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Abstract

We study inheritance of path-pairability in the Cartesian product of graphs, and prove

di�erent (such as additive and multiplicative) inheritance patterns of path-pairability,

depending on the size of the Cartesian product. We present path-pairable graph families,

that improve the known upper bound on the minimal maximum degree of a path-pairable

graph. Further results and open questions about path-pairability are also presented.

Introduction

We discuss graph theoretic concepts, emerging from a practical networking problem introduced

by Csaba, Faudree, Gyárfás, and Lehel in [4], [6] and [7]. A graph G on at least 2k vertices

is called k-path-pairable if, for any pair of disjoint sets of (pairwise di�erent) vertices X =

{x1, . . . , xk} and Y = {y1, . . . , yk} of G, there exist k edge-disjoint xiyi paths joining the

vertices. The path-parability number pp(G) of a graph G is the largest positive integer k, for

which G is k-path-pairable. A graph on exactly 2k vertices is simply called path-pairable, if

it is k-path-pairable. The motivation of setting edge-disjoint paths between certain pairs of

nodes naturally arose in the study of communication networks. There are various reasons to

measure the capability of the network by its path-pairability number, that is, the maximum

number of pairs of users, for which the network can provide separated communication channels

without data collision. The inital problem and its graph theoretical model is discussed in [4].

Path-pairability is closely related to several other concepts, such as linkedness and weak-

linkedness. A graph G is k- linked/weakly k-linked if, for every ordered set of 2k vertices X =

{x1, . . . , xk} and Y = {y1, . . . , yk}, there exist vertex-disjoint/edge-disjoint paths P1, . . . , Pk,

such that each Pi is an siti-path. We wish to highlight, that, while the de�nition of weak

linkedness may resemble our earlier de�nition of path-pairability, repetition of the vertices in

the terminal list is allowed for weak-linkedness, and it is forbidden in case of path-pairability.

Note that in case of linkedness, the two conventions lead to equivalent concepts. By de�nition,

weakly k-linked graphs are k-path-pairable, thus path-pairability is a special variant of weak-

linkedness. Nevertheless, the two properties di�er in several respects. Weakly k-linked graphs

are necessarily k-edge-connected, while k-path pairable graphs only must satisfy a milder, so

called cut - condition.

De�nition 1 (Cut-condition). A graph G satis�es the k-cut-condition if, for every S ⊂ V (G)

where |S| ≤ k, d(S) ≥ |S| holds. A graph G on 2n vertices satis�es the cut-condition , if for

every S ⊂ V (G), |S| ≤ n, d(S) ≥ |S| holds.
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If G is k-path-pairable, then it satis�es the k-cut condition. Indeed, if there exist S ⊂ V (G)

that violates the condition, terminals placed at every vertex of S, with their pairs in G\S
cannot be joined without subsequent use of at least one edge between the two sets. Note

that the cut condition states a necessary but not su�cient condition for path-pairability.

On the other hand, k-path-pairable graphs do not even have to be 2-edge-connected. The

star graph K1,n is one of the most illustrative counterexamples, being connected (but not

2-edge-connected) and bn2 c path-pairable. Faudree, Gyárfás, and Lehel [5] gave examples of

k-path-pairable graphs with maximum degree ∆ = 3, for arbitrary values of k. In contrast,

the same authors proved [6], that the maximum degree has to grow together with the graph

size in path-pairable graphs. They in fact showed, that a path-pairable graph with maximum

degree ∆ has at most 2∆∆ vertices. The result places a lower bound of O( logn
log logn) on the

maximum degree of a path-pairable graph on n vertices. This bound is conjectured to be

asymptotically sharp, though examples of path-pairable graphs with maximum degree of the

right order of magnitude have yet to be explored. The best known constructions are due to

Kubicka, Kubicki and Lehel [9] as well as Mészáros [10] and have maximum degree of order of

magnitude O(
√
n). The construction in [9] is obtained by taking the Cartesian product of two

complete graphs. That motivated the author of this present paper to study path-pairability

in the Cartesian product in more details.

The Cartesian product of graphs G and H is the graph G�H with vertices V (G�H) =

V (G)× V (H), and (x, u)(y, v) is an edge, if x = y and uv ∈ E(H) or xy ∈ E(G) and u = v.

The Cartesian product of graphs has been extensively studied in the past decades. It gave

rise to important classes of graphs; for example, the n-dimensional grid can be considered

as the Cartesian product of lower dimensional grids. Hypercubes are well known members

of this family with similar recursive structures: the Cartesian product of m-dimensional and

n-dimensional hypercubes is an (m + n)-dimensional one. The study of graph products leads

to various deep structural problems such as invariance and inheritance of graph parameters.

We mention a couple of relevant results within the �eld of linkedness and its variants, with

no claim of being exhaustive. Chiue and Shieh [1] proved, that the Cartesian product of a

k-connected and an l-connected graph is (k+ l)-connected. Similar result for edge connectivity

was proved by Xu and Yang [12]. Inheritance of linkedness has been investigated by Mészáros

[11], who proved that the Cartesian product of an a-linked graph G and a b-linked graph H

is (a + b− 1)-linked, given that the graphs are su�ciently large in terms of a and b.

This paper has two main objectives. We prove an inheritance theorem of path-pairability

(Theorem 1), that is similar to the inheritance of linkedness, presented in [11]. We also prove

an extension of Theorem 1, which states that, given su�cient space in the product graph,

reasonably higher path-pairability can be achieved (Theorem 2). We mention that neither

linkedness, nor weak-linkedness share this property.

Theorem 1. If G is an a-path-pairable graph with |V (G)| ≥ 8a and H is a b-path-pairable

graph with |V (H)| ≥ 8b, then G�H is (a + b)-path-pairable.

Theorem 2. If G is an a-path-pairable graph and H is a b-path-pairable graph and v(G), v(H) ≥
4s, s < (a+1)(b+1)

2 , then G�H is s-path-pairable.

Corollary 1. If G is an a-path-pairable graph and H is a b-path-pairable graph and v(G), v(H) ≥
4 · (a+1)·(b+1)

2 − 1, then G�H is
( (a+1)·(b+1)

2 − 1
)
-path-pairable.
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Theorem 1 and 2 concern themselves with path-pairability of the product graph G�H,

where path-pairabilites of the factors G and H are conveniently small, compared to the graph

sizes |V (G)| and |V (H)|. Our other objective is the examination toward the other extremity,

when pp(G) and pp(H) are as large as possible, that is, both G and H are path-pairable.

The ultimate goal would be to �nd su�cient conditions that guarantee path-pairability of the

product graph, thus o�er a valuable tool to generate new path-pairable graph families. To

date, very little is known about this kind of inheritance. The Cartesian product of two path-

pairable graphs is not necessarily path-pairable. A counter-example is presented in Proposition

1. On the other hand, it is still an open and quite annoying question, if path-pairability of

at least one of the multiplicands is necessary at all for path-pairability of the product graph.

We believe, that the described condition is not necessary, but cannot verify it by means of a

counterexample, hence we state it as a conjecture.

Conjecture 1. There exist non-path-pairable graphs G and H, such that G�H is path-

pairable.

Kubicka, Kubicki, and Lehel [9] investigated path-pairability of complete grid graphs, that

is, the Cartesian product of complete graphs, and proved that the two-dimensional complete

grid Ka × Kb of size n = ab is path-pairable. Our objective is to improve the presented

result and show, that the Cartesian product of the complete bipartite graph Km,m with itself

is path-pairable for su�ciently large even values of m. The examined path-pairable product

has n = 4m2 vertices and maximum degree ∆ = 2m =
√
n, which improves the previously

discussed upper bound (≈
√

2
√
n) on ∆(G) to

√
n. It also presents a new in�nite family of

path-pairable graphs, as well as gives examples of non-complete path-pairable graphs, whose

Cartesian product is path-pairable as well.

Theorem 3. The product graph Km,m�Km,m is path-pairable for even values of m, if m ≥
104.

We follow the notation of [8]. For the sake of completeness, we recall de�nitions of the

mainly used concepts. A G-layer Gx (x ∈ V (H)) of the Cartesian product G�H is the

subgraph induced by the set of vertices {(u, x) : u ∈ V (G)}. An H-layer is de�ned analogously.

We call edges of G�H lying in G-layers vertical while edges lying in H-layers are called

horizontal. Unless it is misleading, we also use the notation Gz = Gx and Hz = Hy for layers

corresponding to z = (x, y) ∈ G�H.

We also refer the reader to [8] for further details on product graphs. For a comprehensive

survey of results concerning path-pairability, we refer to [3] and [7].

Proof of Theorem 1 and Theorem 2

Let M denote the set of 2(a + b) (arbitrarily chosen and paired) terminals in G�H. We may

assume that a ≥ b. We �rst prove the theorem in the "base" case, when no G-layer contains

terminals belonging to (a + 1) or more pairs. The assumption in fact implies that no layer

contains more than 2a terminals. Our goal is to join terminals lying on the same G-layer,

while choosing a "pseudopair" u′ of every remaining terminal u such that u′ ∈ Gu. Similarly,

if v denotes the real terminal pair of u (such that v 6∈ Gu), we choose v′, such that u′ and
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v′ are on the same H-layer. We join uu′, u′v′, and v′v pairs for all (u, v) terminal pairs by

edge-disjoint paths. The union of such path-triples will join the initially set terminal pairs.

We describe the above steps in more details as follows.

Take a G-layer Gx (x ∈ H) with terminals u1, . . . , ut (1 ≤ t ≤ 2a). Observe that, if

t = a + s where 1 ≤ s ≤ a, then Gx contains at least s pairs of terminals. For an unmatched

terminal u of Gx, we choose a pseudo pair u′ ∈ Gx, such that di�erent terminals get di�erent

pseudo pairs and Hu′ contains no other terminal, but it contains the pseudo-pair of v, the

terminal pair of u. Since |V (G)| ≥ 8a, we can freely assign terminal-free vertical layers for the

pseudo pairs of each pair of the terminals. Moreover, this assignment can be carried out even

with the additional constraint, that no vertical layer will contain more than b pairs of pseudo

pairs. Now every G-layer contains at most a pairs of terminals or terminal-pseudo-pair pairs.

Using the fact the G-layers are a-path-pairable, we can assign edge-disjoint paths joining the

pairs within every one of the layers. Having done that, the appropriate (u′, v′) pseudopairs

can paired within their H-layers by an arbitrary path. That completes the proof of the base

case.

We mention that our presented technique wastes a lots of potential in the pairing of the

pseudopairs. Using that H, and so every H-layer is b-path-pairable, 2a+2b
2b ≤ a additional

empty H-layers are su�cient to �nish the pairing, hence fewer H-layers su�ce to contain

the pesudopairs. The lower bounds on the graph sizes in the theorem can be improved to

|V (G)| ≥ 5a and |V (H)| ≥ 5b in the discussed case. We continue our proof with the initial

weaker bounds.

Now we turn to examination of the general case. As 4(a+1) > 2(a+b), at most 3 G-layers

contain (a+1) or more types of terminals. Our goal is to reduce our problem to the base case,

by redistributing the terminals among the G-layers. It will be done by assigning pseudopairs

for each terminal within its original H-layer. Observe that, as the solution of the base case

contains a horizontal shift, the combination of the initial redistribution, and the solution of

the base case will use no vertical or horizontal edge more than once. For the redistribution of

the terminals, we follow a case-by-case analysis.

1. Assume �rst, that Gx is the only G-layer that contains u1, . . . , ua+t terminals belonging

to di�erent pairs, where 1 ≤ t ≤ b. It means there are at most (a + 2b − t) terminals

outside of Gx. We claim that one of these layers contains at most (a − t) terminals,

else the graph G�(H − x) would contain at least (8b − 1)(a − t + 1) > (a + 2b − t)

terminals, clearly contradicting our previous observation. Take a G-layer Gy with the

above property. We want to choose t of the terminals in Gx (if their pair is in Gx as

well, then we choose both of them) and assign them pseudopairs in Gy, together with

vertical paths joining the terminals to their pseudopairs. Note that we cannot assign a

pseudopair to a vertex that already contains a terminal. The terminals initially placed

in Gy prohibit the assigment of pseudo pairs for at most a of the terminals (singleton or

paired) of Gx, that is, at least (a+ t)− (a− t) = 2t terminals can get pseudopairs, while

we only needed t. Note also that the total number of types of terminals and pseudopairs

in Gy is at most (a − t) + t = a after the redistributing step, as prescribed in the base

case. We can now apply the solution of the base case on a new set of terminals, where

pseudopairs take the place of their initial terminals.

4



2. If two G-layers contain at least (a + 1) types of terminals, the remaining terminals

occupy at most (2b−2) G-layers, that is, there exists at least 6b G-layers that are free of

terminals. If b = 1, both layers contain exatly (a + 1) terminals of di�erent pairs. One

can arbitrarily pick a pair, shift them vertically just as in the previous case, completing

our task. If b ≥ 2, every H is at least 2-path-pairable, hence we can arbitrarily de�ne

for a terminal u a pseudopair u′ in Hu, such that

(a) Gu′ contains no terminal and contains at most a pseudopairs at the end of the

procedure,

(b) uu′ pairs are joined within Hu = Hu′ by edge-disjoint horizontal paths.

Indeed, to satisfy the �rst condition, observe that we have at most (2a + 2b) terminals

that we distribute among 6b empty layers without any particular constraint (remember,

here a terminal and its pair do not have to get pseudopairs assigned to the same G-layer),

thus a balanced distribution with at most d2a
3b e ≤ a terminals can be chosen. The second

condition can be guaranteeed by 2-path-pairability, as we assign at most 2 pseudopairs

within an H-layer.

3. The case with three overloaded layers (G1, G2, G3) works similarly to the previous

one. Observe �rst that in the examined case 3(a + 1) ≤ (2a + 2b), hence b ≥ a+3
2 ≥ 2.

Remember, that a ≥ b, thus a ≥ a+3
2 ⇒ a ≥ 3, which yields b ≥ 3 as well. By pigeon-hole

principal, we have at least (a + 6b) empty G-layers at disposal, each of them expected

to receive d2a+2b
a+6b e ≤ a pseudopairs on average. Since b ≥ 3, the at most three paths can

be established within every H-layer, that completes the examination of the case and so

the proof as well.

Before proving Theorem 2, we state that the bound of Theorem 1 gives the right order of

magnitude of path-pairability for certain classes of graphs.

Proposition 1. The Cartesian product K1,b�K1,d is at most d b+d
2 e-path-pairable.

Proof. Let C and R denote the sets of vertices of degree two in an arbitrary column and an

arbitrary row not contanining the unique vertex of degree (a+ b) (denoted by za+b) and let x

be an additional vertex of degree two. We denote the unique vertex of the intersection C ∩R
by y. We place terminals in C ∪R∪ {x} such that x and y form a pair, as well as the unique

vertices of degree (a + 1) and (b + 1) (denoted by za+1 and zb+1) form another. Observe that

paths that join the above two pairs both use either the edge between za+1 and za+b or between

zb+1 and za+b, hence the pairing cannot be achieved.

We believe that, with a somewhat longer and more cumbersome analysis, one can actually

prove that pp(K1,b�K1,d) = d b+d
2 e. Nevertheless, the actual proof is bound to require a lengthy

case-by-case analysis, that we do not consider particularly interesting and do not investigate.

Now we turn to the proof of Theorem 2. We use the same techniques as in the previous

proof. Again, we may assume b ≤ a. If no G-layer contains more than a di�erent types of

terminals, we can join the pairs that share a G-layer, and assign pseudopairs to the terminals

having their pairs on a di�erent G-layer, just as we did in the base case of the previous proof.

The pseudopairs can be chosen, such that
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i) their H-layers contain no terminal,

ii) pseduopairs of a pair of terminals are located on the same H-layer, and

iii) every H-layer contains at most b pairs of pseudopairs.

The initial terminals occupy at most 2s H-layers. We need and additional empty H-layer

for every one of the s pairs, that is guaranteed by the condition |V (G)| ≥ 4s. Pairing of the

pseudopairs can be carried out within the H-layers Again, we are far from an optimal solution,

as an H-layer is capable of joining up to b pairs of terminals, hence similar theorem with a

stronger condition on the graphs size can be proved. For the sake of convenience and clarity,

we stick to the weaker variant and proceed by investigating the general case.

If Gx1 , . . . , Gxt-layers contain more than a-types of terminals, observe �rst that t ≤ b, else

G�H would consist of at least (a+1)(b+1) terminals, contradicting s < (a+1)(b+1)
2 . It means,

that in every vertical layer that contains a terminal u, we can assign a pseudopair u′ and -

using that H is b-path-pairable, and so is every vertical layer in G�H- de�ne edge disjoint

uu′ paths for every u. We can distribute the pseudopairs among the initially empty horizontal

layers equally, such that none of them contains more than a pseudopairs. Indeed, we have at

least 2s empty G-layers at our disposal and have to redistribute 2s terminals in total. Having

done this, we can join the pseudopairs as described in the above base case.

Corollary 1 follows trivially from Theorem 2. We show, that the bound presented in

Corollary 1 is also sharp, up to a constant factor. That is, the order magnitude in the

inheritance of path-pairability cannot be expanded more than indicated in Theorem 2, by

simply providing an abudance of space in the product graph. To prove our claim, we �rst

make the following observation: if G0 ⊂ G and H0 ⊂ H subsets violate the cut-condition,

that is, e(G0) < |G0| and e(H0) < |H0|, the product set G0�H0 does not necessarily have the

same condition. In order to generate violating product sets, stronger assumptions are needed:

Proposition 2. Let G and H be graphs and G0 ⊂ G and H0 ⊂ H, such that 2 · e(G0) < |G0|
and 2 · e(H0) < |H0|. Then e(G0�H0) < |G0�H0|, that is, G0�H0 violates the cut condition.

Proof. Clearly |G0�H0| = |G0| ·|H0|, while e(G0�H0) = |G0| ·e(H0)+ |H0| ·e(G0) < |G0|·|H0|
2 +

|G0|·|H0|
2 = |G0| · |H0|.

We construct our example by a graph operation called "blowing-up". Let n = k ·m, and

de�ne G(k,m) as an equally blown up graph of the path Pk of size n, that is, V (G) = {xi,j :

0 ≤ i ≤ (k − 1), 0 ≤ j ≤ (m − 1)}, where xi,j and xi′,j′ are connected, if either i = i′, or

i− i′ = ±1 (modulo 2m). In other words, we take a path on k vertices, replace every vertex by

a complete graph Km, and every edge of the initial path by the edge set of a complete bipartite

graphKm,m between the two cliques. We use the notation Si = {xi,j ∈ V (G) : 0 ≤ j ≤ (k−1)}
and refer to the set as the ith class of G.

Proposition 3. G(k,m) is m2-path-pairable, if k ≥ 2m.

Proof. Given a distribution of m2 pairs of vertices, we can carry out pairing by starting at one

end of the path, greedily joining terminals to vertices of the consecutive class, and �nishing

the joining of terminals within the classes. For a terminal u, we will assign several u′, u′′, . . .
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pseudopairs in the consecutive classes until we �nally pair one with the appropriate v pair.

We start by pairing terminals that lie in the same class by direct edges of the cliques. From

now on we may assume that, for every pair (u, v), one of the terminals is closer to the left end

of the path, hence it will be encountered earlier in our left-to-right sweeping algorithm than

its pair. Being at class Si, the consecutive class Si+1 contains at most m terminals. If some of

them have appropriate pseudopair in Si, they can be joined by direct edges (here we are using

that path-pairability prohibits repeated terminal assignment of a vertex). Then, the remaining

terminals of Si can be assigned a new pseudopair in Si+1, maintaining the condition that a

vertex x ∈ Ci+1 hosts at most m terminals and pseudopairs that have not been paired. Having

visited at most t2 terminals, this condition can be easily maintained using Hall's Matching

Theorem. Having reached t2 +a terminals, we must have encountered at least a pairs, that is,

the number of still unmatched terminals is at most (t2 − a), thus our above reasoning works

just as well as before.

Now let G = G(a, k) and H = G(b, k), such that a ≥ b ≥ 2 and k ≥ (4a2 + 1). Moreover,

let G0 ⊂ G and H0 ⊂ H be formed by (2a2 + 1) and (2b2 + 1) consecutive classes, starting at

the left end of the blown-up paths. The sets G0 and H0 satisfy the conditions of Proposition

2, thus G�H is not (2a2 + 1) · (2b2 + 1)-path-pairable, regardless of the initial sizes of G and

H. That justi�es our claim.

Proof of Theorem 3

Let us denote the two classes of the bipartite graph Km,m by A1 and A2. We introduce further

notation for certain sets of the vertices in the product graph G = Km,m�Km,m as follows:

A11 = A1�A1, A12 = A1�A2, A21 = A2�A1, and A22 = A2�A2. We will refer to these sets

as classes of G. We set a cyclic order of the four classes clockwise. References to next class

and previous class are translated in accordance with that given cyclic order. We label the m2

elements of each class by (u, v) pairs, where u = 1, . . . ,m and u = 1, . . . ,m. We introduce

the expression of shipping a terminal or pseudopair u to a vertex or pseudopair v, by which

we mean that we establish an uv path Puv between the two vertices, such that Puv shares no

edge with any other path. We will join our terminals by shipping them several times, that

is, taking the union of several paths de�ned between appropriate sequences of pseudopairs.

Having read the proof of Theorem 1 and Theorem 2, this method is likely to look familiar for

the reader. A vertex is said to host a terminal, if the terminal is shipped to the vertex at some

point during our pairing procedure.

Given a pairing of the vertices, we carry out the joining of the terminals in three phases

named: swarming, line-up and �nal match. For a pair of terminals of G, we �rst ship them to

the same class (swarming), then send them forward to the same row/column of the next class

(line-up). Finally, we join the to paths by their newly established ends with a single vertex of

the next class (�nal match).

Swarming

In this phase, we ship one terminal of each pair to the class of its partner. If a pair lies with

both vertices within a class, they simply skip the swarming phase. A terminal (u, v), belonging
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to class A11 and heading to A12, shall follow the path (u, v) → (u + 1, v), where (u + 1, v)

denotes the appropriate vertex of A12 and addition is calculated modulo m. Similarly, we ship

(u, v) to A21 via the path (u, v)→ (u, v+1). Should (u, v) be shipped to A22, we allocate it the

path (u, v)→ (u+1, v)→ (u+1, v+2) where (u+1, v) belongs to A12 and (u+1, v+2) belongs

to A22. Terminals belonging to other classes will be shipped by the same rules, increasing the

appropriate coordinate by 1 at the �rst step, and increasing the other one by 2 in the second

step, if applicable. Getting shipped via paths of length two is always carried out clockwise.

One can easily verify, that the above arrangment of paths assures that, if m ≥ 5, no edge

is being utilized twice during the swarming phase. We now choose the terminal to be shipped

for each pair, such that at the end of the swarming phase, every class hosts exactly m2

2 pairs.

Starting with an arbitrary selection, we can assume without loss of generality, that A11 hosts

the most pairs, and that at least one terminal x ∈ A11 received its pair y from a class hosting

less than m2

2 pairs. Shipping x to the class of y instead balances the distribution of the pairs.

Repetition of the previous step leads to an equal distribution.

We de�ne G′ with V (G′) = V (G), and a new edge set E(G′) by deleting those edges from

E(G) we used in the swarming phase. Observe, that by the given shipping method, every

vertex of G hosts at most 5 terminals and uses at most 8 of its edges, that is, the minimal

degree of G′ is at least (m− 8). We continue the linking in G′.

Line-up

We ship each pair of terminals to the next class, such that terminals shipped by a horizontal

edge shall share the same column of the new class, while vertically shipped terminals will

arrive in the same row. For every pair, there are at least (m− 16) available columns/rows in

the next class. Our intention is to pair up the pairs with the rows/columns, such that every

one of them will contain m
2 pairs. We recall a straigthforward corollary of Hall's Matching

Theorem.

Lemma 1. A bipartite graph G = (A,B,E) with vertex classes of size n whose minimum

degree is at least n
2 contains a perfect matching.

We de�ne the following bipartite graph G = (A,B,E) as follows: represent each pair

of terminals hosted in A11 by a vertex in A, while each column of A12 is represented by m
2

independent vertices in B. Certainly, |A| = |B| = m2

2 . We connect two vertices of A and B by

an edge, if both terminals of the corresponding pair have horizontal edges to the corresponding

column of A12. Easy to see, that the graph has minimum degree at least m2

2 − 16m, hence, by

Lemma 1, it contains a perfect matching for n ≥ 64.

Observe, that if two pairs of terminals sharing a vertex of a class C are distributed to

the same vertical layer of the next class C ′, at least one of the terminals will not be able to

get shipped there. We need to guarantee a matching between the pairs and the layers of C ′

without such a collision. Recall, that each vertex of C hosts at most 5 terminals, hence each

pair of terminals has at most 8 additional pairs to collide with. Consider a perfect matching

for which the number of above collisions is minimal. Let (x, y) and (x′, y′) colliding pairs of

terminals being sent to layer L of C ′. We may assume x and x′ share the same vertex of C.

We want to �nd a pair (u, v) sent to a layer L′ 6= L of E such that
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i) (x, y) can be sent from C to L′ (instead of L) during the line-up without causing further

collision,

ii) (u, v) can be sent from C to L (instead of L′) during the line-up without causing further

collision.

The pair (x, y) can be initially sent to (m−16) layers of C ′, at most 8 of which might contains

teminals that initially shared vertex with (x, y) in C. In order to avoid further collisions we

exclude these layers, leaving us at least (m− 24) choices of L′. We also want to exclude layers

that alreay received terminals from the vertex of x or y, yielding at most 8 additional excluded

layers, that is, at least (m− 32) choices of L′ and so (m− 32) · m2 choices for (u, v). We want

to choose (u, v) such that it initially did not share vertex in C with any terminal currently

hosted in L and that u and v still can be moved (having witdrawn from L′) from C to L (the

corresponding edges have not been used yet). For the �rst constraint, recall that L contains
m
2 pairs, every one of which shares vertex with at most 8 additional terminals. There are at

most 4m additional terminals that initially cannot be sent to L, because the appropriate edges

had already been used during the �rst phase.

Now assume that the appropriate edge, that would channel u or v to L has already been

used. It can either occur if another terminal was sent from that particular vertex of C to L

during the line-up, or if the edges were used during the swarming phase. The �rst conditions

means, that (u, v) collides with the other pair of terminals that was sent to L, hence (u, v) is

one of the above listed 4m pairs. In the remaining case, the missing edge is one of those at

most 8· n2 = 4m edges the complete layer L used up during the swarming. The mentioned edges

have at most 4m endpoints in C and at most 5 · 4m = 20m pairs of terminals correspoding to

them.

Overall, it means that if (m − 32) · m2 > 24m (that is, m > 56) , one can �nd an appro-

priate (u, v). Swaping the positions of (u, v) and (x, y), we reduced the number of collisions,

contradicting our assumption.

We repeat the same procedure for the remaining three classes. It can be easily veri�ed

that no edge is used more than once. We de�ne G′′ by the deletion of the used edges the same

way we obtained G′. We proceed in G′′ to the �nal match.

Final match

For a row/column �lled with m
2 pairs of terminals, we assign every pair a vertex of the ap-

propriate row/column of the next class, being adjacent to both terminals (see Figure ). Note

that during the �rst two phases, each vertex has used at most 13 of its edges. We use Lemma

1 to �nd the appropriate assigment. Let A form the set, in which every pair of terminals of a

certain row/column is represented by a vertex. The set B is formed by any m
2 vertices of the

appropriate column/row of the next class. We connect vertices by edges, if both terminals of

the pair are adjacent to the appropriate vertex in the next class. Our bipartite graph has two

classes of size m
2 and minimum degree m

2 − 26. If m ≥ 104, the required matching is provided

by Lemma 1. That completes the proof.

Corollary 2. There exists a path pairable graph G on n vertices with ∆(G) =
√
n for in�nitely

many values of n.

9



Figure 1: Line-up and �nal match phases.

Additional remarks and open questions

The cut-condition is not su�cient

We �rst prove, that the k-cut condition does not imply k-path-pairability. Consider the disjoint

union of the star grah K1,k and the complete graph KN on N ≥ 2k vertices. Join each vertex

of degree one to an arbitrary vertex of KN by an edge, such that di�erent vertices of K1,k

are joined to di�erent vertices of KN . The graph G obtained this way is clearly not k-path

pairable. Indeed, placing a k + 1 terminals in K1,k, such that the pair of the terminal in the

center of the star graph is placed in KN , any path starting in the center of the star severs its

neighbor, devouring both of its edges. On the other hand, if S ⊂ V (G) it trivially satis�es the

cut-conditions, if it contains any vertex of KN . Hence we may assume S ⊂ K1,k, which case

the veri�cation of the cut-condition is straightforward.

Appropriate �ne-tuning of the construction provides examples of graphs that are not path-

pairable, while they satisfy the cut-condition. Take the disjoint union of K1,k and Kk−1 and

join the two graphs by a matching (avoiding the center of the star) of size k − 1. Join the

remaining vertex of degree one to any vertex of Kn−1. Just as before, the set of degree-two

vertices joined to the center of the star make the graph impossible to channel k edge-disjoint

paths. We claim that our graph G satis�es the cut-condition for k ≥ 6. Assume on the

contrary that S ⊂ V (G) of size at most k violates the condition. We proceed by case-by-case

analysis.

Case 1 If Kk−1 ⊂ S, S must contain an additional vertex, that is, |S| = k. Easy to see,

that adding neither the center nor any end of the star graphs to the vertex set of Kk−1

violates the condition.

Case 2 If |S ∩ Kk−1| = k − 2, d(S) ≥ k − 2 because of the edges leaving S within Kk−1.

Also, at least k − 4 of them have a neighbor in K1,k not belonging to S, that is, d(S) ≥
k − 2 + k − 4 ≥ k. Since |S| ≤ k it cannot violate the cut-condition.

Case 3 If 1 ≤ |S ∩Kk−1| ≤ k − 3, d(S) ≥ 2k − 6 ≥ k even by considering the edges leaving

S within Kk−1.
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Case 4 IF S ⊂ K1,k, S must contain the center of the star else it trivially holds the condition.

Observe that each non-central vertex of K1,k has an edge leaving S toward Kk−1 and so

does at least one edge of the star. It completes the proof.

It has been known for some time, that not only linkedness and weak-linkedness force

high-connectivity and edge-connectivity of the graph, but that su�ciently large connectivity

and edge-connectivity imply linkedness and weak-linkedness, respectively. It would be in-

teresting to see if similar result can be proved about the relation of the cut-conditions and

path-pairability.

Path-pairability of hypercubes and grids

As discussed previously, path-pairable graphs on n vertives have a certain lower bound of

approximately O( logn
log logn) on the minimal value of the maximum degree ∆. On the other hand,

the smallest achieved maximum degree provided by Theorem 3 has order of magnitude O(
√
n),

still leaving plenty of room for improvements on both sides. One particularly interesting and

promising path-pairable candidate is the d-dimensional hypercube Qd on n = 2d vertices with

∆(Qd) = d = log n. Although it is known that Qn is not path-pairable for even values of

d ([2]), the question is open for odd dimensional hypercubes if d ≥ 5 (Q1 and Q3 are both

path-pairable).

Conjecture 2 ([4]). The (2k+1)-dimensional hypercube Q2k+1 is path-pairable for all k ∈ N.

The question regarding the path-pairability number of larger n dimensional a�ne and

projective grids, that is, the Cartesian product of d paths or d cycles has not been answered

either. It can be derived rather easily from Theorem 2, that su�ciently large d-dimensional

projective grids are O(2d)-path-pairable. Similar result concerning a�ne grids can be obtained.

We leave the proof of both statements to the reader. On the other hand, it can be proved

that a d dimensional projective grid is at most O((2d)2d)-path-pairable, regardless of its size,

if the grid is large enough in every dimension.

Proposition 4. Let G = Cm1�Cm2� . . . Cmd
, where Cmi denotes a cycle of length mi and

mi ≥ (2d + 1), i = 1, 2, . . . , d. Then pp(G) ≤ (2d)d−1 · (2d + 1)

Proof. Way may assume |G| ≥ 2 · (2d)d−1 · (2d + 1), else the statement is trivial. Consider

now the d-dimensional subgrid G0 = C2d� . . .�C2d�C2d+1. Easy to see that G0 violates the

cut-condition as V (G0) = (2d)d−1 · (2d + 1) > 2 · ((d− 1)(2d)d−2(2d + 1) + (2d)d−1) = d(G0).

It shows that G is less than (2d)d−1 · (2d + 1)-path-pairable.

The presented bounds are still far apart and leave plenty of room for improvements.

Question 1. Determine the values of pp(Pm1�Pm2� . . . Pmd
) and pp(Cm1�Cm2� . . . Cmd

)

(Pmi denotes a path of length mi).

Possible extension of Theorem 3

This paper only deals with a special type of products of complete bipartite graphs. With a

detailed and cumbersome analysis of our presented techniques, one can prove that the product
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graph Ka,b�Kc,d is path-pairable if max(a,b,c,d)
min(a,b,c,d) < 2 and a, b, c, d are large enough (in terms of

the previous ratio). We close up with highlighting, that path-pairability of Ka,b�Kc,d in the

general case is still subject to further investigation, as well as proposing another intriguing

open question motivated by [9].

Question 2. For which values of a, b, c, d ∈ Z+ (a ≤ b, c ≤ d) is the product graph Ka,b�Kc,d

path-pairable?

Question 3. What are the necessary and su�cient conditions for a graph G, such that G�Kn

will be path-pairable if n is large enough?
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