nuclear de hidrogênio (RMN 1H) 33

5.3 Caracterização do complexo [Cu(naftolbpma)(OAc)].3H$_2$O (1) 38
 5.3.1 Espectroscopia vibracional na região do infravermelho (IV) 38
 5.3.2 Espectroscopia eletrônica na região do ultravioleta-visível – UV-Vis 40
 5.3.3 Condutividade molar ... 43
 5.3.4 Espectrometria de massas .. 43
 5.3.5 Eletroquímica ... 45
 5.3.6 Difrataometria de raios X .. 47
 5.3.7 Cinética de oxidação .. 49
 5.3.8 Detecção de peróxido ... 53

6 CONSIDERAÇÕES FINAIS ... 55

7 REFERÊNCIAS BIBLIOGRÁFICAS ... 56
Muitas reações catalisadas por enzimas ainda não possuem seus mecanismos completamente conhecidos, na tentativa de compreender o processo destas reações, se busca a síntese de modelos biomiméticos. O cobre, metal de interesse neste trabalho, está presente no sítio ativo de muitas enzimas dentre elas a catecol oxidase. O presente trabalho teve por finalidade desenvolver um composto de baixa massa molecular que possa ser considerado um modelo biomimético de catecolase.

O ligante naftolbpma foi sintetizado e caracterizado por espectroscopia no infravermelho, ressonância magnética nuclear de hidrogênio e carbono apresentando grau de pureza adequado para a síntese do complexo. O complexo de cobre(II) [Cu(naftolbpma)(OAc)].H_2O teve sua estrutura determinada por difração de raios X mostrando-se um complexo mononuclear. As técnicas de espectroscopia no infravermelho, espectroscopia eletrônica UV-Vis, espectrometria de massa e eletroquímica também foram utilizadas na caracterização do complexo. Foram realizados estudos frente à oxidação do susbtrato 3,5-di-terc-butilcatecol (DTBC) à 3,5-di-terc-butilquinona (DTBQ), analisando efeitos de pH e concentração do substrato. Os resultados indicaram que o complexo sintetizado apresenta atividade catalítica, porém, inferiores à apresentadas por outros complexos descritos na literatura.

Palavras chave: catecol oxidase, complexos mononucleares de cobre, modelos biomiméticos.
1 INTRODUÇÃO

Sintetizar e estudar modelos biomiméticos de baixa massa molecular, análogos aos sítios ativos de enzimas, permite tentar desvendar a reatividade dos sistemas biológicos aparentemente complexos. Esta busca realizada por diversos pesquisadores têm sido não apenas no âmbito de esclarecimentos de mecanismos de reações e desenvolvimento de sistemas tão eficientes quantos os naturais, porém com um propósito maior de correlacionar fenômenos observados da natureza.

O desenvolvimento destes modelos biomiméticos envolve, entre tantos outros metais de transição, a utilização de sítios ativos contendo cobre(II). Sendo um metal com grande ocorrência na natureza, este apresenta diversas atividades em reações biológicas exercendo grande funcionalidade. Novos complexos contendo cobre(II) são uma grande oportunidade para esclarecimentos e perspectivas de algumas atividades catalíticas.

Este novo complexo de cobre(II) contendo ligantes com características planares apresenta atividade de oxidação frente ao catecol. A partir da estrutura deste complexo foi possível estudar suas propriedades espectroscópicas e como está interligado ao substrato. Dados de raios X, espectrometria de massa e cinética de oxidação puderam mostrar sua perspectiva como novo modelo biomimético.
2 REVISÃO DA LITERATURA

2.1 Bioinorgânica

Pesquisadores vêm interligando as diversas áreas da ciência no intuito de conhecer e esclarecer as atividades humanas. Com o objetivo de tornar a química inorgânica um campo multidisciplinar, os químicos, espectroscopistas, bioquímicos e biólogos trabalham buscando unir o conhecimento a fim de atender as fronteiras da ciência.

A química inorgânica permite a interpretação e explicação de modelos inorgânicos através de ligações e reatividades de modo teórico, bem como interpretação experimental. Algumas áreas relacionadas à química inorgânica têm se destacado. Por exemplo, a bioquímica com foco importante em aplicações médicas dos compostos revela um grande potencial dos sistemas inorgânicos em meio biológico. A química ambiental, que além de incluir o estudo de compostos orgânicos, vem demonstrando grande interesse aos compostos inorgânicos, devido ao uso de novos materiais assim como toxicidade e reatividade. A mecânica quântica, com os modelos de orbitais atômicos e moleculares a fim de enriquecer e criar novos aspectos de reatividade, ligação e estrutura. ¹,²

Ao analisar e compreender o estudo dos elementos inorgânicos em sistemas biológicos, a análise das propriedades e o papel desses elementos constitui um ponto fundamental para a exploração que estabelece a chamada Química Bioinorgânica. ³

O ramo da pesquisa em bioinorgânica é dito como o estudo da reatividade de metais nos sistemas biológicos. O foco está no entendimento de como estruturas biológicas interagem com metais de transição, fornecendo propriedades químicas importantes a um organismo vivo. Íons de metais de transição são armazenados e transportados pelos organismos vivos, tanto para fornecer concentrações adequadas dos mesmos, para uso nas metaloenzimas, quanto para se protegerem do efeito tóxico do excesso deste metal. ⁴,⁵

Nos processos bioquímicos as enzimas exercem papel fundamental, principalmente por acelerarem reações e serem muito específicas quanto aos
seus substratos. Muitas dessas enzimas estão associadas a alguns metais de transição conferindo propriedades particulares.

2.2 Enzimas

As proteínas apresentam uma estrutura primária que consiste em uma sequência de aminoácidos ligados por ligações peptídicas, ligações entre grupo CO e NH (ligações tipo amida). Quase todas as enzimas conhecidas são proteínas, que apresentam sua estrutura definida por uma sequência de aminoácidos que possuem alto peso molecular. No entanto as enzimas têm como característica marcante a alta especificidade e seu extraordinário poder catalítico, conhecidas como catalisadores dos sistemas biológicos.

Estas reações de catálise diminuem a energia de ativação da reação formando um complexo específico ES (enzima-substrato) (Figura 1), que estabiliza o estado de transição, ou seja, a espécie de maior energia no caminho da reação. A reação acontece em um lugar particular da enzima, chamado sítio ativo, onde é promovida a interação com o substrato e o cofator.

Figura 1 – Representação gráfica de um sítio ativo de uma enzima genérica.

As enzimas são classificadas em seis grandes grupos conforme o tipo de reação que catalisam: oxirredutases (catalisam reações de oxi-redução); transferases (transferência de grupo); hidrolase (reações de hidrólise); liases (adição ou remoção de grupos para formar ligações duplas); isomerases (variação estrutural ou geométrica intramolecular) e ligases (ligação de dois substratos, em detrimento da hidrólise do ATP).
2.3 Metaloenzimas de Cobre

Muitas das enzimas conhecidas utilizam íons metálicos como cofatores em seus processos catalíticos. Denominadas como metaloenzimas, exercem diversas funções conforme o metal que está ancorado à enzima. Aquelas que utilizam o metal cobre como cofator exercem determinadas atividades, dentre algumas destas envolvendo transferência de elétrons e oxidação de substratos orgânicos. Em muitos casos, o atrativo do metal cobre tem sido principalmente em atividades catalíticas envolvendo o seu potencial redox. 8,9,10

Embora o cobre seja abundante na natureza e seu atrativo potencial redox seja muito estudado em reações, deve-se ter o cuidado uma vez que o mesmo potencial pode ser crítico em determinadas reações. Assim sendo, o excesso do metal também pode ocasionar determinados efeitos não desejados em situações diversas. De todo modo, trata-se de um metal essencial para os processos biológicos e o estudo de suas propriedades leva ao desenvolvimento de novas pesquisas. 9,10,11

O metal cobre apresenta, em geral, dois estados de oxidação, Cu(I) e Cu(II), como os mais estáveis. Devido as suas propriedades espectroscópicas, as metaloenzimas que contem cobre são divididas em sete tipos:

Tipo I – São conhecidas como proteínas azuis de cobre devido à sua intensa cor azul. Esta coloração é causada pela forte absorção na região de 600 nm devido à transferência de carga ligante-metal entre o átomo de enxofre da cisteína e o metal. Normalmente as enzimas do tipo I participam na transferência de elétrons e os representantes mais conhecidos desta classe são plastocianina (Figura 2), azurina e amicianina. 12,13
Tipo II – São conhecidas como as proteínas de cobre "normais" em função das características de Espectroscopia de Ressonância Paramagnética Eletrônica (EPR) serem semelhantes aos complexos comuns contendo Cu(II). São constituídas por ligantes do tipo N,O-doadores. São pertencentes a esta classe fenilalanina hidroxilase, superóxido dismutase e galactose oxidase (Figura 3). \cite{12,13}

Tipo III – Estas proteínas contêm dois sítios ativos de cobre. Possui uma característica marcante de se ligar reversivelmente ao oxigênio molecular em condições ambientais. Porém esta ligação pode ser responsável pelo transporte do oxigênio em certos moluscos e artrópodes, no caso da Hemocianina (Figura 4) enquanto que a tirosinase e a catecol oxidase utilizam o oxigênio para efetuar a oxidação de substratos fenólicos. Como os átomos de
cobre das estruturas estão acoplados fortemente magneticamente, apresentam um sinal silencioso no EPR.12,13

Figura 4. Representação de uma proteína de cobre do Tipo III, Hemocianina.13,16

Tipo IV – Estas proteínas geralmente são compostas de um tipo II e um tipo III conjuntamente formando um sistema trinuclear. As proteínas do tipo IV tem como característica a oxidação de diversas reações. Um exemplo deste são a lacase e ascorbato oxidase (Figura 5).12,13

Figura 5. Representação de uma proteína de cobre do Tipo IV, ascorbato oxidase. (Valores em Å).13,17

Tipo Cu\textsubscript{A} – Este tipo de proteína é denominado como um sítio ativo de cobre de valência mista. Contém sistema dinuclear de cobre em que ambos os íons possuem um estado de oxidação formal de + 3/2. Ambos os íons de cobre têm uma geometria tetraédrica e apresentam uma característica padrão nos espectros EPR de coloração púrpura. Por esta valência mista e pela distância de ligação a função característica deste tipo de proteína é a transferência de
elétrons, como encontradas naquelas que representam esta classe como no citocromo C oxidase e óxido nitroso redutase (Figura 6).

Figura 6. Representação de uma proteína de cobre do Tipo CuA, óxido nitroso redutase.

Tipo CuB – Esta proteína de cobre é detectada próxima a citocromo C oxidase (Figura 7) contendo um centro de ferro. O átomo de cobre está coordenado por três átomos de nitrogênio residuais da histidina em uma geometria piramidal trigonal. A outra esfera de coordenação é dirigida ao centro metálico de ferro o qual são atraídos fortemente magnéticamente. A função deste tipo de enzimas é a redução de oxigênio molecular em água.

Figura 7. Representação de uma proteína de cobre do Tipo CuB, citocromo C oxidase.

Tipo CuZ – O Tipo CuZ é composto por quatro íons de cobre dispostos em um tetraedro distorcido e coordenado por sete resíduos de histidina e um hidróxido. Foi detectado na redução de N₂O a N₂ pela óxido nitroso redutase (Figura 8). Três íons de cobre são coordenados por dois resíduos de histidina, porém apenas um deles possui uma ligação a este resíduo o que permite uma coordenação ao substrato.
Figura 8. Representação de uma proteína de cobre do Tipo Cu$_z$, óxido nitroso redutase.13,20

Dentre todas estas classes de reações enzimáticas, as oxidases são de grande destaque. Os processos de oxidação são muito recorrentes na natureza. O interesse em compreender os processos de oxidação, seja por fatores ambientais, econômicos e científicos, utilizando oxigênio molecular, tem sido de bastante interesse em pesquisas.21,22,23,24 Enzimas que catalisam reações de oxirredução são classificadas como oxirreductases, sendo alguns exemplos, oxidases, peroxidases, catecolases, entre outras.25

2.4 Catecol Oxidase

A catecol oxidase (Figura 9) é uma enzima que contém sítios ativos binucleares de cobre do tipo III e catalisa, através do oxigênio molecular atmosférico, a oxidação de o-difenóis nas suas respectivas o-quinonas (Esquema 1) e com concomitante formação de H$_2$O. São encontradas em plantas, crustáceos e insetos.10,24,26,27,28,29

Entre os fatores que influenciam a atividade de catecol oxidase, estão a natureza do substrato modelo e o pH, sendo que um centro de carga positiva próximo ao metal pode melhorar a atividade, já que o processo de oxidação do catecol a quinona envolve a transferência de dois elétrons.11,28
Figura 9. Estrutura da catecol oxidase isolada da *Ipomoea batatas* (esquerda) e seu sítio ativo (direita).30

![Diagrama da estrutura da catecol oxidase](image)

Esquema 1. Representação da reação de oxidação do o-difenol para a formação da o-quinona.

O mecanismo mais aceito para a catecol oxidase está representado no Esquema 2, onde o substrato se coordena a enzima de forma bidentada e durante o ciclo duas moléculas de água e quinona são formadas.10

O mecanismo tem início a partir do estado de repouso (*met*). Ocorre então a ligação de uma molécula de substrato o-difenol com a catecol oxidase através dos centros de cobre(II). Em seqüência ocorre à oxidação do substrato formando a o-quinona, e a enzima é reduzida ao estado *deoxi*. Através da ligação de uma molécula de O\textsubscript{2} ao estado *deoxi* é formado o estado *oxi*, que então se liga a outra molécula do substrato. De modo que ocorra a oxidação de uma segunda molécula de o-difenol, regenerando a forma catalítica da enzima, podendo então o ciclo ser iniciado novamente.10,31
Esquema 2. Mecanismo proposto para oxidação de o-difenóis promovido pela catecol oxidase. 10

2.5 Complexos mononucleares de cobre para atividade de catecolase.

Embora a maioria das reações para atividade de catecolase seja descrita por complexos binucleares, muitos complexos mononucleares têm sido reportados apresentando atividade enzimática. 29,32,33 A ligação entre o substrato e o cobre pode ser demonstrada de diferentes modos para complexos binucleares e mononucleares (Figura 10).
Figura 10. Diferentes modos de ligação entre o catecol e cobre: (a) catecolato/semiquinolato η²; (b) monodentado terminal; (c) syn-bidentado; (d) anti-bidentado; (e) η² : η¹ bidentado. ²⁴

Na busca de tentar compreender como estão estruturados os mecanismos da atividade de oxidação e também a ligação entre catecol e os complexos mononucleares que vem sendo sintetizados, alguns mecanismos são propostos conforme o Esquema 3.
Esquema 3. Mecanismos propostos para a oxidação do DTBC para complexos mononucleares de Cu(I/II). 24

O mecanismo descrito pelo caminho A, proposto por KUPÁN 34, o catecolato se liga inicialmente ao Cu\(^{1}\) em um pré-equilíbrio reversível e posteriormente a formação do Cu\(^{1}\)(catecolato). Na etapa seguinte, ocorre a
reação do complexo com o oxigênio molecular gerando um superóxido de cobre(II). Em seguida ocorre a abstração do hidrogênio intramolecular que se decompõe em uma reação rápida em reação com DTBC para formar DTBQ e H₂O₂. Volta-se então ao complexo inicial finalizando o ciclo catalítico. Há apenas a formação de H₂O₂ e deste modo pode ser quantificada por titulação.

Através de cálculos de DFT (Density Functional Theory), SHYMAL ³⁵, propôs um mecanismo para descrever a atividade de catecolase para complexos mononucleares de cobre. Inicialmente o substrato é coordenado a dois centros de cobre de modo syn (Figura 10 (c)) e em seguida ocorre a redução do cobre e oxidação do substrato, formando o mesmo complexo para o caminho reacional em A e DTBQ + H₂O₂.

Proposto por MARION ³⁶ o mecanismo para a catecol oxidase envolve a coordenação ao cobre(II) do tipo semiquinolato-η² (Figura 10 (a)) reduzindo-o para cobre(I). Ao incorporar a molécula de O₂, retornando a cobre(II), a presença de água promove a oxidação do DTBQ a DTBQ ao passo que é formado H₂O₂ e um sistema envolvendo dois centros metálicos). Em seguida incorpora novamente uma molécula do substrato e reinicia-se o ciclo catalítico.

Já o mecanismo descrito por GAJEWSKA ³⁷ o primeiro passo da reação após a incorporação do substrato é a formação de quelato do tipo semiquinolato-η² (Figura 10(a)) que entra em equilíbrio tautomérico para a formação de um espécie de Cu(I) contendo um radical para a incorporação da molécula de O₂. A etapa seguinte ocorre a liberação do substrato na forma de DTBQ mais H₂O₂ restaurando o complexo para um novo ciclo catalítico.

Os complexos, sejam binucleares ou mononucleares, ou até mesmo os complexos do tipo Cu(I) tem sido reportados com grande importância para atividades de catecolase.³⁸ A partir do conhecimento de química de coordenação, fatores eletrônicos, atividades redox é possível modular e otimizar sistemas sintéticos que sirvam de modelos biomiméticos. Embora o controle sobre as reações de oxidação do oxigênio molecular atmosférico não seja simples, e dada a impotência desses processos na natureza, ampliar os conhecimentos sobre seus fatores cinéticos compreende de um grande desafio.²⁴
3 OBJETIVOS

3.1 Objetivo Geral

O projeto tem como objetivo a síntese e caracterização de um novo ligante e seu respectivo complexo de Cu(II), no intuito de compreender como está estruturado e testar sua atividade de catecolase frente ao substrato modelo 3,5-di-terc-butilcatecol (3,5-DTBC).

3.2 Objetivos Específicos

- Síntese do ligante 1-((bis(2-piridilmetil)amino)metil)2-naftol – naftolbpma;
- Síntese de um novo complexo mononuclear de Cu(II);
- Caracterização do ligante naftolbpma por espectroscopia na região do infravermelho (IV), espectroscopia de ressonância magnética nuclear (RMN 1H);
- Caracterização do complexo por espectroscopia na região do infravermelho e região UV-visível (UV-VIS), espectrometria de massa e eletroquímica;
- Realização dos estudos cinéticos de catecolase do complexo frente ao substrato modelo 3,5-di-terc-butilcatecol.
4 METODOLOGIA

4.1 Materiais e Reagentes

Os materiais, reagentes e solventes descritos a seguir foram utilizados diretamente de fonte comercial e sem purificação prévia, sendo: 2-naftol (C_{10}H_{7}OH); glicerol (C_{3}H_{8}O_{3}); ácido acético glacial (CH_{3}COOH); formaldeído (CH_{2}O, 37%); hidróxido de sódio (NaOH); sulfato de sódio anidro (Na_{2}SO_{4}); ácido sulfúrico (H_{2}SO_{4}); iodeto de potássio (KI); acetato de etila P.A.; hexano P.A.; metanol (MeOH) P.A.; diclorometano (CH_{2}Cl_{2}) HPLC; acetonitrila (CH_{3}CN) P.A, HPLC e LC/MS; metanol UV/HPLC e LC/MS; tetrahidrofurano (THF) P.A.; clorofórmio deuterado (CDCl_{3}); acetato de cobre(II) monohidratado [Cu(CH_{3}COO)_{2}.H_{2}O]; paládio disperso em carbono 5% (Pd/C); gás argônio (grau analítico 5.0) e gás oxigênio (grau analítico 2.8). O substrato 3,5-di-terc-butilcatecol foi recristalizado em hexano. Os seguintes reagentes foram purificados por destilação: 2-piridilcarboxialdeído; 2-(aminometil)piridina.

4.2 Métodos de Caracterização

4.2.1 Ponto de Fusão

O ponto de fusão foi determinado em um equipamento Buchi Melting Point B-540 no Laboratório de Bioinorgânica e Cristalografia (LABINC) do Departamento de Química – UFSC.

4.2.2 Espectroscopia vibracional na região do infravermelho – IV

Os espectros na região do infravermelho foram obtidos em um espectrofotômetro Perkin Elmer FT-IR Spectrofotometer Spectrum 100, na região de 4000 a 400 cm^{-1}, no Laboratório de Bioinorgânica e Cristalografia (LABINC) do Departamento de Química – UFSC. As amostras foram preparadas por dispersão da amostra em brometo de potássio (KBr) de grau espectroscópico e prensadas (cerca de 5 toneladas) formando pastilhas com aproximadamente 1,0 cm de diâmetro e 0,5 mm de espessura. As pastilhas foram introduzidas no caminho óptico do equipamento e a leitura analisada pelo percentual de transmittância (%T).
4.2.3 Espectroscopia de ressonância magnética nuclear – RMN

Os espectros de RMN 1H dos compostos foram obtidos em espectrofotômetro Bruker – AC 400 MHz na Central de Análises do Departamento de Química – UFSC. Os deslocamentos químicos de hidrogênio (δ) foram registrados em ppm tendo como referência interna o tetrametilsilano (TMS, $\delta = 0,00$ ppm) e utilizando clorofórmio deuterado (CDCl$_3$) como solvente de análise.

4.2.4 Espectroscopia eletrônica na região do ultravioleta-visível – UV-Vis

Os espectros na região do UV-Vis foram obtidos em um espectrofotômetro UV-vis Varian Cary 50 BIO acoplado a um banho termostatizado (25°C) no Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC. As análises foram realizadas utilizando solventes de grau espectroscópico (HPLC), cubetas de quartzo com capacidade máxima de 1,0 mL e 1,0 cm de caminho óptico.

4.2.5 Espectrometria de massa

O composto [Cu(naftolbpma)(OAc)].3H$_2$O foi analisado em um espectrômetro de massas com ionização via eletrospray (ESI–MS) Amazon–IonTrap –MS do Centro de Biologia Molecular (CEBIME) – UFSC. As análises foram realizadas em soluções de acetonitrila LC/MS e água. A concentração da análise foi em torno de 500 ppb (partes por bilhão) e fluxo de 180 μL min$^{-1}$. A temperatura do capilar foi mantida entre 180 e 200 ºC e a voltagem entre -400 e -500 V.

4.2.6 Medidas eletroquímicas

O comportamento redox do complexo foi investigado por voltametria cíclica em um potenciostato/galvanostato modelo Epsilon no Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC. Os experimentos foram realizados utilizando uma cela eletroquímica contendo um eletrodo de trabalho de carbono vítreo, eletrodo auxiliar de platina e um eletrodo de referência de prata (Ag/Ag$^+$) e como referência interna o ferroceno (Fc/Fc$^+$) (valor da referência E$_{1/2}$ vs NHE (Eletrodo Normal de Hidrogênio) igual
a 400 mV\(^{39}\) Foi utilizado como eletrólito suporte uma solução 0,1 mol L\(^{-1}\) de hexafluorofosfato de tetrabutilamônio (TBAPF\(_{6}\)) e como solvente diclorometano.

4.2.7 Difratometria de raios X

A análise por difração de raios X em monocristal do complexo de cobre(II) foi realizada na Central de Análises do Departamento de Química – UFSC. Os dados foram coletados em um difratômetro Bruker APEX II DUO usando radiação gerada por um tubo de molibdênio (MoK\(\alpha \lambda = 0,71073\) Å) e monocromador de grafite, em temperatura de 173,11 K. A estrutura cristalina foi resolvida através dos métodos diretos e refinada pelo método dos mínimos quadrados com matriz completa, utilizando-se os programas SIR-97 e SHELXL-97. A representação gráfica da estrutura molecular foi gerada utilizando o programa PLATON.\(^{40,41,42}\)

4.2.8 Condutividade molar

As medidas de condutividade molar do complexo foram realizadas no aparelho Metrohm 856, do Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC. O complexo foi analisado em dois solventes de grau HPLC (CH\(_3\)CN e MeOH), com concentração de 1,0 \(\times\) 10\(^{-3}\) mol L\(^{-1}\). O aparelho foi calibrado com uma solução padrão de cloreto de potássio (KCl) 0,1 mol L\(^{-1}\) cuja condutividade é de 100 μS cm\(^{-1}\) em água a 25\(^\circ\)C.\(^{43}\)

4.2.9 Cinética de oxidação

A atividade catalítica do complexo foi avaliada através da reação de oxidação do substrato 3,5-di-terc-butilcatecol (3,5-DTBC). Os experimentos cinéticos foram realizados em triplicata sob condições de excesso de substrato monitorando-se espectrofotometricamente, em um espectrofotômetro UV-Vis Varian Cary 50 BIO acoplado a um banho termostatizado a 25,0 \(^\circ\)C, a variação da absorbância ocorrida em 400 nm (ε = 1645 L mol\(^{-1}\) cm\(^{-1}\))\(^{44}\) referente à formação da 3,5-di-terc-butilquinona (3,5-DTBJQ). As reações foram tratadas pelo método das velocidades iniciais, que foram obtidas diretamente do gráfico da concentração de substrato versus tempo. Os estudos em função do pH para a atividade de catecolase do complexo, o qual visa obter o pH ótimo da
atividade frente a oxidação do substrato 3,5-DTBC, foram realizados pela variação do pH entre 6,5 e 10,0 a 25,0 ºC. Após determinação do pH ótimo foram realizados testes através da variação da concentração do substrato, em cubetas de vidro com capacidade para 4000 μL e caminho óptico de 1,0 cm fechadas com tampa de teflon. Foram adicionados 50 μL de solução aquosa dos tampões (MES pH 6,5 e TRIS pH 7,0 a 10,0), [Tampões] = 2,94 x 10⁻² mol L⁻¹; 1570 a 1390 μL de metanol HPLC saturado com oxigênio; 50 a 290 μL de solução metanólica do substrato, [Substrato]final = 1,47 – 8,82 x 10⁻³ mol L⁻¹; e 50 μL de uma solução metanólica do complexo, [complexo]final = 2,92 x 10⁻⁵ mol L⁻¹. O surgimento da banda em 400 nm foi monitorado por 15 minutos e em todos os experimentos o volume final da cubeta foi de 1700 μL. As velocidades iniciais foram obtidas pela medida da inclinação da curva da absorbância vs tempo, nos primeiros minutos da reação, pelo método das velocidades iniciais.
4.3 Sínteses

Para a síntese do pró-ligante bpma (N-bis-(2-piridilmetil)amina) foi utilizada a metodologia descrita por CASELLATO.45 Para a síntese do ligante naftolbpma (1-((bis(2-piridilmetil)amino)metil)2-naftol), foi utilizado como base a metodologia descrita por GANESAN 46, com algumas modificações.

Já para a síntese do complexo realizou-se uma metodologia de reação direta a partir do acetato de cobre(II) com o ligante sintetizado em proporção estequiométrica (1:1).

4.3.1 Síntese do N-bis-(2-piridilmetil)amina (bpma)

Em um balão de fundo redondo contendo 30 mL de metanol e 5,2 mL de 2-(aminometil)piridina (5,4 g; 50 mmol; 108,14 g mol⁻¹; d = 1,049 g cm⁻³) sob agitação e resfriada a 0 ºC com o auxílio de um banho de gelo, foi adicionado lentamente, através de um funil de adição, 5,3 g de 2-piridilcarboxialdeído (50 mmol; 107,11 g mol⁻¹). Após o termo da adição, o banho de gelo foi removido e o sistema reacional permaneceu sob temperatura ambiente em agitação por 1 h. Essa solução foi transferida para um frasco de hidrogenação e foram adicionados 0,5 g de catalisador Pd/C 5%. Em seguida a dispersão foi reduzida sob atmosfera de hidrogênio a 40 psi por aproximadamente 15 horas (Esquema 4) A mistura foi então filtrada e o solvente evaporado sob pressão reduzida a 40ºC. Para eliminação completa do metanol o balão foi mantido sob vácuo, em dessecador de sílica, por 24 horas. O produto foi obtido na forma de um óleo amarelo com rendimento de 83%.

![Esquema 4](image)

Esquema 4. Rota sintética do bpma.

4.3.2 Síntese do 1-((bis(2-piridilmetil)amino)metil)2-naftol (naftolbpma)

A síntese do ligante naftolbpma foi realizada a partir de 0,72 g do reagente β-naftol (5,0 mmol, 144,17 g mol⁻¹) solubilizados em 15,0 mL de glicerol. Foi necessário o aquecimento da solução à 40ºC para que fosse
totalmente solúvel. Sob agitação à esta solução foram adicionados 2,0 mL de ácido acético glacial, em seguida foram adicionados 1,99 g do bpma (10 mmol, 199 g mol⁻¹). Posteriormente foram adicionados 0,8 mL de formaldeído (CH₂O) (29 mmol, 30,03 g mol⁻¹, d = 1,09 g cm⁻³). O sistema foi mantido sob agitação e aquecimento por 48 horas (Esquema 5). Depois de decorrido o tempo da reação o pH da solução foi ajustado para 9,0 com o uso de uma solução aquosa saturada de NaOH e posteriormente extraído com acetato de etila. O solvente foi evaporado sob pressão reduzida obtendo um óleo amarelo. O produto foi purificado por coluna cromatográfica de sílica (eluente: hexano/acetato de etila = 40:60). Foram obtidos 0,53 g do produto, com um rendimento de 30%.

Esquema 5. Rota sintética do ligante naftolbpma

4.3.2 Síntese do complexo \([\text{Cu(naftolbpma)(OAc)}].3\text{H}_2\text{O} \; (1)\)

O complexo \((1)\) foi obtido a partir do sal de acetato de cobre(II) monohidratado e quantidade estequiométrica do ligante naftolbpma para formar \([\text{Cu(naftolbpma)(OAc)}].3\text{H}_2\text{O}\) (Esquema 6).

O complexo foi sintetizado adicionando 0,2114 g de acetato de cobre(II) monohidratado (1,0 mmol; 199,65 g mol⁻¹) dissolvido em THF sob uma solução de acetonitrila do ligante naftolbpma 0,3762 g (1,0 mmol; 355,16 g mol⁻¹). Conforme a solução do metal foi adicionada lentamente à solução do ligante, que inicialmente era amarelo escuro tornou-se verde escura. Após completa adição, foi deixado reagir por alguns minutos e posteriormente a solução foi filtrada, deixando o solvente evaporar a temperatura ambiente. Foram obtidos 0,1468 g de cristais verde escuro (com rendimento de 26% em relação ao ligante). Estes cristais tiveram sua estrutura cristalina resolvida por difração de
raios X. O complexo foi caracterizado também por espectroscopia na região do IV, espectroscopia eletrônica na região do UV-vis, voltametria cíclica e condutivimetria. A atividade de catecolase do complexo foi testada frente ao substrato 3,5-DTBC.

Esquema 6. Síntese do complexo \([\text{Cu(naftolbpma)(OAc)}] \cdot 3\text{H}_2\text{O}\).
5. RESULTADOS E DISCUSSÃO

5.1. Caracterização do bpma

5.1.1 Espectroscopia vibracional na região do infravermelho (IV).

O bpma apresenta um espectro vibracional na região do infravermelho com bandas características de seus grupos funcionais. A Figura 11 mostra as principais bandas atribuídas referentes aos estiramentos e deformações angulares.

![Figura 11. Espectro vibracional da região do infravermelho do bpma.](image)

IV (KBr) em cm\(^{-1}\): \(\nu\) (N-H) 3313; \(\nu\) (C-H\(_{\text{ar}}\) e C-H\(_{\text{alif}}\)) 3062-2836; \(\nu\) (C=N e C=C) 1594-1439; \(\nu\) (C-N) 1148; \(\nu\) (C-H\(_{\text{ar}}\)) 762.

Para o pró-ligante bpma o estiramento N-H foi observado em 3313 cm\(^{-1}\) de forma alargada. Os estiramentos referentes a C-H\(_{\text{alif}}\) e C-H\(_{\text{ar}}\) foram atribuídos às bandas em 2836 e 3062 cm\(^{-1}\), respectivamente.\(^{47,48}\)
Foram atribuídas as bandas referentes ao anel aromático C=N em 1594 cm\(^{-1}\) e C=C em 1439 cm\(^{-1}\). A presença do estiramento C-N foi atribuída em 1148 cm\(^{-1}\). 47,48

5.1.2 Espectroscopia de Ressonância magnética nuclear de hidrogênio (RMN \(^1\)H)

O bpm\(a\) foi completamente caracterizado por ressonância magnética nuclear de hidrogênio. A Figura 12 mostra o espectro completo e a Tabela 1 mostra os valores referentes aos deslocamentos químicos (\(\delta H\)) em ppm, o número de átomos de hidrogênio e a multiplicidade de cada sinal. Já a Figura 13 mostra os sinais ampliados de cada hidrogênio aromático.

![Espectro de RMN \(^1\)H do BPMA em CDCl\(3\).](image)

RMN de \(^1\)H (400 MHz; CDCl\(3\)) em ppm: 2,53 (s, 1H, NH); 3,98 (s, 4H, CH\(_2\)); 7,16 (ddd, 2H, CH\(_{ar}\)); 7,31 (d, 2H, CH\(_{ar}\)); 7,65 (td, 2H, CH\(_{ar}\)); 8,56 (ddd, 2H, CH\(_{ar}\)).
Tabela 1. Deslocamentos químicos de hidrogênio em ppm para o BPMA (RMN 1H 400 MHz).

<table>
<thead>
<tr>
<th>Atribuição</th>
<th>$\delta$$_H$ (ppm)</th>
<th>Multiplicidade</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_A</td>
<td>2,53</td>
<td>Singleto</td>
<td>1</td>
</tr>
<tr>
<td>H_B</td>
<td>3,98</td>
<td>Singleto</td>
<td>4</td>
</tr>
<tr>
<td>H_C</td>
<td>7,16</td>
<td>Dubleto de dubleto de dubletos</td>
<td>2</td>
</tr>
<tr>
<td>H_D</td>
<td>7,36</td>
<td>Dubleto</td>
<td>2</td>
</tr>
<tr>
<td>H_E</td>
<td>7,65</td>
<td>Tripleto de dubletos</td>
<td>2</td>
</tr>
<tr>
<td>H_F</td>
<td>8,56</td>
<td>Dubleto de dubleto de dubletos</td>
<td>2</td>
</tr>
</tbody>
</table>

Figura 13. Regiões do espectro de RMN 1H do BPMA. (a) Sinal do hidrogênio F; (b) Sinal do hidrogênio E; (c) Sinal do hidrogênio D; (d) sinal do hidrogênio C. Unidade do eixo x em Hz.
Os sinais referentes aos hidrogênios para o bpma apresentam-se de acordo com a sua estrutura. 49 Se um hidrogênio X acopla com um hidrogênio Y, o recíproco ocorre e na mesma intensidade. Portanto os sinais foram representados por apenas em uma das vezes. 47,48

O sinal do hidrogênio F possui multiplicidade para duplo de duplo de dupletos, ou seja, existem 3 acoplamientos do tipo hidrogênio-hidrogênio. O acoplamiento a 3 ligações (orto) entre os hidrogênios F e C é o de maior valor (\(3J_{FC} = 4,8 \text{ Hz}\)); o acoplamiento a 4 ligações (meta) entre os hidrogênios F e E é um acoplamiento médio (\(4J_{FE} = 1,6 \text{ Hz}\)) e o acoplamiento a 5 ligações entre os hidrogênios F e D é um acoplamiento pequeno (\(5J_{FD} = 0,8 \text{ Hz}\)). 47,48,50,51

O hidrogênio E possui multiplicidade para triplo de dupletos, ou seja, há uma constante de acoplamiento maior para o triplo e uma constante de acoplamiento menor para o duplo. O acoplamiento maior é referente aos hidrogênios C e D, que são de mesma constante ou de valores muito próximos que o fazem desdobrar em apenas um sinal. Assim, para o hidrogênio E um acoplamiento a 3 ligações (orto) com os hidrogênios C e D (\(3J_{ED} \equiv 3J_{EC} = 7,6 \text{ Hz}\)). O sinal para o duplo é referente ao acoplamiento com o hidrogênio F (\(4J_{FE} = 1,6 \text{ Hz}\)). 47,48,50,51

O hidrogênio D deveria possuir uma multiplicidade para duplo de triplo de triploletos, ou seja, uma constante de acoplamiento grande para um duplo (\(3J_{ED} = 7,6 \text{ Hz}\)) e outras duas constantes de acoplamiento pequenas de valores muito próximos (\(5J_{FD} \equiv 4J_{CD} = 0,8 \text{ Hz}\)) para o desdobramento do triplo. No entanto não é possível ver o desdobramento menor para os triploletos pequenos, por conta da resolução ou aquisição dos dados é visto como apenas um duplo. Essas relações são possíveis de serem vistas somente nos outros sinais dos hidrogênios que acoplam com este hidrogênio. 47,48,50,51

Por sua vez, o hidrogênio C apresenta-se como duplo de duplo de duploletos. Um acoplamiento grande com o hidrogênio E de aproximadamente 7,6 Hz, um acoplamiento médio com o hidrogênio F de aproximadamente 4,8 Hz e o acoplamiento pequeno a 4 ligações (meta) entre os hidrogênios C e D (\(4J_{CD} = 0,6 \text{ Hz}\)). Este último acoplamiento foi possível de ser visto apenas neste sinal, o que não foi possível observar no sinal para o hidrogênio D. 47,48,50,51

O hidrogênio B apresenta-se com um singleto, de integral 4, em 3,98 ppm. Seu sinal é um pouco mais deslocado que um metileno quando ligado a
um átomo de carbono devido a sua ligação em um átomo mais eletronegativo como neste caso o nitrogênio. O sinal em 2,53 ppm pode ser atribuído ao hidrogênio A, ligado diretamente ao átomo de nitrogênio.47,48,50,51

5.2 Caracterização do ligante naftolbpma

5.2.1 Ponto de fusão

O ligante foi obtido como um sólido amarelo sendo possível a determinação do seu ponto de fusão. Realizado em triplicata obteve-se valores entre 68 – 70ºC. Não foi observado nenhum sinal de decomposição nem escurecimento durante a análise.

5.2.2 Espectroscopia vibracional na região do infravermelho (IV)

A formação do ligante naftolbpma pode ser caracterizada por espectroscopia na região do infravermelho e as principais bandas foram atribuídas. A Figura 14 mostra as bandas referentes a estiramentos e deformações angulares, também evidenciando a inexistência de uma amina secundária.

![Figura 14. Espectro de IV do ligante naftolbpma.](image-url)
IV (KBr) em cm\(^{-1}\): \(\nu\) (O-H) 3474; \(\nu\) (C-O) 1223; \(\nu\) (C-H\(_{\text{ar}}\)) 3025; \(\nu\) (C=C) 1681; \(\nu\) (C=N) 1591, \(\delta\) (O-H) 1364

No ligante naftolbpma a banda de estiramento O-H, referente a unidade \(\beta\)-naftol presente, foi caracterizada em 3474 cm\(^{-1}\). O grupamento fenol também apresenta absorções em outras regiões, e dessa forma, no ligante naftolbpma a deformação angular O-H e o estiramento C-O foram caracterizadas em 1364 e 1223 cm\(^{-1}\), respectivamente.\(^{47,48}\)

Outra banda característica do ligante é a de estiramento C-H do anel aromático, que pode ser caracterizada em 3052 cm\(^{-1}\). Também referente aos anéis aromáticos podem ser atribuídas às bandas de estiramento axial C=C e C=N que foram caracterizadas em 1681 e 1591 cm\(^{-1}\), respectivamente. A banda de estiramento axial C-N foi caracterizada em 1113 cm\(^{-1}\).\(^{47,48}\)

5.2.3 Espectroscopia de Ressonância magnética nuclear de hidrogênio (RMN \(^1\)H)

O naftolbpma foi caracterizado por ressonância magnética nuclear de hidrogênio. A Figura 15 mostra o espectro completo e a Tabela 2 mostra os valores referentes aos deslocamentos químicos (\(\delta_H\) em ppm), o número de átomos de hidrogênio e a multiplicidade de cada sinal. Já a Figura 16 mostra os sinais ampliados de cada hidrogênio aromático.

Figura 15. Espectro de RMN \(^1\)H do naftolbpma em CDCl\(_3\).
RMN de \(^1\text{H}\) (400 MHz; CDCl\(_3\)) em ppm: 3,92 (s, 4H\(_{\text{alif}}\)); 4,29 (s, 2H\(_{\text{alif}}\)); 7,19 (m, 3H\(_{\text{Ar}}\)); 7,29 (d, 1H\(_{\text{Ar}}\)); 7,37 (d, 2H\(_{\text{Ar}}\)); 7,44 (ddd, 1H\(_{\text{Ar}}\)); 7,66 (td, 2H\(_{\text{Ar}}\)); 7,71 (d, 1H\(_{\text{Ar}}\)); 7,75 (d, 1H\(_{\text{Ar}}\)); 7,95 (d, 1H\(_{\text{Ar}}\)); 8,59 (ddd, 2H\(_{\text{Ar}}\))

Tabela 2. Deslocamentos químicos, em ppm, referente ao ligante naftolbpma (RMN \(^1\text{H}\) 400MHz). \(^{47,49}\)

<table>
<thead>
<tr>
<th>Atribuição</th>
<th>(\delta_H) (ppm)</th>
<th>Multiplicidade</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_A)</td>
<td>3,92</td>
<td>Singleto</td>
<td>4</td>
</tr>
<tr>
<td>H(_B)</td>
<td>4,28</td>
<td>Singleto</td>
<td>2</td>
</tr>
<tr>
<td>H(_C)</td>
<td>7,19</td>
<td>Multipleto</td>
<td>3</td>
</tr>
<tr>
<td>H(_D)</td>
<td>7,29</td>
<td>Dubleto</td>
<td>1</td>
</tr>
<tr>
<td>H(_E)</td>
<td>7,37</td>
<td>Dubleto</td>
<td>2</td>
</tr>
<tr>
<td>H(_F)</td>
<td>7,44</td>
<td>Dubleto de dubleto de dubleto</td>
<td>1</td>
</tr>
<tr>
<td>H(_G)</td>
<td>7,66</td>
<td>Tripleto de dubleto</td>
<td>2</td>
</tr>
<tr>
<td>H(_I)</td>
<td>7,71</td>
<td>Dubleto</td>
<td>1</td>
</tr>
<tr>
<td>H(_K)</td>
<td>7,75</td>
<td>Dubleto</td>
<td>1</td>
</tr>
<tr>
<td>H(_L)</td>
<td>7,95</td>
<td>Dubleto</td>
<td>1</td>
</tr>
<tr>
<td>H(_M)</td>
<td>8,59</td>
<td>Dubleto de dubleto de dubleto</td>
<td>2</td>
</tr>
</tbody>
</table>
Figura 16. Regiões ampliadas do espectro de RMN 1H do naftolbpma.
(a) Sinal do hidrogênio M; (b) Sinal do hidrogênio L; (c) Sinal do hidrogênio K;
(d) sinal do hidrogênio I; (e) Sinal do hidrogênio G; (f) Sinal do hidrogênio F;
(g) Sinal do hidrogênio E; (h) Sinal do hidrogênio D; (i) Sinal do hidrogênio C. Unidade do eixo x em Hz.

Os sinais referentes aos hidrogênios para o ligante naftolbpma estão de acordo com a sua estrutura. Baseando-se nos deslocamentos químicos, comparando-os com o precursor bpma, valores de integração e referências teóricas, foi possível determinar cada hidrogênio da estrutura. A multiplicidade e os valores de constante de acoplamento, para a maioria dos casos, foram difíceis ou sequer foram possíveis de ser atribuído, no entanto para aqueles onde houve a possibilidade foi assim determinado.47,50

O hidrogênio M possui multiplicidade para dubleto de dubleto de dubletos, apresentando assim três constantes de acoplamento. A primeira delas se refere ao acoplamento grande a três ligações com o hidrogênio C ($^3J_{CM} = 4,9$ Hz). A segunda constante se refere ao acoplamento médio a quatro ligações com o hidrogênio G ($^4J_{GM} = 1,7$ Hz). Por fim, há uma constante pequena referente ao hidrogênio E a cinco ligações ($^5J_{EM} = 0,9$ Hz).47,50

O hidrogênio L aparece como um sinal de dubleto, ou seja, apenas um valor de acoplamento. É referente a interação a três ligações com o hidrogênio C ($^3J_{CL} = 8,6$ Hz). Esse acoplamento visto pelo sinal do hidrogênio C também é possível de ser calculado embora este sinal esteja numa região de outro sinal de hidrogênio. Neste caso pequenas variações nos valores podem ocorrer, porém neste caso foi possível sua observação.47,50

O hidrogênio K possui um sinal no espectro como um dubleto. Seria de se esperar que houvesse mais de um acoplamento, devido às características de acoplamentos em sistemas aromáticos, e o sinal fosse des dobrado. No entanto foi possível de se observar apenas o acoplamento grande, a três ligações, com o hidrogênio D ($^3J_{DK} = 8,1$ Hz). Possivelmente os demais acoplamentos, com os hidrogênios F e I, devem ser muito menores que este e por conta da resolução do sinal não foi possível sua observação.47,50

O hidrogênio I apresenta as mesmas características do hidrogênio K, apenas um valor de acoplamento e seu sinal desdobra em um dubleto. Seu acoplamento está relacionado com o hidrogênio F a três ligações ($^3J_{FI} = 8,8$ Hz).47,50
O hidrogênio G, pertencente ao anel da piridina, apresenta uma multiplicidade de tripleto de dubletos. Há, portanto, dois valores de acoplamens, sendo um acoplamento grande com dois hidrogênios para a formação do tripleto e um acoplamento pequeno para o dubleto. O acoplamento grande é devido aos hidrogênios C e E apresentarem valores muito próximos da constante de acoplamento \(^3J_{CG} \approx ^3J_{EG} = 7,6 \text{ Hz} \). Já o sinal do dubleto é o acoplamento pequeno com o hidrogênio M.\(^{47,50}\)

O hidrogênio F apresenta-se com um sinal de dubleto de dubleto de dubletos, no qual a linha central coalesce e o sinal apresenta 7 ao invés de 8 linhas. Isso significa que este hidrogênio possui três constantes de acoplamens, que baseado na estrutura seria o esperado. São os acoplamens com os hidrogênios D, I e K. O pico não apresenta um sinal muito bem resolvido e seus valores de J podem variar e levar a erros. Contudo, é possível ver um acoplamento grande com o hidrogênio I, um acoplamento também grande com o hidrogênio D \(^3J_{DF} = 6,9 \text{ Hz} \) e o acoplamento pequeno com K, cujo valor não foi possível ser observado analisando pelo sinal do hidrogênio K \(^4J_{FK} = 1,3 \text{ Hz} \).\(^{47,50}\)

O hidrogênio E apresenta um perfil de dubleto com apenas um acoplamento grande com o hidrogênio G. Porém no sinal do hidrogênio M é possível observar um acoplamento pequeno que neste sinal não é observado. Seria de esperar que seu sinal tivesse um perfil de dubleto de tripletos, pois os acoplamenros com os hidrogênios M e C seriam pequenos e muito próximos \(^6J_{EM} \approx ^4J_{EC} \) e um acoplamento grande com G.\(^{47,50}\)

O hidrogênio D apresenta-se como um dubleto não bem resolvido. Deveria, assim como o hidrogênio F, apresentar 3 valores de constantes. Só é observado o acoplamento com o hidrogênio F. Os demais acoplamenros com I e K, se fossem observados, gerariam um sinal do tipo dubleto de dubleto de dubletos.\(^{47,50}\)

O sinal para o hidrogênio C apresenta-se como uma sobreposição de dois dubletos. Um é referente ao sinal num anel da piridina e outro no anel do naftol. As constantes de acoplamenros para estes sinais é possível de ser vista e até mesmo calculada neste sinal, porém é melhor relacionado quando este acoplamento é visto por outro sinal de hidrogênio melhor resolvido. O sinal
assim foi caracterizado como um multipleto, não por ser um sinal de segunda ordem e sim devido à sobreposição dos sinais.47,50

Os hidrogênios A e B são singletos e seus sinais estão de acordo com a integração e deslocamento químico. De todo modo, foi possível atribuir seus sinais sem levar a grandes erros em valores de acoplamentos. Seus sinais são todos de primeira ordem evitando assim maiores dificuldades. O uso de outras técnicas de ressonância, como RMN 13C e espectros bidimensionais ajudariam a correlacionar melhor cada hidrogênio. Para esta mesma análise, aquisição de dados processamentos ou uso de um equipamento com maior resolução poderiam fornecer melhorias mais rápidas.47,50

5.3 Caracterização do complexo [Cu(naftolbpma)(OAc)].3H\textsubscript{2}O (1)

5.3.1 Espectroscopia vibracional na região do infravermelho (IV)

A espectroscopia no infravermelho pode ser utilizada inicialmente como uma verificação da formação ou não do complexo. Ao ser analisado intensidade e frequência das bandas, é possível obter informações sobre o ambiente de coordenação do complexo, bem como avaliar as diferenças nos deslocamentos dos grupos funcionais do ligante livre e do complexo e prever de que forma o ligante está coordenado na formação do complexo.

O ligante naftolbpma pode coordenar-se ao Cu(II) através de seus átomos N,O-doadores presentes. Através da espectroscopia no infravermelho foi possível à comparação dos deslocamentos das principais bandas conforme apresentado na Figura 17 e Tabela 3.
Figura 17. Sobreposição dos espectros de infravermelho. Em preto o espectro do ligante e em vermelho o espectro do complexo.

Tabela 3. Principais bandas e atribuições dos espectros de infravermelho do ligante e do complexo. \(^{47,48,52}\)

<table>
<thead>
<tr>
<th>Banda</th>
<th>Atribuições (cm(^{-1}))</th>
<th>Atribuições (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ligante</td>
<td>complexo</td>
</tr>
<tr>
<td>(\nu) (O-H)</td>
<td>3474</td>
<td>3400</td>
</tr>
<tr>
<td>(\nu) (C-H_ar)</td>
<td>3025</td>
<td>3047</td>
</tr>
<tr>
<td>(\nu) (C=C)</td>
<td>1681</td>
<td>1610</td>
</tr>
<tr>
<td>(\nu) (C=N)</td>
<td>1591</td>
<td>1502</td>
</tr>
<tr>
<td>(\nu) (C=O)</td>
<td>-</td>
<td>1662</td>
</tr>
<tr>
<td>(\delta) (O-H)_naftol</td>
<td>1364</td>
<td>-</td>
</tr>
<tr>
<td>(\delta) (O-H)_água</td>
<td>-</td>
<td>1390</td>
</tr>
<tr>
<td>(\nu) (C-O)</td>
<td>1223</td>
<td>1208</td>
</tr>
</tbody>
</table>

Considerando os sítios de coordenação da estrutura, é sugerido um modelo de coordenação para a formação do complexo a partir do ligante naftolbpma. A análise indica que os átomos de nitrogênio da amina e das
piridinas, bem como o átomo de oxigênio do β-naftol estão coordenados ao metal.

Foi possível observar que a banda de estiramento axial C=N é enfraquecida quando o nitrogênio está coordenado ao metal, pois a ligação C=N é deslocada para um menor número de onda no complexo quando comparado ao ligante. O surgimento de uma banda C=O indica a coordenação do acetato ao metal, sendo que este pode estar coordenado de forma monodentada, bidentada ou como ponte. Na forma livre o íon acetato apresenta valores em 1597 cm⁻¹, já quando associado a metais este valor aumenta chegando até 1660 cm⁻¹. O observado para o complexo foi de 1662 cm⁻¹ que pode estar relacionado ao acetato na forma monodentada. 47,48,50,52

A banda de estiramento C-O é observada em 1208 cm⁻¹, número de onda maior que o observado para o ligante. Isto pode ocorrer devido ao fato de o oxigênio estar complexado ao metal, fazendo que com a ligação C-O fique enfraquecida. 47,48,50,52

5.3.2 Espectroscopia eletrônica na região do ultravioleta-visível – UV-Vis

O complexo de cobre foi estudado por espectroscopia eletrônica na região do ultravioleta-visível em diferentes solventes para que fosse possível obter informações sobre sua estrutura em solução nos solventes: acetonitrila de característica polar aprórtico; metanol de característica polar prótico e diclorometano, de característica apolar.

Os espectros eletrônicos nos solventes acetonitrila, metanol e diclorometano apresentam bandas largas na região de 600-800 nm referentes a transições d-d do cobre(II), conforme é possível visualizar na Figura 18. Nos três espectros apresentados o valor de absorvividade molar está entre 100-200 L mol⁻¹ cm⁻¹, como indicado na Tabela 4.
Figura 18. Espectro eletrônico na região do UV-Vis do complexo referente à transição (d-d) em diferentes solventes. Para todos os espectros a concentração da solução de complexo foi de $3,0 \times 10^{-3}$ mol L$^{-1}$.

Tabela 4. Atribuições das bandas referente a transição (d-d) em diferentes solventes.

<table>
<thead>
<tr>
<th>Solvente</th>
<th>λ (nm)</th>
<th>ε (L mol$^{-1}$ cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$CN</td>
<td>819</td>
<td>186</td>
</tr>
<tr>
<td>MeOH</td>
<td>690</td>
<td>108</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>751</td>
<td>108</td>
</tr>
</tbody>
</table>

Em regiões de alta energia observam-se as bandas referentes às transições de transferência de carga entre metal e ligante ou ligante e metal. A Figura 19 mostra duas bandas abaixo de 600 nm. A primeira banda abaixo de 600 nm é referente a transferência de carga ligante-metal (TCLM), do β-naftol para o cobre(II). É possível visualizar que o espectro realizado em um solvente apolar e que não coordene ao metal apresenta o maior valor de ε que quando realizado nos solventes polares. Isto ocorre, pois acontece uma mudança no ambiente de coordenação do metal, é possível que ocorra a coordenação do
metanol no cobre(II) fazendo com que dificulte a transferência de carga. Para os três espectros apresentados o valor de absorptividade molar está entre 200-800 L mol\(^{-1}\) cm\(^{-1}\), como indicado na Tabela 5.

Figura 19. Espectro eletrônico na região do UV-Vis do complexo referente à transferência de carga em diferentes solventes. Para todos os espectros a concentração da solução de complexo foi de 9,8 \(\times\) 10\(^{-4}\) mol L\(^{-1}\).

Tabela 5. Atribuições das bandas referentes à transferência de carga ligante-metal (TCLM) e referente à transferência de carga intraligante em diferentes solventes.

<table>
<thead>
<tr>
<th>Solvente</th>
<th>(\lambda) (nm)</th>
<th>(\varepsilon) (L mol(^{-1}) cm(^{-1}))</th>
<th>(\lambda) (nm)</th>
<th>(\varepsilon) (L mol(^{-1}) cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)CN</td>
<td>533</td>
<td>572</td>
<td>428</td>
<td>519</td>
</tr>
<tr>
<td>MeOH</td>
<td>483</td>
<td>209</td>
<td>411</td>
<td>233</td>
</tr>
<tr>
<td>CH(_2)Cl(_2)</td>
<td>514</td>
<td>706</td>
<td>330</td>
<td>ombro</td>
</tr>
</tbody>
</table>
5.3.3 Condutividade molar

As medidas de condutividade para o complexo foram avaliadas em soluções de dois solventes. Uma solução contendo acetonitrila e outra contendo metanol, ambas com concentrações de $1,0 \times 10^{-3}$ mol L$^{-1}$ a 25ºC. Com o valor de condutividade obtido é possível determinar a relação estequiométrica entre complexo e contra-ión.43 Os valores encontrados de condutividade estão apresentados na Tabela 6.

Através dos valores obtidos chegou-se ao resultado de um complexo neutro.43 Com base na estrutura do complexo, as cargas positivas provenientes do cobre(II) e as cargas negativas provenientes do ligante estando desprotonado a unidade β-naftol, além do acetato coordenado obtêm-se uma estrutura neutra.

A análise foi realizada em dois solventes sendo que em ambos os casos foram obtidos valores de condutividade relativamente baixos.

Tabela 6. Condutividade molar do complexo de Cu(II).

<table>
<thead>
<tr>
<th>Solvente</th>
<th>Λ (μS cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$CN</td>
<td>3,63</td>
</tr>
<tr>
<td>MeOH</td>
<td>29,32</td>
</tr>
</tbody>
</table>

5.3.4 Espectrometria de massas (ESI-MS)

O complexo foi solubilizado em acetonitrila/água (1:1) e realizado a análise. O complexo apresentou dois picos principais, os dois sendo atribuídos a formas diméricas do complexo que podem surgir devido às condições aplicadas no ESI, sendo que estas espécies podem ou não estarem presentes nas soluções realizadas em condições brandas. A Figura 20 apresenta o espectro experimental, enquanto as Figuras 21 e 22 apresentam o espectro e a distribuição isotópica referentes às espécies para a razão m/z 893,13(1$^+$) $[C_{46}H_{43}Cu_2N_6O_4]^+$ e m/z 417,06(2$^+$) $[C_{46}H_{40}Cu_2N_6O_2-H^+]^{2+}$, respectivamente.
Figura 20. Espectro de massa ESI-MS do complexo em acetonitrila/água (1:1)

Figura 21. Simulação da espécie \(m/z \ 893.13(1+) \ [C_{48}H_{43}Cu_{2}N_{6}O_{4}]^{+} \). Em vermelho a distribuição isotópica e em preto o experimental.
Figura 22. Simulação da espécie \(m/z \ 417.06(2+) \) \([\text{C}_{46}\text{H}_{40}\text{Cu}_2\text{N}_6\text{O}_2 - \text{H}^+]^2+\), em vermelho a distribuição isotópica e em preto o experimental.

5.3.5 Eletroquímica

A caracterização do complexo via eletroquímica é importante pois este será testado como catalisador de reações redox. As medidas eletroquímicas foram realizadas através da técnica de voltametria cíclica. Uma solução de 0,1 mol L\(^{-1}\) de TBAPF\(_6\) (hexafluorfosfato de tetrabutilamônio) em diclorometano foi preparada inicialmente. A partir desta solução, uma solução com o complexo foi preparada com concentração de \(1,0 \times 10^{-3}\) mol L\(^{-1}\). A Figura 23 mostra os voltamogramas para o complexo em diferentes velocidades.
Figura 23. Voltamograma cíclico para o complexo de cobre(II), em CH₂Cl₂ com concentração de 1,0 x 10⁻³ mol L⁻¹. Eletrodo de trabalho: Carbono vítreo; Referência: Ag/AgCl; Auxiliar: Platina. Eletrólito suporte: TBAPF₆ 0,1 mol L⁻¹.

O processo de redução do metal Cu^{II} + e⁻ ⇌ Cu⁺ pode ser observado na onda de redução em – 0,554 V vs ENH (Eletrodo Normal de Hidrogênio). A onda de oxidação observada em 0,529 V vs ENH é atribuída a processo de oxidação do ligante.

Quando comparado com os complexos 1-3 descritos por RAMADAN⁵⁴, que possuem duas piridinas substituídas com um átomo retirador de elétrons (Cl⁻), o valor do potencial catódico obtido deste complexo foi mais negativo. Enquanto RAMADAN⁵⁴ descreve o potencial catódico dos complexos entre -0,380 a -0,420 V, o potencial obtido para o complexo de cobre foi de - 0,554 V. Isto ocorre devido ao fato de o complexo sintetizado possuir um ligante rico em elétrons, com duas piridinas e um naftol, isto aumenta a densidade eletrônica sobre o metal, gerando um potencial de redução mais negativo quando comparado aos complexos descritos por RAMADAN⁵⁴.
5.3.6 Difratoimetria de raios X

Foram obtidos cristais verdes do complexo, os quais se apresentaram adequados para a resolução por difração de raios X. O complexo apresenta uma estrutura no qual o cobre(II) se encontra pentacoordenado, de modo que o acetato está de forma monodentada e mais quatro átomos do ligante compõe sua esfera de coordenação. As quatro ligações com o ligante são de três átomos de nitrogênio e o oxigênio do naftol, conforme Figura 24. A Tabela 7 mostra os dados cristalográficos referente ao complexo de cobre(II).

Figura 24. Estrutura do complexo de cobre(II) através de difração de raios X.

Tabela 7. Dados cristalográficos da estrutura do complexo de cobre(II).

<table>
<thead>
<tr>
<th></th>
<th>200 (2) K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema cristalino</td>
<td>Monoclinico</td>
</tr>
<tr>
<td>Grupo espacial</td>
<td>P21/c</td>
</tr>
<tr>
<td>A</td>
<td>12,2797(3) Å</td>
</tr>
<tr>
<td>B</td>
<td>18,8554(5) Å</td>
</tr>
<tr>
<td>B</td>
<td>10,6465(2) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>β</td>
<td>90,7920(10)°</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Volume, Å³</td>
<td>2464.84(10) Å³</td>
</tr>
</tbody>
</table>
A Tabela 7 mostra os principais ângulos e comprimentos de ligação do complexo de cobre(II). Através do fator τ foi calculado a estrutura geométrica em que os átomos do ligante encontram-se coordenados ao átomo de cobre(II). O cálculo do fator τ é dado por: $\tau = (\beta - \alpha) / 60$, sendo que β indica o maior ângulo e α o segundo maior ângulo. Quando $\tau = 0$ (zero) representa uma geometria de pirâmide de base quadrada perfeita, enquanto que $\tau = 1$ (um) representa uma geometria trigonal bipiramidal perfeita. \(^{53}\)

Para o complexo de cobre(II) foi obtido $\tau = 0,13$, este valor indica que o complexo encontra-se na forma de pirâmide de base quadrada. Com base nos valores apresentados na Tabela 8, referente às distâncias de ligações de cada átomo ligado ao átomo de cobre, é possível determinar a posição de cada átomo coordenado. Os átomos de nitrogênio amínico (N1) e piridínico (N12 e N22), junto com o átomo de oxigênio (O2) do acetato monodentado constituem o plano equatorial da geometria do complexo, estes apresentam distâncias de ligação na ordem de 2,0 Å. O átomo de oxigênio (O1) da unidade β-naftol está a quase 2,2Å do átomo de cobre(II) sendo encontrado na posição axial. Os ângulos de ligação em torno do átomo de cobre estão próximos de 90º e 180º como é esperado para uma geometria pirâmide de base quadrada. \(^{53}\)

Tabela 8. Principais comprimentos (Å) e ângulos de ligação (º) para o complexo.

<table>
<thead>
<tr>
<th>Ligação</th>
<th>Comprimento (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)-O(2)</td>
<td>1.9466(11)</td>
</tr>
<tr>
<td>Cu(1)-N(22)</td>
<td>2.0059(12)</td>
</tr>
<tr>
<td>Cu(1)-N(12)</td>
<td>2.0062(13)</td>
</tr>
<tr>
<td>Cu(1)-N(1)</td>
<td>2.0367(12)</td>
</tr>
<tr>
<td>Cu(1)-O(1)</td>
<td>2.1768(11)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-N(22)</td>
<td>96.95(5)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-N(12)</td>
<td>95.51(5)</td>
</tr>
<tr>
<td>N(22)-Cu(1)-N(12)</td>
<td>161.80(5)</td>
</tr>
<tr>
<td>O(2)-Cu(1)-N(1)</td>
<td>170.15(5)</td>
</tr>
<tr>
<td>N(22)-Cu(1)-N(1)</td>
<td>83.06(5)</td>
</tr>
<tr>
<td>N(12)-Cu(1)-N(1)</td>
<td>82.41(5)</td>
</tr>
</tbody>
</table>
5.3.7 Cinética de oxidação

Os experimentos de cinética de oxidação foram realizados frente ao substrato modelo 3,5-di-terc-butilcatecol (3,5-DTBC). A oxidação do substrato leva a formação da o-quinona 3,5-DTBQ, sua produção foi acompanhada espectrofotometricamente pelo aparecimento de uma banda em 400 nm ($\varepsilon = 1645 \text{ mol L}^{-1} \text{ cm}^{-1}$). 44

O experimento foi realizado em metanol, sendo saturado com O$_2$, que conforme o mostrado no Esquema 7 o oxigênio participa diretamente do ciclo catalítico.

![Esquema 7. Reação de oxidação do 3,5-DTBC na presença de O$_2$, formando 3,5-DTBQ.](image)

A partir do estudo da dependência da velocidade da reação com o pH foi possível determinar quais seriam as melhores condições experimentais para determinação dos parâmetros cinéticos de oxidação do substrato 3,5-di-terc-butilcatecol. O efeito do pH foi realizado com o intuito de determinar o pH ótimo para a atividade da reação, e para tanto esta atividade foi testada em uma faixa de pH entre 6,5 a 10,0. Conforme mostrado na Figura 25, observou-se uma região inicial onde a atividade é muito baixa em pH mais ácido. A atividade de catecolase é significativamente influenciada com o aumento do pH, portanto
observa-se o aumento da atividade em pH mais básico. Como a atividade só teve crescimento com o aumento do pH, foi considerado como pH ótimo 8,5. Soluções idênticas, sem a adição do complexo, foram utilizadas em cada medida a fim de descontar a reação de oxidação espontânea do substrato.

Figura 25. Dependência da velocidade de reação de oxidação do 3,5-di-terc-butilcatecol (3,5-DTBC) em função do pH para o complexo de cobre(II). Condições: [complexo] = 2,92 x 10⁻⁵ mol L⁻¹; [3,5-DTBC] = 3,35 x 10⁻³ mol L⁻¹; [Tampões] = (pH 6,5 MES; pH 7,0 – 10,0 TRIS); soluções de metanol:água (33:1) a 25 ºC.

Figura 26. Dependência da velocidade de reação do 3,5-DTBC com a concentração do substrato para o complexo. Condições: [complexo] = 2,93 x 10^{-5} mol L^{-1}; [3,5-DTBC] = 1,47 - 8,82 x 10^{-3} mol L^{-1}; [Tampão] = 2,94 x 10^{-2} mol L^{-1} (TRIS 8,5) em solução metanol:água (33:1) a 25 °C.
Tabela 9. Parâmetros cinéticos obtidos para o complexo frente à cinética de oxidação.

<table>
<thead>
<tr>
<th>Complexo</th>
<th>V_{max} (mol L$^{-1}$s$^{-1}$)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_{m} (mol L$^{-1}$)</th>
<th>$K_{\text{ass}} = (1/K_{\text{m}})$ (L mol$^{-1}$)</th>
<th>$E = k_{\text{cat}}/K_{\text{m}}$ (L mol$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>9,46±0,7 x10$^{-8}$</td>
<td>3,23x10$^{-3}$</td>
<td>3,06±0,6 x10$^{-3}$</td>
<td>326</td>
<td>1,05</td>
</tr>
<tr>
<td>RAMADAN54 (complexo1)</td>
<td>3,5±0,1 x10$^{-4}$</td>
<td>5,8±0,08 x10$^{-3}$</td>
<td>10,0±0,1 x10$^{-3}$</td>
<td>100</td>
<td>0,58</td>
</tr>
<tr>
<td>COMBA10 (complexoL2)</td>
<td>0,3x10$^{-6}$</td>
<td>5,9x10$^{-3}$</td>
<td>1,04x10$^{-3}$</td>
<td>961</td>
<td>5,74</td>
</tr>
<tr>
<td>SANTRA38 (complexo1)</td>
<td>2,97±0,12 x10$^{-7}$</td>
<td>2,9x10$^{-2}$</td>
<td>2,84±0,38 x10$^{-4}$</td>
<td>3521</td>
<td>104</td>
</tr>
</tbody>
</table>

Comparando os valores obtidos para o complexo (1) com os dados da literatura apresentados na Tabela 9 percebe-se que o complexo de cobre(II) não apresenta uma atividade significativa na catálise da reação de oxidação do substrato 3,5-DTBC. Quando comparado o valor de atividade catalítica com o complexo descrito por RAMADAN54, este apresenta valor inferior, entretanto quando comparado com complexos descritos por COMBA10, que descreve um modelo binuclear, e com SANTRA38, que descreve um modelo de cobre(I), estes apresentam valores superiores de atividade catalítica.

O valor de K_{m} (constante de Michaelis) é inversamente proporcional à afinidade do catalisador pelo substrato. Quando comparado com os valores de K_{m} descritos por COMBA e SANTRA, o complexo sintetizado apresenta uma afinidade menor pelo substrato por ter um maior valor de K_{m}. Entretanto quando comparado com o K_{m} descrito por RAMADAN, o complexo sintetizado apresenta um valor menor de K_{m} menor indicando maior afinidade pelo substrato.

O valor de k_{cat} representa o número de moléculas transformadas em produto por segundo por sítio ativo. Sendo que ao comparar com os complexos descritos por RAMADAN, COMBA e SANTRA, o complexo sintetizado
apresenta o menor valor de k_{cat}, indicando uma menor conversão do substrato em produto.

Finalmente, analisando-se todos os dados cinéticos da Tabela 9, observa-se que mesmo apresentando a menor atividade catalítica, ainda assim o complexo 1 revela uma eficiência catalítica (k_{cat}/K_m) a qual é duas vezes maior que a do complexo reportado por Ramadan, o que está relacionado com a maior eficiência com a qual 1 é capaz de se ligar ao substrato.

5.3.8 Detecção de peróxido

A formação de peróxido de hidrogênio foi detectada na reação de oxidação do 3,5-DTBC catalisada pelo complexo (1), por uma modificação do método da iodometria.\(^{55}\) Foi preparado uma mistura reacional do mesmo modo que no experimento cinético, $[\text{complexo}] = 2,92 \times 10^{-5} \text{ mol L}^{-1}$; $[3,5-\text{DTBC}] = 3,35 \times 10^{-3} \text{ mol L}^{-1}$ em pH 8,5. Após decorrido o tempo de uma hora de reação, foi adicionado 1700 µL de água e a quinona foi extraída com diclorometano.

A fase aquosa foi acidificada com ácido sulfúrico a pH = 2, para interromper a reação de oxidação e 1 mL de solução aquosa de iodeto de potássio ([iodeto] = 0,3 mol L\(^{-1}\)) foram adicionados. Na presença de peróxido de hidrogênio ocorre a seguinte reação:

$$\text{H}_2\text{O}_2 + 2\text{I}^- + 2\text{H}^+ \rightarrow 2\text{H}_2\text{O} + \text{I}_2$$

em excesso de iodeto ocorre a formação de tri-iodeto,

$$\text{I}_2(aq) + \text{I}^- \rightarrow \text{I}_3^-$$

Em meio ácido esta reação torna-se praticamente instantânea. A formação do I_3^- pode ser monitorada espectrofotometricamente devido ao surgimento de uma banda em 353nm ($\epsilon = 26000 \text{ L mol}^{-1} \text{ cm}^{-1}$)\(^{55}\).

O teste foi positivo para a presença de peróxido, confirmado pela reação com iodeto formando I_3^-, de forma que ocorra seguindo a reação

$$3,5-\text{DTBC} + \text{O}_2 \rightarrow 3,5-\text{DTBQ} + \text{H}_2\text{O}_2.$$
realizados para um melhor entendimento do mecanismo catalítico em solução, a fim de explicar se o complexo na forma mononuclear está participando do ciclo catalítico ou se duas moléculas do complexo se juntam para realizar a catálise.
6 CONSIDERAÇÕES FINAIS

O ligante naftolbpma foi sintetizado e devidamente caracterizado apresentando grau de pureza adequado para a síntese do complexo de cobre(II). A utilização de técnicas espectroscópicas de IV, RMN 1H na caracterização do ligante apresentaram bandas e picos condizentes com a estrutura do composto.

Um complexo de cobre(II) mononuclear foi sintetizado através de uma síntese rápida e formando cristais em poucos dias, de modo que foi possível obter sua estrutura por difração de raios X, que associada as técnicas de IV e ESI-MS foi possível entender o comportamento em estado sólido e em solução.

Inicialmente a técnica de IV auxiliou na indicação de formação do complexo, com as outras análises como, espectroscopia eletrônica UV-Vis, potencial redox através da eletroquímica foi possível a compreensão de mudanças no ambiente de coordenação do íon Cu(II).

Os testes cinéticos foram realizados e o complexo 1 mostrou-se com uma atividade para a oxidação do substrato 3,5-DTBC, comparável a complexos binucleares de cobre(II) descritos na literatura, devido ao fato de ter uma relativa alta afinidade pelo substrato.
7 REFERÊNCIAS BIBLIOGRÁFICAS

12 Copper Metalloenzymes. Albrecht Messerschmidt, Max-Planck-Institute of Biochemistry, Martinsried, Germany © 2010 Elsevier Ltd. All rights reserved.

21 BRITTO, J. M.; RANGEL M. C.; Processos avançados de oxidação de compostos fenólicos em efluentes industriais, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, 40170-280 Salvador - BA, Brasil, 2008.

42 SHELDRICK, G. M.; SHELXL-97: program for the refinement of crystal structures. University of Göttinger, Germany, 1997

