Fumarate and nitrate reduction (FNR) dependent activation of the *Escherichia coli* anaerobic ribonucleotide reductase nrdDG promoter

Ignasi Roca, Ester Ballana, Anaïs Panosa, Eduard Torrents, Isidre Gibert*

Bacterial Molecular Genetics Group, Institute of Biotechnology and Biomedicine, and Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain

Received 23 December 2007 · Accepted 24 February 2008

Summary. The nrdDG promoter regulates transcriptional expression of the anaerobic ribonucleotide reductase of *Escherichia coli*, an essential enzyme required to supply the building blocks for DNA synthesis. In this work, binding of the pleiotropic FNR (fumarate and nitrate reduction) transcriptional regulator to the nrdDG promoter region and the effects of binding on transcription were investigated. Gel retardation analysis with purified FNR* demonstrated FNR interaction at two FNR sites, termed FNR-2 and FNR-1, while studies with altered FNR boxes indicated that the upstream FNR-2 site was essential for anaerobic activation of the nrdDG promoter. Although the FNR-1 site was not absolutely required, it allowed maximal expression of this promoter. These results suggest that the two sites have an additive effect in coordinating nrdDG expression in response to shifting oxygen concentrations. [Int Microbiol 2008; 11(1):49-56]

Key words: *Escherichia coli* · fumarate and nitrate reduction (FNR) · ribonucleotide reductase · gene nrd

Introduction

Balanced de novo synthesis of deoxyribonucleotides (dNTPs) is an essential requirement of all DNA-based organisms. This function is supplied by the ubiquitous enzyme ribonucleotide reductase (RNR), whose allosteric regulation and unique chemistry provide the cell with a balanced pool of all four dNTPs by reducing the corresponding ribonucleotides (NTPs) [21]. Life on Earth has evolved to proliferate under oxic and anoxic environments, an ability due in part to the evolution of three classes of RNRs, enzymes that carry out DNA synthesis and repair [29]. Class I RNRs contain a stable tyrosyl radical and an oxygen-linked diferric center required for radical generation. Since this process requires oxygen, class I enzymes are only functional under oxic conditions. Class II enzymes require S-adenosylmethionine (SAM) together with an iron-sulfur cluster. Thus, class III enzymes are only active under strictly anoxic conditions. It seems reasonable that a strict aerobe should contain a class I enzyme, a strict anaerobe a class III enzyme, and facultative organisms RNRs of class II, but the situation is actually more complex. For example, some facultative microorganisms bear both class I and class III enzymes, but
not class II [28, 29]. In those microorganisms, a mechanism to activate or repress each RNR class in response to changing oxygen concentrations may well be crucial for proper adaptation to the environment.

Escherichia coli is usually a harmless commensal of the mammalian lower gastrointestinal tract. However, there are also many pathogenic strains of *E. coli* that cause intestinal and extra-intestinal infections in humans and animals [3]. This γ-proteobacterium is a facultative anaerobe whose genome includes the genes for two class I enzymes (Ia and Ib, respectively) and one class III RNR. Oxygen availability is one of the most important regulatory signals in *E. coli* and several one- or two-component regulatory systems control the expression of its aerobic and anaerobic metabolism. The *arcA* gene encodes the pleiotropic transcriptional regulator of the two-component *arc* system (aerobic respiration control). When activated anaerobically by the membrane sensor protein ArcB, ArcA typically represses a number of genes involved in aerobic metabolism [18] and activates genes necessary for anaerobic growth [9, 22]. The transcriptional regulator encoded by the *fnr* (fumarate and nitrate reduction) gene is a pleiotropic one-component regulator that activates transcription of genes involved in anaerobic metabolism and represses the synthesis of enzymes required for aerobic growth [13, 31].

Very little is known about RNR transcriptional regulation in response to environmental shifts, especially in those organisms with the ability to express two or more different RNRs. In 2003, Boston and Atlung [4] demonstrated FNR-ROCA ET AL

Table 1. Strains, plasmids, and bacteriophages used in this study

<table>
<thead>
<tr>
<th>Genotype/characteristics</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
</tr>
<tr>
<td>BL21 DE3</td>
<td>F−ompT hsdS(r− m−) gal dcm (DE3) Lab. stock</td>
</tr>
<tr>
<td>DH5α</td>
<td>recA1 endA1 hsdR17 supE44 thi-1 relA1 Δ(lacZYA-argF)U169 deoR Φ80dlacZM15 Lab. stock</td>
</tr>
<tr>
<td>MC1061 Rifβ</td>
<td>F− araD139 Δ(ara-leu)7697, galE15, galK16, Δ(lac)X74, rpsL(Strβ), hsdR2 (r− m−), mcrA, mcrB1, Rifβ Lab. stock</td>
</tr>
<tr>
<td>MC1061 lipir</td>
<td>F− araD139 Δ(ara-leu)7697, galE15, galK16, Δ(lac)X74, rpsL(Strβ), hsdR2 (r− m−), mcrA, mcrB1, lipir Lab. stock</td>
</tr>
<tr>
<td>S17-1 lipir</td>
<td>Tn5, SmR, recA, thi, pro, hsdR, M° RP4:2-Tc-McKm Tn7, lipir [6]</td>
</tr>
<tr>
<td>IG40</td>
<td>MC1061 Rifβ nrdD-lacZ::Tn5Km-2 This work</td>
</tr>
<tr>
<td>IG41</td>
<td>MC1061 Rifβ nrdDFNR-2d-lacZ::Tn5Km-2 This work</td>
</tr>
<tr>
<td>IG42</td>
<td>MC1061 Rifβ nrdDFNR-1d-lacZ::Tn5Km-2 This work</td>
</tr>
<tr>
<td>RZ4840</td>
<td>Δfnr lacZΔ145 narG::Mud1734 [15]</td>
</tr>
<tr>
<td>IG34</td>
<td>IG40 Δfnr This work</td>
</tr>
<tr>
<td>ECL963</td>
<td>ϕ(cyd-lac) bla' cyd+ arcA2 zjj::Tn10 [9]</td>
</tr>
<tr>
<td>IG35</td>
<td>IG40 arcA2 zjj::Tn10 This work</td>
</tr>
<tr>
<td>IG36</td>
<td>IG40 Δfnr arcA2 zjj::Tn10 This work</td>
</tr>
<tr>
<td>IG37</td>
<td>IG34 with pGS24 This work</td>
</tr>
<tr>
<td>IG38</td>
<td>IG35 with pMW2 This work</td>
</tr>
<tr>
<td>Pt1vir Phage</td>
<td>Lab. stock</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
</tr>
<tr>
<td>pGEM®-T easy</td>
<td>A/T cloning vector Promega</td>
</tr>
<tr>
<td>pIG72</td>
<td>pGEM®-T easy derivative containing a 479 bp fragment with the nrdDG promoter region This work</td>
</tr>
<tr>
<td>pIG73</td>
<td>pGEM®-T easy derivative containing a 479 bp fragment with the nrdDFNR-2d promoter region This work</td>
</tr>
<tr>
<td>pIG74</td>
<td>pGEM®-T easy derivative containing a 479 bp fragment with the nrdDFNR-1d promoter region This work</td>
</tr>
<tr>
<td>pUJ8</td>
<td>trp' lacZ promoter probe plasmid vector, lacZ fusions type I [6]</td>
</tr>
<tr>
<td>pUTminiTn5Km-2</td>
<td>Delivery plasmid for mini-Tn5 Km-2 [6]</td>
</tr>
<tr>
<td>pMW2</td>
<td>pBR322 derivative containing the arcA gene [12]</td>
</tr>
<tr>
<td>pGS24</td>
<td>pBR322 derivative with for in a 1.64 kb HindIII-BamHI fragment [25]</td>
</tr>
<tr>
<td>pGS771</td>
<td>pGEX-KG derivative with reconstructed for* in a 1156 bp NcoI-HindIII fragment [19]</td>
</tr>
</tbody>
</table>
mediated oxygen-responsive regulation of the *E. coli* nrdDG operon. Two putative FNR boxes upstream of the +1 transcription start site were also proposed. In this study, we analyzed the in vivo and in vitro interactions of these boxes with the FNR transcriptional regulator, in an attempt to elucidate their roles in nrdDG activation.

Materials and methods

Bacterial strains, plasmids, and growth media. The genotypes of the *E. coli* K-12 strains as well as the plasmids and bacteriophages used in this study are listed in Table 1. Cultures were grown routinely at 37°C, either with vigorous shaking in LB broth or on solid medium. When required, antibiotics were added at the following concentrations: ampicillin, 50 μg/ml; kanamycin, 50 μg/ml; chloramphenicol, 34 μg/ml; spectinomycin, 100 μg/ml; tetracycline, 17 μg/ml; rifampicin, 75 μg/ml; and toluidine blue, 260 μg/ml.

Site-directed mutagenesis. A PCR fragment of 479 bp spanning the S′ end of the nrdD gene (184 bp) and the upstream regulatory regions (295 bp) was amplified from *E. coli* MC1061 chromosomal DNA and ligated into the A/T cloning pGEM-T easy vector (Promega), generating plasmid pGl72. The QuickChange Site-Directed Mutagenesis kit (Stratagene) and a complementary set of primers containing the desired mutations were used together with this plasmid to generate plasmids pGl73 (FNR-2d) and pGl74 (FNR-1d). All DNA manipulations were done as described in [24].

Construction of nrdDG-lacZ transcriptional fusions and mutant strains. To construct the nrdDG-lacZ fusions, DNA fragments of 479 bp containing the S′ end of the nrdD gene and the upstream regulatory regions were digested from plasmids pGl72, pGl73, and pGl74, and ligated into the *E. coli* MC1061 chromosome, generating strains IG40, IG41, and IG42. Site-directed mutagenesis. A PCR fragment of 479 bp spanning the S′ end of the nrdD gene (184 bp) and the upstream regulatory regions (295 bp) was amplified from *E. coli* MC1061 chromosomal DNA and ligated into the A/T cloning pGEM-T easy vector (Promega), generating plasmid pGl72. The QuickChange Site-Directed Mutagenesis kit (Stratagene) and a complementary set of primers containing the desired mutations were used together with this plasmid to generate plasmids pGl73 (FNR-2d) and pGl74 (FNR-1d). All DNA manipulations were done as described in [24].

Results

FNR and ArcA requirements for class III RNR expression. An nrdDG-lacZ transcriptional fusion containing 295 bp upstream of the nrdD start codon was constructed and inserted as a single copy into the *E. coli* chromosome, as described in Materials and methods, to generate strain IG40 (Table 1). Assay of β-galactosidase activities in this strain showed that LacZ levels were ten-fold higher under anoxic conditions than under oxic conditions, indicating the presence of an oxygen-sensitive regulatory mechanism for this promoter (Fig. 1).

To examine the effects of FNR and ArcA on expression of the *E. coli* nrdDG operon under oxic and anoxic conditions, Δfnr and ΔarcA mutations were individually transduced into strain IG40 to generate strains IG34 (FnrΔ/arcAΔ), IG35 (arcAΔ), and IG36 (FnrΔ/arcAΔ), respectively. In the fnr mutant strain grown in the presence of oxygen, β-galactosidase activities did not differ from those of the wild-type strain. However, when this strain was incubated anoxically, LacZ levels were ten-fold lower than those measured in the fnr+ strain. To confirm that the fnr mutation was responsible for reduced LacZ activities, the mutant strain was complemented with an expression plasmid containing the wild-type fnr gene. As determined in β-galactosidase assays, activity in the complemented strain recovered and surpassed that measured in the anoxically grown wild-type strain (Fig. 1). By contrast, β-galactosidase levels in the arcA mutant strain were the same as those in the wild-type during either aerobic or anaerobic growth, even when this strain was complemented with an arcA containing plasmid, whereas the double mutant...
strain behaved like the fnr– mutant. These results corroborated those of Boston and Atlung [4] and provided further evidence that FNR is indeed responsible for anaerobic activation of nrdDG (Fig. 1).

Binding of FNR* to the nrdDG promoter. In a preliminary search for specific FNR:DNA binding, gel retardation assays were carried out to investigate whether FNR acts directly on the nrdDG promoter region. The same DNA fragment used to construct the nrdD::lacZ fusion was end-labeled and used in gel retardation assays against purified FNR* protein (FNR-DA154). The DA154 substitution in this FNR protein has been shown to enhance dimer stability, thus providing a sufficiently active form of FNR for use in gel retardation analysis under oxic conditions; it has been widely used to simplify the in vitro analysis of FNR–DNA interactions [16,32]. At the lowest protein concentration tested, a mobility shift band was readily detected. As the concentration of FNR* increased, a second retardation band appeared in the gel (Fig. 2), suggesting FNR binding to both putative boxes.

Although ArcA consensus binding sites have been proposed from footprinting studies with several ArcA-controlled promoters [1,7,17,26], a region resembling an ArcA-binding
site within the nrdDG promoter region could not be identified. However, the nucleotide sequences described by Boston and Atlung around −35 (FNR-1) and −65 (FNR-2) [4] showed significant similarity with the consensus FNR-binding site, with only one or two mismatches (shown in bold in Fig. 3) in one of the palindromic half-sites, respectively.

The direct involvement of these sequences in FNR recognition and binding in vitro was further demonstrated by independently mutagenizing FNR-2 and FNR-1 (see Materials and methods), yielding two novel DNA fragments each containing a single unaltered FNR site (Fig. 3). These fragments were end-labeled and subsequently probed against FNR* in gel retardation assays. As shown in Fig. 4A, removal of the downstream FNR-1 site (FNR-1d) led to the formation of a single FNR*:nrdD complex, while no retardation at all was observed in the fragment lacking the FNR-2 (FNR-2d) site (Fig. 4B). Furthermore, the FNR* concentration resulting in 50% retardation of 1 μg nrdD (K_d) was calculated in all electrophoretic mobility shift assays and found to be similar for the wild-type and the FNR-1d probe ($K_d \approx 4.5 \mu M$), indicating that the absence of the downstream FNR site did not alter the binding affinity of the FNR-2 site. No shifted bands were generated when FNR* was incubated with a PCR probe lacking the FNR-1 and FNR-2 sites (data not shown). The upstream promoter sequences of the E. coli nrdAB and nrdEF genes were also probed for FNR:DNA interactions but no retarded bands were detected (data not shown).

In vivo usage of the FNR-2 and FNR-1 sites.

Since modification of the putative FNR boxes affected FNR binding to the nrdD promoter sequence, we examined whether such modifications also altered in vivo transcription. Accordingly, chromosomal lacZ fusions to the defective promoter sequences were constructed as described in Materials and methods, generating strains IG41 (nrdDFNR-2d::lacZ) and IG42 (nrdDFNR-1d::lacZ). The two strains were assayed

Fig. 3. Sequence of the nrdDG promoter regions and the nrdDFNR-2d and nrdDFNR-1d mutated sequences. The FNR binding sites are boxed in the wild-type sequence, and the −35 and −10 promoter regions are underlined. Bases fitting the consensus FNR sequence TTGATNNANATCAA [11] and the transcription start site [4] are shown in upper-case letters. Mutated bases in the FNR binding sites are indicated in bold.

Fig. 4. Electrophoretic mobility shift assays with FNR* and the nrdDFNR-1d (A), and nrdDFNR-2d (B) promoter regions. Arrows indicate positions of the free (F) and retarded (R) DNA. FNR* was added at the concentrations indicated above the lanes.
for β-galactosidase activity under oxic and anoxic growth conditions. β-Galactosidase levels in strain IG41 were similar under the two conditions (46 ± 5 and 50 ± 5 Miller units, respectively), suggesting that this strain was unable to activate β-galactosidase expression when grown anoxically and thus behaved like the FNR mutant strain. By contrast, the lack of the downstream FNR-1 site did not impair β-galactosidase expression in strain IG42 when incubated in an anoxic environment, although expression was two-fold lower than in the wild-type fusion (760 ± 10 and 1676 ± 12 Miller units for IG42 and IG40, respectively). These results corroborated those of the electrophoretic mobility shift assays.

Discussion

Very few studies in the literature have examined the genetic regulation of nrd genes, and most of them focused on the genes encoding the aerobic classes of enzymes (nrdAB and nrdEF). Consequently, the mechanism driving the expression of the anaerobically controlled enzyme is poorly understood. However, since three different RNR classes are found within the E. coli genome, the presence of a mechanism in which expression of the nrdDG promoter is switched on and off in response to shifting oxygen concentrations can be assumed.

Boston and Atlung [4] showed that regulation of the E. coli anaerobic enzyme is FNR-dependent, either through direct interaction of the protein with the promoter sequence or by means of a more complex pathway. Results obtained with the transcriptional fusions between the E. coli nrdDG promoter, and the lacZ gene described here corroborated Boston and Atlung’s findings, while complementation studies of an fnr mutant strain provided further evidence for FNR-dependent activation under anaerobic growth. It also seems clear from our experiments that ArcA is not involved in nrdDG regulation and that the nrdAB and nrdEF promoters are not FNR-dependent (data not shown). However, although Boston and Atlung identified two putative FNR recognition sequences within the nrdDG promoter, they did not provide direct evidence of the involvement of those sequences in the anaerobic activation of the E. coli class III enzyme. The electrophoretic mobility shift assays carried out in this work demonstrate a direct interaction between FNR* and the nrdDG promoter at specific FNR boxes (see Fig. 3). The fact that two shifted bands appeared in the gel also indicated involvement of both FNR sites in FNR-dependent regulation. Furthermore, in the presence of a DNA fragment lacking the downstream FNR-1 site, FNR* rendered a single shifted band, whereas no retardation was observed at the tested protein concentrations in the absence of FNR-2. A requirement for the FNR-2 site to obtain anaerobic transcription from the nrdDG promoter was also found when transcriptional fusions with these defective promoter sequences were analyzed. Similarly, the lower β-galactosidase levels resulting from the fusion lacking FNR-1 supported the involvement of the FNR-1 site.

In 1996, Garriga et al. [10] demonstrated that the E. coli anaerobic enzyme is essential for growth under strict anaerobiosis, but that an nrdDG null-mutant can also proliferate under microaerophilic conditions by overexpressing the nrdA gene (aerobic class Ia). Our gel retardation experiments revealed that the two FNR sites displayed a differential affinity towards the FNR protein, with FNR-2 site having the highest binding capacity. Thus, FNR-1 and FNR-2 should be involved in fine tuning the shift from aerobic to anaerobic growth, and the following model accounting for these results can be proposed:

Maximal transcription from the nrdDG promoter requires the binding of two FNR dimers, with one dimer bound at each FNR site. Comparison of the half-maximal expression values (pO2) for FNR- and ArcA-regulated genes suggested that the transition point from aerobic to anaerobic metabolism is found within the range of 1–5 millibars of oxygen, such that there is a coordinated substitution of the aerobic pathways by the anaerobic pathways [2]. The FNR content in E. coli cells remains almost constant throughout aerobic and anaerobic growth. However, the proportion of the active reduced form must increase gradually with decreasing pO2 [8]. As the pO2 decreases (microaerophilia), the amount of FNR able to bind DNA increases proportionally, yielding amounts of active FNR in the cell that are sufficient to allow binding to the high-affinity FNR-2 site (which also displays greater similarity to the FNR consensus sequence), but not to the FNR-1 site. Accordingly, expression from the nrdDG promoter is not maximal; instead, by overexpressing nrdA the cell is able to proliferate. The lower β-galactosidase levels detected in our FNR-1d fusions provided evidence for this scenario.

By contrast, oxygen depletion (strict anaerobiosis) renders class Ia RNR non-functional, and the anaerobic enzyme becomes the only source of reduced ribonucleotides. At this point, the amount of active FNR is maximal such that the protein binds to both FNR sites. Since FNR-1 is centered over the putative −35 sequence, it is not clear how occupancy of this site contributes to the higher levels of expression obtained with the wild-type fusion. In most FNR-dependent promoters, FNR acts as an activator by binding to a single FNR site centered near position −41 (class II promoters, which overlap the −35 sequence) or near positions −61 or −71 (class I promoters). FNR activation of both the class I and class II promoters is achieved through direct contacts.
between FNR and the RNA polymerase σ subunit (RNAP σ) [30]. However, when a second FNR site is located in an upstream position, binding of FNR to both sites down-regulates rather than enhances expression from the promoter. Green and co-workers have shown that this down-regulation is due to specific interactions between the two in-tandem-bound FNR molecules [2]. In this respect, the nrdDG promoter may be considered as constituting a mixture of class I and class II FNR-dependent promoters, and its unique architecture might allow simultaneous contacts of RNAPσ with the two in-tandem FNR proteins, resulting in FNR-dependent activation rather than repression. Note that equivalent positions in FNR-2 and FNR-1 are 31 bp apart (three helical turns), which indicates binding on the same face of the helix. In addition, the closely spaced FNR sites might also allow protein–protein contacts between FNR dimers, such that cooperative binding and activation cannot be excluded. A similar situation is found in the dcmC promoter in *E. coli*, which contains two FNR activating regions centered over positions –34 and –65 [33].

Although there is no doubt about the additive effect of FNR-1 in the FNR-mediated activation of the nrdDG promoter, the specific activating mechanism remains unclear. To our knowledge, ours is the first direct evidence for the involvement of two FNR sites in the up-regulation of an FNR-dependent promoter. Further studies aimed at understanding the mechanisms driving this regulation are under way.

Acknowledgements. We thank J.R. Guest, Patricia Kiley, and Edmund Lin for kindly providing the strains and plasmids. This work was supported by grants BFU2004-03383 (Spanish Ministry of Education and Science) and 2005SGR-00956 (Autonomous Government of Catalonia, Spain), as well as by a grant from Fundación Maria Francisca de Rovira. A.P. was the recipient of a fellowship from the Autonomous University of Barcelona. E.T. was supported by the Spanish Ramón y Cajal program and the Swedish Jeansson Foundations.

References