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ON THE NUMBER OF LIMIT CYCLES IN
DISCONTINUOUS PIECEWISE LINEAR

DIFFERENTIAL SYSTEMS WITH TWO PIECES
SEPARATED BY A STRAIGHT LINE

RODRIGO D. EUZÉBIO1 AND JAUME LLIBRE2

Abstract. In this paper we study the maximum number N of
limit cycles that can exhibit a planar piecewise linear differential
system formed by two pieces separated by a straight line. More
precisely, we prove that this maximum number satisfies 2 ≤ N ≤ 4
if one of the two linear differential systems has its equilibrium point
on the straight line of discontinuity.

1. Introduction and statement of the main result

The study of piecewise linear differential systems goes back to An-
dronov, Vitt and Khaikin [1] and still continues to receive attention
by researchers. These last years a renewed interest has appeared in
the mathematical community working in differential equations for un-
derstanding the dynamical richness of the piecewise linear differential
systems, because these systems are widely used to model processes
appearing in electronics, mechanics, economy, ..., see for instance the
books of di Bernardo, Budd, Champneys and Kowalczyk [3], and Simp-
son [25], and the survey of Makarenkov and Lamb [23], and the hun-
dreds of references quoted in these last three works.

We recall that a limit cycle is a periodic orbit of a differential system
which is isolated in the set of all periodic orbits of the system.

The simplest possible continuous but nonsmooth piecewise linear dif-
ferential systems are the ones having only two pieces separated by a
straight line. In 1990 Lum and Chua [22] conjectured that a contin-
uous piecewise linear vector field in the plane with two pieces has at
most one limit cycle. We note that even in this apparent simple case,
only after a difficult analysis it was possible to prove the existence of at
most one limit cycle, thus in 1998 this conjecture was proved by Freire,
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Ponce, Rodrigo and Torres [7]. There are two reasons that difficult
the analysis of these differential systems. First, even one can easily
integrate the solutions of every linear differential system, the time that
an orbit expends in each half–plane governed by each linear differen-
tial system is in general unknown, consequently the matching of the
corresponding solutions is a difficult problem. Second, the number of
parameters to consider in order to be sure that we take into account
all possible cases is in general not small. Of course, these difficulties
increase when we work with discontinuous piecewise linear differential
systems. Recently, a new an easier proof that at most one limit cycle
exists for the continuous piecewise linear differential systems with two
pieces separated by a straight line has been done by Llibre, Ordoñez
and Ponce in [19].

The objective of this paper is to study the problem of Lum and Chua
but now for the class of discontinuous piecewise linear differential sys-
tems in the plane with two pieces separated by a straight line. In some
sense this problem can be seen as an extension of the 16th Hilbert’s
problem to the discontinuous piecewise linear differential systems in
the plane with two pieces separated by a straight line. We recall that
the 16th Hilbert’s problem essentially ask for the maximum number of
limit cycles that a polynomial differential system in the plane can have
in function of the degree of the system. For the moment this problem
remains open, for more details on the 16th Hilbert’s problem see for
instance [12, 16, 18].

Several authors tried to determine the maximum number of nested
limit cycles surrounding a unique equilibrium point for the class of
all discontinuous piecewise linear differential systems with two pieces
separated by a straight line. Thus in the paper of Han and Zhang [11]
some results about the existence of two limit cycles appeared, so that
the authors conjectured that the maximum number of limit cycles for
this class of piecewise linear differential systems is exactly two. But
Huan and Yang in [13] provided numerical evidence about the existence
of three nested limit cycles surrounding a unique equilibrium. Llibre
and Ponce in [20] inspired in the numerical example of [13] proved that
there are discontinuous piecewise linear differential systems with two
pieces separated by a straight line having three limit cycles. Later
on other authors obtained also three limit cycles for those differential
systems following different ways, see the papers of Braga and Mello [4],
of Buzzi, Pessoa and Torregrosa [5], and of Freire, Ponce and Torres
[9].



DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS 3

The linear differential systems that we consider in every half–plane
extended to the full plane is either a focus (F) (we include in this
class of foci the centers), or a node (N), or a saddle (S). We recall that
there are three classes of linear nodes: nodes with different eigenvalues,
nodes with equal eigenvalues whose linear part does not diagonalize,
and nodes with equal eigenvalues whose linear part diagonalize, called
star nodes. Clearly if a piecewise linear differential system with two
pieces separated by a straight line has a star node, this prevents the
existence of periodic orbits.

An equilibrium point p of a linear differential system defined in a
half–plane having in the full plane a node, a focus or a saddle is real
when p belongs to the closure of the half–plane where the system is
defined the mentioned linear differential system, and p is called virtual
otherwise.

We distinguish six classes or types of planar discontinuous piecewise
linear differential systems: FF, FN, FS, NN, NS and SS. Inside these
classes and in this paper we only consider limit cycles surrounding a
unique equilibrium point or a unique sliding segment. So we do not
consider sliding limit cycles. Now we recall the definitions of sliding
segment and non–sliding limit cycle, for more details on these defini-
tions see for instance [10] and [26].

Let Z = (X,Y ) be a discontinuous piecewise linear differential vector
field with two pieces separated by a straight line Σ, in one piece we
have the linear vector field X and in the other the linear vector field
Y . Following Filippov [6] we distinguish three open regions in the
discontinuity straight line Σ.

1) The sliding region Σsl where the vectors X(p) and Y (p) with
p ∈ Σ point inward Σ.

2) The escaping region Σe where the vectors X(p) and Y (p) with
p ∈ Σ point outward Σ.

3) The sewing region Σs where the vectors X(p) and Y (p) with
p ∈ Σ point to the same direction and are transverse to Σ.

Any segment contained in Σe ∪ Σsl is called a sliding segment. Any
limit cycle γ of Z such that γ ∩ (Σe ∪ Σsl) = ∅ is called a non–sliding
limit cycle.

Limit cycles of discontinuous piecewise linear differential systems
with two pieces separated by a straight line have been studied by many
authors, see for instance the articles [2, 8, 9, 11, 13, 14, 15, 20, 21, 24].
Summarizing the results of these articles we have that the maximum
number of known limit cycles that one of these systems can exhibit is



4 R.D. EUZÉBIO AND J. LLIBRE

given in Table 1. In that table the symbol “–” indicates that those
cases appear repeated in the table, because for instance the case NF is
the same as the case FN, which appears with a 3 in the table. For more
details on Table 1 see mainly the references [21] of Llibre, Teixeira and
Torregrosa and [9] of Freire, Ponce and Torres.

F N S

F 3 3 3
N – 2 2
S – – 2

Table 1. Lower bounds for the maximum number of
limit cycles of discontinuous piecewise linear differential
systems with two pieces separated by a straight line.

Our main result is the following.

Theorem 1. If one of the linear differential systems has its equilibrium
point on the straight line of separation, then the maximum number N of
limit cycles of discontinuous piecewise linear differential systems with
two pieces separated by a straight line satisfies 2 ≤ N ≤ 4.

Theorem 1 is proved in section 4. As far as we know it is the first
time that an upper bound for the maximum number of limit cycles is
given for a class of discontinuous piecewise linear differential systems
with two pieces separated by a straight line.

Under the assumptions of Theorem 1 we must remark that if the
linear differential system whose equilibrium point is on the straight line
of discontinuity is a saddle or a node, then due to the existence of the
invariant straight lines of the saddle and of the node such discontinuous
piecewise linear differential systems cannot have periodic solutions, and
consequently limit cycles. So we only must prove Theorem 1 when the
linear differential system whose equilibrium point is on the straight line
of discontinuity is a focus or a center.

There are two main tools in the proof of Theorem 1. The first are
the canonical forms of all the possible configurations of the discontin-
uous piecewise linear differential systems in the plane with two pieces
separated by a straight line, see section 2. These canonical forms only
depend of five parameters and are due to Freire, Ponce and Torres, see
[9]. The second tool are the extended complete Chebyshev systems,
see for more details section 3.
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2. Canonical forms

We assume without loss of generality that the two pieces in the plane
where are defined the discontinuous piecewise linear differential systems
are the left and the right half–planes

S− = {(x, y) ∈ R2 : x < 0}, S+ = {(x, y) ∈ R2 : x > 0}.
Consequently x = 0 is the straight line of separation between the two
linear differential systems

(1)

(
ẋ
ẏ

)
=

(
a−

11 a−
12

a−
21 a−

22

)(
x
y

)
+

(
b−
1

b−
2

)
,

defined for the (x, y) ∈ S−, and

(2)

(
ẋ
ẏ

)
=

(
a+

11 a+
12

a+
21 a+

22

)(
x
y

)
+

(
b+
1

b+
2

)
,

defined for the (x, y) ∈ S+. Note that both systems together depend
on twelve parameters.

Now we consider the discontinuous piecewise linear differential sys-
tems

(3)

(
ẋ
ẏ

)
=

(
2ℓ −1

ℓ2 − α2 0

)(
x
y

)
+

(
0
a

)
,

defined for the (x, y) ∈ S−, and

(4)

(
ẋ
ẏ

)
=

(
2r −1

r2 − β2 0

)(
x
y

)
+

(
b
c

)
,

defined for the (x, y) ∈ S+, where α, β ∈ {i, 0, 1}. Of course i =
√

−1.
Note that both systems together depend on five parameters. We remark
that if α = i then the equilibrium point of system (3) has eigenvalues
ℓ ± i, so it is a focus if ℓ ̸= 0, and a center if ℓ = 0. If α = 0 then
system (3) is a node with eigenvalue ℓ ̸= 0 of multiplicity 2 whose linear
part does not diagonalize. If α = 1 then system (3) is a saddle with
eigenvalues ℓ − 1 and ℓ + 1 when |ℓ| < 1, and a node with eigenvalues
ℓ − 1 and ℓ + 1 whose linear part diagonalize when |ℓ| > 1.

Let U be an open subset of R2. We say that the homeomorphism
h between U and its image by h is a topological equivalence between
the discontinuous piecewise linear differential system (1)+(2) and the
discontinuous piecewise linear differential system (3)+(4) if h applies
orbits of system (1)+(2) contained in U into orbits of system (3)+(4)
contained in h(U).
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From Propositions 1 and 2 of [9] it follows that there exists a topolog-
ical equivalence between the phase portrait of the discontinuous piece-
wise linear differential system (1)+(2) and the phase portrait of the
discontinuous piecewise linear differential system (3)+(4) restricted to
the orbits that do not have points in common with the sliding set of
these systems. Therefore, since we are interested in studying the limit
cycles of the system (1)+(2) which do not intersect its sliding set, it
will be sufficient to study the limit cycles of the system (3)+(4).

3. Extended Complete Chebyshev systems

The set of functions {f0, f1, ..., fn} defined on the interval I forms
an Extended Chebyshev system on I, if and only if any nontrivial lin-
ear combination of these functions has at most n zeros counting their
multiplicities and this number is reached.

The set of functions {f0, f1, ..., fn} is an Extended Complete Cheby-
shev system or simply an ECT–system on I if and only if for k =
0, 1, . . . , n, the subset of functions {f0, f1, ..., fk} form an Extended
Chebyshev system.

For proving that the set of functions {f0, f1, ..., fn} is an ECT–system
on I it is sufficient and necessary to show that the Wronskians

W (f0, ..., fk)(s) =

∣∣∣∣∣∣∣∣∣

f0(s) f1(s) · · · fk(s)
f ′

0(s) f ′
1(s) · · · f ′

k(s)
...

...
. . .

...

f
(k)
0 (s) f

(k)
1 (s) · · · f

(k)
k (s)

∣∣∣∣∣∣∣∣∣
̸= 0,

on I for k = 0, 1, . . . , n. For more details on ECT–system see the book
[17].

4. Proof of Theorem 1

We separate the proof of Theorem 1 in three cases.

Case 1: The discontinuous piecewise linear differential system (3)+(4)
has one real focus on the discontinuity straight line and another focus,
real or virtual. Then in system (3)+(4) we must take α = β = i. We
note that in this case the sliding segment is {(0, y) : 0 < y < b}.
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The solution of system (3) starting at the point (x, y) = (0, y0) is
(5)

x(t) =
eℓt(a cos t − (y0 + ℓ(a + ℓy0)) sin t) − a

ℓ2 + 1
,

y(t) =
eℓt ((y0ℓ

2 + 2aℓ + y0) cos t − (a (ℓ2 − 1) + ℓ (ℓ2 + 1) y0) sin t) − 2aℓ

ℓ2 + 1
.

The solution of system (4) starting at the point (x, y) = (0, y0) is
(6)

x(t) =
ert (c cos t − (b (r2 + 1) + y0 + r(c + ry0)) sin t) − c

r2 + 1
,

y(t) = − 1

r2 + 1

(
br2 + 2cr + b + ert

(
(c(r2 − 1) + r(r2 + 1)(b + y0)) sin t

− (br2 + y0r
2 + 2cr + b + y0) cos t

))
.

Let t− be the finite positive time that an orbit of system (3) expends
inside S− starting at the point (0, y0) and entering in S− in forward
time, and let −t− be the finite positive time that an orbit of system (3)
expends inside S− starting at the point (0, y0) and entering in S− in
backward time. If such orbits do not exist for system (3), then system
(3)+(4) cannot have periodic solutions and we are done. So we assume
that there are orbits for which the times t− or −t− are well defined.

In a similar way let t+ be the finite positive time that an orbit of
system (4) expends inside S+ starting at the point (0, y0) and entering
in S+ in forward time, and let −t+ be the finite positive time that
an orbit of system (4) expends inside S+ starting at the point (0, y0)
and entering in S+ in backward time. Again we assume that there are
orbits for which the times t+ or −t+ are well defined, otherwise the
system (3)+(4) cannot have periodic solutions.

Note that if we have a periodic solution of system (3)+(4) for such
an orbit the times t− and t+ satisfy that t−t+ < 0.

Assume that system (3)+(4) has a periodic solution and let t− and
t+ be the times associated to the two pieces of this periodic solution.
Then one of the following sets of three equations must be satisfied for
a such periodic solution, either

(7) x(t+) = 0, x(−t−) = 0, y(−t−) − y(t+) = 0,

or

(8) x(−t+) = 0, x(t−) = 0, y(t−) − y(−t+) = 0.
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Now we shall assume that equations (7) hold. The proof of Theorem 1,
in Case 1 when c = 0 and if equations (8) hold, is completely analogous
to the proof when equations (7) hold when c = 0.

Using (5) and (6) the three equations (7) become

e1 = ert+ (c cos t+ − (b (r2 + 1) + y0 + r(c + ry0)) sin t+) − c = 0,

e2 = eℓt−(a cos t− + (y0 + ℓ(a + ℓy0)) sin t−) − a = 0,

e3 = −(1 + r2)
(
e−ℓt−

(
(2aℓ + y0 + ℓ2y0) cos t−

+ (a(ℓ2 − 1) + ℓ(ℓ2 + 1)y0) sin t− − 2aℓ
))

+(ℓ2 + 1)
(
ert+

(
(b + br2 + 2cr + y0 + r2y0) cos t+ − br2

− (c (r2 − 1) + r (r2 + 1) (b + y0)) sin t+ − 2cr − b
))

= 0.

By assumption one of the two foci must be on the discontinuity line
x = 0. We assume that the focus of system (4) is on x = 0, i.e. we take
c = 0. We must also study the case when the focus of system (3) is on
x = 0 (i.e. a = 0), because in the expression of system (3)+(4) both
foci do not play exactly the same role due to the parameter b. Now we
will do the study when the focus of system (4) is on x = 0, i.e. c = 0.
Later on we shall study the case a = 0.

Taking c = 0 equation e1 = 0 becomes

−ert+(1 + r2)(y0 + b) sin t+ = 0.

If y0 +b = 0 and sin t+ ̸= 0, then at most there is one periodic solution,
because from this equation y0 = −b, and we are done.

We suppose that y0 + b ̸= 0 and sin t+ = 0, i.e. t+ = π. Now solving
equation e2 = 0 with respect to the variable y0 we get

y0 = a
e−ℓt− − cos t− − ℓ sin t−

(ℓ2 + 1) sin t−
.

Therefore the equation e3 = 0 writes

(9)
− (eπr + 1) (bℓ2 − aℓ + b)eℓt− + a (eπr − 1) eℓt− cot t−

+a csc t− − aeπre2ℓt− csc t− = 0,

or equivalently

(10)
a
(
ℓ(eπr + 1)eℓt− + (eπr − 1)eℓt− cot t− + csc t−(1 − eπre2ℓt−)

)

−b(1 + ℓ2)(eπr + 1)eℓt− = 0,
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where

(11)

f0(t−) = eℓt− ,

f1(t−) = eℓt− cot t−,

f2(t−) = csc t−,

f3(t−) = e2ℓt− csc t−.

Now we claim that the set of functions {f0, f1, f2, f3} is an extended
complete Chebyshev system, and consequently the system (7) can have
at most 3 solutions. From section 3 this number of solutions is reached
if the coefficients of the functions f0, f1, f2, f3 in (10), as functions of the
parameters of the discontinuous piecewise differential system (3)+(4),
are functionally independent, which is not the case because the coef-
ficients a(eπr − 1), a and aeπr are not functionally independent. But
since the three coefficients of f0, f1, f2 are functionally independent the
maximum number of limit cycles of system (3)+(4) y0 + b ̸= 0 and
sin t+ = 0 in Case 1 will be at least 2.

Note that if y0 + b = sin t+ = 0, then the system e1 = e2 = e3 = 0
eventually can have at most 4 solutions. Hence, once the claim be
proved, the proof of Theorem 1 in Case 1 with c = 0 will be completed.

Now we prove the claim. For proving that the set of functions
{f0, f1, f2, f3} is an ECT–system it is sufficient and necessary to show
that the Wronskians W (f0, ..., fk)(t−) are not zero for k = 0, 1, 2, 3.
Indeed, we have

W (f0)(t−) = eℓt− ̸= 0,

W (f0, f1)(t−) = −e2ℓt− csc2 t− ̸= 0,

W (f0, f1, f2)(t−) = −e2ℓt− (ℓ2 + 1) csc3 t− ̸= 0,

W (f0, f1, f2, f3)(t−) = −2e4ℓt−ℓ(1 + ℓ2)2 csc4 t−.

Therefore, if ℓ ̸= 0 (i.e. if the equilibrium point of system (3) is a
focus), then the set of functions {f0, f1, f2, f3} is an extended complete
Chebyshev system.

Assume now that ℓ = 0, i.e. the equilibrium point of system (3) is a
center. Then equation (9) becomes

−b (1 + eπr) + a (eπr − 1) (cot t− − csc t−) = 0,

or equivalently

−b (1 + eπr) f0(t−) + a (eπr − 1) f1(t−) = 0,
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where
f0(t−) = 1,

f1(t−) = cot t− − csc t−.

The set of functions {f0, f1} is an ECT–system because the Wronskians
W (f0)(t−) and W (f0, f1)(t−) are not zero, because

W (f0)(t−) = 1 ̸= 0,

W (f0, f1)(t−) = (cot t− − csc t−) csc t− ≤ −1

2
.

In short this completes the proof of Theorem 1 in the Case 1 when
c = 0.

Assume a = 0. Then the equation e2 = 0 reduces to

e−ℓt−
(
ℓ2 + 1

)
y0 sin(t−) = 0.

If y0 = 0, then at most there is one periodic solution, and we are
done, but we note that this periodic solution would be a non–sliding
limit cycle and consequently we must not take it into account. So we
suppose that y0 ̸= 0 and sin t− = 0, i.e. t− = π. Now solving equation
e1 = 0 with respect to the variable y0 we get

y0 = −br2 + cr + b − c cot t+ + ce−rt+ csc t+
r2 + 1

.

Therefore the equation e3 = 0 writes

−
(
1 + eℓπ

)
(br2 + cr + b)ert+ + c(1 − eℓπ)ert+ cot t+

−c csc t+ + ceπℓe2rt+ csc t+ = 0,

or equivalently

−
(
1 + eℓπ

)
(br2 + cr + b)f0(t+) + c(1 − eℓπ)f1(t+)

−cf2(t+) + ceπℓf3(t+) = 0,

where
f0(t−) = ert+ ,

f1(t−) = ert+ cot t+,

f2(t−) = csc t+,

f3(t−) = e2rt+ csc t+.

These functions f0, f1, f2, f3 coincide with the functions (11) if we
change r by ℓ, and t+ by t−. So the rest of the proof of Theorem 1 in
Case 1 with a = 0 follows as in the Case 1 with c = 0. In summary we
have proved Theorem 1 in Case 1. Note that here when y0 = sin t− = 0
also we have the upper bound of N ≤ 4.
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Case 2: The discontinuous piecewise linear differential system (3)+(4)
has one real focus on the discontinuity straight line and one real or
virtual node outside the discontinuity straight line with the eigenvalue
ℓ ̸= 0 of multiplicity two and whose linear part does not diagonalize.
Then in system (3)+(4) we must take α = 0 and β = i. The case α = i
and β = 0 follows in a similar way.

The solution of system (3) starting at the point (x, y) = (0, y0) is

(12)
x(t) =

eℓt(a − ℓ2y0t − aℓt) − a

ℓ2
,

y(t) = −2a + eℓt(a(ℓt − 2) + ℓ(ℓt − 1)y0)

ℓ
.

The solution of system (4) starting at the point (x, y) = (0, y0) is
given in (6).

Let t− and t+ be the finite positive times defined in a similar way
to the Case 1. Again if we have a periodic solution of system (3)+(4)
for such an orbit the times t− and t+ satisfy that t−t+ < 0. Suppose
that system (3)+(4) has a periodic solution and let t− and t+ the times
associated to the two pieces of this periodic solution. Then one of the
following sets of three equations (7), or (8) must be satisfied.

Now we shall assume that equations (7) hold. Again the proof of
Theorem 1 in Case 2 if equations (8) hold is completely analogous to
the proof when equations (7) hold.

Using (6), (12), taking into account that ℓ ̸= 0 and that the fo-
cus must be on the discontinuity straight line (i.e. c = 0) the three
equations (7) become

e1 = −ert+(b + y0) sin t+ = 0,

e2 = ℓ2y0t− + aℓt− − aeℓt− + a = 0,

e3 = ℓy0(1 + ℓt−) + bℓeℓt− + aℓt− + 2a(1 − eℓt−)

−(b + y0)ℓe
ℓt−+rt+(cos t+ − r sin t+) = 0.

From equation e1 = 0 if y0 + b = 0 and sin t+ ̸= 0, then at most
there is one periodic solution, and we are done. So we suppose that
y0 + b ̸= 0 and sin t+ = 0, i.e. t+ = π. Now solving equation e2 = 0
with respect to the variable y0 we get

y0 =
a

(
eℓt− − ℓt− − 1

)

ℓ2t−
.

Therefore the equation e3 = 0 writes

a (1 − eπr) + aeπreℓt− − ae−ℓt− − (1 + eπr) ℓ(a − bℓ)t− = 0,
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or equivalently

a (1 − eπr) f0(t−)+aeπrf1(t−)−af2(t−)− (1 + eπr) ℓ(a− bℓ)f3(t−) = 0,

where

f0(t−) = 1,

f1(t−) = eℓt− ,

f2(t−) = e−ℓt− ,

f3(t−) = t−.

The set of functions {f0, f1, f2, f3} is an ECT–system because the
Wronskians W (f0, ..., fk)(t−) are not zero for k = 0, 1, 2, 3. Indeed, we
have

W (f0)(t−) = 1 ̸= 0,

W (f0, f1)(t−) = ℓeℓt− ̸= 0,

W (f0, f1, f2)(t−) = 2ℓ3 ̸= 0,

W (f0, f1, f2, f3)(t−) = −2ℓ5.

Therefore system (7) with y0 + b ̸= 0 and sin t+ = 0 can have at most 3
solutions, and as in the previous cases system (7) with y0+b = sin t+ =
0 can have at most 4 solutions. Since the three coefficients of f0, f1, f2

are functionally dependent the system (3)+(4) perhaps do not reach the
three solutions. But since the coefficients of f1, f2, f3 are functionally
independent the system (3)+(4) with y0 + b ̸= 0 and sin t+ = 0 can
have two solutions. This completes the proof of Theorem 1 in Case 2.

Case 3: The discontinuous piecewise linear differential system (3)+(4)
has one real focus on the discontinuity straight line and one real or
virtual node or saddle outside the discontinuity straight line. This
node has two different eigenvalues. Then in system (3)+(4) we must
take α = 1 and β = i. The case α = i and β = 1 follows in a similar
way.

We recall that if |ℓ| > 1 then system (3) has a real or virtual node
with two different eigenvalues, while if |ℓ| < 1 the system has a real or
virtual saddle. Both cases are studied simultaneously.
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The solution of system (3) starting at the point (x, y) = (0, y0) is

(13)

x(t) = − e−t

2(ℓ2 − 1)

(
a

(
e(ℓ+2)t(ℓ − 1) + 2et − eℓt(ℓ + 1)

)

+eℓt (e2t − 1) (ℓ2 − 1)y0

)
,

y(t) =
e−t

2 (ℓ2 − 1)

(
a

(
−e(ℓ+2)t(ℓ − 1)2 + eℓt(ℓ + 1)2 − 4etℓ

)

+2eℓt+t (ℓ2 − 1) y0(cosh t − ℓ sinh t)
)
.

The solution of system (4) starting at the point (x, y) = (0, y0) is
given in (6).

Let t− and t+ be again the finite positive times defined in a similar
way to the Case 1, and if we have a periodic solution of system (3)+(4)
one of the sets of three equations (7), or (8) must be satisfied. Now we
shall assume that equations (7) hold. Again the proof of Theorem 1 in
Case 2 if equations (8) hold is completely analogous to the proof when
equations (7) hold.

Using (6), (13), taking into account that ℓ ̸= ±1 and that the fo-
cus must be on the discontinuity straight line (i.e. c = 0) the three
equations (7) become

e1 = −ert+(b + y0) sin t+ = 0,

e2 = a
(
1 − ℓ − 2eℓt−+t− + e2t−(ℓ + 1)

)
+ (e2t− − 1) (ℓ2 − 1)y0 = 0,

e3 = 2(ℓ2 − 1) (−b + ert+(b + y0)(cos t+ − r sin t+))

−et−
(
ae(−ℓ−2)t−

(
−(ℓ − 1)2 + e2t−(ℓ + 1)2 − 4eℓt−+t−ℓ

)

+2e(−ℓ−1)t−(ℓ2 − 1)y0(cosh t− + ℓ sinh t−)
)

= 0.

From equation e1 = 0, if y0 + b = 0 and sin t+ ̸= 0, then at most
there is one periodic solution, and we are done. So we suppose that
y0 + b ̸= 0 and sin t+ = 0, i.e. t+ = π. Now solving equation e2 = 0
with respect to the variable y0 we get

y0 = −a(1 − ℓ + e2t− + e2t−ℓ − 2et−+ℓt−)

(e2t− − 1)(ℓ2 − 1)
.

Therefore the equation e3 = 0 writes

2aet− + (b (1 + eπr) (ℓ2 − 1) − a (eπr(ℓ − 1) + ℓ + 1)) eℓt−+
a (ℓ + eπr(ℓ + 1) − 1) e(ℓ+2)t− − (2eπra + b (1 + eπr) (ℓ2 − 1)) e(2ℓ+1)t− = 0,

or equivalently

2af0(t−) + (b (1 + eπr) (ℓ2 − 1) − a (eπr(ℓ − 1) + ℓ + 1)) f1(t−)+
a (ℓ + eπr(ℓ + 1) − 1) f2(t−) − (2eπra + b (1 + eπr) (ℓ2 − 1)) f3(t−) = 0,
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where
f0(t−) = et− ,

f1(t−) = eℓt− ,

f2(t−) = e(ℓ+2)t− ,

f3(t−) = e(2ℓ+1)t− .

The set of functions {f0, f1, f2, f3} is an ECT–system because the
Wronskians W (f0, ..., fk)(t−) are not zero for k = 0, 1, 2, 3. Indeed, we
have

W (f0)(t−) = et− ̸= 0,

W (f0, f1)(t−) = (ℓ − 1)e(ℓ+1)t− ̸= 0,

W (f0, f1, f2)(t−) = 2(ℓ2 − 1)e(2ℓ+3)t− ̸= 0,

W (f0, f1, f2, f3)(t−) = 4ℓ(ℓ2 − 1)2e4(ℓ+1)t− ̸= 0 if ℓ ̸= 0.

Therefore, if ℓ ̸= 0 the system (7) with y0 + b ̸= 0 and sin t+ = 0 can
have at most 3 solutions. Since the four coefficients of f0, f1, f2, f3 are
functionally dependent the system (3)+(4) perhaps do not reach the
three solutions. But since the coefficients of f1, f2, f3 are functionally
independent the system (3)+(4) with y0+b ̸= 0 and sin t+ = 0 can have
two solutions. Similarly to the previous cases when y0 + b = sin t+ = 0
we can have at most 4 solutions. This completes the proof of Theorem
1 in Case 3 when ℓ ̸= 0.

Assume ℓ = 0. Then the equation e3 = 0 becomes

a (eπr − 1) − b (1 + eπr) − (2a(eπr − 1) − b (1 + eπr)) et−

+a (eπr − 1) e2t− = 0,

or equivalently

(a (eπr − 1) − b (1 + eπr))f0(t−) − (2a(eπr − 1) − b (1 + eπr)) f1(t−)
+a (eπr − 1) f2(t−) = 0,

where
f0(t−) = 1,

f1(t−) = et− ,

f2(t−) = e2t− .

The set of functions {f0, f1, f2} is an ECT–system because the Wron-
skians W (f0, ..., fk)(t−) are not zero for k = 0, 1, 2. Indeed, we have

W (f0)(t−) = 1 ̸= 0,

W (f0, f1)(t−) = et− ̸= 0,

W (f0, f1, f2)(t−) = 2e3t− ̸= 0.
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Since the three coefficients of f0, f1, f2 are functionally dependent the
system (3)+(4) perhaps do not reach the two solutions. But since the
coefficients of f1, f2 are functionally independent the system (3)+(4)
can have one solution. This completes the proof of Theorem 1 in Case
3 when ℓ = 0.

In short, Theorem 1 is proved.
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