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The blow up technique is widely used in desingularization of degenerate singular points of
planar vector fields. In this survey we give an overview of the different types of blow up and we
illustrate them with many examples for better understanding. Moreover, we introduce a new
generalization of the classical blow up.

1. Introduction

The study of the topological behavior of the solu-
tions of a real planar vector field X = P∂x + Q∂y
in a neighborhood of a singular point is one of
the main unsolved problems in the qualitative the-
ory of differential systems. Concerning the sim-
ple singular points (where both eigenvalues of the
jacobian matrix at the singular point are differ-
ent from zero) the Hartman-Grobman Theorem
completely classifies them (except the center-focus
points). The semi-simple points (with one of the
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eigenvalues equal to zero) are also classified (see
[Andronov et al., 1973]). Precisely, the local phase
portrait in these two cases is either monodromic
(thus a focus or a center) or a saddle, or a node, or
a saddle-node.

Regarding the degenerate singular points, with
both eigenvalues of the jacobian matrix at the point
equal to zero, the situation is far more complicated.
The topology around a non-monodromic singular
point can be much richer. The Andreev Theorem
(see [Andreev, 1958]) classifies the nilpotent singu-
lar points, degenerate singular points whose associ-
ated jacobian matrix is not identically zero, except
the center-focus case; see also [Arrowsmith, 1979].
If the jacobian matrix is identically null (the so-
called linearly zero case) the problem is open. In
this case, the only possibility is studying each de-
generate singular point case by case.
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The main technique to perform the desingular-
iztion of linearly zero singular points is the blow
up technique. The desingularization theorem for
planar vector fields was first stated by Bendix-
son in 1901 without proof. Seidenberg gave the
first rigorous proof of the theorem for the ana-
lytic case, see [Seidenberg, 1968]. The desingular-
ization procedure was extended to C∞ vector fields
of  Lojasiewicz type in [Dumortier, 1977]. Van den
Essen found a transformed proof of the desingu-
larization theorem for analytic vector fields, see
[Van den Essen, 1979].

Roughly speaking the idea behind the blow up
technique is to explode, through a change of vari-
ables that is not a diffeomorphism, the singular-
ity to a line or to a circle. Then, for studying the
original singular point one studies the new singular
points that appear on this line or circle and that will
be, probably, simpler. If some of these new singular
points are degenerate the process is repeated. Du-
mortier proved that this iterative process of desin-
gularization is finite, see [Dumortier, 1977].

The quasi-homogeneous blow up is a widely
used extension of the blow up technique. It was
already used by Lyapunov but was essentially put
forward as a systematic and more powerful tech-
nique in [Brunella & Miari, 1990] and especially in
[Bruno, 1989]. A proof of the desingularization
theorem for C∞ vector fields of  Lojasiewicz type,
based on quasi-homogeneous blow-ups, was given
by Pelletier in her thesis [Pelletier, 1994]; see also
[Pelletier, 1995]. The desingularization procedure
using quasi-homogeneous blow ups has also been
applied in the program P4 (see [Artés et al., 2005]
and [Dumortier & Herssens, 1999]).

The main goal of this work is to widely explain
the blow up technique and its extensions. We shall
define and explain the different types of blow up
appearing in the literature and we shall provide
many examples with coloured figures for better un-
derstanding. Moreover we shall introduce a new
extension of the classical blow up technique, the
k-blow up, which is very useful in some cases to
reduce the number of computations.

We refer the reader to [Mañosa, 2002] for more
information about blow ups in the center-focus case
and to [Takens, 1974] for the rest of singularities.

2. The homogeneous blow up technique

Consider a real planar polynomial differential sys-
tem of the form

ẋ = P (x, y) = Pm(x, y) + · · · ,
ẏ = Q(x, y) = Qm(x, y) + · · · , (1)

where P and Q are coprime polynomials, Pm and
Qm are homogeneous polynomials of degree m ∈ N
and the dots mean higher order terms in x and y.
We note that we are assuming that the origin is a
singular point, since m > 0. Taking polar coordi-
nates (x, y) 7→ (r, θ), system (1) becomes

ṙ = R(θ)r + · · · ,
θ̇ = F(θ) + · · · ,

(2)

where R and F are polynomials in cos θ and sin θ
and the dots mean higher order terms in r. If F 6≡ 0
we say that the origin is a non-dicritical singular
point. In this case, all the solution curves tending to
the origin in forward or backward time are tangent
to the solutions θ∗ ∈ [0, 2π) of the equation F(θ) =
0. We call F the characteristic polynomial of (1)
at the origin and θ∗ a characteristic direction. In
cartesian coordinates F writes as

F(x, y) := xQm(x, y) − y Pm(x, y). (3)

If F ≡ 0 the origin is a dicritical singular point.
In this case we easily deduce from (3) that Pm =
xWm−1 and Qm = yWm−1, where Wm−1 6≡ 0 is a
homogeneous polynomial of degree m− 1. If y− vx
is a factor of Wm−1 and v = tan θ∗, θ∗ ∈ [0, 2π),
then θ∗ is a singular direction.

The homogeneous polar blow up (or polar blow
up) is the mapping (r, θ) 7→ (r cos θ, r sin θ) =
(x, y), with r ∈ R and θ ∈ [0, 2π). This map trans-
forms the origin of system (1) into the circle r = 0,
which is called the exceptional divisor (see figure 1).
After the polar blow up and after cancelling an ap-
pearing common factor rm−1, system (1) becomes
system (2). If F ≡ 0 then this common factor is
rm.

The homogeneous directional blow up in the x
direction (or the directional blow up in the x direc-
tion) (resp. y) is the mapping (x, z) 7→ (x, xz) =
(x, y) (resp. (z, y) 7→ (yz, y) = (x, y)), where z is a
new variable. This map transforms the origin of (1)
into the line x = 0 (resp. y = 0), which is called the
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exceptional divisor (see figure 2). The expression of
system (1) after the blow up in the x direction is

ẋ = P (x, xz), ż =
Q(x, xz) − zP (x, xz)

x
, (4)

that is always well-defined since we are assuming
that the origin is a singularity. After the blow up,
we cancel an appearing common factor xm−1 (xm if
F ≡ 0). Moreover, the mapping swaps the second
and the third quadrants in the x-directional blow
up and the third and the fourth quadrants in the
y-directional blow up, which writes as

ż =
P (yz, y) − zQ(yz, y)

y
, ẋ = P (yz, y). (5)

θ = 0 θ = 2π

x

y

r

Fig. 1. The polar blow up: from the plane to the cylin-
der.

x                             

y                            

x                             

z                            

Fig. 2. The directional blow up.

The polar and the x-directional blow ups are
equivalent on {x 6= 0} (θ 6= π/2, 3π/2), since there
exists an analytic change of variables ϕ bringing
(r, θ) to (x, y):

(r, θ)
ϕ

> (x, z)

(x, y)

Π1
<

Π2 >

where ϕ(r, θ) = (r cos θ, tan θ) = (x, z), Π2(r, θ) =
(r cos θ, r sin θ) = (x, y) is the polar blow up and
Π1(x, z) = (x, y) is the x-directional blow up. In the
case of the y-directional blow up something analo-
gous happens on {y 6= 0} (θ 6= 0, π). In practical,
one uses the directional blow up rather than the
polar one, as the computations and the appearing
expressions are easier.

During the explanation, some of the results
that we will state will be refered to the x-directional
blow up. The reader may note that the results will
be also valid for the y-directional blow up.

We reproduce in the following two well-
known results that provide the relationship be-
tween the original singular point of system (1)
and the new singularities of system (4); see
[Andronov et al., 1973].

Proposition 2.1. Let ϕt = (x(t), y(t)) be a trajec-
tory tending to the origin of system (1), in forward
of backward time. Suppose that F 6≡ 0. Assume
that ϕt is tangent to one of the two angle directions
tan θ = v, v 6= ∞. Then the following statements
hold.

(i) The two angle directions θ = arctan v (in
[0, 2π)) are characteristic directions.

(ii) The point (0, v) on the (x, z)-plane is an iso-
lated singular point of system (4).

(iii) The trajectory ϕt corresponds to a solution of
system (4) tending to the singular point (0, v).

(iv) Conversely, any solution of system (4) tend-
ing to the singular point (0, v) on the (x, z)-
plane corresponds to a solution of system (1)
tending to the origin in one of the two angle
directions tan θ = v.

Proposition 2.2. Consider system (1) and sup-
pose that F ≡ 0. Then for every non-singular di-
rection θ there exists exactly one semipath tending
to the origin in the direction θ in forward or back-
ward time. If θ∗ is a singular direction, there may
be either no semipaths tending to the origin in the
direction θ∗, or a finite number, or infinitely many.

The conclusion of the previous propositions is
that in order to study the behavior of the solutions
around the origin of system (1) it is necessary to
study the singular points of system (4) on the excep-
tional divisor. They correspond to either character-
istic directions in the non-dicritical case, or singular
directions in the dicritical case. It may happen that
some of these singular points are degenerate. If this
is the case, then we have to study them repeating
the process. As we already pointed out, it is proved
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in [Dumortier, 1977] that this chain of blow ups is
finite.

We illustrate the idea of the blow up technique
with some examples.

Example 2.3. Consider the planar system

ẋ = ax2 − 2xy + · · · ,
ẏ = y2 − axy + · · · ,

(6)

with a ∈ R+, where the dots mean higher order
terms in x and y. We study the local behavior of
this system around the origin, which is a degenerate
singular point. We shall desingularize it with both
polar and directional blow up.

The polar blow up transforms system (6) into

ṙ = (a cos3 θ + sin3 θ − 2 cos2 θ sin θ

− a cos θ sin2 θ)r + · · · ,
θ̇ = cos θ sin θ(3 sin θ − 2a cos θ) + · · · ,

(7)

where the dots mean now higher order terms in r.
In order to desingularize the origin of system (6)
we have to study the singular points of system (7)
on the exceptional divisor r = 0, which are the
solutions of the equation

cos θ sin θ(3 sin θ − 2a cos θ) = 0,

that is 0, π/2, π, 3π/2, arctan(2a/3), arctan(2a/3)+
π. All of them are hyperbolic saddles. The phase
portrait of system (7) on the cylinder is shown in
figure 3(a). If we close the cylinder identifying θ = 0
and θ = 2π then we see the exceptional divisor as
a circle, see figure 3(b). This is the usual way to
visualize r = 0 in the blown up system for the polar
blow up. In this case, the interior of the circle rep-
resents r < 0 and the exterior r > 0. Consequently,
we will be interested exclusively in the separatrices
at the exterior of the circle.

Finally, going back through the blow up we re-
cover the phase portrait of the original system (6)
in figure 3(c). As we can see, this is easily done by
shrinking the circle to a point.

Next we use the directional blow ups to desin-
gularize the origin of system (6). The characteristic
polynomial of this system is F(x, y) = xy(3y−2ax).
Therefore we need to do both directional blow ups
to get the complete local phase portrait around the

  

0

(a) (b)

(c)

θ∗

θ∗

θ∗ + π θ∗ + π

π
2

π
2

π

π

3π
2

3π
2

Fig. 3. The desingularization of example 2.3 using polar
blow ups.

origin, as x = 0 and y = 0 are both characteris-
tic directions. We start with the x-directional blow
up (x, y) 7→ (x, xz). System (6) writes in the new
variables as

ẋ = x(a− 2z) + · · · ,
ż = z(3z − 2a) + · · · , (8)

where a common factor x has been cancelled. We
are interested in the singular points lying on the ex-
ceptional divisor x = 0, which are (0, 0) and (0, 2a3 ).
Both are saddle points. The phase portrait of sys-
tem (8) is shown in figure 4(a).

Next we apply the y-directional blow up
(x, y) 7→ (yw, y), obtaining the system

ẇ = w(2aw − 3) + · · · ,
ẏ = y(1 − aw) + · · · , (9)

where a common factor y has been cancelled. In this
case we only need to study whether the origin is a
singular point and its local behavior, as other singu-
lar points on the exceptional divisor y = 0 different
from the origin are in correspondance with the ones
obtained in the x-directional blow up different from
the origin. The origin of system (9) is also a saddle
point. The phase portrait of system (9) is shown in
figure 4(b).

Joining both directional blow ups one gets the
local phase portrait of the original system (6) in
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figure 3(c). It is obviously topologically the same
as the one obtained using the polar blow up. The
exceptional divisor shrinks to a point, and hence
the orbits are slightly modified. Following proposi-
tion 2.1, the singular point (0, 2a/3) of system (8)
is transformed into a solution arriving to the origin
of system (6) with slope 2a/3. The other solutions
behave in the same way.

(a) (b)

(c)

(0, 2a
3 )

( 3
2a , 0)

Fig. 4. The desingularization of example 2.3 using di-
rectional blow ups.

Example 2.4 (A dicritical singular point).
Consider the polynomial diffrential system appear-
ing in [Andronov et al., 1973]

ẋ = xy + (x + y)4,

ẏ = y2 − (x + y)4.
(10)

The origin is the only singular point of this system,
and it is dicritical: F = xQ2−yP2 = xy2−yxy ≡ 0.
For this system, m = 2 and W1 = y. Hence the only
singular direction is y = 0, which needs a blow up
in order to be studied. There are orbits tending
to the origin (in forward or backward time) in all
directions different from y = 0 (the non-singular di-
rections), which will provide the line of singularities
x = 0 after the blow up.

After the change y = xz and after dividing by
x2, system (10) becomes

ẋ = z + x2(1 + z)4,

ż = −x(1 + z)5.
(11)

The origin is the only singular point of this system.
It has eigenvalues ±i, hence it is either a focus or

a centre. Indeed it is a centre as the system has
a first integral (see [Andronov et al., 1973]). The
local phase portrait of system (11) is shown in fig-
ure 5(a). In figure 5(b) we have added the line of
singularities x = 0. The orbits in figure 5(a) become
in 5(b) orbits starting and ending at two different
singular points on x = 0. Figure 5(c) shows the
initial system (10): the orbits of system (11) (fig-
ure 5(b)) form two elliptic sectors close to the origin
of system (10).

Fig. 5. The desingularization of example 2.4. The verti-
cal arrows show how all the singular points forming the
straight line x = 0 in (b) collide to the origin in (c) and
how the orbits in (b) become the orbits in (c).

In the following we present two examples that
are not as simple as the previous ones, as one blow
up is not enough to desingularize the singular point.

Example 2.5 (The cusp). Consider the quadratic
differential system

ẋ = y,

ẏ = x2 + xy.
(12)

The origin is the only singular point of this system
and it is nilpotent. Moreover F = y2, therefore we
only have the characteristic direction y = 0. If we
apply the x-directional blow up y = xz we obtain

ẋ = xz,

ż = x + xz − z2,
(13)

which has the origin as its unique singular point on
the line x = 0. It is degenerate, hence we blow up
again, but this time we do the change x = zu, as
x = 0 is a characteristic direction: indeed F = x2.
We get

u̇ = −u2 + 2uz − u2z,

ż = z(u− z + uz).
(14)



6 M.J. Álvarez, A. Ferragut and X. Jarque

On z = 0 the origin is the only singular point and it
is again degenerate. The characteristic polynomial
is F = uz(2u − 3z). As z is a simple factor of F
we do not need to do the blow up in the z direction
but in the u direction. After the change z = uv
system (14) becomes

u̇ = u(−1 + 2v − uv),

v̇ = v(2 − 3v + 2uv),
(15)

from which we obtain two saddles at (0, 0) and
(0, 2/3) with respective eigenvalues −1, 2 and
−2, 1/3.

Hence the desingularization of the origin of sys-
tem (12) is done. Next we explain how to obtain the
local behavior of the origin. We have six regions in
the (u, v)-plane. When going back to the (u, z)-
plane these six regions may change their shape
and position on the plane, as the second and the
third quadrants swap from the (u, v)-plane; more-
over the separatrice of the singular point (0, 2/3) at
the (u, v)-plane becomes the separatrice with slope
2/3 aat the (u, z)-plane, say u = 3z/2 + · · · . In
the next step the third and the fourth quadrants
swap and the curve u = 3z/2 + · · · at the (u, z)-
plane becomes the curve z = ±

√
2x/3 + · · · at

the (x, z)-plane, x ≥ 0. The straight line z = 0
is lost as a separatrice, as it was the exceptional
divisor, and we change from six regions to four. In
the last step the second and the third quadrants
swap, the curve z = ±

√
2x/3 + · · · becomes the

cusp y = ±
√

2x/3x + · · · and x = 0 is lost as a
separatrice. We change from four regions to two
and we are finished. The local phase portraits can
be seen in figure 6.

Example 2.6. Consider the polynomial system

ẋ = y2 + x7,

ẏ = y3(1 + x2).
(16)

The origin is its unique singular point and it is de-
generate. The characteristic polynomial at the ori-
gin is F = y3, and then y = 0 is the only character-
istic direction. We apply the x-directional blow up
(x, y) 7→ (x, xz) to obtain (after cancelling a com-
mon factor x2)

ẋ = x(x5 + z2),

ż = −z(x5 + z2 − xz2 − x3z2).

(u, v)

(u, z)

(x, z)

(x, y)

Fig. 6. The desingularization of example 2.5.

The origin is the only singular point of the new
system on x = 0 and it is also degenerate, hence
we need to do another blow up. The characteristic
polynomial is now F = −2xz3. Obviously x = 0 is
a characterictic direction because it is invariant. If
the factor x were powered to some factor greater
than one in the expression of F , this would mean
that some more orbits would arrive at the origin
with vertical tangent, so we would need to do a blow
up in the y direction. As in this case it is simple (it
is powered to one) we do not need to do the blow up
in this direction. Consequently, we have to apply
only the x-directional blow up (x, z) 7→ (x, xt), from
which we get (after cancelling a common factor x2)

ẋ = x(t2 + x3),

ṫ = t(−2t2 + t2x− 2x3 + t2x3).

The origin of this sytem is again the unique singular
point on x = 0, and it is still degenerate. Thus we
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need to apply the blow up again. The characteristic
polynomial is F = −3xt3. Again we have x = 0 as
a simple characteristic direction, thus we have to
blow up the system only in the x direction: (x, t) 7→
(x, xu). After cancelling the common factor x2, we
obtain the new system

ẋ = x(u2 + x),

u̇ = u(u2x3 + u2x− 3u2 − 3x).
(17)

Once again, the origin is the only singular point on
x = 0 and it is degenerate. The new characteristic
polynomial is F = −4x2u, hence we have to apply
now both directional blow ups, because the line x =
0 is not a simple characteristic direction anymore.
Thus we will apply a blow up in the x direction and
desingularize all the orbits arriving at the origin of
(17) not tangent to u = 0 and afterwards we will do
an u-directional blow up to study the orbits arriving
tangents to this straight line. We start with the
blow up (x, u) 7→ (x, xv), obtaining the system

ẋ = x(v2x + 1),

v̇ = v(v2x4 + v2x2 − 4v2x− 4).

The origin is the only singular point: it is a sad-
dle. We apply the u-directional blow up (x, u) 7→
(uv1, u) to system (17) to obtain

v̇1 = −v1
(
u4v31 + u2v1 − 4u− 4v1

)
,

u̇ = u
(
u4v31 + u2v1 − 3u− 3v1

)
.

The origin is a degenerate singular point, so we
need to blow it up again. The characteristic poly-
nomial is F = −7uv1(u + v1). We have to do the
blow up only in the u-direction because u = 0 is a
simple characteristic direction. With this blow up
(v1, u) 7→ (uw1, u) one gets

ẇ1 = −w1

(
2u6w3

1 + 2u2w1 − 7w1 − 7
)
,

u̇ = u
(
u6w3

1 + u2w1 − 3w1 − 3
)
.

(18)

This system has two non-degenerate singular
points: (0, 0), which is a saddle, and (−1, 0), which
has one zero eigenvalue. Putting it in normal form,
see [Andronov et al., 1973] we know it is a node.

Finally we go back through all the blow ups
we have applied to obtain the phase portraits of
all the systems until we get the phase portrait of
system (16), see figure 7.

(w1, u) (v1, u)

(x, v) (x, u)

(x, t)(x, z)

(x, y)

Fig. 7. The desingularization of example 2.6.

3. Extensions

As we have seen in the previous examples, when
desingularizing a singular point by the blow up
technique a high number of computations are
needed. Besides the homogeneous blow up defined
in section 2 there exists in the literature the so-
called (α, β)-blow up or quasi-homogeneous blow
up, an extension of the classical one. It is very
useful as it allows to desingularize a degenerate sin-
gular point in (usually) less steps than the classical
technique. The parameters α and β are found from
the monomials of the system, as we will show next.

3.1. The quasi-homogeneous blow up

The quasi-homogeneous polar blow up (or the
(α, β)-polar blow up) is the mapping (r, θ) 7→
(rα cos θ, rβ sin θ) = (x, y), with r ∈ R and θ ∈
[0, 2π), for some convenient α, β ∈ N. The case
α = β = 1 is the homogeneous polar blow up de-
fined above.

System (1) becomes, after the quasi-
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homogeneous polar blow up,

ṙ =
rβP cos θ + rαQ sin θ

rα+β−1(α cos2 θ + β sin2 θ)
,

θ̇ =
αrαQ cos θ − βrβP sin θ

rα+β(α cos2 θ + β sin2 θ)
,

(19)

where P and Q are evaluated at (rα cos θ, rβ sin θ).
A common factor rd is to be canceled, for some
suitable d.

The quasi-homogeneous directional blow up in
the positive (resp. negative) x direction is the map-
ping (u, v) 7→ (uα, uβv) = (x, y) (resp. (u, v) 7→
(−uα, uβv) = (x, y)), where u, v are new variables.
The quasi-homogeneous directional blow up in the
positive (resp. negative) y direction is the map-
ping (u, v) 7→ (uvα, vβ) = (x, y) (resp. (u, v) 7→
(uvα,−vβ) = (x, y)), where u, v are new variables.
The parameters α, β ∈ N are chosen conveniently.
If α (resp. β) is odd, the blow up in the positive x
direction (resp. y direction) provides the informa-
tion of the blow up in the negative x direction (resp.
y direction). If α = β = 1 we recover the directional
blow up defined in section 2. Moreover, if β is odd,
then the mapping swaps the second and the third
quadrants in the x-directional blow up; and if α is
odd then the y-directional blow up swaps the third
and the fourth quadrants.

The expression of system (1) after the quasi-
homogeneous directional blow up in the x direction
is

u̇ =
±P

αuα−1
, v̇ =

αuα−1Q∓ βuβ−1vP

αuα+β−1
, (20)

where P and Q are evaluated at (±uα, uβv) and
the ± means either positive or negative direction.
After this blow up a common factor ud is to be
cancelled, for some suitable d. Applying the quasi-
homogeneous directional blow up in the y direction
system (1) becomes

u̇ =
βvβ−1P ∓ αuvα−1Q

βvα+β−1
, v̇ =

±Q

βvβ−1
, (21)

where P and Q are evaluated at (uvα,±vβ) and
the ± means either positive or negative direction.
After the blow up we cancel the common factor vd,
for some suitable d.

Remark 3.1. As in the homogeneous blow up, the
quasi-homogeneous polar blow up and the quasi-
homogeneous directional blow up are equivalent.

Next we show how to compute the parameters
α, β and d, see [Pelletier, 1995] and [Bruno, 1989]
for more details. We consider system (1) and write

P (x, y) =
∑

i+j≥m

ai,jx
iyj , Q(x, y) =

∑

i+j≥m

bi,jx
iyj.

We define the set

N = {(i− 1, j) : ai,j 6= 0} ∪ {(i, j − 1) : bi,j 6= 0}.

The point (−1, j) is associated to the monomial
a0,jy

j and the point (i,−1) to the monomial bi,0x
i.

The point (0, 0) is associated to the monomials a1,0x
and b0,1y. If the origin of system (1) is degenerate
then (0, 0) 6∈ N . We define the Newton polyhedron
as the convex hull of N +R2

+ in the (i, j)-plane. We
call γk the segments of this polyhedron. If one of
these segments is completely in the half-plane i ≤ 0
(resp. j ≤ 0) we call it γ0 (resp. γn+1). The rest
of the segments are called γ1, . . . , γn from left to
right, and they have at least one endpoint in the
first quadrant of the (i, j)-plane. For k = 1, . . . , n,
the segment γk satisfies the equation of the straight
line αki + βkj = δk, for some coprime αk, βk and
some δk. We choose the suitable α, β, d from the set
{(αk, βk, δk), k = 1, . . . , n} provided by γ1, . . . , γn.

If (i, j) ∈ N , then either ai+1,jx
i+1yj is a mono-

mial of P , or bi,j+1x
iyj+1 is a monomial of Q. We

call δ = αi + βj the quasi-degree of type (α, β)
of these monomials. The monomials ai+1,jx

i+1yj

(resp. bi,j+1x
iyj+1) of quasi-degree δ of type (α, β)

are grouped in a polynomial P δ (resp. Qδ). Hence
the vector field X = (P,Q) can be decomposed into
its quasi-homogeneous components of type (α, β):
X =

∑
δ≥d X

δ, where Xδ = (P δ, Qδ) and d =
min{δ : ∃(i, j) ∈ N,αi + βj = δ}. We also write
Xγk := Xdk for the component of the vector field
associated to the segment γk. This is a different way
of writing system (1). It may be also useful to find
the characteristic polynomial of system (1), which
writes as

F = αQd(1, v) − βvP d(1, v),

assuming that γ : αi + βj = d.
When the (α, β)-blow up is applied, the char-

acteristic polynomial F is very useful in order to
obtain the singular points of the new system that
need to be studied. This polynomial is constructed
from (P d, Qd). The best parameters (α, β, d) we
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can choose in order to optimize the desingulariza-
tion process are the ones provided by the segments
γk.

We note that, after applying the quasi-
homogeneous directional blow up in the x direction,
only the direction x = 0 is to be studied. This is
why we also need to apply the blow up in the y di-
rection. However the following proposition, stated
in [Pelletier, 1995], helps us to know whether this
second blow up is to be done.

Proposition 3.2. The vertical direction x = 0 is
a characteristic direction of Xγk if and only if γk
does not contain points of negative abscissa (if and
only if x|P dk).

Next we apply the (α, β)-blow up technique to
two examples. In the first one we study again the
system presented in example 2.5 to show that the
(α, β)-blow up is faster than the classical one. In
the second one a more difficult example is provided
to show the strongness of the (α, β)-blow up and
to better understand its application. The phase
portraits in the quasi-homogeneous case are usually
drawn using the polar representation, as it is, in this
case, quiteclearer than the directional one.

Example 3.3 (The cusp revisited). Consider
again the quadratic differential system

ẋ = y,

ẏ = x2 + xy,
(22)

which was studied in example 2.5. We want to ap-
ply the (α, β)-blow up technique in order to desin-
gularize the singular point at the origin. In exam-
ple 2.5 we have performed three directional blow
ups to desingularize the origin and we will see that
with the (α, β)-blow up, one is enough. The set N
associated to system (22) is

N = {(−1, 1), (2,−1), (1, 0)}.

We show in figure 8 the Newton polyhedron asso-
ciated to N . There is only one segment γ1, which
lies on the straight line 2i + 3j = 1. Hence we get
α = 2, β = 3 and d = 1.

To illustrate how the quasi-homogeneous blow
up works, we appy both, the polar and the direc-
tional blow up.

(−1,1)

(2,−1)

(1,0)

Fig. 8. The Newton polyhedron of system (22).

We begin with the quasi-homogeneous po-
lar blow up and apply the mapping (x, y) =
(r2 cos θ, r3 sin θ). After dividing by a common fac-
tor r the resulting system is

ṙ = −r sin θ cos θ(r sin θ + cos θ + 1),

θ̇ = 3 sin2 θ − 2 cos3 θ − 2r sin θ cos2 θ.

We compute the singular points on the exceptional
divisor r = 0 and we get that are the solutions of
the equation

−2 cos3 θ + 3 sin2 θ = 0.

Concretely, sin2 θ
cos3 θ

= 2
3 . We get that these two points

are saddles and the process of desingularizing is
done. We can see its phase portraits in figure 9.

Next we apply the quasi-homogeneous direc-
tional blow up. In this case we have to apply a
(2, 3)-blow up in the positive x direction x = u2,
y = u3v to obtain, after cancelling a common fac-
tor ud = u,

u̇ =
uv

2
,

v̇ = 1 − 3

2
v2 + uv.

(23)

This system has two saddles at (0,±
√

2/3). Ap-
plying the (2, 3)-blow up in the negative x direction
x = −u2, y = u3v, we obtain

u̇ = −uv

2
,

v̇ = 1 +
3

2
v2 − uv,

(24)

which has no real singular points.

If we want to write X =
∑

δ≥1 X
δ we draw

straight lines passing through the points of N and
parallel to γ1. In the case of the example, be-
sides the points (−1, 1) and (2,−1) belonging to
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2i+3j = 1 we have (1, 0) which belongs to 2i+3j =
2. Hence X = X1 + X2, where X1 = (y, x2) and
X2 = (0, xy). As x ∤ P 1, x = 0 is not a characteris-
tic direction. Moreover we easily compute F = y2.
Following proposition 3.2 we do not need to blow
up in the y-direction.

Hence the desingularization of the origin of sys-
tem (22) is done and leads to the picture shown in
figure 9. The cusp y = ±

√
2/3x3/2 + · · · , x > 0, is

obtained from the separatrices v = ±
√

2/3 + · · · of
system (23) at the singular points (0,±

√
2/3), as

v = y
u3 = y

x3/2 .

Fig. 9. The desingularization of example 3.3.

Example 3.4. Consider the polynomial vector field
appearing in [Pelletier, 1995]

ẋ = x2y2(x− y)2 + y10,

ẏ = x10.
(25)

The origin is a degenerate singular point of this
system. We shall use the (α, β)-blow up technique
in order to desingularize this point and get the local
behavior in a neighborhood of it.

Let

N = {(3, 2), (2, 3), (1, 4), (−1, 10), (10,−1)}.

The Newton polyhedron associated to N is drawn
in figure 10. We get three segments γ1, γ2, γ3 which
belong (respectively) to the straight lines 3i+j = 7,
i + j = 5 and 3i + 7j = 23. We choose the third
one and apply a (3, 7)-blow up. We have chosen
this segment because we think that it illustrates
better the idea of applying an (α, β)-blow up, but,
obviously, we could have chosen anyone of the three
segments.

As α = 3 is odd it is enough to do the quasi-
homogeneous blow up in the x-direction in only one
sense, and it leads to

u̇1 = u1v
2
1(u441 v81 + u81v

2
1 − 2u41v + 1),

v̇1 = −7u441 v111 − 7u81v
5
1 + 14u41v

4
1 − 7v31 + 3.

(26)

This system has a unique singular point, (0, 3
√

3/7)
and it is a saddle. It is depicted in figure 14(a) in
colours green (x > 0) and orange (x < 0).

Following proposition 3.2, as γ3 does not con-
tain points of negative abscissa, we have to do the
blow up in the y direction. We do the blow up
(x, y) = (u2v

3
2, v

7
2) and as β = 7 is also odd it is

enough to do it in one sense. We get

u̇2 = −3u112
7

+ u42 − 2u32v
4
2 + u22v

8
2 + v442 ,

v̇2 =
u102 v2

7
.

(27)

As we have already done the blow up in the x direc-
tions we have to pay attention only to the origin,
that is degenerate.

Fig. 10. The Newton polyhedron of system (25).

The Newton polyhedron associated to sys-
tem (27) is constructed through the set (renaming
it again as N)

N = {(3, 0), (10, 0), (2, 4), (1, 8), (−1, 44)},

that is drawn in figure 11. We get two significa-
tive segments γ1, γ2 which belong respectively to
the straight lines 18i + j = 26 and 4i + j = 12.
We choose the first one, γ1. As it is not completely
contained in the first quadrant it is not necessary
to do the blow up in the y direction. Consequently
we apply a (18, 1)-blow up to system (27) in the
positive x direction and we get a new system:

u̇ = 7u29 − 3u155 − 14u15v4 + 7u(v8 + v44),

v̇ = −7v(u28 − 3u154 − 2u14v4 + v8 + v44).
(28)

The origin is the only singular point and it is degen-
erate. We have to do the blow up in the negative x
direction, as α is even. In this case, the blow up we
do is (u2, v2) = (−u18, uv) and the system we get is
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(which we write again in coordinates (u, v)):

u̇ = −u(7u28 + 3u154 + 14u14v4 + 7v8 + 7v44),

v̇ = 7v(u28 + 3u154 + 2u14v4 + v8 + v44).

Thus, again the origin is the only singular point
and it is degenerate. A further study shows that no
relevant information is obtained from this system.

Fig. 11. The Newton polyhedron of system (27). A
non-useful segment γ3 is drawn in black.

Concerning the origin of system (28), we com-
pute the set N and we get

N = {(28, 0), (154, 0), (14, 4), (0, 8), (0, 44)},

from which we obtain the Newton polyhedron of
figure 12. We get one significative segment γ1 which
belongs to the straight line 2i + 7j = 56. Thus
we apply a (2, 7)-blow up to system (28). In the
positive x direction we get a new system (again in
coordinates (u, v)):

u̇ = u(u252(7v44 − 3) + 7(v4 − 1)2),

v̇ = −63v(u252(v44 − 1) + (v4 − 1)2).
(29)

The origin is a saddle and there are two more sin-
gular points (0, 1) and (0,−1), both degenerate.

As α is even we have to do the blow up of sys-
tem (28) also in the negative x direction, from which
we obtain exactly the same result as in the previous
system (29).

Observe that in the step we are in the chain of
blow ups, see figure 14(c), the singular point (0,−1)
is not to be studied as it is is situated in a zone
of the exploded cylinder that is contained in r <
0. Consequently, we desingularize only the singular

point (0, 1) by doing more blow ups. It is depicted
in red and blue in figure 14(c).

First, we move the point to the origin. The
Newton polyhedron for the new system, see in fig-
ure 13, is constructed through the set

N = {(0, k) : k = 1, . . . , 8}∪{(252, k) : k = 0, . . . , 44}.

We get again only one significative segment γ1 that
belongs to the straight line i+ 252j = 252. We do a
(1, 252)-blow up in the x direction (and it is enough
to do it in one sense) and the system we get is

u̇ = u(4 + · · · ),
v̇ = −63v(60 + 16v + · · · ), (30)

where the dots mean higher order terms in u and
v. This system has two singular points: (0, 0) and
(0,−15/4), the first one being a saddle and the sec-
ond a node.

Finally, the blow up in the y direction provides
a saddle at the origin.

Fig. 12. The Newton polyhedron of system (28)

Fig. 13. The Newton polyhedron of system (29) at
(0, 1).

The local phase portraits of the desingulariza-
tion process are shown in figure 14. Next we show
how we can obtain an approximation of the sep-
aratrices in a neighborhood of the origin. In fig-
ure 14 we observe that there are two separatrices
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(a)

(b)

(c)

(d)

(e)

Fig. 14. The desingularization of example 3.4.

close to the origin. One of them corresponds to
the singular point (0,−15/4) appearing after the
chain of blow ups (3, 7), (18, 1), (2, 7) and (1, 252).

Hence after these four blow ups there is a curve
v = −15/4+ · · · crossing this singular point. Going
back one step means undoing the (1, 252)-blow up.
We have:

x252 = u252

y = u252v

}
⇒ y

x252
= v ⇒ y =

−15

4
x252 + · · · ,

hence we obtain the corresponding separatrice be-
fore the fourth blow up. We rename it v =
−15/4u252 + · · · . Now, we move it to the singu-
lar point (0, 1) and it becomes v = 1 − 15/4u252.
Undoing the (2, 7)-blow up we have

x7 = u14

y2 = u14v2

}
⇒ y2

x7
= v2 ⇒ y2 = x7 + · · · .

Renaming again, the separatrice at this step of the
blow down is v2 = u7 + · · · . Going back one more
step means undoing the (18, 1)-blow up in the x
direction; we have

x = u18

y18 = u18v18

}
⇒ y18

x
= v18 ⇒ y18 = x9/2 + · · · ,

as v18 = u63+· · · and consequently, renaming again
the variables we have v2 = u1/2 or equivalently,
v4 = u + · · · . We go back through the (3, 7)-blow
up but now in the y direction and we get

x7 = u7v21

y3 = v21

}
⇒ x7

y3
= u7 ⇒ x7 = y7 + · · · .

There are no more blow ups to be undone, hence
we obtain an approximation of the separatrice close
to the origin.

The other separatrice corresponds to the singu-
lar point (0, 3

√
3/7) appearing after the (3, 7)-blow

up in the x direction. If we undo this blow up we
get

x7 = u21

y3 = u21v3

}
⇒ y3

x7
= v3 ⇒ y3 =

3

7
x7 + · · · ,

as v = 3
√

3/7+· · · . As there are no more blow ups to
undone that is the approximation of the separatrice.

3.2. The k-blow up

We introduce in this subsection a particular case of
the quasi-homogeneous directional blow up (or an-
other generalization of the blow up), the directional
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k-blow up, or simply the k-blow up. This type of
blow up allows to apply many directional blow ups
(in the same direction) at once. We follow the ideas
given by Álvarez and Jarque in [Álvarez, 2006].

The k-blow up in the x direction (resp. y di-
rection) is the mapping (x, z) 7→ (x, xkz) = (x, y)
(resp. (z, y) 7→ (ykz, y) = (x, y)), where z is a new
variable. The parameter k ∈ N is chosen conve-
niently. If k = 1 we recover the homogeneous di-
rectional blow up already defined. We note that
the k-blow up is the particular case of the quasi-
homogeneous directional blow up when either α = 1
(x direction) or β = 1 (y direction). After the
k-blow up, a common factor xd is cancelled, for
some suitable d. Moreover, if k is odd the mapping
swaps the second and the third quadrants in the
x-directional blow up and the third and the fourth
quadrants in the y-directional blow up.

After the k-blow up in the x direction, sys-
tem (1) becomes

ẋ = P (x, xkz),

ż =
Q(x, xkz) − kxk−1zP (x, xkz)

xk
.

(31)

In a similar way, after the k-blow up in the y direc-
tion system (1) becomes

ż =
P (ykz, y) − kyk−1zQ(ykz, y)

yk
,

ẏ = Q(ykz, y).

(32)

The suitable k is the maximum natural number
such that for any k′ ∈ N, k′ < k, after the k′-blow
up the origin is the only singular point, it is de-
generate and moreover the characteristic direction
x = 0 is simple. This is justified as follows:

• If other singular points appear, then they
need to be studied. Moreover if the origin
is not degenerate then the desingularization
is over.

• If x = 0 is not a simple characteristic direction
then it may exist an orbit different from x = 0
tending to the origin with vertical slope, and
therefore at this step a blow up in the other
direction is to be done.

We note that the computation of k is easier
than the computation of the parameters (α, β) of

the quasi-homogeneous blow up, as it can be done
directly from system (31) and system (32).

Remark 3.5. After applying a k-blow up, the singu-
lar points (0, a) different from the origin correspond
to orbits y = axk + · · · of the initial system.

In the following we take the differential system
appearing in example 2.6 and apply the k-blow up
technique. We will see that the gain is quite big.

Example 3.6. We study again system (16):

ẋ = y2 + x7,

ẏ = y3 + x2y3.

We recall that the origin is the unique singular point
and that it is degenerate. Its characteristic polyno-
mial is F = y3; hence y = 0 is the only characteris-
tic direction. Consequently we can do a k-blow up
in the x-direction, (x, y) 7→ (x, xku):

ẋ = x2ku2 + x7,

u̇ = x2ku3 + x2k+2u3 − kx2k−1u3 − kx6u.

We have to study first which is the suitable k to do
the blow up. If k = 1 then the only singular point
on x = 0 is the origin and it is degenerate; moreover
F = 2xu3 and therefore x = 0 is a simple direction.
If k = 2 then the same situation occurs, now with
F = 3xu3. If k = 3 then again the only singular
point on x = 0 is the origin and it is degenerate,
but now F = 4x2u and therefore x = 0 is not a
simple direction anymore. Hence we take k = 3.
The resulting system, after dividing by x5, is

ẋ = x(x + u2),

u̇ = u(x3u2 + xu2 − 3x− 3u2).
(33)

Observe that we obtain system (17) in example 2.6.
At this step we have to do both directional blow
ups.

We begin by doing a k-blow up in the x direc-
tion. It turns out that the suitable blow up is the
simple one, (x, u) 7→ (x, xv). We get, after dividing
by x, the system

ẋ = x(v2x + 1),

v̇ = v(v2x4 + v2x2 − 4v2x− 4).

The origin is the only singular point: it is a saddle.
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We go back to system (33) and we do a k-blow
up but now in the u direction. From the two condi-
tions stated above, it turns out that the suitable k
is k = 2, i.e. we do the mapping (x, u) 7→ (u2w1, u).
We obtain system (18):

ẇ1 = −w1(2u
6w3

1 + 2u2w1 − 7w1 − 7),

u̇ = u(u6w3
1 + u2w1 − 3w1 − 3).

As we have already studied this system, we know
that it has a saddle at (0, 0) and a node at (−1, 0).

We go back through the blow ups, see figure 15.
Observe that most of the steps in the process that
we did in example 2.6 are skipped, and the only
important phase portraits are the ones that have a
dynamical meaning.

(w1, u) (x, v)

(x, u)

(x, y)

Fig. 15. The desingularization of example 3.6 by using
k-blow ups.

4. The integrable case

Although the previous extensions of the blow up
technique improve the method of desingularizing a

degenerate singular point, this process can be still
very long and can involve a high number of com-
putations, see for instance example 3.4. Neverthe-
less, in the case that the system has some integrable
properties, all the above mentioned computations
can be avoided because all the information is ob-
tained from the solutions of the system.

Concretely, we deal in this section with the di-
rectional homogeneous blow up technique of sec-
tion 2 in the case that a rational first integral is
defined in a neighborhood of the origin. We follow
the results stated in [Álvarez and Ferragut, 2009].
In that paper a different point of view of the blow
up technique is given, since the solutions of the sys-
tem in a neighborhood of the origin are studied in-
stead of the expression of the system itself. We use
directional blow ups.

Consider the polynomial system (1). A first
integral H of system (1) is a C1 function such
that PHx + QHy = 0, where the subindex de-
note partial derivative. Suppose that system (1)
has a rational first integral H = f/g. Then
the level curves H = −c of the system write as
f + cg = 0, for c ∈ C ∪ {∞}, where c = ∞
means g. Let R = g2 gcd(Hx,Hy) be the so-
called remarkable factor. It is known that R =∏

uαi−1
i , where the ui are the so-called critical re-

markable curves and the αi are their exponents; see
[Chavarriga et al., 2003] for a definition. The prod-
uct runs on all the critical remarkable curves. It
is proved in [Álvarez and Ferragut, 2009] that the
objects defined above remain invariant after a blow
up.

The following proposition allows to control
whether the characteristic polynomial F of the
blown up system is identically zero without com-
puting the differential system explicitly. We denote
by ĥ the homogeneous polynomial of lowest degree
of a polynomial function h and by mh the degree of
this homogeneous polynomial.

Proposition 4.1. We have F ≡ 0 if and only if
mf+cg = mg for all c ∈ C.

Remark 4.2. If F 6≡ 0 then there exists s ∈ C∪{∞}
such that mf+sg > mf+cg for all c ∈ C∪{∞}, c 6= s.
We assume that s = 0 without loss of generality.

After this proposition we can discern whether
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the origin is dicritical or not. If it is dicritical, then
the singular directions are to be computed. For that
purpose we state the following proposition.

Proposition 4.3. Let w be a homogeneous polyno-
mial of degree 1. Let e3 ∈ N∪{0} be the exponent of
w in the factorization of R̂. Consider the following
property:

(H1) There exists c ∈ C ∪ {∞} such that w is
a multiple factor of f̂ + cĝ with multiplicity e1 ∈
N \ {1} and we1 ∤ gcd(f̂ , ĝ).

Then a divisor w of Wm−1 either satisfies (H1)
or w| gcd(f̂ , ĝ). Conversely, let w be a homogeneous
polynomial of degree 1 such that either (H1) holds or
w divides gcd(f̂ , ĝ) with multiplicity e2 ∈ N. Then
we|Wm−1 and we+1 ∤ Wm−1, where e = e1−1+e2−
e3 if (H1) holds (here e2 = 0 if w ∤ gcd(f̂ , ĝ)) and
e = e2 − e3 otherwise.

Remark 4.4. Proposition 4.3 allows to compute the
singular directions without computing the differen-
tial system explicitly. Moreover as a consequence of
the computation, the value of m appears naturally.

Once we know m we can discern whether an-
other blow up is to be applied or not.

Proposition 4.5. Suppose that the origin is a sin-
gular point of system (1) corresponding to a singu-
lar direction. If m > 1 then the origin is degen-
earte. If m = 1 and the origin is dicritical, then it
is a star-node.

Next we deal with the case that the origin is
not dicritical, that is F 6≡ 0. The following results
provide the characteristic directions and the value
of m at the origin.

Proposition 4.6. The whole set of characteristic
directions of the differential system (1) at the origin

is obtained from the equation f̂ g = 0.

Remark 4.7. We can compute the singular points
on x = 0 of system (1) without computing the sys-
tem itself.

Lemma 4.8. We have

mf + mg −mR = m + 1. (34)

Finally, depending on m and H we know which
kind of singular point we are dealing with.

Proposition 4.9. Suppose that the origin is a sin-
gular point of system (1). Then:

(i) If m > 1 then the origin is degenerate.

(ii) If m = 1 and both f = 0 and g = 0 pass
through the origin and g = 0 does it not
transversally to x = 0, then it is nilpotent.

(iii) If m = 1 and both f = 0 and g = 0 pass
through the origin but g = 0 does it transver-
sally to x = 0, then it is a node. Moreover
f + cg = 0 crosses the origin of system (1)
with the slope of g = 0, for all c ∈ C \ {0}.

(iv) If m = 1 and only f = 0 passes through the
origin, then it is a saddle. Moreover the sep-
aratrices of the origin of system (1) are con-
tained in f = 0.

We end this section with an example of applica-
tion of this technique. We note that we only apply
the directional blow up in the x directon. Observe
that we can always avoid x = 0 to be a character-
istic direction by a linear change of variables.

Example 4.10. Consider the rational function H =
f/g, where f(x, y) = (x10 − y10 − x2y9)2 and
g(x, y) = (x2y − 2y4 + 2x6)6. We want to study
the local behavior of the singular point at the ori-
gin of the polynomial differential system associated
to H. As g = 0 has a vertical tangent at the origin,
we apply to the functions the change x → x + 3y.
We set x0 := x and y0 := y.

We construct table 1 for better understanding
of the explanation. In the columns SPf (resp. SPg)
we have the singular points on x = 0 obtained from
f (resp. g). They are obtained applying the change
y = xz (or the corresponding one) to f = 0 (resp.
g), cancelling the common factor x to its power and
solving the equation on x = 0. It provides solutions
z∗, corresponding to the singular points (0, z∗) of
the blown up differential system. For example, after
the change x → x + 3y, ĝ = 0 is equivalent to
x2y + 6xy2 + 9y3 = 0. After the change y = xz,
we obtain x3(z + 6z2 + 9z3) = 0. Cancelling x3

and solving the resulting equation we obtain the
solutions z = 0 (simple) and z = −1/3 (double).
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SPf SPg f̂ ĝ R̂

−1
2

−1
4
⋆
⋆

⋆
⋆
0
−1

3

x21l
2
1

x21l
2
2

x21
x21

⋆
⋆
y61
x61

x1l1
x1l2
x1y

5
1

x61
0 0 x22 y42l

6
3 x2y

3
2l

5
3

0
⋆

⋆
−243

2

x23
⋆

y83
y83l

6
4

x3y
7
3

y73l
5
4

Table 1. Application of the algorithm in example 4.10.
The li are straight lines crossing the origin but different
from the axis. In particular, l3 = 2x2 + 243y2. The
last three columns show respectively the homogeneous
polynomials of lowest degree of f , g and R after the
blow up and the corresponding singular point moved to
the origin.

Three blow ups are needed to completely desin-
gularize the singular point at the origin. From table
1 we can study all the singular points appearing in
the whole blow up process:

1. First blow up, x0 = x1, y0 = x1y1:

• (0,−1/2) and (0,−1/4): as mR = 2
and mf + mg = 4 we have m = 1 in
both cases. Moreover, only f = 0 passes
through these points, hence they are sad-
dles.

• (0, 0): as mR = 6 and mf + mg = 8 we
have m = 1. Moreover both f = 0 and
g = 0 pass through this point and g = 0
does it transversally, hence it is a node.

• (0,−1/3): as mR = 6 and mf + mg = 8
we have m = 1. Moreover, both f = 0
and g = 0 pass through this point and
g = 0 does it not transversally, hence the
point is nilpotent and a new blow up is
required.

Before the second blow up we move the point
(0,−1/3) to the origin.

2. Second blow up, x1 = x2y2, y1 = y2:

• (0, 0): we have m = 2, hence a new blow
up is required.

3. Third blow up, x2 = x3y3, y2 = y3 (where we
take into account that now mf < mg and the
roles of f and g are swapped):

• (0, 0): we have m = 1. Moreover, both
f = 0 and g = 0 pass through this point
and f = 0 does it transversally, hence it
is a node.

• (−243/2, 0): we have m = 1. Moreover,
only g = 0 passes through this point,
hence it is a saddle.

Now the desingularization process is done.
Next we explain how to get the phase portrait of
the initial system to end the process.

1. After the third blow up we obtain two singular
points on the (x3, y3)-plane coming from the
intersection of y3 = 0 with the curves x3 = 0
and x3 = −243/2 + O(y3), respectively.

2. Back to the (x2, y2)-plane we study the ori-
gin. The canonical regions of the (x3, y3)-
system are modified and we have swapped
the third and fourth quadrants of the (x3, y3)-
plane. The curve y2 = 0 remains invariant,
and the others become x2 = 0 and x2 =
−243y2/2 + O(y22), respectively.

3. Back to the (x1, y1)-plane and after swap-
ping again the third and fourth quadrants,
y2 = 0 disappears as solution, x2 = 0 becomes
x1 = 0 and x2 = −243y2/2 + O(y22) becomes
x1 = −243y21/2 + O(y31). After these update
we undo the change y1 → y1 − 1/3 and the
singular point is now y1 = −1/3. There are
three more non-degenerate singular points, as
we found before.

4. Back to the initial system on the (x0, y0)-
plane and after swapping the second and third
quadrants, x1 = 0 disappears as solution and
only some branches of f = 0 and g = 0 remain
as separatrices; f = 0 provides an elliptic sec-
tor and g = 0 a hyperbolic sector.

A diagram of the whole process is shown in fig-
ure 16. As it is shown in remark 4.2, there are
curves having bigger multiplicity than the others.
These curves are very important in the phase por-
trait as they may determine separatrices close to
the singular point we are dealing with, see again
figure 16.
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f = 0

f = 0

g = 0

g = 0

(x3, y3) (x2, y2)

(x1, y1) (x, y)

Fig. 16. The desingularization of example 4.10.
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