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Abstract 13 

The approach presented herein reports the application of a voltammetric electronic 14 

tongue (ET), in contrast with a wine tasting sensory panel, as a tool for standardized 15 

wine tasting; concretely, to achieve the discrimination of different wine DOs 16 

(Denominación de Origen, a mark related to its geographical region and ensuring 17 

specific quality levels) and the prediction of the global score assigned by the trained 18 

sensory panel. To this aim, a voltammetric array of sensors based on bulk-modified 19 

graphite and metallic electrodes was used as the sensing part, while chemometric tools 20 

such as linear discriminant analysis (LDA) and artificial neural networks (ANNs) were 21 

used as the qualitative and quantitative modelling tools. Departure information was the 22 

set of voltammograms, which were first preprocessed employing fast Fourier transform, 23 

followed by removal of less-significant coefficients employing a stepwise inclusion 24 

method and pruning of the inputs. The trend, in global scores, was modelled 25 

successfully with a 92.9% of correct identification for the qualitative application, and a 26 

correlation coefficient of 0.830 for the quantitative one (with 14 and 20 samples for the 27 

external test subset, respectively). 28 
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1. Introduction 33 

Over the last decades, there have been important advances in the design of new 34 

sensors and biosensors, normally directed to the implementation of new concepts, 35 

designs, or configurations, in all cases heading to improved biodevices showing perfect 36 

selectivity [1, 2]. Unfortunately, there are many factors hindering their application in the 37 

required conditions (e.g. matrix effects, secondary responses, irreversible fouling, etc.). 38 

Opposite to that trend, there is a different approach that appeared in the late 1990s 39 

that proposes the use of arrays of sensors in order to obtain some added value in the 40 

generation of analytical information [3]. Then, generated information is processed by 41 

means of advanced chemometric tools able to interpret and extract meaningful data 42 

from the complex readings. Curiously, this approach respresents a shift of the 43 

complexity of the analysis from the chemical to the processing field [4]; this approach is 44 

known as Electronic Tongue (ET).  45 

According to the agreed IUPAC definition [3], an Electronic Tongue is “a 46 

multisensor system, which consists of a number of low-selective sensors and uses 47 

advanced mathematical procedures for signal processing based on Pattern Recognition 48 

(PARC) and/or Multivariate data analysis [artificial neural networks (ANNs), principal 49 

component analysis (PCA), etc.]”. In this way, the underlying motivation of ETs is 50 

different from the general trend in the sensor field; that is, instead of pursuing the 51 

perfectly selective sensor, to use low-selectivity sensors or with cross-response features; 52 

a prerequisite for the development of these biomimetic systems. 53 

Furthermore, given its biomimetic behaviour, ETs represent a straightforward 54 

solution when trying to analytically reproduce the sensory information perceived by 55 

subjects or tasters towards natural samples, food, beverages, etc. (Figure 1); e.g. a taste 56 

perception, identifying a variety, noticing a defect, etc. [5-8]. That is, even with absence 57 

of the knowledge about which compounds are primarily responsible for some 58 

sensations, the perceptions are mimicked. 59 

 60 

<FIGURE 1> 61 

 62 

Within this context, ETs have already been successfully applied to the classification 63 

or identification of several beverages such as mineral waters, milk, juices, wine or 64 

coffee, between others [9-12]. Within those, wine is a specially regulated beverage, 65 
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being, in many cases, subjected to a PDO (protected designation of origin) status and its 66 

regulations [13]; in the case of Spain, receiving the appellation DO (Denominación de 67 

Origen). Therefore its identification has received special attention, together with 68 

methodologies for its characterization and elaboration control [11]. 69 

However, most of the papers devoted to the application of ETs to wine analysis deal 70 

with classification tasks or the numerical prediction of specific chemical parameters or 71 

individual taste descriptors (e.g. phenolic content or bitterness level), but to the best of 72 

authors’ knowledge, none of them have achieved the correlation between ET 73 

measurements and the global score assigned to wines by a sensory panel. 74 

DO (or PDOs as defined by the European Union Regulations) are a labelling system 75 

established to regulate the quality of Spanish (or the respective European country) 76 

foodstuffs based on its region (with well established geographical limits) and food type, 77 

which is controlled by a governing body that controls the quality, ingredients and 78 

production process of each product in order to ensure attaining specific quality levels in 79 

the final food or beverage [14]. Products labelled DO (or the respective PDO), apart 80 

from being of superior quality, are expected to carry specific characteristics of 81 

geographical region or individual producer and be derived from raw materials 82 

originating within the region. Like most of these designations, a fundamental tenet of a 83 

DO label is that no product outside of that region is permitted to bear that name. 84 

From an analytical point of view, wine is a complex mixture of diverse substances, 85 

which exhibit considerable influence on wine’s taste and other features. Although 86 

declaring the interest, its quality control is still under development and still very much 87 

based on wine tasters [11], whose taste and olfaction play an important role in the 88 

evaluation of the quality of wine. Therefore, it should be expected that the ability to 89 

simultaneously detect a large spectrum of compounds in one step and provide a 90 

comprehensive information on the sample within a few seconds can be considered as a 91 

basic feature/requirement for the design of an artificial analytical system; a situation that 92 

suits perfectly with the concept of ETs. 93 

In this sense, the main goal of this work is to demonstrate the huge capabilities of 94 

ET-based systems to mimic the human taste perception and provide an analytical tool 95 

for its assessment. More specifically, proposed approach herein is based on the 96 

application of a voltammetric ET formed by bulk-modified graphite-epoxy composites 97 

and metallic electrodes towards the discrimination of different wine DOs and the 98 

prediction of the global score assigned by a standardized sensory panel. 99 
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2. Experimental 100 

 101 

2.1 Reagents and solutions 102 

All reagents used were analytical reagent grade and all solutions were prepared 103 

using deionised water from a Milli-Q system (Millipore, Billerica, MA, USA). Cobalt 104 

(II) phtalocyanine, copper and platinum nanoparticles (<50 nm), which were used as 105 

electrode modifiers, were purchased from Sigma-Aldrich (St. Louis, MO, USA). Au 106 

and Pt metal wires were obtained from Goodfellow (Huntington, UK). Graphite powder 107 

(particle size 50 µm) was received from BDH (BDH Laboratory Supplies, Poole, UK). 108 

Epotek H77 resin and its corresponding hardener were supplied from Epoxy 109 

Technology (Billerica, MA, USA). Potassium chloride was purchased from Merck 110 

KGaA (Darmstadt, Germany). 111 

 112 

2.2 Samples under study 113 

A total set of 71 wines from different producers were analyzed. All wine samples 114 

considered were white bottled wines produced in Catalonia region and commercially 115 

available. Those samples were selected according to its DO (that is, the region where 116 

the wine is produced), but also taking into account other factors such as grape varieties, 117 

vintage, etc. Thus, in order to have a more representative set of samples. 118 

In this sense, Table S2 (supplementary info) summarizes information about the 119 

producers and trademarks of the wine samples analyzed; so that, complete information 120 

of them (e.g. vintage, grape varieties, DO, fermentation method, etc) can be checked in 121 

La guia de vins de Catalunya (The 2014 guide of Catalan wines) [15]. Besides, and if 122 

only focusing in their DO, the samples can be categorized as (number of samples 123 

belonging to each class in brackets): Empordà (10), Penedès (11), Costers del Segre (8) 124 

Terra Alta (16), Priorat (7), Montsant (7), Catalunya (10) and Tarragona (2). Detailed 125 

information on each DO (geographical, climatic, soil, etc) might be found in [16].  126 

Additionally, parameters such as alcohol by volume (abv), volatile acidity, pH or the 127 

amount of sugar between others were analyzed following regulated methods to further 128 

characterize samples under study and to guarantee they fulfil required standards by the 129 

DO [17]. This information, although not used in this study, is presented also in Table 130 

S2. 131 

 132 
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2.3 Sensory panel evaluation 133 

Taste attributes of the wines considered were assessed by a panel of 8 wine experts 134 

under usual established procedures [18]. The panellists were professional wine tasters 135 

from the panel tasting of the different DOs included in this study. All of them were fully 136 

trained and with more than five years of experience in evaluating the wines for the 137 

different editions of the Catalan wines guide.  138 

Briefly, the 71 wine samples were randomly divided in groups of 8, evaluating one 139 

group per day. Randomized samples of 25-30 ml were served in clear glasses NF V09-140 

110 (AFNOR 1995) marked with three digit random numbers and covered with Petri 141 

dishes. Water was provided for rinsing the palate during tasting. Evaluations were 142 

conducted at 20-22 ºC. No information of the type of wine or its DO was provided to 143 

the panellists. 144 

In this way, the subjects were asked to rate the global sensory quality of the wines 145 

(sight, aroma and taste) by assigning it a value ranging from 0 to 10 (for each of the 146 

three parameters); and the assigned score given to each wine was calculated as the 147 

weighted mean as follows: sight x 0.3 + aroma x 0.35 + taste x 0.35. Afterwards, the 148 

final score was obtained from the mean of the eight panellists. On that account, such 149 

information of considered samples can be found in Table S2 (supplementary info) as 150 

well as in La guia de vins de Catalunya (The 2014 guide of Catalan wines) [15]. 151 

 152 

2.4 Electronic tongue sensor array 153 

A hybrid electronic tongue formed by both bulk-modified graphite composites and 154 

metal wire electrodes was used for samples measurement. The latter consisted of a 155 

1 mm diameter metal wire casted into the epoxy resin [19], while the formers were 156 

prepared by mixing the resin, graphite powder and a modifier in a ratio 83:15:2 (w/w) 157 

[20]. In both cases, resin was allowed to harden at 80 ºC for three days, and afterwards, 158 

electrode surfaces were polished with different sandpapers of decreasing grain size. 159 

Final electrodes area was 28 and 0.79 mm
2
 for composite and metal electrodes, 160 

respectively. 161 

In this manner an array of 6 voltammetric electrodes was prepared, consisting in two 162 

metallic Au and Pt electrodes plus four composite electrodes, one unmodified 163 

epoxy-graphite electrode and three modified with Cu and Pt nanoparticles, and cobalt 164 

(II) phtalocyanine. 165 
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Those modifiers/catalysts were selected based on previously reported studies with 166 

wines, either from other research groups or from our laboratories, in order to obtain a 167 

variety of electrodes with significant cross-selectivity and complementary electroactive 168 

properties that allow the obtaining of rich information to enhance modelling capabilities 169 

[21, 22]; this is the desired situation in ETs applications. 170 

Electrodes modified with phthalocyanines (mainly CoPc and its derivatives) are 171 

interesting for being efficient electrocatalysts in the determination of many important 172 

inorganic, organic or biological compounds [21]; while nanoparticles have emerged as 173 

interesting electroactive material in electroanalysis; these are alternative to bulk metals, 174 

with catalytic and electrocatalytic peculiarities, mainly derived from their higher 175 

surface/mass ratio [22]. Lastly, the usage of bare metallic electrodes respond to some 176 

approaches followed by some research groups in the field of ETs [23], while also 177 

provides an opportunity to asses the differences found between those and the 178 

nanoparticles-modified electrodes. 179 

 180 

2.5 Voltammetric measurements 181 

The measurement cell was formed by the 6-sensor voltammetric array and a 182 

reference double junction Ag/AgCl electrode (Thermo Orion 900200, Beverly, MA, 183 

USA) plus a commercial platinum counter electrode (Model 52-67, Crison Instruments, 184 

Barcelona, Spain). 185 

Cyclic Voltammetry measurements were carried out at room temperature (25 ºC), in 186 

a multichannel configuration, using a 6-channel AUTOLAB PGSTAT20 (Ecochemie, 187 

Netherlands) controlled with GPES Multichannel 4.7 software package. 188 

In order to get stable voltammetric responses, ensuring reproducible signals from the 189 

ET array along the whole experiment, electrodes were first cycled in saline solution (i.e. 190 

10 mM KCl). Afterwards, an aliquot of 25 ml of wine was directly used for each 191 

measurement, without any sample pretreatment.  192 

In this manner, a complete voltammogram was recorded for each sample by cycling 193 

the potential between  -1.0 V and +1.3 V vs. Ag/AgCl with a step potential of 9 mV and 194 

a scan rate of 100 mV·s
-1

. Additionally, an electrochemical cleaning stage was carried 195 

out between each measurement to prevent any cumulative effect of impurities on the 196 

working electrode surfaces, and avoiding to perform any physical surface regeneration 197 

of those. To this end, a conditioning potential of +1.5 V was applied during 40 s in a 198 
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cell containing 25 ml of distilled water [24]. As in the case of the panel of experts, all 199 

samples were analyzed in random order. 200 

 201 

2.6 Data processing 202 

Chemometric processing of the data was done in MATLAB 7.1 (MathWorks, 203 

Natick, MA, USA) using specific routines written by the authors, and its Neural 204 

Network Toolbox (v.4.0.6). Concretely, principal component analysis (PCA) and linear 205 

discriminant analysis (LDA) were used for qualitative analysis of the results, while 206 

quantitative analysis was achieved by means of artificial neural networks (ANNs). 207 

In the case considered, the large dimensionality of the data generated when 208 

voltammetric sensors are used (that is, when a complete voltammogram is recorded for 209 

each sensor from the array) hinders their treatment; especially if ANNs are to be used. 210 

This is because it is widely recommended to employ a dataset for training with larger 211 

number of samples than the number of interconnection weights that are then needed to 212 

calculate. If a single voltammogram is formed by hundreds of current values, and a 213 

sensor array is then used, the difficulty of the problem is made evident. Therefore, one 214 

solution when dealing with a set of voltammograms is to employ a preprocessing stage 215 

for data reduction. The main objective of such a step is to reduce the complexity of the 216 

input signal preserving the relevant information, which in addition allows to gain 217 

advantages in training time, to avoid redundancy in input data and to obtain a model 218 

with better generalization ability [25].  219 

In addition, removal of less significant coefficients that barely contribute to the 220 

model (i.e. with low information content) might also improve model performance. That 221 

is, having a list of independent variables, some of which may be useful predictors, but 222 

some of which are almost certainly useless, the aim is to find the best subset to do the 223 

prediction task as well as possible, with as few variables as possible. 224 

In our case, compression of voltammetric data was achieved by means of fast 225 

Fourier transform (FFT) [26], while pruning of the inputs was done either using a 226 

stepwise inclusion method for LDA [27] or Causal Index (CI) pruning for ANN model 227 

[25, 28]. More specifically, a feed-forward network with a back-propagation algorithm 228 

which is used to train the network according to a learning rule, what is known as 229 

multilayer perceptron (MLP) [29]. 230 

Sigmaplot (Systat Software Inc., San Jose, CA) was used for graphic representations 231 

of data and results. 232 
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3. Results and Discussion 233 

 234 

As already commented, the aim of this work was to demonstrate the huge 235 

capabilities of ET-based systems as an analytical tool capable of reproducing the 236 

expertise of wine tasters. In this direction, we focused in two specific cases. On one 237 

hand, we evaluated the discrimination of different wine DOs; while on the other hand, 238 

we attempted the correlation of ET response with the scores assigned by a sensory 239 

panel. Both examples would show the potentialities of ET-systems to translate the 240 

subjective evaluations of a sensory panel into conventional qualitative or quantitative 241 

information (Figure 1). 242 

As from the definition of ET of the IUPAC, the first condition for the development 243 

of an ET is that we must have an array of low-selective sensors with cross-response 244 

features that provide some added value in the generation of analytical information.  245 

Hence, we should firstly confirm that differentiated signals are observed for the 246 

different electrodes, and that those are related to the phenomena under study. That is, 247 

generating data rich enough that can be a useful departure point for the multivariate 248 

calibration model. In our case, we can see how that can be achieved thanks to the use of 249 

the different modifiers and the metal wires (Figure 2); even in the case of Pt 250 

nanoparticles and Pt wire, where still some differences may be observed. In this case 251 

probably due to catalytic phenomena attributable to large surface to volume ratio 252 

attributable to the nanoparticles. 253 

 254 

<FIGURE 2> 255 

 256 

To provide an objective measure of the differences observed for the different 257 

sensors towards wine samples, correlation between their responses was evaluated by 258 

means of the comparison factor fc which considers the area under both signals when 259 

superimposed (Figure S1, supplementary info). Briefly, fc is defined as the ratio of the 260 

area intersected by both curves to the total area under both curves, and ranges from 0 to 261 

1 depending on signals similarity; it values 0 when two signals have nothing in common 262 

and increases its value as similarity does. Thus, obtaining a unique numerical value that 263 

provides a measure of its resemblance. In our case, calculated values are summarized in 264 

Table S1 (supplementary info) where,  as can be seen, those are around 0.7 and even as 265 
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low as 0.54. These numeric values corroborate and objectivise what is already seen in 266 

Figure 2. 267 

After this initial confirmation, the next step is to assess whether or not the recorded 268 

signals are related to the phenomena under study. However, this can not always be 269 

checked so easily, requiring the use of advanced chemometric tools which, as also 270 

defined by IUPAC, are the ones extracting and interpreting the relevant information. 271 

Therefore, in the next sections we will focus on discerning the richness of the generated 272 

data and its suitability for the desired outputs. 273 

At this point, given the complexity of the generated data, FFT was used as a 274 

preprocessing step in order to reduce the high dimensionality requirements of the 275 

processing, which additionally may result in an improvement of model’s performance. 276 

In this manner, each voltammogram was compressed down to only 32 coefficients 277 

without any loss of significant information (Figure 3) [30]; this allowed for a 278 

compression of the original data up to 93.75% (from 512 current values down to 32 279 

coeffs.), prior to pattern recognition or numerical modelling. 280 

 281 

<FIGURE 3> 282 

 283 

3.1 Identification of the DO for the same grape variety 284 

As a first attempt to assess whether or not the ET would be capable to distinguish 285 

the wine samples based on its DO, we focused on a specific grape variety and analyzed 286 

some wine samples from that variety, but produced in different regions. Hence, 287 

reducing the source of variability and ensuring the source of the discrimination factor; 288 

that is, to asses if there is or not an effect due to its origin. 289 

To this aim, a total subset of nine samples, all from Garnatxa Blanca variety, 290 

produced in three different DO regions (Empordà, Terra Alta and Montsant) were 291 

initially considered. Samples were analyzed as previously described in section 2.4, and 292 

an extract of the recorded signals has already been shown in Figure 2. 293 

Once confirmed the cross-response features of the ET, we should look now for 294 

(dis)similarities along the recorded signals that might indicate whether or not analyzed 295 

samples might be distinguished by means of the ET. Hence, looking more deeply in the 296 

voltammetric responses, we can observe some distinguished features that seem to 297 

originate depending on the DO; e.g. some anodic peaks that can be observed around 298 
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+1.0 V for graphite-epoxy sensor (Figure 4), but also at the anodic wave in the region 299 

-0.5 to -1.0 V. 300 

 301 

<FIGURE 4> 302 

 303 

To confirm this differentiated behaviour, voltammetric responses were compressed 304 

employing FFT, and obtained coefficients were analyzed employing PCA (Figure 5); an 305 

unsupervised method which provides a better representation of samples (dis)similarities, 306 

but not performing its classification. As could be expected from the voltammograms, 307 

the PCA plot shows how some samples seem to group in clusters, thus indicating some 308 

similarities between those samples and suggesting that the ET should be capable of 309 

distinguishing such factor (i.e. the effect of the different DOs in the final wine). 310 

Moreover, it should be also noticed that with only the first two PCs, the accumulated 311 

explained variance was ca. 79.8%; a large value which means that most of the variance 312 

contained in the original information is now represented by only these two new 313 

coordinates. 314 

 315 

<FIGURE 5> 316 

 317 

3.2 Discrimination of different DOs 318 

Due to the satisfactory trend already observed in the previous analysis, the whole set 319 

of samples were analyzed with the ET array and recorded signals compressed 320 

employing FFT as previously done, but this time LDA was chosen for pattern 321 

recognition of the different DOs. This alternative was chosen given that, unlike PCA 322 

which only provides a visualization tool of the variability of the data, LDA is a 323 

supervised method that allows to actually build a classification model [27]. That is, 324 

LDA explicitly attempts to model the difference between the classes of data, while PCA 325 

does not. 326 

Therefore, the whole set of 71 samples was categorized according its DO as follows 327 

(number of samples): Empordà (10), Penedès (11), Costers del Segre (8) Terra Alta 328 

(16), Priorat (7), Montsant (7), Catalunya (10) and Tarragona (2). Unfortunately, 329 

compared to the other classes, very few samples from DO Tarragona were available, 330 

and hence it would result problematic to build a proper classification model without 331 
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overfitting it if those were included. Accordingly, those samples were not considered 332 

for further calculations.  333 

Lastly, as LDA is a supervised method, some samples from the set must be left out 334 

when building the model so that they can be used to assess its performance. In our case, 335 

the model was trained with 80% of the data (training subset), using the remaining 20% 336 

of the data (testing subset) to characterize the accuracy of the classification model and 337 

obtain unbiased data (Tables S3 and S4, supplementary info). 338 

 339 

<FIGURE 6> 340 

 341 

Figure 6 displays the distribution of the wine samples along the first three new 342 

coordinates, showing an accumulated variance of 94.8%; a high value indicating that 343 

nearly all the variance contained in the original information is represented now by only 344 

these three new functions. As can be observed, discrimination of the different wines 345 

according to its DOs can be achieved with this simple analysis of the scores. 346 

Nevertheless, it should be taken into account that the actual LDA model is composed by 347 

6 functions (number of groups - 1) and that all of them are used to perform the 348 

classification task; although not being possible to visualize it. 349 

Despite the good clustering observed in the built pattern recognition model (Figure 350 

6), its actual performance should be assessed employing the samples from the testing 351 

subset, and not only the ones from the training subset. To this aim, the generated model 352 

was used to predict the expected DO for the 14 samples that were left out (not being 353 

used at all) during the modelling stage and predicted classes were compared to the 354 

expected ones. The corresponding confusion matrix was then built (Table 1), allowing 355 

calculating the performance of the model by means of three different indicators: 356 

classification rate, sensitivity and specificity. 357 

 358 

<TABLE 1> 359 

 360 

The former corresponds to the ratio between the number of samples correctly 361 

classified and the total number of samples. While the latter two, are related to the 362 

number of false positives or false negatives. Sensitivity is calculated as the percentage 363 

of objects of each class identified by the classifier model, and specificity as the 364 

percentage of objects from different classes correctly rejected by the classifier model; 365 
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averaging those for the classes. In this case, values reached 92.9%, 92.9% and 98.8% 366 

for the classification rate, sensitivity and specificity, respectively. 367 

Similarly, in order to evaluate if the only miss-classified sample could be an outlier, 368 

model performance was also evaluated employing the leave-one-out strategy, regardless 369 

the fact this has been sometimes criticized as overoptimistic [8]. The idea here is that 370 

the use of a larger number of samples in the training subset might improve the model 371 

generalization ability. In this manner, LDA model was rebuilt, and as it could be 372 

expected given that wines are already subjected to strict DO controls, none of the 373 

samples were now miss-classified, achieving a classification rate of 100% in terms of 374 

accuracy, sensitivity and specificity. 375 

 376 

3.3 Prediction of global scores of the sensory panel 377 

To further assess the ability of the ET as a tool for wine tasting, the correlation 378 

between the ET measurements and the global scores assigned by the sensory panel was 379 

also attempted. That is, the average scores assigned to each wine by the sensory panel 380 

were modelled from the set of voltammetric responses, previously compressed with 381 

FFT, by means of an ANN model. 382 

Unlike the previous cases, where qualitative information was extracted, a 383 

quantitative model was built this time. For this, ANN was selected as the modelling tool 384 

due to its superior performance compared to linear methods; i.e. more flexible 385 

modelling methodologies, since both linear and non-linear functions can be used (or 386 

combined) in the processing units [31]. Thus, ANNs are specially suitable to be used 387 

with non-linear sensor responses and allow for more complex relationships between a 388 

high-dimensional descriptor space and the given retention data; all this leads to a better 389 

predictive power of the resulting ANN model compared with other linear methods [25], 390 

although if linearity exists, a proper behaviour may be obtained also with the latter. 391 

As before, the set of samples were split into two subsets: the training subset (49 392 

samples, 71%) used to build the model and the testing subset (20 samples, 29%) used to 393 

assess its performance. Again, this division was randomly performed, taking as only 394 

precaution to avoid that extreme values are used in the testing subset; that is, to avoid 395 

extrapolation from the model. 396 

After a systematic study to optimize the topology of the neural network (i.e. training 397 

algorithm, number of hidden layers, number of neurons, transfer functions, etc.), the 398 

final architecture of the ANN model had 80 neurons (corresponding to the selected FFT 399 
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coeffs. after CI analysis) in the input layer, 6 neurons and logsig transfer function in the 400 

hidden layer and one neuron and tansig transfer function in the output layer, viz. the 401 

score assigned by the sensory panel. 402 

Subsequently, comparison graphs of predicted vs. expected scores, both for the 403 

training and testing subsets, were built and the linear fitted regression parameters were 404 

calculated to easily check the performance of the ANN model (Figure 7). As it can be 405 

observed, a satisfactory trend was obtained for both subsets, with regression lines close 406 

to the theoretical ones; i.e. values of slope and intercept close to 1 and 0, respectively. 407 

 408 

<FIGURE 7> 409 

 410 

To numerically assess the predictive ability of the ET three different parameters 411 

were calculated: Standard Error of Prediction (SEP), Ratio of standard error of 412 

Performance to standard Deviation (RPD) and Range Error Ratio (RER) [32]; with 413 

obtained values of 0.30, 1.48 and 5.93, respectively. 414 

However, despite the good trend observed, it is true that the observed dispersion, 415 

especially for the testing subset, is larger than desirable for a quantitative application; 416 

but, still good enough to be considered at least as a semi-quantitative approach. It 417 

should be remembered anyhow, that still correlation and the followed trend is highly 418 

significant. Moreover, considering the subjective nature of the scores, which are 419 

provided by the sensory panel. 420 

As an additional verification of the proposed approach, a Student’s paired samples t 421 

test for the testing subset was performed. Obtained experimental t value was 1.42, while 422 

the critical tabulated t value with 95% confidence level and 19 degrees of freedom is 423 

2.09. Therefore, confirming the agreement observed between the ET response and the 424 

scores assigned by the sensory panel. 425 

And last but not least, it should be taken into account the complexity of the approach 426 

and the promising capabilities that this represents; i.e. achieving to artificially reproduce 427 

the tasting perception of a sensory panel. 428 

 429 

4. Conclusions 430 

Electronic tongues have proved to be a useful tool for wine tasting, either for 431 

qualitative or quantitative analysis, especially suitable for screening purposes, with  432 
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interesting  advantages as might be its simplicity and low cost. Concretely, in this case 433 

we reported its application towards the qualitative discrimination of different wine DOs 434 

and the quantification of the global score assigned by a sensory panel; the latter 435 

corresponding to the first attempt to correlate such parameter in wines, to the best of 436 

author’s knowledge. 437 

Moreover, the use of both bulk-modified electrodes and metallic electrodes has also 438 

been demonstrated to be a feasible way to obtain sensors with differentiated and 439 

cross-selectivity response towards desired samples; which if required, can be easily 440 

miniaturized and mass-produced through the use of screen-printed technologies. 441 

Finally, future efforts with this approach may involve its further validation (e.g. 442 

extending it to the analysis of wines from other regions) and the miniaturization 443 

of the system. Beyond, further work is still required to improve the biomimetic 444 

capabilities of the ET array to artificially assess the tasting score of the wines. In 445 

this direction, this might be improved through the incorporation of new 446 

voltammetric electrodes in the array or through the combination of the ET 447 

response with sensors from other nature such as would be an electronic nose or 448 

an electronic eye. That is, to better reproduce the overall perceptions perceived 449 

by the sensory panel when tasting a wine (i.e. taste, odour and colour) in what 450 

might be considered as an electronic panel. 451 
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Table 1. Confusion matrix built according to the DO category obtained using the LDA 544 

model for the testing subset samples. 545 

 546 

 Emp 
b 

Pen 
b
 CdS 

b
 TA

 b
 Pri

 b
 Mon

 b
 Cat 

b
 

Emp 
a
 1 0 0 0 1 0 0 

Pen 
a
 0 2 0 0 0 0 0 

CdS 
a
 0 0 2 0 0 0 0 

TA 
a
 0 0 0 2 0 0 0 

Pri 
a
 0 0 0 0 2 0 0 

Mon 
a
 0 0 0 0 0 2 0 

Cat 
a
 0 0 0 0 0 0 2 

a Expected; b Found. 

Emp: Empordà; Pen: Penedès; CdS: Costers del Segre; TA: Terra Alta; Pri: Priorat; Mon: Montsant; 

Cat: Catalunya. 

 547 

 548 

 549 

550 
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FIGURE CAPTIONS 551 

 552 

Figure 1. Comparison of the recognition processes of a sample by the biological (top) 553 

and the biomimetic systems (bottom). 554 

 555 

Figure 2. Example of the different voltammograms obtained with the different sensors 556 

forming the ET array for an arbitrary wine sample. Signals provided correspond to: (1) 557 

graphite–epoxy sensor, (2) Pt nanoparticle modified sensor, (3) cobalt (II) phtalocyanine 558 

modified sensor, (4) Cu nanoparticle modified sensor, (5) Pt metallic sensor and (6) Au 559 

metallic sensor. 560 

 561 

Figure 3. FFT data pre-processing. Representation of the coefficient of determination 562 

(R
2
, x) and fc (○) as the measure of signal reconstruction degree, vs. the number of 563 

Fourier coefficients used. For better representation of the data, Y-axis is plotted in 564 

linear-scale, while X-axis is in log-scale. 565 

 566 

Figure 4. Example of the different voltammograms obtained with graphite–epoxy 567 

sensor for some samples of the same grape variety Garnatxa Blanca. Signals provided 568 

correspond to: (solid line) Empordà, (short dashed line) Terra Alta and (long dashed 569 

line) Montsant DOs. 570 

 571 

Figure 5. Score plot of the first two components obtained after PCA analysis of 572 

Garnatxa Blanca wine samples: (■) Empordà, (●) Terra Alta and (▲) Montsant. 573 

 574 

Figure 6. Score plot of the first three functions obtained after LDA analysis of the wine 575 

samples, according to their DO: (■) Empordà, (▼) Penedès, (♦) Costers del Segre, (●) 576 

Terra Alta, (✚) Priorat, (▲) Montsant and (✡) Catalunya; also the centroid of each 577 

class is plotted (★). 578 

 579 

Figure 7. Modelling ability of the optimized FFT-ANN for the prediction of wines 580 

global scores assigned by the sensory panel. Set adjustments of obtained vs. expected 581 

values, both for training (●, solid line) and testing subsets (○, dotted line). The dashed 582 

line corresponds to theoretical diagonal line. 583 
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