
TFG En Enginyeria Informàtica, Escola d’Enginyeria (EE), Universitat Autònoma de Barcelona (UAB)

Design and implementation of online game
models

Marc Palenzuela Reyes

Abstract - Make good or even a playable on-line game is not easy. In this paper we explain what are the
difficulties of on-line games designing and implementation and propose solutions to those difficulties. We also
have made a new transport protocol suitable for those models and three proof of concept games to check the
effectiveness of our new taxonomy. After reading this paper you will be able to sort out and design the different
on-line models and have a slight idea of a transport protocol design.

Index terms- RUDP, on-line game models, video games, transport protocol.

Resumen - Crear un buen juego on-line o incluso jugable no es fácil. En este art́ıculo explicamos cuales son
las dificultades a la hora de diseñar e implementar juegos on-line, y proponemos soluciones a esas dificultades.
Además hemos creado un nuevo protocolo de transporte adecuado para estos modelos y tres juegos on-line
como pruebas de concepto para comprobar la efectividad de nuestra nueva taxonomia. Tras leer este art́ıculo el
lector será capaz de clasificar y diseñar los diferentes modelos de juego on-line y tener una leve idea del diseño
de un protocolo de transporte.

Palabras clave- RUDP, modelos de juego on-line, video juegos, protocolo de transporte.

1 Introduction

It would hardly be an exaggeration to say that the
majority of video games coming to market nowadays
have an implicit on-line mode being sometimes the only
mode available. On-line games have revolutionized the
gaming market adding innovative game-play, new fund-
ing ways and a totally different gaming experience. It
may be asserted, however, that the programming and
designing paradigms of video games are no longer a
simple matter. High latencies and desynchronization
are two new difficulties for game programmers and de-
signers, highly influencing the game experience. As a
consequence, there are good video games and really
bad video games to the extent that they are nearly
unplayable. Some of the issues you may encounter in
those video games are high latencies that prevent you
from foresee the behaviour of your character and desyn-
chronizations with multiple effects, leading from funny
glitches in the game-play to random disconnections.

In this paper, we propose a taxonomy consisting on
three variables: the connection paradigm, the latency
perception reduction algorithm and the communica-
tion protocol used by a game. The combination of
these variables give us the concept that we decided to
name on-line game model. The concept of on-line game
model offers us a simple way to sort out the different

Contact mail: marc.palenzuela@e-campus.uab.cat
Information technology student
Tutored by Sergi Robles
2014/2015

on-line video games and their features in addition to
a simple way to generate the base design of an on-line
game.

We have characterized the different connection
paradigms we can encounter and designed and imple-
mented a transport protocol halfway between UDP[1]
and TCP[2], having the best of both transport proto-
cols for on-line game designing: speed and reliability.

To demonstrate the veracity of our arguments we
implemented three proofs of concept games. These are
simple games that are not meant to be actually played,
but used to validate our proposal. Those three games
represent three of the key on-line game models, and
they work as a base design for those models.

1.1 Objectives and methodology

Our main objectives were to sort out the different on-
line game models and make a base design for the most
representative of them. To achieve this, we have de-
fined three sub-objectives. Analyse the available trans-
port protocols, analyse the available latency perception
reduction algorithms and to make a taxonomy of the
different communication paradigm we could use. From
these objectives, another one appeared. Analysing the
communication protocols we realised that we needed
to design a new one. All the objectives were achieved.
In this paper we have the taxonomy of on-line game
models thanks to the analysis of transport protocols,
latency perception reduction algorithms and communi-
cation paradigms we identified, besides the new trans-
port protocol we designed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78526237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

2 State of the art

Every time a new technology appears, the community
tries to apply that technology to the maximum num-
ber of possible fields. Nutrition, medicine, research...
and games are not an exception. Since the time when
the first personal computers appeared, there have been
more and more games, evolving with the new hardware.
With the arrival of the Internet, a new era for com-
puter gaming made its coming. The first commercial
on-line games appeared, but they were difficult to play
via modem[3]. A single, but striking, example of this
situation is the first Age of Empires. Like most of the
contemporaneous games of Age of Empires, this game
was designed over a peer to peer paradigm. Without
any kind of supplementary protocol for data exchang-
ing, peer to peer was rather bad to play with, like we
will see in the section 3.2. The first commercial game
which used a client-server paradigm was Doom. Af-
ter the failure using the peer to peer paradigm with
an FPS (First Person Shooter)[4], they decided to cen-
tralize all connections on a server. The first players
complained about the latency. Despite using a client-
server paradigm, you didn’t see any change when you
pressed a key, but you did see it when the data ar-
rived to you after being processed by the server. With
the releasing of QuakeWorld, a new algorithm to re-
duce the latency perception appeared: the movement
prediction algorithm. We will see more about this algo-
rithm in the section 3.3. One year later, the first com-
mercial MMORPG[5], Ultima Online, using a client-
server paradigm with multiple servers to allow playing
to the thousand of players that player simultaneously
this game.

Nowadays, those games are old legends. Games like
World of Warcraft or Call of Duty use more and bet-
ter paradigms, algorithms and transport protocols than
their ancestors, and most of the high budget video
games gives to the user a good on-line game experience.
But there are still some games which doesn’t make use
of the good practices of those high budget games. In
this paper, we will see which are the good practices
and which are not. However, there is no standard for
the on-line game models taxonomy nor a standard for
on-line gaming communication protocol.

3 Analysis

In this section we will analyse the three key character-
istics of an on-line game model.

An on-line game model comprises a Transport proto-
col, a Communication paradigm and a Latency percep-
tion reduction algorithm. The transport protocols we
will analyse are TCP[2] and UDP[1], and decide which
one is better for our purpose. There are not a definite
list of known communication paradigms. We will try to
define most of them and describe their utility. We will
see too two latency perception reduction algorithms:
the movement prediction algorithm and the delta-time
algorithm.

3.1 Transport protocol

In this subsection we will analyse the advantages and
disadvantages of UDP and TCP. This decision is very
important. While UDP is faster, TCP is more reliable.
But which one we need to make a good on-line video
game?

3.1.1 UDP

Like we said earlier, UDP is faster than TCP. That is
because the UDP protocols only includes a very small
header and none of the TCP reliability methods. That
means UDP is not going to check if an user datagram
was received or not.

What if we send an important datagram and it is
not received? This situation could make a player lose
or win, and this is not what a player wants.

Otherwise, there are games where a lost user data-
gram or two are not so important. But since those
game are only a little portion of the on-line games, we
are going to discard UDP for the time being.

3.1.2 TCP

TCP may not be as fast as UDP, but it is more reliable.
Thanks to its flow control, congestion avoiding meth-
ods, the sliding window and the dynamic time-outs, no
data will be lost. It is true that TCP is very reliable,
but all those reliability entails an slower performance.
Also, most of the TCP functionalities are of no use for
our purpose.

Some games are played at an slow pace. For those
games we will want to use TCP, because a faster perfor-
mance is not required. But for instance, for FPS games
we will need the fastest performance. Using TCP on
these games may suppose higher latencies and, as a
consequence, having a bad gaming experience.

3.1.3 UDP + TCP

We need the speed of UDP and the reliability of TCP.
So for most of the games, we can not use either UDP
or TCP.

The best solution to this problem is a custom trans-
port protocol, having the best of those two well-known
transport protocols. That means that we need a fast
protocols capable of check if a datagram was received
or not. With the minimum functionalities we need, the
new protocol could be fast and give us all we need to
make a good on-line game.

We will talk more about this new transport protocol
in the section 4.1.

3.2 Communication paradigms

In this section we are going to study the different com-
munication paradigms that an on-line game could be
using.

The communication paradigm refers to the struc-
ture of the network used to play the game. For ex-
ample, client-server is a communication paradigm. We
have defined a total of seven different communication

February 2015, Escola d’Enginyeria (UAB)



3 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

paradigms. We will see the common ones, the Peer to
Peer paradigm and finally the hybrid paradigms result-
ing from the combination of other paradigms.

3.2.1 Multiple Client / Single Server

This communication paradigm is the common client-
server paradigm. There is one single server and an
indefinite number of connected clients. It is a simple
and effective paradigm to implement games on, due to
the easy design and the ease of administration.

In the other hand, there is no possible load balance
in this paradigm. As a consequence, scaling a server
with this paradigm is very difficult. Also, if the server
does not work, there is no backup server.

3.2.2 Multiple Client / Multiple Server

This communication paradigm is very similar to the
one seen in the section 3.2.1. There are an indefi-
nite number of servers. Every server have an indef-
inite number of connected clients. This paradigm is
very simple too. It covers some of the problems of
the Multiple Client / Single Server paradigm, like the
load balance. This paradigm is often used when we
want more than one instance of a game being played
at once, like in FPS games.

The main issue about this paradigm is the cost of
the hardware, that scales with the number of servers.

3.2.3 Peer to Peer

This is a common and early communication paradigm
for on-line games, as seen in section 2. While is a very
cheap paradigm to implement the games with, it could
be the worst one if not designed properly.

Without a good design, the game may result in a
time-locked on-line game1. This is the fastest way to
make a game nearly unplayable, so we want to avoid
it.

The biggest issue of this paradigm is the lack of in-
formation about every single network the players are
going to play in. Every network is different, and de-
signing a generic peer to peer paradigm to play games
on is very difficult.

Another way of looking to this question is using the
peer to peer paradigm in the server side, like we will
see in the sections 3.2.6 and 3.2.7.

However, peer to peer can provide an interesting on-
line mode, as we can see at the Huntercoin[6] game, a
p2p on-line game based on Bitcoin[7].

3.2.4 Multiple Client / Single Server + Mul-
tiple Client / Multiple Server

This paradigm is an hybrid version of the paradigms
seen in the sections 3.2.1 and 3.2.2. We can solve a lot
of problems with this paradigm and add extra func-
tionality. We can see an example of this paradigm at
Figure 1.

1An on-line game where you depend on the biggest latency
between all the players.

For example we can reduce the load of the main
server, or make the main server a list of the servers
that contain an instance of the game, so the player can
choose the one he or she wants.

With this paradigm we can obtain a transparent load
balance[8] for the players in addition to all the advan-
tages that the paradigms shown at the sections 3.2.1
and 3.2.2. However, this paradigm is more expensive
than the Multiple Client / Multiple Server one.

Figure 1: Example of Multiple Client / Single Server
+ Multiple Client / Multiple Server paradigm

3.2.5 Ad Hoc + DTN

This paradigm is not very used, but speaking person-
ally I think this paradigm has a bright future. This
paradigm is specially useful for mobile connections.
With Ad Hoc we can create a temporary network be-
tween mobile phones, and send the results of a game
to a master server using DTN, when we have available
Internet access. This means that we can play in any
location, with or without Internet access and send the
result to the server when we find a Wi-Fi access.

We can see an example network for this paradigm at
Figure 2.

Figure 2: Example of Ad hoc + DTN paradigm

3.2.6 Multiple Client / Single Server + Peer
to Peer

This paradigm has two different functionalities. The
first one is that we can change between a Client-Server
paradigm and a Peer to Peer one, as we have seen at the

February 2015, Escola d’Enginyeria (UAB)



4 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

sections 3.2.1 and 3.2.3 respectively. For example, one
can play an MMORPG in a Client-Server paradigm.
When we enter in a dungeon with our team members,
we automatically change to a Peer to Peer connection
with the team members.

The other functionality is that we can have a Client-
Server paradigm with the support of the Peer to Peer
connection. If one of the clients have limited connec-
tion with the server, another peer would help the first
one and be a bridge between the first peer and the
server.

We can see an example of this connection paradigm
at Figure 3.

Figure 3: Example of Multiple Client / Single Server
+ Peer to Peer paradigm

3.2.7 Multiple Client / Multiple Server + Peer
to Peer

This connection paradigm have multiple servers inter-
connected by a Peer to Peer connection. Thanks to
this connection, there are multiple and different phys-
ical servers working as if there would be one.

A client connecting to this Peer to Peer servers net-
work would choose automatically the best server for
the client. Every server would share all the data, so all
of the clients could connect with any server. We can
replicate data too and make that every server have all
the data.

This communication paradigm is an on-line game
oriented distributed system[9]. A network example for
this communication paradigm is the one we can see at
Figure 4.

Figure 4: Example of Multiple Client / Multiple Server
+ Peer to Peer paradigm

3.2.8 Uses of the communication paradigms

In this section we have seen the seven different
paradigms we have identified. Some of them are good
for a game genre, some of them for other game genres.
The Peer to Peer paradigm is not what we want for a
video game. It implies a lot of latency. The fact of the
matter is surely that designing a Peer to Peer commu-
nication between two or more peers with heterogeneous
networks is a very difficult task. All this may well be
true enough, but what if we have knowledge about the
network? This is achievable for the server side. We
know our servers and our network, so we can design
a controlled Peer to Peer connection between them.
With a server-side Peer to Peer paradigm we can solve
most of the problems the other paradigms have. Be-
sides there may be other communication paradigms,
but they are of little interest for on-line purposes.

3.3 Latency perception reduction algo-
rithms

In this section we are going to see two different algo-
rithms that change the perception of the latency in an
on-line game. That means that the latency is going
to be exactly the same, but the user will see a game
without or with a very little latency. Those algorithms
are implemented in the client side and are totally in-
dependent from the server.

3.3.1 Movement prediction algorithm

This is a very used algorithm that allows the user to
input game commands like movement and instantly see
an in-game effect. With a Client-Server paradigm, the
user would not see any effect until the data arrives the
server, the server processes it and returns to the client.
This algorithm simulates the effect the client will show
and synchronizes with the result of the server.

We can divide this algorithm in two parts. The first
one is simple: the client simulates the player action
and show an effect. When the effect arrives from the
server, the client corrects its first effect and update it
to the server effect. We can see an example code for
the first part at Figure 5.

action = input()
server.send(action)
update(action)

Figure 5: Movement prediction algorithm first part ex-
ample

The second part becomes complicated. With the
first part as base, we need to save a history of the client
actions and rewind from the player actions every time
we receive the effect from the server. Doing this, in ev-
ery step of the process we will simulate again some of
the player inputs for a better correction of the client ef-
fect and prevent a visual desynchronization[3][10]. We
can see an example code for the second part of the
algorithm at Figure 6.

February 2015, Escola d’Enginyeria (UAB)



5 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

actions = inputs ()
update(actions)
history.append(actions)
server.send(actions)
server.recv(gameState)
updateTo(gameState)
for actions in history:

update(actions)
history.remove (0)

Figure 6: Movement prediction algorithm second part
example

3.3.2 Delta time algorithm

This algorithm tries to simulate the effects of some
characters of the game other than the player character.
We call this algorithm Delta time algorithm because of
the basic formula:

x = V0 ∗ ∆t

This is not an specific algorithm. We can use the
same movement formula the server uses to predict the
characters movement or a simplified one, and apply
the algorithm with the same technique of the move-
ment prediction algorithm, as seen in the section 3.3.1.
Without this algorithm, we will only see movement for
every update of the server. For high latencies, that
could be very troublesome.

Those two algorithms are really indispensable for
most of the possible on-line games. Without them,
our games are going to be time-locked, what is going
to worse the gaming experience.

3.4 On-line game models

Like we said earlier, a game model is the union between
a transport protocol, a communication paradigm and
a latency perception reduction algorithm, as we have
seen at sections 3.1, 3.2 and 3.3 respectively. We can
obtain the different on-line game models by making
combinations of these three characteristics. Next we
are going to see the following game models:

- MMORPG model with and without targets
- Action model
- RTS model
- Turn based model

3.4.1 MMORPG model (with targets)

First we are going to explain what means MMORPG
with targets. An MMORPG with targets implies that
if you select an enemy, all your attacks and skills that
are not ground targeted are going to have as target
the selected enemy. This may seem a game-play fea-
ture and nothing more. The truth is that this feature
changes completely the way a game is designed.

Talking about the communication paradigm, there
are some good paradigms for an MMORPG to use.
Most of the Client-Server ones are good choices, but
Multiple Client / Multiple Server + Peer to Peer as
seen at the section 3.2.7 seems to be the best. It is not

the cheaper nor the easiest to design and implement,
but is undoubtedly the best one.

About the transport protocol we have two good
choices. TCP is easy to use and is already designed and
implemented, and a modified version of UDP would be
faster. It is the designer duty to chose the best option
for every game.

When it refers to the latency perception reduction
algorithm, we can easily see that the delta-time algo-
rithm is a need. We can say de same about the move-
ment prediction algorithm. We want to see our charac-
ter moving at the moment we make an input. However,
the complete algorithm is not totally needed, but rec-
ommended.

3.4.2 MMORPG model (without target)

We now know what is an MMORPG with target, so
we know what is an MMORPG without target too.
That implies that latency is a more important issue in
this model.

We can use the same communication paradigm as
in the section 3.4.1. Talking about the communication
paradigm there is no difference between an MMORPG
with or whitout target.

For the transport protocol we mandatorily need the
use of a modified version of UDP, as TCP is slow for
our purpose and plain UDP is not reliable enough.

Talking about the latency perception reduction algo-
rithm, we can say that is the same as in a MMORPG
with target. Our needs about the perception of the
game characters are the same. The MMORPG model
without target is nearly equal to the model with target.
The big difference is that in the model without target,
the targeting for every attack or skill is more impor-
tant, and it needs more speed than in the model with
target. So the difference is in the transport protocol,
being a must a modified version of UDP.

3.4.3 Action model

This model includes all first and third person shooter
video games, the driving and sports ones and all the
video games that need lots of inputs and outputs to
give the user the best game experience.

The communication paradigm we need is not very
definite. We can use Multiple Client / Single Server +
Multiple Client / Multiple Server as seen in the section
3.2.4 so we can have a listing server to naturally dis-
tribute all the players between instances of the game.

Since we need the fastest game-play, we will want to
use a custom UDP. TCP is not an option in this model,
but plain UDP is.

Also, we will need the use of both latency percep-
tion reduction algorithms we have seen in section 3.3,
having this time the complete version of the prediction
movement algorithm.

3.4.4 RTS model

An RTS(Real Time Strategy) game is very similar to an
MMORPG without target, as seen in the section 3.4.2,

February 2015, Escola d’Enginyeria (UAB)



6 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

with the difference of the quantity of players that are
going to play in an instance of the game.

For the communication paradigm we can use most of
the Client-Server ones. Two often used paradigms are
Multiple Client / Multiple Server and Multiple Client
/ Single Server + Multiple Client / Multiple Server, as
seen at the sections 3.2.2 and 3.2.4 respectively.

The transport protocol used in this model can be
the same used in the MMORPG without target. So a
custom UDP could be good.

Since an RTS game allows the player to click to a
point in the map and the character goes following a
route, latency perception reduction algorithms are not
as important as in other models. The delta-time al-
gorithm is not necessary, but recommended, and only
the first part of the movement prediction algorithm is
really needed.

3.4.5 Turn based model

A turn based on-line game offers the simplest design
of the on-line models we have seen. The only need for
this kind of game is to send and receive correctly the
data turn by turn.

The communication paradigm could be any Client-
Server paradigm. Like at the previous section, we could
use Multiple Client / Multiple Server or Multiple Client
/ Single Server + Multiple Client / Multiple Server.

Since we don’t need speed but only reliability, we
are going to use TCP. We don’t need to design and
implement a new protocol if TCP is good enough for
this purpose.

We don’t really need any of the two algorithms we
have seen. When we receive a message of a finished
turn with the new game state we can process the
movements client-side to draw at the screen how the
new game state is seen.

We have seen some on-line game models with
similar characteristics between ones, and very different
for others. What makes different every model is
the combination of every one of the three main
characteristics, based on the needs of every game
genre.

4 Design

In this section we are going to define the characteris-
tics of a custom transport protocol and three proof of
concept games. Those three proof of concept games
represents three on-line game models: Turns model,
RTS model and Action model. For further information
about those models see the sections 3.4.5, 3.4.4 and
3.4.3.

4.1 RUDP

RUDP is the name we gave to our custom UDP based
transport protocol and means Reliable User Datagram
Protocol. This protocol offers the speed of UDP and
reliability of TCP, having an acknowledgement system

with time-outs. RUDP is message based, differing from
TCP, that is byte based.

There are some important variables we are going to
use in this protocol.

Talking about the timeout, if we want a fast trans-
port protocol, we need to keep it simple. A fixed time-
out is then a good option. For a default value, we have
chosen 500 milliseconds, a value that makes almost any
game unplayable.

This is the number of times a message can be sent
before we decide to discard a connection is the number
of retries. If we keep this variable high, it will only
be of use for checking disconnections. Instead if we
keep this variable low, it will check high latencies. The
default value is 3.

As in TCP, RUDP uses SEQ and ACK numbers.
TCP uses a maximum sequence number of 232 − 1,
which is our default value. We need to keep this num-
ber big to avoid the prediction of the sequence number.
This prediction is used to perform man in the middle
attacks.

The window in RUDP is very similar to the one used
in TCP. It limits the quantity of messages that can be
sent before receiving an their acknowledgement. With
our default value of 231 − 1, we can send have a list of
sent and not acknowledged of 231 − 1 messages.

We need to sort the received messages to control
the flow of messages. Affecting only the buffered mes-
sages, we have three different sorting methods: first in
first out, which doesn’t order the messages; force or-
der, which order the messages ascendantly using the
sequence number; remove obsoletes, which remove a
message if an there has been a higher acknowledgement
number.

We need to put the following data in every RUDP
message: the sequence number, the acknowledgement
number, a boolean that tells if we are acknowledging
a message and a boolean that tells if we are opening
a connection. Lastly, we need to put the application
data. Using ; as delimiter, the format is as follows:

SEQ;ACK;ACKBOOL;SYNBOOL;DATA

With this concepts in mind and the diagram shown at
the Figure 7 we are ready to implement RUDP.

4.2 Proof of concept: Turns model

In this section we will see what we need to implement
our turn based on-line game.

Communication paradigm A client-server
paradigm would be good for this proof of
concept. We need a discrete amount of players,
being two the minimum.

Transport protocol Like we said earlier in the sec-
tion 3.4.5, TCP is okay with a turn based on-line
game. We do not need communication speed.

Latency perception reduction algorithms Since
all the visible movement of the game objects
is client based we will not need any latency
perception reduction algorithm.

February 2015, Escola d’Enginyeria (UAB)



7 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

Figure 7: RUDP flow design

Server code design We can see an example of a
server code design for a turn-based game at the
Figure 8.

msg = server.recv()
if (msg == MY_TOURN_MESSAGE):

action = input()
server.send(action)

else:
update(msg)
render(gameState)

Figure 8: Turn model proof of concept server design

Client code design We can see an example of a
client code design for a turn-based game at the
Figure 9.

if (select(players , players , players)[0]):
nextTurn ()
action = players[tourn].recv()
update(action)
for player in players:

player.send(gameState)

Figure 9: Turn model proof of concept client design

4.3 Proof of concept: RTS model

In this section we will see what we need to implement
our RTS on-line game.

Communication paradigm A client-server
paradigm would be good for this proof of
concept. We need a discrete amount of players,
being two the minimum.

Transport protocol Like we said earlier in the sec-
tion 3.4.4, our custom UDP, or RUDP, should be

good for this proof of concept.

Latency perception reduction algorithms For
this model we will need at least the first part
of the movement prediction algorithm. We
won’t need the delta-time algorithm neither the
complete movement prediction algorithm.

Server code design We can see an example of a
server code design for an RTS game at the Fig-
ure 10.

if (select(players , players , players)[0]):
for player in select(players , players ,

players)[0]
actions.append(player.recv())

update(actions)
for player in players:

player.send(gameState)

Figure 10: RTS model proof of concept server design

Client code design We can see an example of a
client code design for an RTS game at the Figure
11.

actions = inputs ()
update(actions)
server.send(actions)
draw(gameState)
if (select(server , server , server)[0]):

gameState = server.recv()
draw(gameState)

Figure 11: RTS model proof of concept client design

February 2015, Escola d’Enginyeria (UAB)



8 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

4.4 Proof of concept: Action model

In this section we will see what we need to implement
our Action on-line game.

Communication paradigm A client-server
paradigm would be good for this proof of
concept. We need a discrete amount of players,
being two the minimum.

Transport protocol Like we said earlier in the sec-
tion 3.4.3, our custom UDP, or RUDP, should be
good for this proof of concept.

Latency perception reduction algorithms For
this model we will need at least the complete
movement prediction algorithm. In this proof
of concept we will not design or implement
the delta-time algorithm, but it would be very
recommended to consider.

Server code design The server code design is the
same as in the section 4.3.

Client code design We can see an example of a
client code design for an action game at the Figure
12.

actions = inputs ()
update(actions)
history.append(actions)
server.send(actions)
if (select(server , server , server)[0]):

gameState = server.recv()
updateTo(gameState)
for actions in history:

update(actions)
history.remove (0)

}
draw(gameState)

Figure 12: Action model proof of concept client design

5 Results

In this section we are going to see the implementation
of RUDP and the proof of concept games. We are
only going to see the most relevant aspects of every
implementation, and the full implementation can not
be found in this paper.

5.1 RUDP Implementation

RUDP has been implemented to be as easy to use as a
standard TCP or UDP socket. As users we can create
a socket, connect to another RUDP socket, send data
to another RUDP socket and retrieve the received data
from other RUDP socket.

The reception of data is done in another thread, be-
side the message processing and the resending check-
ing. We can do another things at the time RUDP is
receiving data, and retrieve it from the designed buffer
at any time we want.

There is some configuration we can change as users.
Next, there is a list of parameters of RUDP one can
change as a user.

Timeout Changing the timeout implies that we will
resend more or less messages, depending of the
value we chose for the timeout. For low values,
there will be a lot of resends. For high values,
there will be few resends.

Maximum sequence number We can change the
maximum sequence number of RUDP. A higher
value offers us security because it would be more
difficult to predict our current sequence number.
A lower value is easier to manipulate.

Maximum number of retries This is the number
of resendings of a message before we consider that
we need to close a connection. A high number is
more flexible but invalidates the purpose of RUDP.

Buffer length The default value of 4096 is considered
a good value for the buffer lenght, but it is as easy
to modify as the other parameters.

Sorting type We can choose three different sorting
methods for the RUDP internal buffer. These sort-
ing methods are First-in-First-out, force order and
remove obsolete.

Debug level We can change the debug level to a num-
ber from 0 to 5, being the first the non-debug mode
and the last the full-debug mode.

Simulation mode We can change the simulation
mode between true and false. The simulation
mode allows the user to simulate latencies and
message loss without using low level tools like ip
tables.

Latency The latency in seconds we want to simulate
with RUDP.

Jitter The variation in seconds we want to give to
our latency. A jitter of 1 second means that the
latency can variate from -500ms to +500ms.

Message loss probability The probability of lossing
any message. A value of 0.5 means that half of the
messages will be lost.

At the Figure 13 we can see a server-side example of
RUDP. There we can see how a user can configure a
RUDP socket and make it listen to a port.

import rudp

rudpsock = rudp.RUDPSocket ()
rudpsock.setDebug (5)
rudpsock.setSim (1)
rudpsock.setLatency (0.2)
rudpsock.setJitter (0.05)
rudpsock.setLoseProb (0.1)
rudpsock.listen (5000)

Figure 13: RUDP server-side example

At the Figure 14 we can see a client-side example.
There we can see how a user can connect to another
socket, send data and retrieve received data.

As we can see, RUDP is as easy to use as TCP or
UDP, and it offers the reliability we chose with the
configuration and the speed (almost) of UDP.

February 2015, Escola d’Enginyeria (UAB)



9 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

import rudp

myBuffer = []
rudpsock = rudp.RUDPSocket(myBuffer)
addr = ("192.168.1.5", 5000)
rudpsock.connect(addr)
data = "Hey , I’m testing RUDP!"
rudpsock.send(data , addr)
print str(myBuffer)

Figure 14: RUDP client-side example

5.2 Proof of concept games

The three proof of concept games have been imple-
mented using Pygame[11]. With a very simple engine
we developed, the graphics were not an issue. The first
game, ”The goose game”, is a proof of concept game for
the turn-based on-line game model. There are server
and client files. This proof of concept game have no
latency issues since it is turn-based.

For the user, the game shows as seen at the Figure
15.

Figure 15: Client view of the first proof of concept
game

The second and third proof of concept games are
very similar. The only difference is in the movement
prediction algorithm, as seen in the section 3.3. In the
second proof of concept game there only is the first
part of the algorithm. In the third proof of concept
game there is the full algorithm.

In a test play, the movement correction of the move-
ment prediction algorithm is clearly visible for both of
those proof of concept games.

For the user, the second and third proof of concept
games are seen as at the Figure 16.

Also, thanks to the three implementations of the
proof of concept games and RUDP we arrived to some
conclusions that we will see in the next section.

Figure 16: Client view of the second and third proof of
concept game

6 Conclusions

In this paper we have seen how can we design an on-
line game, focusing in the on-line part of the on-line
game.

Surely the most important lesson to be learned from
the section 3 is that there are more options than TCP
and UDP. In fact, there are a lot if we consider every
transport protocol we can design between UDP and
TCP, RUDP being only one of these.

Moreover in the same section we can see a lot of com-
munication paradigms. We can’t be sure if those are
all of the possible communication paradigms, but there
are a lot of them. Also, we have concluded that the
peer to peer paradigms are really good for the server
side, and they are not as good for the client-side. This
is due to that we need to know well the features of the
network we are designing for.

Regarding latency reduction perception algorithms,
we can say that they are really important for non turn-
based on-line games, to the point that without them
some games can be unplayable. They are relatively
easy to implement and are only needed in the client,
so it is good to invest in them.

Lastly and most important, we have seen that de-
signing and implementing a new transport protocol or
a good on-line mode in a game is not an easy task. It
is a good investment, but it is a hard task and costs a
lot of resources and time, thus not all games can afford
it.

But, as seen in the paper and every on-line player
could tell, a good on-line game mode with a low la-
tency is really appreciated by users. The on-line game
quality is one of the most important things to consider
in designing time, and only with a good implementa-
tion and a good design could be done.

February 2015, Escola d’Enginyeria (UAB)



10 EE/UAB TFG INFORMÀTICA: Design and Implementation of Online Game Models

7 Future lines

We achieved a lot with this project, but there is still
a lot of things to improve from this work. First, our
RUDP implementation is far from perfect. The best
we can do about RUDP is programming a C module
of RUDP, to use it when programming with C, C++
and C#. We also could make it for Java. These
are better platforms to make video games on than
Python. Regarding RUDP too, a nice extra we can
implement is a cryptography module. It would give
the user options to encrypt the RUDP messages or
sign them digitally. It is not very difficult and is a
gain in security, because with encryption nobody but
the server will know your inputs, and with digital
signatures nobody will replace your messages.

More future lines could be designing in depth the
Multiple Client / Multiple Server + Peer to Peer seen
in the section 3.2.7. This design implies designing a
full distributed system, and the communication would
be only a little bit of the work to design a network to
use with this communication paradigm.

Moreover, we could implement a full game using
the knowledge obtained from this project. Us-
ing the taxonomy of on-line game models, we have
already the base design for any game we want to make.

These are only three of the future lines we can think
of. There is for sure a lot of work regarding the subject
of on-line game designing.

8 Acknowledgements

I would like to thank Sergi por his patience and for how
he motivated me. I would like to thank Álvaro, Juan
Antonio and David too, for listening always and giving
me ideas and their support.

References

[1] Postel, Jon. ”RFC 768 - User Datagram Protocol”.
IETF Tools. IETF, 28 Aug. 1980.

[2] Information Sciences Institute. ”RFC 793 - Trans-
mission Control Protocol”. IETF Tools. IETF,
Sep. 1981.

[3] Fiedler, Glenn. ”What every programmer needs
to know about game networking”. Gafferongames.
Gafferongames, 25 Jan. 2010. (Web. 25 Jan. 2015)

[4] ”First Person Shooter”. wikipedia.org. (Web. 6
Feb. 2015)

[5] ”Massively multiplayer online role-playing game”.
wikipedia.org. (Web. 6 Feb. 2015)

[6] Chronokings. ”Huntercoin - A Human Mine-
able Crypto Currency”. huntercoin. Chronokings,
2014. (Web. 30 Jan. 2015)

[7] Nakamoto, Satoshi. ”Bitcoin: A Peer-to-Peer
Electronic Cash System”, Satoshi Nakamoto. 1
Nov 2008.

[8] Beskow, P.B.; Erikstad, G.A.; Halvorsen, P.; Gri-
wodz, C., ”Evaluating ginnungagap: a middleware
for migration of partial game-state utilizing core-
selection for latency reduction,” Network and Sys-
tems Support for Games (NetGames), 2009 8th
Annual Workshop on , vol., no., pp.1,6, 23-24 Nov.
2009 doi: 10.1109/NETGAMES.2009.5446220

[9] Ta Nguyen Binh Duong; Suiping Zhou, ”A dy-
namic load sharing algorithm for massively multi-
player online games,” Networks, 2003. ICON2003.
The 11th IEEE International Conference on ,
vol., no., pp.131,136, 28 Sept.-1 Oct. 2003 doi:
10.1109/ICON.2003.1266179

[10] Bernier, Yahn. ”Latency Compensating Methods
in Client/Server In-game Protocol Design and Op-
timization”. Valvesoftware. Valve, 2001. (Web. 26
Jan. 2015)

[11] ”Pygame”, pygame.org. Pygame. 2000. (Web. 30
Jan. 2015)

February 2015, Escola d’Enginyeria (UAB)


