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Abstract 9 

Land surface phenology derived from remotely sensed satellite data can substantially improve our 10 

macroecological knowledge and the representation of phenology in earth system models. We 11 

characterized the baseline phenology of the vegetation at the global scale from the GEOCLIM 12 

climatology of leaf area index (LAI) estimated from 1-km SPOT-VEGETATION time series for 13 

1999-2010. The phenological metrics were calibrated over an ensemble of ground observations of 14 

the timing of leaf unfolding and autumnal colouring of leaves. The start and end of season were best 15 

identified using respectively 30% and 40% threshold of LAI amplitude values. The accuracy of the 16 

derived phenological metrics, evaluated using available ground observations for birch forests over 17 

Europe (and lilac shrubs over North America), improved as compared to those derived from 18 

MODIS-EVI and produced an overall root mean square error of 7 days (19 days) for the timing of 19 

the start of season, 15 for the end of season, and 16 for the length of season. The spatial patterns of 20 

the derived LAI phenology agreed well with those from MODIS-EVI and -NDVI, although the 21 
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timing of the start, end, and length of season differed by about one month at the global scale, with 22 

higher uncertainties in areas of limited seasonality of the satellite signal and systematic biases due 23 

to the differences in the methodologies and datasets. The baseline LAI phenology was spatially 24 

consistent with the global distributions of climatic drivers and biome land cover.  25 

Keywords: Climatology of land surface phenology; mean annual seasonal cycle; leaf area index; 26 

SPOT-VEGETATION; MODIS; ground observations; climatic drivers 27 

1. Introduction 28 

Phenology describes the timing of the several phases of life cycle of organisms including recurrent 29 

transitions of vegetation through states of dormancy, active growth, and senescence. Phenology is a 30 

key regulator of processes in terrestrial ecosystems, including carbon, water, and nutrient cycling 31 

(Richardson et al. 2013). Phenological feedbacks may alter the seasonal climate through their 32 

effects on biogeochemical processes (especially photosynthesis and carbon sequestration) and the 33 

physical properties (mainly surface energy and water balance) of vegetated land surfaces (Bali and 34 

Collins 2015; Peñuelas et al. 2009). Land models coupled to global climatic models describe the 35 

exchanges of energy, water, and greenhouse gases between the land surface and the atmosphere 36 

using the leaf area index (LAI). Levis and Bonan (2004) highlighted the importance of accurate 37 

prognostic modelling of LAI dynamics for improving climatic simulations by atmospheric general-38 

circulation models coupled to land-surface schemes. 39 

The representation of phenology in state-of-the art models of the terrestrial biosphere, including the 40 

soil/vegetation/atmosphere transfer schemes used in earth-system models, tends to be poor 41 

(Richardson et al. 2012). Models usually overestimate mean annual LAI and predict too long 42 

growing seasons because of delayed ends of the growing seasons in all biomes (Anav et al. 2013; 43 

Murray-Tortarolo et al. 2013; Zhu et al. 2013). Phenological models are most deficient for 44 

subtropical and Mediterranean vegetation, with a temporal mismatch in spring green up of 1-2 45 
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months, because model parameters are often generalized from temperate vegetation to global scales 46 

(Stöckli et al. 2008). Models of widely studied temperate forests, however, tend to predict an 47 

excessively early start of season (one month or more) and a later end of season (up to two months), 48 

resulting in a substantially longer growing season than the actually observed one (Richardson et al. 49 

2012). This overestimation produces large biases in the modelled seasonality of ecosystem 50 

processes and biosphere feedbacks to the climate system that are phenologically mediated 51 

(Richardson et al. 2013).  52 

Vegetation phenology has been assessed though a variety of methods (White et al. 2009), including 53 

(1) ground observations of species-specific phenological events based on periodic visual inspection 54 

by scientists or by citizens (e.g. USA National Phenology Network www1, Pan European 55 

Phenology network www2, and Canadian PlantWatch project www3), (2) eddy covariance flux 56 

towers (Melaas et al. 2013), (3) phenology modeling (Chuine et al. 2000), (4) close range remote 57 

sensing based on digital cameras and spectral radiometers (e.g. USA PhenoCam network www4,  58 

and  Phenological Eyes Network www5), and (5) satellite remote sensing such as this study. 59 

Satellite sensors with medium to coarse spatial resolution and frequent observations capture signals 60 

that can be exploited to improve our understanding on land surface processes including progress in 61 

the representation of phenology in terrestrial biosphere models (Demarty et al. 2007; MacBean et al. 62 

2015; Stöckli et al. 2011) at the typical model grid cell spatial resolution (0.5 x 0.5º) where local 63 

ground-based data are more difficult to use (Penuelas et al. 2009). Land surface phenology derived 64 

from remotely sensed satellite data allows the modelling of spatially explicit phenological patterns 65 

related to climatic variability and provides a better understanding of the environmental drivers of 66 

phenology (De Beurs and Henebry 2005; Zhang et al. 2006; Zhang et al. 2014).  67 

Satellite sensors with moderate spatial resolution, including AVHRR, SPOT-VEGETATION, and 68 

MODIS, provide long-term time series of observations that describe the patterns of land surface 69 

phenology at continental and global scales (Atzberger et al. 2013; Brown et al. 2012; Ganguly et al. 70 
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2010; Maignan et al. 2008; Sobrino et al. 2013; Vrieling et al. 2013; Zhang et al. 2003). A broad 71 

variety of strategies have been designed to extract phenological metrics from satellite time series 72 

based on thresholds (Myneni et al. 1997; White et al. 1997), moving averages (Reed et al. 1994), 73 

first derivatives (Tateishi and Ebata 2004; White et al. 2009), inflection points in empirical 74 

equations (Moulin et al. 1997), conceptual-mathematical phenological models based on thermal 75 

time (De Beurs and Henebry 2005; Kaduk and Heimann 1996), maximum curvature of piecewise 76 

logistic functions (Zhang et al. 2003), spectral-frequency decomposition techniques (Bradley et al. 77 

2007; Sakamoto et al. 2010; Verbesselt et al. 2010) and curve fitting (Jönsson and Eklundh 2002; 78 

Julien and Sobrino 2009). de Beurs and Henebry (2010) have comprehensively reviewed the current 79 

approaches for modelling land surface phenology. White et al. (2009) found large discrepancies of 80 

up to two months in the detection of the start of the season among several methods for extracting 81 

phenological timing.  82 

In addition to the sensitivity to the phenological detection algorithm, the derived phenological 83 

metrics are also dependent on the sensor, processing chain, and satellite data set. Atzberger et al. 84 

(2013) reported large discrepancies in phenological metrics, particularly the start of season, derived 85 

from the GIMMS and MODIS data sets for normalized difference vegetation index (NDVI) using 86 

the same phenological detection algorithm. Extraction of phenological information is sensitive to 87 

the temporal (Pouliot et al. 2011; Zhang et al. 2009) and spatial (Fisher and Mustard 2007; 88 

Kovalskyy et al. 2011) resolution of the satellite data. Noise and missing data due to cloud or snow 89 

contamination or to atmospheric or directional residual effects can also introduce significant 90 

uncertainties in the estimation of phenological metrics (Jönsson and Eklundh 2002; Kandasamy et 91 

al. 2013; Verger et al. 2013). The choice of the method for smoothing and gap filling the data can 92 

have a large impact on the accuracy of the phenology extracted from the reconstructed time series 93 

(Atkinson et al. 2012; Hird and McDermid 2009; Kandasamy et al. 2013; Verger et al. 2013).  94 
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Most previous approaches for estimating phenological phases have been based on the use of 95 

spectral vegetation indices, which are proxies of vegetation biophysical variables. The different 96 

vegetation indices vary in their strength of phenological prediction across sites and plant functional 97 

types (Wu et al. 2014). (White et al. 2014) showed that the most commonly used NDVI and the 98 

enhanced vegetation index (EVI) outperformed other indices for the remote sensing of growing 99 

seasons in north-eastern American deciduous broadleaf and mixed forests, where the coincident 100 

timing of bud burst and snow melt may limit the use of the normalized difference water index 101 

(NDWI) and other indices based on mid-infrared wavelengths. The remote sensing of growing 102 

season in North American forests conducted by (Wu et al. 2014), however, suggested that the NDVI 103 

and EVI had limited potential predictive strength for evergreen needleleaf forests, while indices 104 

sensitive to water (e.g. NDWI) or less influenced by soil (the optimized soil-adjusted vegetation 105 

index) were stronger predictors.  106 

Unlike previous studies based on vegetation indices, the aim of this study is to characterize the 107 

baseline phenology of leaf development from remotely sensed estimates of LAI at the global scale.  108 

LAI is more sensitive than vegetation indices such as NDVI to larger amounts of vegetation (Baret 109 

and Guyot 1991; Myneni and Williams 1994). This is particularly important to characterize the later 110 

stages of canopy development and leaf maturity (Huete et al. 2002; White et al. 2014). LAI 111 

estimation is also expected to be more robust across sensors than are vegetation indices, which are 112 

dependent on the band characteristics of each sensor (Steven et al. 2015). This is a major issue for 113 

phenological studies because the asymmetric changes in leaf pigmentation (e.g. leaf senescence in 114 

autumn) during the year may accentuate the differences in the band settings between different 115 

sensors (Atzberger et al. 2013). This may be better handled by estimates of biophysical products 116 

such as LAI using radiative transfer model inversion techniques. Finally, the phenology derived 117 

from LAI is expected to be more closely related to actual ground observations because it is based on 118 

leaf development rather than on proxies provided by vegetation indices which are not driven solely 119 
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by the amount of leaves but also by the canopy structure and the biochemical composition of the 120 

existing foliage (Richardson et al. 2009).  121 

We used mean LAI seasonal values derived from the time series rather than focusing on a particular 122 

year of observation to mitigate the noise in satellite data and to avoid possible artefacts introduced 123 

by the use of curve-fitting or filtering methods. The climatology of the data defined as the mean 124 

annual seasonal cycle can better cope with high occurrence of missing data in the satellite time 125 

series, leading to improved estimation of phenological metrics (Guyon et al. 2011; Kandasamy et al. 126 

2013; Verger et al. 2013). The climatology derived from time series of moderate spatial resolution 127 

sensors preserves the high temporal frequency mandatory for phenological studies (Guyon et al. 128 

2011). We used the mean seasonal LAI values derived from 12 years of SPOT-VEGETATION 129 

observations at a spatial resolution of 1 km (actually 0.009° but termed 1 km resolution for the sake 130 

of simplicity) to characterize the baseline phenological patterns at a global scale. The main 131 

assumptions were that (i) the period of interest had no land-cover change or abrupt disturbance at 132 

the 1 km spatial resolution leading to a change in the phenological annual cycle and (ii) the time 133 

series were sufficiently long to encompass anomalies. 134 

We will first describe the methodology for retrieving a global climatology of land surface 135 

phenology from SPOT-VEGETATION LAI. We will then assess the accuracy of the derived LAI-136 

based phenological phases by comparison with available ground observations and the MODIS 137 

phenological products derived from the EVI and the NDVI, with due attention to the differences in 138 

the definitions of the phenological metrics. Finally, we will analyze the climatic drivers of the 139 

spatiotemporal patterns of the satellite and observed phenology.  140 

2. Materials and methods 141 

We used the GEOCLIM climatology of LAI (hereafter GEOCLIM-LAI) derived as the inter-annual 142 

means of 12-year of SPOT-VEGETATION observations (Verger et al. 2015). We then computed 143 
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specific phenological metrics based on the seasonal LAI development. The input data and the steps 144 

required to predict the climatology of land surface phenology are first described. The ground-based 145 

observations used for the validation of the GEOCLIM-LAI phenology, the MODIS phenological 146 

products, and the climatic data, are then described. Finally, the approach for evaluating the methods 147 

and the associated metrics used is described. 148 

2.1. GEOCLIM-LAI climatology: mean annual seasonal cycle  149 

GEOCLIM (Verger et al. 2015), a global climatology of LAI, FAPAR, and fraction of vegetation 150 

cover (FCOVER), was derived as the interannual mean of the GEOV1 Copernicus Global Land 151 

time series of SPOT-VEGETATION biophysical products (Baret et al. 2013). GEOCLIM and the 152 

derived phenology take advantage of the improvements in accuracy and temporal consistency 153 

(smoothness) provided by GEOV1 over existing products (Camacho et al. 2013).  GEOV1 products 154 

are very little affected by the recently detected bug in Sun-Earth distance calculation for SPOT-155 

VEGETATION (Baret et al. 2013). This is clearly demonstrated for the bare soil situation where, as 156 

expected, no seasonality is observed (Verger et al. 2015). This is also supported by the fact that the 157 

biophysical products are actually more sensitive to the relative reflectance values (as are most 158 

vegetation indices that are ratios of reflectances) than to the absolute value as demonstrated by 159 

Verger et al. (2014). 160 

The GEOCLIM-LAI product was here considered to describe the baseline characteristics of the 161 

seasonal cycle of the annual vegetation phenology for each pixel on the globe. GEOCLIM-LAI was 162 

computed every 10 days at a spatial resolution of 0.009° with a plate-carrée projection as the 163 

average for a given date across all years of the GEOV1 time series for 1999-2010 (Baret et al. 164 

2013). A temporal smoothing and gap-filling (TSGF) technique (Verger et al. 2011) was applied in 165 

GEOCLIM-LAI to correct artefacts, especially when the LAI products were systematically 166 

unavailable across the years due to cloud coverage, which has a large impact on the accuracy of the 167 
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derived phenological metrics (Kandasamy et al. 2013). Specific corrections based on the expected 168 

seasonality were applied to cloudy tropical evergreen broadleaf forests and high northern latitudes 169 

with poor levels of illumination where the low number of available observations compromised the 170 

reliability of the estimates (Verger et al. 2015).  171 

GEOCLIM-LAI was demonstrated to be consistent, both spatially and temporally, with the 172 

climatologies of LAI derived from MODIS (Samanta et al. 2011), GIMMS3g (Zhu et al. 2013) and 173 

ECOCLIMAP (Champeaux et al. 2005; Faroux et al. 2013). GEOCLIM-LAI showed absolute 174 

differences lower than 0.5 compared with MODIS (GIMMS3g) LAI for more than 80% (90%) of 175 

land pixels. Further details of the implementation and quality assessment of GEOCLIM-LAI are 176 

provided in (Verger et al. 2015).  We focus here on the climatology of land surface phenology as 177 

derived from GEOCLIM-LAI. 178 

2.2. Computation of phenological metrics 179 

The smoothed GEOCLIM-LAI annual time series were linearly interpolated at the daily time step 180 

for the computation of phenology in day units. The annual LAI time series were repeated three-181 

times and we focused our analysis in the central period to prevent border effects in the beginning 182 

and the end of the year. A number of phenological metrics were computed from GEOCLIM-LAI 183 

(Figure 1): 184 

- The amplitude of GEOCLIM-LAI defined as the difference between the maximum and 185 

minimum LAI values over the growth cycle.  186 

- The number of growing seasons per year was retrieved as the number of peaks identified in 187 

GEOCLIM-LAI. A point was considered as a maximum peak if it had the maximum value 188 

and was preceded by a value lower than δ, where δ=max(0.1, 189 

0.3*annual_median(GEOCLIM-LAI)). For pixels with multiple growing seasons, we 190 
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computed the phenological metrics for the growing season having the highest LAI 191 

amplitude. Phenological metrics were not computed for pixels with any growing season.  192 

- The peak of the growing season corresponding to the timing of maximum foliar 193 

development (Brown et al. 2012; Jönsson and Eklundh 2002) when GEOCLIM-LAI reached 194 

its maximum value over the annual cycle. 195 

- The start of season (SoS) was defined as the date for which GEOCLIM-LAI rise to a given 196 

percentile of its amplitude (Jönsson and Eklundh 2002; White et al. 1997), or the date of the 197 

maximum of the first derivative (White et al. 2009). The performances of these different 198 

definitions of the SoS will be compared with ground observations to select the most 199 

pertinent one. Results will be presented in section 3.2. 200 

- The end of season (EoS) was computed as the date for which GEOCLIM-LAI descent to a 201 

given percentile of its amplitude, or the date of the minimum of the first derivative . 202 

- The length of season (LoS) was defined as the length of the period between the EoS and the 203 

SoS. 204 

[Figure 1] 205 

2.3. Ground data 206 

The validation of GEOCLIM-LAI baseline phenology is particularly difficult since multi-annual 207 

ground-truth measurements of the same site and phenophase for the period 1999-2010 are rarely 208 

available. After an extensive review of the literature and exploration of the available phenology 209 

datasets, we used ground-based phenological observations for lilac (Syringa vulgaris) from USA  210 

National Phenology Network (open access data set at www1) and birch (Betula pendula) from the 211 

PEP725 Pan European Phenology data (www2). These data sets are unique in both its geographic 212 

and temporal coverages. They consist of data collected by volunteers on a weekly basis up to every 213 

day depending on the season (Koch et al. 2007; Olsson and Jönsson 2014; Rosemartin et al. 2015). 214 
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We only included sites with at least three years of measurements for 1999-2010. These ground 215 

measurements represent phenological phases for a limited number of individual plants that are not 216 

necessarily representative of the areal coverage of the 1-km SPOT-VEGETATION satellite pixel 217 

(Liang et al. 2011). The spatiotemporal-scale mismatch with field data is a major source of 218 

uncertainty in satellite phenological assessments (White et al. 2009). The phenology of each species 219 

influence the satellite signal depending on its abundance within the pixel sampling area but also on 220 

the timing of their phenophases (Delbart et al. 2015). SoS based on remote sensing may mainly 221 

reflect the spring phenology of some early spring species in the study regions (Fu et al. 2014), so B. 222 

pendula was chosen because it is an early spring species with higher representation in the areas 223 

examined. Since vegetation phenology occurs in response to seasonal variations of climatic 224 

variables land surface phenology can highly correlate with non-abundant species (Delbart et al. 225 

2015). S. vulgaris was used because its phenology is strongly controlled by temperature (Schwartz 226 

and Reiter 2000) although it is not a dominant species over large areas (Maignan et al. 2008). 227 

Similarly to (Delbart et al. 2015), we excluded sites classified as pure agriculture or water, based on 228 

GLOBCOVER (Defourny et al. 2009) land-cover map.  229 

The S. vulgaris dataset consists in leafing data collected across the continental United States from 230 

1956 to 2014 (Rosemartin et al. 2015). We used data from 1999 for the full leaf phenophase, 231 

defined as the timing when nearly all (at least 95%) of the actively growing leaf buds have already 232 

leafed, and representing the SoS. The selected ground measurements of S. vulgaris in USA are 233 

distributed from the west coast to the east coast covering a south-north latitudinal gradient from to 234 

35.1º to 48.1º (Figure 2a). 235 

The ground measurements of B. pendula in Europe represented a south-north latitudinal gradient 236 

from 45.9° to 68.4° (Figure 2b). We used observations from Finland, Lithuania, Germany, Slovenia 237 

and Croatia (Figure 2b). The German data set was extensive, so we selected randomly only 30 sites. 238 

The observations were (i) the day of budburst, defined as leaf unfolding on the first visible leaf stalk 239 



11 
 

and representing the SoS (for Lithuania the observed phenophase representing SoS was the mouse-240 

ear stage, i.e. the timing of the first leaves separating), and (ii) 50% autumnal colouring of leaves 241 

and representing the EoS. The LoS was computed as the length of the period between the EoS and 242 

the SoS.  243 

 [Figure 2] 244 

2.4. MODIS phenology products 245 

The MODIS-EVI phenology product (MCD12Q2 Collection 5) (Ganguly et al. 2010; Zhang et al. 246 

2003) was used for comparison. MODIS-EVI provided yearly global vegetation phenologies at 500 247 

m spatial resolution for the 2001-2010 period. The method used a series of piecewise logistic 248 

functions that were fitted once a year to the 16-day EVI data. More formally, the temporal variation 249 

of the EVI was modelled using a sigmoidal function: 250 

          𝑦(𝑡) =
𝑐

1+𝑒𝑎+𝑏𝑡
+ 𝑑       (1) 251 

where t is time in days, y(t) is the EVI value at time t, a and b are fitting parameters associated with 252 

the timing and rate of change in the EVI, respectively, c + d is the maximum modelled EVI value, 253 

and d is the initial background EVI value. The inflection points in the rate of change in the 254 

curvature of the fitted logistic model identified the phenological transition dates (Zhang et al. 2003). 255 

The MODIS-EVI phenology product provided the transition dates for vegetation activity and 256 

information about the EVI values on these dates for two growth cycles per year for each pixel. For 257 

each seasonal cycle, the onset of the increase in greenness (greenup), greenness maximum 258 

(maturity), greenness decrease (senescence), and greenness minimum (dormancy) were provided.  259 

Note that the MODIS-EVI definition differs from the phenological metrics proposed here for 260 

GEOCLIM-LAI. The GEOCLIM-LAI SoS would correspond to the MODIS-EVI greenup, the EoS 261 

to the dormancy, and the peak would be within the maturity and the senescence but with no exact 262 

correspondence with the MODIS-EVI metrics. (Verger et al. 2015) showed that the peak of 263 
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maximum leaf development from GEOCLIM-LAI occurred 14 days later than the MODIS-EVI 264 

maturity date due to the differences in the definitions and the use of LAI instead of EVI. We 265 

assessed the influence of the differences in the definitions of the phenological metrics in section 3.3. 266 

In addition to the MODIS-EVI phenology products, we used the MODIS-NDVI phenological 267 

parameters derived by (Butt et al. 2011) using a double-logistic function fitted to seasonal NDVI 268 

trajectories for MODIS data. The MODIS-NDVI SoS is defined as the maximum of the second 269 

derivative, the EoS as the first date after maximum NDVI when the NDVI falls to 80% of its 270 

maximum value, and the LoS as the difference (in days) between the EoS and the SoS (Butt et al. 271 

2011). We used the means of the SoS, EoS and LoS for MODIS-NDVI phenological variables 272 

across the 2000–2010  period for 0.25° latitude bands in Sudano-Sahelian West Africa as reported 273 

by (Butt et al. 2011). Results of the comparison between MODIS-NDVI and GEOCLIM-LAI 274 

latitudinal gradients of Sahelian phenology are presented in section 3.4.  275 

2.5. Temperature, short-wave radiation and rainfall data 276 

To interpret phenological patterns observed with the possible climatic drivers, we used the WFDEI 277 

(WATCH Forcing Data methodology applied to ERA-Interim data) meteorological data, which is 278 

based on WATCH forcing data methodology applied to the ERA-Interim reanalysis data (Weedon 279 

et al. 2014). We used the daily average air temperature at 2 m, the short-wave downwards surface 280 

radiation (W/m
2
) and the rainfall rate (cumulative mm) generated by using the Global Precipitation 281 

Climatology Centre (GPCC) precipitation totals (Schneider et al. 2014). WFDEI data were available 282 

for the global land surface at a spatial resolution of 0.5° from January 1979 to December 2012. 283 

2.6. Evaluation approach 284 

Because of the importance of the number of growing seasons and LAI amplitude for the 285 

understanding of LAI phenology, these two sub-products of the GEOCLIM-LAI will first be 286 
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described (section 3.1). The approach proposed for the evaluation of GEOCLIM-LAI phenology is 287 

based on three steps as sketched in Figure 3. The several definitions of the SoS, EoS and LoS 288 

phenology metrics will be evaluated by comparison with the available ground measurements 289 

(section 3.2). This will also provide some element of the validation of the phenology products 290 

proposed. Then these phenology products will be compared to those derived from MODIS (section 291 

3.3). Finally, the spatial patterns of phenological leaf development from satellite and ground data 292 

will be assessed with due attention to the latitudinal gradients in Europe and African Sahel and the 293 

possible climatic drivers (section 3.4). 294 

The climatology of land surface phenology derived from GEOCLIM-LAI was compared with the 295 

climatologies derived from ground and MODIS phenologies as the interannual means (Figure 3). 296 

The assessment was performed from 1 km to 0.5º spatial resolutions. The comparison of 297 

GEOCLIM-LAI phenological metrics with ground observations (section 3.2) was achieved at the 298 

original 1-km spatial resolution of VEGETATION-SPOT data. The latitudinal gradients of 299 

GEOCLIM-LAI phenological climatologies (section 3.4.) in the Sahel region were compared to the 300 

MODIS-NDVI transects available at 0.25º spatial resolution. Finally, the comparison with MODIS-301 

EVI derived phenology (section 3.3) and the analysis of climatic drivers (section 3.4) was 302 

performed at a spatial sampling of 0.5° that corresponds to the typical resolution of global models.  303 

For comparison purposes, we first computed a climatology of ground phenology based on the 304 

interannual average of ground-based values for SoS, EoS, and LoS (Figure 3). Similarly, the yearly 305 

MODIS-EVI derived phenology data were averaged over the 2001-2010 period to provide a 306 

climatology of phenological stages. The MODIS-EVI 500-m original products were then projected 307 

on 1-km and 0.5º plate carrée system using the cubic convolution technique as implemented in the 308 

MODIS reprojection tool. We used the MODIS-NDVI climatology of Sahelian land surface 309 

phenology from 2000 to 2010 at 0.25º spatial resolution as proposed by (Butt et al. 2011). We 310 

aggregated the 0.009° (about 1-km at the equator) GEOCLIM-LAI phenological products at 0.25º 311 
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and 0.5° spatial resolutions for comparison with MODIS-NDVI and -EVI phenologies, respectively. 312 

Finally, we computed a climatology for air temperature, short-wave radiation and cumulative 313 

rainfall by averaging WFDEI daily data at 0.5° spatial resolution for the interpretation of the 314 

climatic drivers of the GEOCLIM-LAI phenological patterns. 315 

[Figure 3] 316 

3. Results and discussion 317 

3.1. Number of growing seasons and LAI amplitude 318 

The amplitude of GEOCLIM-LAI (Figure 4a) reflected the expected regimes of vegetation at the 319 

global scale in agreement with the global distribution of biomes with maximum values around the 320 

mid-northern latitudes as well as around 10° latitude in Africa. Most of the other places showed 321 

LAI amplitude values lower than 2. The number of growing seasons (Figure 4b) was set to zero in 322 

areas that exhibited null seasonality (Figure 4a): deserts with LAI~0 and evergreen broadleaf forests 323 

in the tropical belt with LAI~5 throughout the year (Verger et al. 2015). Two growing seasons were 324 

identified in agricultural areas with two crop cycles per year (e.g. rice plantations in India, China, 325 

and the Nile delta) and in the Horn of Africa, which had a bimodal precipitation regime with two 326 

wet seasons per year (Vrieling et al. 2013). Bimodal LAIs also corresponded to areas where leaf 327 

development is constrained by both temperature in winter and water availability in summer (Julien 328 

and Sobrino 2009). Other isolated areas with multiple growing seasons may indicate artefacts in the 329 

data set.  330 

[Figure 4] 331 
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3.2. Comparison with ground data  332 

The dates of SoS, EoS and LoS for GEOCLIM-LAI derived phenology products computed with 333 

several possible definitions were compared with the ground-based observations for birch (B. 334 

pendula) forests and lilac (S. vulgaris) shrubs. Note that the places where ground based 335 

measurements were taken (Figure 2) correspond to single growth cycle areas (Figure 4b). Results 336 

show that the best performances for SoS were obtained for the 30% threshold value that provided 337 

the smallest bias and root mean square error (RMSE) values (Table 1). However, this optimal 338 

definition of the SoS provided poorer performances in terms of RMSE for the EoS for which a 339 

threshold value of 40% better matched ground observations (Table 1) (Nagai et al. 2014). As a 340 

matter of facts, the ground data corresponded to 50% autumnal colouring of leaves. Nevertheless, a 341 

higher variability across the canopy of the timing and rate of leaf development is expected in 342 

autumn than in spring (Richardson et al. 2009). This translates by a higher RMSE and lower 343 

correlation R values for EoS as compared to the SoS (Table 1). The LoS computed as the distance 344 

between the EoS and SoS using, respectively, the 40% and 30% threshold values provided the best 345 

performances (Table 1) and it was retained as the proposed definition for GEOCLIM-LAI 346 

phenological metrics. 347 

[Table 1] 348 

The agreement between GEOCLIM-LAI SoS date using the 30% threshold value (Figure 5) with 349 

leafing ground observations of B. pendula (respectively S. vulgaris) produced an overall RMSE of 7 350 

(resp. 19) days, a bias of only 1 (resp. -3) day and correlated significantly (correlation coefficient 351 

~0.9 (resp ~0.5)) (Table 1). The performances decreased for the date of the EoS using the 40% 352 

threshold value, with an RMSE of 15 days and a positive bias (delay) of about 7 days. The 353 

performances for LoS (RMSE of 16 days) were mainly limited by those for EoS, with 6 days longer 354 

LoS for GEOCLIM-LAI as compared to the ground observations.  355 
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The higher uncertainty in the estimation of the date for EoS as compared to the SoS can be 356 

explained by multiple factors. The environmental (day length, temperature, rainfall) and internal 357 

(plant age, photosynthetic rate and other leaf traits) causes of the timing of leaf coloration in autumn 358 

are less understood and have a higher interspecific (and among individual plants) and interannual 359 

variability than leaf-out phenological phases (Archetti et al. 2013; Estrella and Menzel 2006; 360 

Richardson et al. 2009). Leaf colouring corresponds to various changes in chemical and structural 361 

properties, resulting in changes in spectral responses, which may start long before leaf abscission 362 

while leaf appearance is much more well defined in time (Delbart et al. 2005). In addition there is 363 

higher uncertainty associated both to ground measurements and satellite products for autumn 364 

phenology (Nagai et al. 2014). The timing of 50% of all leaves colouring is obviously more difficult 365 

to identify by ground observers than the timing of leaf unfolding or other spring phenophases 366 

(Estrella and Menzel 2006). Finally, the satellite products and the derived phenology at high 367 

latitudes in autumn are affected for atmospheric effects, snow and poor illumination conditions 368 

(Delbart et al. 2005; Verger et al. 2015). 369 

The phenological metrics derived from MODIS-EVI showed poorer agreement with ground 370 

observations, with higher RMSE and lower R values (Table 1, Figure 5). The MODIS derived 371 

phenology presented a negative bias (advance) of 12 (21) days for the timing of the SoS as 372 

compared to B. pendula (S. vulgaris) ground measurements and a positive bias (delay) of about 25 373 

days for the timing of the EoS which resulted in 38-day longer LoS. 374 

 [Figure 5] 375 

3.3. Comparison with MODIS-EVI phenology  376 

The SoS and EoS derived from GEOCLIM-LAI were globally consistent with those derived from 377 

MODIS-EVI with a correlation coefficient larger than 0.84 (Table 2) with however a RMSE of 30 378 

days and a bias around 9 days later for GEOCLIM-LAI SoS and 12 days earlier for GEOCLIM-LAI 379 
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EoS (Table 2). They vary widely as a function of space (Figure 6) and biome type (Table 2). The 380 

analysis per class (Table 2) showed higher differences for shrubs-savannah and crops-grassland 381 

compared to forest classes. Crop and grassland biome types showed the largest RMSE values 382 

(Table 2). This may be due to the higher interannual variability of agricultural and grassland areas 383 

(Verger et al. 2015) that degrades the representativeness of the computed climatologies. The largest 384 

systematic differences (Figure 6) appear concentrated in areas of low LAI amplitude (Figure 4a). 385 

This is clearly illustrated by Figure 7a: the differences in the SoS decreased as a function of the 386 

amplitude of LAI and converged to a positive bias of about 9 days. These systematic differences are 387 

mainly due to differences in the definition of the phenological metrics as demonstrated by a simple 388 

theoretical study: a range of EVI time series based on the logistic function described in Eq. 1 were 389 

first simulated by varying the rate of change (parameter b varying from -1 to 0), and fixing 390 

parameters [a, c, d] to [10, 0.6, 0.1] (Zhang et al. 2004). The simulated EVI was transformed into 391 

LAI using the exponential relationship proposed by Huete et al. (2002). Finally, the MODIS-EVI 392 

phenological metrics corresponding to the inflection points in the EVI time series, was compared to 393 

that of GEOCLIM-LAI corresponding to the 30%-percentile of LAI amplitude. Results (Figure 7b) 394 

confirmed that the SoS phenological phase retrieved from the GEOCLIM-LAI was expected to 395 

occur later than the MODIS-EVI one and that these positive differences increased for the pixels 396 

having low seasonality (rate of change near zero). Similar reasoning could be applied to the EoS 397 

stage. 398 

The agreement between the phenology derived from GEOCLIM-LAI and MODIS-EVI degraded 399 

for the LoS because of the combination of the uncertainties associated both with the SoS and the 400 

EoS. The LoS retrieved from GEOCLIM-LAI was thus shorter than the LoS retrieved from 401 

MODIS-EVI (bias of -22 days, Table 2; the dominant blue tones in Figure 6c indicate a negative 402 

bias). 403 

[Figure 6] 404 
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[Figure 7] 405 

[Table 2] 406 

3.4. Spatial patterns of satellite and ground-based phenology   407 

The spatial pattern of the derived global phenology (Figure 8) reflected the distributions of climatic 408 

drivers and biomes. The observed relationship between phenological patterns and latitudinal 409 

climatic drivers was not uniform but spatially dependent because of the interactions between 410 

climate, vegetation functioning, and the distribution of species (Forkel et al. 2014; Iio et al. 2014; 411 

Verger et al. 2015; Zhang et al. 2004). In addition, latitudinal variation in the phenology of leaf 412 

development has a strong genetic component associated partly with variation in the photoperiod 413 

(Friedman et al. 2011). Leaf lifespan is highly correlated with other leaf traits such as leaf mass per 414 

unit area, nitrogen content and photosynthetic rate (Wright et al. 2004) and reflect a trade-off 415 

between production efficiency and persistence of plant leaves (Reich et al. 1991). Phenology may 416 

control many feedbacks of vegetation to the climate system by influencing the photosynthesis and 417 

carbon sequestration (Peñuelas et al. 2009; Richardson et al. 2013). 418 

[Figure 8] 419 

The cumulative annual rainfall was highly correlated with the LoS across latitudes <40° (Figure 9). 420 

The LoS in the Southern Hemisphere from 35°S to 0° increased from 150 to 230 days as the 421 

cumulative annual rainfall increased from 500 to 1500 mm. LoS decreased steeply from 0° to 15°N, 422 

corresponding to the negative south-to-north gradient in rainfall in the Sahel region where water 423 

availability is the main limiting factor of leaf development. The latitudinal pattern was more 424 

complex from 15°N to 40°N due to averaging the LoSs of different phenological regimes driven by 425 

the conditions of climatic regions ranging from tropical to Mediterranean. LAI phenology for 426 

northern latitudes >40° was strongly dependent on the mean annual temperature, the short-wave 427 

radiation and the cumulative rainfall  which are intrinsically correlated and decrease linearly with 428 
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latitude. SoS (respectively EoS) had a clear and smooth negative (resp. positive) latitudinal gradient 429 

corresponding to a delay (resp. advance) in the timing of SoS (resp. EoS) (Figure 8), which led to a 430 

decrease of LoS with latitude (Figure 9). 431 

 [Figure 9] 432 

The climatology of land surface phenology derived from GEOCLIM-LAI over the European 433 

continent (Figure 10a) showed a good agreement with existing average phenologies derived from 434 

MODIS or AVHRR NDVI data (Atzberger et al. 2013). GEOCLIM-LAI phenology accurately 435 

reproduced latitudinal patterns provided by the ground observations, with a delay of 50 days in the 436 

SoS and a similar advance of 50 days in the EoS from 45° to 70° northern latitudes (Figure 11a). 437 

This corresponds to a latitudinal gradient of LoS around 100 days (Figure 11a) matching a 438 

temperature gradient of about 10 ºC, i.e. a rate of change of 10 days/°C. The rate of change in the 439 

LoS in the European birch forests, estimated from both ground observations and satellite LAI, was 440 

about four days per latitude degree of latitude which resulted from symmetric variations of two days 441 

per latitude degree in the SoS and EoS.  442 

LAI phenology in the African Sahel (Figure 10b) reflected the negative south-to-north gradient in 443 

rainfall with later SoS and earlier EoS resulting in a steeply decrease of LoS with latitude (Figure 444 

11b). Good agreement was achieved between GEOCLIM-LAI and MODIS-NDVI latitudinal 445 

gradients of phenology in Sudano-Sahelian region from 12° to 17°N (Figure 11b) with non-linear 446 

latitudinal pattern characterized by sharpest variations of SoS for the lower latitudes and a more 447 

limited variation of EoS with latitude. This results in a rate of change in the LoS of about 15 days 448 

per latitudinal degree. The systematic biases observed between GEOCLIM-LAI compared to 449 

MODIS-NDVI (Figure 11b) are mainly due to the differences in the definition of phenological 450 

metrics as demonstrated previously (Section 3.2) and in agreement with Butt et al. (2011).  451 

 [Figure 10] 452 

[Figure 11] 453 
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4. Conclusions 454 

The baseline phenology of vegetation was described at the global scale from the mean annual 455 

seasonal cycle depicted by GEOCLIM-LAI—a global climatology of leaf area index (LAI) derived 456 

from the average values over twelve years of SPOT-VEGETATION observations at a spatial 457 

resolution of 1-km for 1999-2010.  458 

The calibration of the phenological metrics over actual ground observations indicated that the 30% 459 

threshold on the LAI amplitude is optimal for the detection of the start of season while a 40% 460 

threshold is more appropriate for the end of season. The accuracy for the start of season evaluated 461 

using ground observations, produced an overall RMSE of 7 days for the date of leaf unfolding for 462 

European birch forests and 19 days for North American lilac shrubs. A higher uncertainty of 15 463 

days was found for the end of season which resulted in deviations of 16 days for the length of 464 

season of birch forests. Further investigations should be pursued to better define the threshold 465 

values by including more ground observations with a wider range of species and a broader spatial 466 

extent in latitude and longitude. This should ultimately lead to propose a standardisation of the 467 

phenological metrics.  468 

The GEOCLIM-LAI phenology was highly spatially consistent and significantly correlated (R>0.8) 469 

with the phenology derived from MODIS-EVI time series, but with differences of about one month 470 

in terms of RMSE for the start and end of season, and 40 days for the length of season. These 471 

differences were mostly driven by random errors in regions with limited seasonality (LAI amplitude 472 

~0) but also by systematic biases due to the differences in the methodologies and datasets. The 473 

phenology derived from GEOCLIM-LAI constituted an intermediate solution between those from 474 

MODIS-EVI and ground observations. 475 

The GEOCLIM-LAI phenology reflected the expected regimes of the baseline annual cycle of the 476 

vegetation seasonality at the global scale, in agreement with the global distribution of biome land 477 

cover and climatic drivers. Phenological spatial patterns were complex at latitudes <40° due to the 478 
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heterogeneity in the species composition and climate drivers, but the length of season was clearly 479 

correlated with the annual cumulative rainfall. Soil moisture is the main driver of phenology in 480 

water-limited vegetation, but evapotranspiration and soil characteristics that control water retention 481 

should be included for a better understanding of the vegetation dynamics in these regions. The 482 

timing of phenological leaf development at northern latitudes >40° were highly correlated with the 483 

latitudinal decay in mean annual temperature, solar short-wave radiation and cumulative rainfall. 484 

Disentangling the contribution of climatic drivers and establishing the mechanisms that govern the 485 

latitudinal patterns of vegetation phenology at the global scale would require further analysis taking 486 

the interannual variations into account.  487 

The latitudinal gradients of phenological leaf development from GEOCLIM-LAI and ground data in 488 

Europe agreed very well with a gradual decrease in the length of growing season of approximately 489 

four days per degree of latitude which resulted from symmetric variations of 2 days per degree in 490 

the start and end of season. The latitudinal pattern of the derived phenology metrics also agreed 491 

with those from MODIS-NDVI in African Sahel showing a much stronger rate of change of the 492 

length of season with latitude of about 15 days per degree of latitude. 493 

Our baseline phenology derived from kilometric global LAI satellite products is expected to 494 

contribute to improve our macroecological knowledge and the representation of phenology in earth 495 

system models. 496 
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List of Figure Captions 767 

Figure 1. Illustration of phenological metrics (amplitude, start (SoS), end (EoS), and length (LoS) 768 

of the growing season) computed from GEOCLIM-LAI over a cropland site at 45°N and 19°E (a) 769 

and a grassland site at 27°S and 27°E (b). DOY, day of year. 770 

Figure 2. Location of ground phenological observations of (a) S. vulgaris in USA for the range of 771 

latitudes 35-37.5 (o), 37.5-40 (+), 40-42.5 (×), 42.5-45 (□) and 45-48 (◊), and (b) B. pendula in 772 

Slovenia-Croatia (o), Germany (+), Lithuania (×) and Finland (for latitudes below 65°(□) and above 773 

65º (◊)). 774 

Figure 3. Flow chart describing the approach for evaluating the climatologies (grey boxes) of 775 

phenological metrics derived from ground data, GEOCLIM-LAI, MODIS-EVI, MODIS-NDVI, and 776 

climatic variables (air temperature, rainfall and short-wave radiation). The original products are 777 

indicated in rectangular white boxes, the methods in ellipses. The horizontal and vertical arrows 778 

indicate the spatial and temporal scales, respectively. 779 

Figure 4. Maps of (a) the amplitude of GEOCLIM-LAI, and (b) the number of growing seasons 780 

derived from GEOCLIM-LAI. The dark grey areas correspond to pixels with missing data. 781 

Figure 5. Direct validation of phenologies derived from GEOCLIM-LAI (top) and MODIS-EVI 782 

(bottom) for the start of season (SoS) (plots a, b, e and f), end of season (EoS) (plots c and g), and 783 

length of season (LoS) (plots d and h) compared to available ground-based observations on the day 784 

of full leaf of lilac (S. vulgaris) in USA, and day of budburst and 50% autumnal colouring of leaves 785 

of birch (B. pendula) in Europe. See Figure 3 for the location of the data and the legend. The 786 

statistics of the comparison are provided in Table 1. 787 

Figure 6. Global maps of the differences (in days) between the average phenologies derived from 788 

GEOCLIM-LAI and MODIS-EVI for the (a) start of season, (b) end of season, and (c) length of 789 

season. Red (blue) indicates a delay (advance) in phenological events or longer (shorter) seasons for 790 
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GEOCLIM-LAI compared to MODIS-EVI. The light-grey areas correspond to pixels with any 791 

growing season (Figure 4b). The dark-grey areas correspond to pixels with missing data. 792 

Figure 7. Bias (in days) of the start of season derived from GEOCLIM-LAI compared to that from 793 

MODIS-EVI as a function of (a) the amplitude of GEOCLIM-LAI (Figure 4a). The bold line 794 

corresponds to the median value of the bias. The grey areas correspond to 75% (dark grey), 85% 795 

(medium grey), and 95% (light grey) of the population of values for a given seasonality. Analysis at 796 

the global scale over 35627 pixels at a spatial sampling of 0.5°. (b) Theoretical differences as a 797 

function of the rate of change in the EVI.  798 

Figure 8. Maps of phenological metrics for the (a) start, (b) end and (c) length of season derived 799 

from GEOCLIM-LAI. Areas with any growing season are shaded in light grey. The dark-grey areas 800 

correspond to pixels with missing data. DOY, day of year. 801 

Figure 9. Latitudinal transects at resolution of 0.5 degrees of the average length of season (LoS) 802 

derived from GEOCLIM-LAI, mean annual air temperature (Tair), cumulative annual rainfall 803 

(Rainfall), and mean annual short-wave downwards surface radiation (SW). The LoS was not 804 

plotted when the fraction of the land pixels used to compute the average phenological metric was 805 

lower than 0.1% of the total land pixels. 806 

Figure 10. Maps of the start of season (SoS) derived from GEOCLIM-LAI in (a) Europe and (b) 807 

African Sahel. The dashed back box in Sudano-Sahelian West Africa covering much of the southern 808 

half of Mali corresponds to the study area for the evaluation of the latitudinal gradients of 809 

phenology (Figure 11b). Areas with any growing season are shaded in light grey. DOY, day of year. 810 

Figure 11. Latitudinal gradients of the average phenological metrics for the start (o), end (□), and 811 

length (◊) of season in units of day of year (DOY) in (a) Europe at ground selected sites of B. 812 

pendula (Figure 2b) as observed at the plot level (open symbols) and derived from GEOCLIM-LAI 813 
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(filled symbols), and (b) Sudano-Sahelian West Africa (Figure 10b) as derived from MODIS-NDVI 814 

(open symbols) and GEOCLIM-LAI (filled symbols). 815 
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Table 1. Statistics of the comparisons between GEOCLIM-LAI derived phenologies for the start of 816 

season (SoS), end of season (EoS), and length of season (LoS) and the ground observations for 817 

different phenological metric definitions based on specific thresholds (10, 20, 30, 40, and 50%) of 818 

the LAI amplitude and the first derivative criteria (1st Der.). The statistics of the validation of the 819 

climatology of MODIS-EVI phenology are also indicated. n: number of available ground 820 

observations. RMSE: root mean square error. Bias: average difference between the satellite derived 821 

phenologies minus the observed date (positive bias  indicates that the SoS and EoS occurred later 822 

than the observed leaf-out and autumnal colouring, respectively, and the LoS is longer than the 823 

actual duration of the growing season). R: correlation coefficient. * mark indicates significant 824 

correlations with p<0.05 (** indicates p<0.001). Slope and offset of the regression line computed at 825 

p=0.05. Numbers in bold refer to the selected method.  826 

Species Metric Definition RMSE 

(days) 

Bias 

(days) 

R Slope Offset 
(days) 

S. vulgaris SoS 10% 47.34 -16.38 0.26 0.68 20.53 

(n=52)  20% 27.56 -14.26 0.35* 0.46 47.16 

  30% 18.92 -2.69 0.5** 0.54 50.02 

  40% 19.11 3.68 0.51** 0.57 52.74 

  50% 21.01 10.32 0.52** 0.57 59.02 

  1st Der. 22.07 10.19 0.49** 0.57 59.58 

  MODIS 28.22 -21.24 0.46** 0.46 40.1 

B. pendula SoS 10% 27.82 -22.15 0.76** 1.07 -30.83 

(n=59)  20% 14.61 -8.54 0.86** 1.07 -17.36 

  30% 7.22 0.66 0.95** 1.12 -13.66 

  40% 27.27 10.44 0.58** 0.97 14.43 

  50% 14.78 13.08 0.95** 1.11 0.42 

  1st Der. 15.78 13.44 0.94** 1.14 -2.66 

  MODIS 17.59 -12.42 0.84** 1.04 -16.97 

 EoS 10% 44.84 43.03 0.8** 0.88 75.91 

  20% 33.49 31.27 0.81** 0.85 72.82 

  30% 23.08 19.76 0.79** 0.77 81.92 

  40% 15.00 6.59 0.72** 0.66 99.00 

  50% 23.74 -10.46 0.39* 0.41 147.63 

  1st Der. 45.16 -12.05 0.28* 0.67 77.36 

  MODIS 59.64 24.78 0.12 0.34 202.23 

 LoS 10% 69.61 65.19 0.84** 1.07 54.81 

  20% 44.13 39.81 0.89** 1.06 31.29 

  30% 23.89 19.1 0.93** 1.04 13.12 

  40% 27.12 -3.85 0.76** 0.89 12.94 

  50% 31.48 -23.54 0.82** 0.78 9.14 

  30-40% 15.71 5.93 0.92** 0.97 11.12 

  1st Der. 50.22 -25.49 0.61** 0.95 -18.07 

  MODIS 68.05 37.6 0.42* 0.73 78.95 

 827 
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Table 2. Statistics of a per class comparison between GEOCLIM-LAI and MODIS-EVI average 828 

phenologies for the start of season (SoS), end of season (EoS), and length of season (LoS) at the 829 

global scale over n=35627 pixels at a spatial sampling of 0.5° × 0.5°. n: Number of pixels. RMSE: 830 

root mean square error. Bias: average difference between GEOCLIM-LAI minus MODIS-EVI 831 

phenologies (negative (positive) bias indicates earlier (later) EoS (SoS) and shorter LoS for 832 

GEOCLIM-LAI). Correlation coefficient (R). *** mark indicates significant correlations with p<10
-

833 

6
. Slope and offset of the regression line computed at p=0.05 significance level. Analysis per biome 834 

classes based on GLOBCOVER (Defourny et al. 2009) land-cover map. 835 

 836 

Biome class  Metric RMSE 

(days) 

Bias 

(days) 

R*** Slope Offset 

(days) 

Shrub/Savannah  

(n=10450) 

SoS 34.49 5.37 0.86 1.03 0.63 

EoS 28.85 -7.77 0.84 1.00 -7.93 

LoS 38.79 -14.6 0.81 0.63 37.03 

Crop/Grassland 

(n=12965) 

SoS 40.01 11.00 0.86 0.91 24.6 

EoS 46.66 -13.74 0.75 0.88 16.58 

LoS 51.44 -31.79 0.68 0.64 31.43 

Decideous Broadleaf 

Forest 

(n=4000) 

SoS 27.79 19.65 0.96 1.06 11.45 

EoS 28.68 -20.45 0.91 0.94 -4.83 

LoS 42.38 -33.56 0.87 0.75 14.29 

Needleleaf Forest 

(n=7345) 

SoS 11.03 7.22 0.79 0.68 51.52 

EoS 9.42 -5.34 0.79 0.72 66.83 

LoS 18.82 -12.06 0.80 0.72 21.32 

All biomes 

(n=35627) 

SoS 30.79 9.38 0.88 0.97 14.07 

EoS 30.88 -11.8 0.84 0.96 -2.16 

LoS 40.31 -21.51 0.80 0.67 29.28 

 837 
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 845 

Figure 1. Illustration of phenological metrics (amplitude, start (SoS), end (EoS), and length (LoS) 846 

of the growing season) computed from GEOCLIM-LAI over a cropland site at 45°N and 19°E (a) 847 

and a grassland site at 27°S and 27°E (b). DOY, day of year. 848 
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  860 

Figure 2. Location of ground phenological observations of (a) S. vulgaris in USA for the range of 861 

latitudes 35-37.5 (o), 37.5-40 (+), 40-42.5 (×), 42.5-45 (□) and 45-48 (◊), and (b) B. pendula in 862 

Slovenia-Croatia (o), Germany (+), Lithuania (×) and Finland (for latitudes below 65°(□) and above 863 

65º (◊)). 864 
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 867 

Figure 3. Flow chart describing the approach for evaluating the climatologies (grey boxes) of 868 

phenological metrics derived from ground data, GEOCLIM-LAI, MODIS-EVI, MODIS-NDVI, and 869 

climatic variables (air temperature, rainfall and short-wave radiation). The original products are 870 

indicated in rectangular white boxes, the methods in ellipses. The horizontal and vertical arrows 871 

indicate the spatial and temporal scales, respectively. 872 
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  875 

Figure 4. Maps of (a) the amplitude of GEOCLIM-LAI, and (b) the number of growing seasons 876 

derived from GEOCLIM-LAI. The dark grey areas correspond to pixels with missing data. 877 
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  879 

Figure 5. Direct validation of phenologies derived from GEOCLIM-LAI (top) and MODIS-EVI 880 

(bottom) for the start of season (SoS) (plots a, b, e and f), end of season (EoS) (plots c and g), and 881 

length of season (LoS) (plots d and h) compared to available ground-based observations on the day 882 

of full leaf of lilac (S. vulgaris) in USA, and day of budburst and 50% autumnal colouring of leaves 883 

of birch (B. pendula) in Europe. See Figure 3 for the location of the data and the legend. The 884 

statistics of the comparison are provided in Table 1. 885 
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  891 

Figure 6. Global maps of the differences (in days) between the average phenologies derived from 892 

GEOCLIM-LAI and MODIS-EVI for the (a) start of season, (b) end of season, and (c) length of 893 

season. Red (blue) indicates a delay (advance) in phenological events or longer (shorter) seasons for 894 

GEOCLIM-LAI compared to MODIS-EVI. The light-grey areas correspond to pixels with any 895 

growing season (Figure 4b). The dark-grey areas correspond to pixels with missing data. 896 
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 898 

Figure 7. Bias (in days) of the start of season derived from GEOCLIM-LAI compared to that from 899 

MODIS-EVI as a function of (a) the amplitude of GEOCLIM-LAI (Figure 4a). The bold line 900 

corresponds to the median value of the bias. The grey areas correspond to 75% (dark grey), 85% 901 

(medium grey), and 95% (light grey) of the population of values for a given seasonality. Analysis at 902 

the global scale over 35627 pixels at a spatial sampling of 0.5°. (b) Theoretical differences as a 903 

function of the rate of change in the EVI.  904 
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 912 

Figure 8. Maps of phenological metrics for the (a) start, (b) end and (c) length of season derived 913 

from GEOCLIM-LAI. Areas with any growing season are shaded in light grey. The dark-grey areas 914 

correspond to pixels with missing data. DOY, day of year. 915 
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  916 

Figure 9. Latitudinal transects at resolution of 0.5 degrees of the average length of season (LoS) 917 

derived from GEOCLIM-LAI, mean annual air temperature (Tair), cumulative annual rainfall 918 

(Rainfall), and mean annual short-wave downwards surface radiation (SW). The LoS was not 919 

plotted when the fraction of the land pixels used to compute the average phenological metric was 920 

lower than 0.1% of the total land pixels. 921 
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 922 

Figure 10. Maps of the start of season (SoS) derived from GEOCLIM-LAI in (a) Europe and (b) 923 

African Sahel. The dashed back box in Sudano-Sahelian West Africa covering much of the southern 924 

half of Mali corresponds to the study area for the evaluation of the latitudinal gradients of 925 

phenology (Figure 11b). Areas with any growing season are shaded in light grey. DOY, day of year. 926 
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  932 

Figure 11. Latitudinal gradients of the average phenological metrics for the start (o), end (□), and 933 

length (◊) of season in units of day of year (DOY) in (a) Europe at ground selected sites of B. 934 

pendula (Figure 2b) as observed at the plot level (open symbols) and derived from GEOCLIM-LAI 935 

(filled symbols), and (b) Sudano-Sahelian West Africa (Figure 10b) as derived from MODIS-NDVI 936 

(open symbols) and GEOCLIM-LAI (filled symbols). 937 
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