BREEDING AND LARVAE REARING OF THE
GREEN MUD CRAB, *Scylla paramamosain*
(Estampador 1949) IN CAPTIVITY

MD. LATIFUL ISLAM

UNIVERSITI SAINS MALAYSIA
2015
BREEDING AND LARVAE REARING OF THE GREEN MUD CRAB, *Scylla paramamosain* (Estampador 1949) IN CAPTIVITY

By

MD. LATIFUL ISLAM

Thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy (PhD)

July 2015
ACKNOWLEDGEMENT

All praise to the Almighty Allah for blessing me with sound health, mental strength and courage for conducting the research and write up of the PhD Dissertation successfully. I would like to acknowledge to the authority of Bangladesh Fisheries Research Institute (BFRI) for nominating me for the PhD study. The entire study program has been solely funded including living and research cost by Bangladesh Agricultural Research Council (BARC) through the NATP Phase-1 project are greatly acknowledged. I would like to express my deepest acknowledge to the Universiti Sains Malaysia (USM) for accepting me as a doctoral candidate and giving the opportunity to conduct the entire research smoothly with worthy facilities.

I am delighted here to extend sincere gratitude to my honourable supervisor “Dr. Khairun Yahya” for her scholastic guidance in research and constructive criticism during write up. I express profound gratitude to my honourable co-supervisor “Prof. Roshada Hashim” for her worthy advice during starting of my research work. Heartfelt gratitude is extended to Assoc. Prof. Dr. Shahrul Anuar Mohd Shah (Director, CEMACS) for enabling to conduct the research at CEMACS. Honours are extended to Mr. Soh Chee Weng of Texchem Food Sdn Bhd, for his cordial and friendly discussion as well as continuous cooperation and inspiration.

Sincere appreciation is forwarded to all the Officers at CEMACS, especially Mohamed Raffaie (Science Officer) for his cordial cooperation. Thanks are extended to all Assistants and staffs of CEMACS for their friendly cooperation at different stages of my research. Thanks are not enough as appreciation for those fellow Master’s Degree friends who conducted simultaneous research with me. Special appreciations are for Aunti Ana, Annette and Mr. Faizzal for their cordial co-operation during sample analysis in the respective laboratories.
Special thanks are extended to the private boatmen of Teluk Bahang for their cordial help by providing the boat services during off hours, weekend and public holidays, without that it was not possible to conduct the research smoothly. My heartfelt thanks are to all of my friends, colleagues and well wishers who directly or indirectly inspired me every time. I would like to salute Mr. A.K.M. Fazlul Haque, Deputy Secretary of MoFL, Bangladesh for the Excellency of endless efforts during renewal of my study leave (GO) abroad.

I have sincere gratefulness to Dr. Md. Arif Chowdhury (Senior Lecturer, CEMACS), Dr. M. Anamul Kabir (Assistant Professor, Sylhet Agricultural University, Bangladesh) and Dr. Md. Shahidul Islam (Senior Lecturer, Universiti Malaysia Terengganu) for their constructive comments on different chapters. My deepest respect and gratitude to Dr. Kamaruddin, Noor Aini Ali and Nadia Roslain of Language School, USM for their proofreading, that have improved the reading of the dissertation indeed. The author would like to express the profound gratitude to Prof. Dr. Aziz Bin Arshad of UPM, Prof. Dr. Siti Azizah Mohd Nor of USM and Prof. Dr. Alexander Chong Shu Chien of USM for their critical review and valuable comments on the draft dissertation.

Heartfelt respect and gratefulness are to my parents and other family members for their endless love, inspiration and devotion. Finally, I have the great pleasure to dedicate this PhD dissertation to my better half “Mst. Anju Ara Khatun (Tithi)”, my affectionate daughter “Sayema Tashneem Tisha” and my beloved son “Sayem Arefin Toaha” for their highest sacrifice of love and affection during the long voyage of my PhD study.

The Author
Universiti Sains Malaysia
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Heading/Sub-heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xxii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxiv</td>
</tr>
<tr>
<td>CHAPTER- 1: GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Mud crab aquaculture, research and constraints</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Broader research themes</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Specific objectives</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER- 2: LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td>2.1 General information</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1 Taxonomic classification, morphology and identification</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2 Ecological and regional distribution</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3 Local distribution, habitat and niche selection</td>
<td>14</td>
</tr>
<tr>
<td>2.1.4 Life cycle and migration</td>
<td>15</td>
</tr>
<tr>
<td>2.1.5 Natural food and feeding habit</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Mud crab aquaculture and production</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Demand, market price and export of mud crab</td>
<td>20</td>
</tr>
</tbody>
</table>
2.4 Broodstock
 2.4.1 Grow out and maturation
 2.4.2 Reproductive behaviour
 2.4.3 Broodstock husbandry, feeding and management
 2.4.4 Spawning behavior and management
 2.4.5 Embryonic development and hatching

2.5 Larvae rearing
 2.5.1 Larvae rearing protocols
 2.5.2 Larvae feed and feeding

2.6 Nutritional requirements of mud crab
 2.6.1 Larval nutrition
 2.6.2 Grow out feed and nutrition
 2.6.3 Broodstock nutrition, reproductive performance and larvae quality

2.7 Larvae quality test

2.8 Water quality requirement

CHAPTER- 3: GENERAL METHODOLOGY

3.1 Introduction

3.2 Location of the study site and duration of study

3.3 Disinfection of water and hatchery utensils

3.4 Preparation of hatching/incubation tanks

3.5 Measurement techniques of body size of mud crab

3.6 Monitoring of water quality variables

3.7 Proximate composition analysis

3.8 Fatty acid analysis protocols

3.9 Data analysis
CHAPTER 4: EFFECT OF DIFFERENT NATURAL AND COMMERCIAL DIETS ON LARVAE REARING OF THE GREEN MUD CRAB S. paramamosain

4.1 Introduction

4.2 Materials and methods

4.2.1 Experimental design

4.2.2 Collection of natural brood, transportation and identification

4.2.3 Acclimatization, disinfection and housing of berried broods

4.2.4 Phytoplankton (Nannochloropsis spp) culture and management

4.2.5 Zooplankton (rotifer) culture and management

4.2.6 Hatching of Artemia cysts and management

4.2.7 Collection of formulated microbound diet and storage

4.2.8 Enrichment of live feeds

4.2.9 Collection and preservation of larvae feeds, larvae and megalopa samples for proximate and fatty acid analysis

4.2.10 Preparation of larvae rearing tanks

4.2.11 Collection, handling and stocking of larvae

4.2.12 Feeding, management and schedules

4.2.13 Water management and monitoring of water quality variables

4.2.14 Determination of larvae survival rate

4.2.15 Estimation and calculation of larval stage index (LSI)

4.2.16 Rearing of megalopa to crablet (crab instars)

4.2.17 Measurement of the size of larvae, megalopa and crablet

4.2.18 Biochemical properties (proximate and fatty acid profile) of larvae feeds

4.2.19 Data analysis
4.3 Results

4.3.1 Water quality variables

4.3.2 Survival rate of larvae

4.3.3 Larval stage index (LSI)

4.3.4 Larvae sizes at different stages

4.3.5 Fatty acid composition of megalopa under different feeding treatments

4.4 Discussion

4.5 Conclusion and recommendations

CHAPTER 5: EFFECT OF DIFFERENT GROW OUT PROTOCOLS ON GROWTH, SURVIVAL AND SUITABILITY AS BROODSTOCK OF THE GREEN MUD CRAB S. paramamosain IN CAPTIVE CONDITION

5.1 Introduction

5.2 Materials and methods

5.2.1 Experimental design

5.2.2 Preparation of grow out protocols

5.2.2.1 Plastic drawers (compartment)

5.2.2.2 Floating plastic boxes

5.2.2.3 Open fibre glass tanks

5.2.3 Growing of seaweed (Ulva) as grow out shelter for mud crab

5.2.4 Preparation and storage of grow out feed

5.2.5 Stocking of crabs, feeding and management

5.2.6 Monitoring and measurement of growth and water quality

5.2.7 Estimation and calculation of survival and SGR (specific growth rate)

5.2.8 Data analysis

5.3 Results

5.3.1 Growth pattern of male green mud crabs
5.3.2 Growth pattern of female green mud crabs 79
5.3.3 Body weight, survival and limb lost of female mud crabs 80
5.3.4 Body weight, survival and limb lost of male green mud crabs and comparison with female 81

5.4 Discussion 81
5.5 Conclusion and recommendations 85

CHAPTER 6: AGE AT SEXUAL MATURITY AND GONAD DEVELOPMENT STAGES OF GREEN MUD CRAB (S. paramamosain) IN CAPTIVITY 86

6.1 Introduction 86
6.2 Materials and methods 87
6.2.1 Source of experimental animals (crabs) 87
6.2.2 Collection of animals (crabs) and measurement 88
6.2.3 Dissection of crabs, collection and preservation of gonad/ovary samples 89
6.2.4 Calculation of Gonad Somatic Index (GSI) 89
6.2.5 Histological slide preparation, observation and analysis of gonad/ovary development stages 90

6.3 Results 90
6.3.1 Maturity and gonad development stages of the male mud crab in captivity 90
6.3.1.1 Histological classification of gonad development stages in male mud crab 90
6.3.1.2 Gonad morphological features at different development stages in male green mud crab 92
6.3.1.3 Age at first sexual maturity and composition of gonad development stages in male green mud crab 94
6.3.1.4 Relationship between carapace width and allometric growth organs in male green mud crab S. paramamosain 95
6.3.2 Maturity and gonad development stages of female mud crab in captivity 95
6.3.2.1 Histological features and classification of gonad development stages in female green mud crab 95
6.3.2.2 Anatomical features of the gonad morphology at different development stages in female green mud crab 98
6.3.2.3 Allometric shapes and color of the abdominal flap of female mud crabs 100
6.3.2.4 Gonad somatic index (GSI) with respect to different maturation stages 102
6.3.2.5 Age at first sexual maturity and different gonad development stages in female green mud crab under different grow out protocols 102

6.4 Discussion 103

6.4.1 Sexual maturity and gonad development stages in male green mud crabs 104
6.4.2 Female sexual maturity and gonad development stages of the green mud crab *S. paramamosain* in captive condition 107

6.5 Recommendations and conclusion 111

CHAPTER 7: BEHAVIOR, MALE-FEMALE INTERACTIONS AND OPTIMUM MALE-FEMALE RATIOS IN CAPTIVE MATING OF THE GREEN MUD CRAB (*Scylla paramamosain*)

7.1 Introduction 112

7.2 Methodology 114

7.2.1 Experimental design 114
7.2.2 Preparation of mating tanks 114
7.2.3 Source of experimental animals (crabs) and morphological features 115
7.2.4 Feeding and water management 116
7.2.5 Observation on mating behavior and documentation 116
7.2.6 Calculation of estimated sex ratio (ESR), the operational sex ratio (OSR) and guarding time (GT) 117
7.2.7 Estimation of female mating success 118
7.2.8 Data analysis 118
7.3 Results

7.3.1 Mating steps, courtship and male-female interaction
7.3.1 (a) Courtship and mate selection
7.3.1 (b) Pre-copulation guarding
7.3.1 (c) Moulting break and guarding
7.3.1 (d) Copulation embraces and insemination
7.3.1 (e) Post-copulation guarding

7.3.2 Estimated sex ratio (ESR), operational sex ratio (OSR) and guarding time (GT)

7.3.3 Injury and limb lost of the female crabs under different mating ratios

7.3.4 Mating success of female green mud crab under captive condition

7.4 Discussion

7.4.1 Mating steps, courtship and male-female interactions

7.4.2 The operational sex ratio (OSR), guarding time (GT), limb lost and mating success of female mud crab

7.5 Recommendations and conclusion

CHAPTER- 8: SUCCESSIVE REPRODUCTIVE PERFORMANCE AND LARVAE QUALITY OF GREEN MUD CRAB (*Scylla paramamosain*) FROM THE SINGLE MATING EVENT IN CAPTIVE CONDITION

8.1 Introduction

8.2 Methodology

8.2.1 Source of broodstocks

8.2.2 Preparation of spawning tanks

8.2.2.1 Individual or single spawning tanks

8.2.2.2 Group or communal spawning tanks

8.2.3 Preparation and storage of feeds for gravid broodstock

8.2.4 Management of gravid broods
8.2.5 Disinfection of berried broods and management until hatching

8.2.6 Collection procedure of egg samples and preservation

8.2.7 Collection and preservation of feed and larvae samples for biochemical analysis

8.2.8 Examination of eggs and measurement of size (diameter)

8.2.9 Observation on egg fertilization and calculation of fertilization rate

8.2.10 Estimation of the rate of fallen/discard eggs

8.2.11 Estimation of fecundity and relative fecundity

8.2.12 Collection of larvae, estimation of viable larvae, phototaxis larvae, dead larvae and follicle cells

8.2.13 Disinfection of the spawner and returned into the spawning tank for repeated spawning

8.2.14 Preparation of test vessels and starvation test to the successively spawned larvae of captive broodstocks

8.2.15 Proximate composition of broodstock feeds

8.2.16 Protocol for Analysis of amino acids and its composition in broodstock feeds

8.2.17 Fatty acid contents in broodstock feeds

3.2.18 Data analysis

8.3 Results

8.3.1 Successive reproductive performance of the captive broodstock of green mud crab

8.3.2 Fatty acid profiles in the successive larvae samples of domesticated green mud crab broodstock

8.3.3 Amino acid components in successive larvae samples of domesticated broodstock

8.3.4 Starvation stress resistance of the successively spawned larvae of captive broodstock

8.3.5 Comparison of reproductive performance and larvae quality between natural and captive broodstock of green mud crab S. paramamosain
8.4 Discussion

8.4.1 Successive reproductive performance of domesticated broodstock 162

8.4.2 Amino acids in successively spawned larvae of domesticated broodstock 165

8.4.3 Fatty acid profile of successive larvae samples of domesticated broodstock 166

8.4.4 Comparison of reproductive performance and larvae quality between domesticated and natural broodstock 168

8.5 Recommendation and conclusion 170

CHAPTER- 9: GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATION 172

REFERENCES 180
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Distinguishing characteristics of four species of the genus Scylla (modified after Kennan et al., 1998)</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Design of experiment for larvae rearing of mud crab S. paramamosain</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Proximate composition of feeds (Mean±SD) fed to the mud crab larvae under different feeding treatments</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Fatty acid composition (% of total fatty acid detected) of initial larvae sample and tested feeds (Mean±SD) fed to the mud crab larvae</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Ranges of water quality variable during larvae rearing with different feeding schemes</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Survival rate (%) of larvae (Mean±SD) at different larval stages treated with different feeds</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Larval stage index (LSI) (Mean±SD) of green mud crab larvae reared with different feeds</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Size (mm) of larvae (Mean±SD) at various larval stages under different feeding treatments</td>
<td>61</td>
</tr>
<tr>
<td>4.8</td>
<td>Fatty acid composition of megalopa (Mean±SD) fed with different feeds at larvae rearing</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Grow out experimental design of female mud crab in captive condition</td>
<td>72</td>
</tr>
<tr>
<td>5.2</td>
<td>Details of growth, survival and limb lost (Mean±SD) of female mud crab cultured under different grow out protocols in captive condition</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of growth factors (Mean±SD) between male and female green mud crabs cultured under same protocol and densities</td>
<td>81</td>
</tr>
<tr>
<td>6.1</td>
<td>Gonad morphological characteristic, histological features and body size (weight and CW) at different sexual maturity stages in male green mud crab</td>
<td>93</td>
</tr>
<tr>
<td>6.2</td>
<td>Histological characteristics of the ovary under different development stages of female green mud crab</td>
<td>97</td>
</tr>
</tbody>
</table>
6.3 Morphological features of the ovary and size distribution of female crabs under different gonad development stages (BW= body weight, CW= carapace width)

6.4 Classification of GSI (Gonad somatic index) and frequency of GSI under different gonad development stages

7.1 Major activities and time spent in each step (Mean±SD) during mating of green mud crab under captive condition (recorded from a single male and single female tank)

7.2 Mean±SD of estimated sex ratio (ESR) and the operational sex ratio (OSR) under different male-female ratios in captive mating of the green mud crab

7.3 Mean±SD of total guarding, dominant guarding, proportion of dominant guarding and mean individual guarding under different male-female ratios in mating of green mud crab under captive condition

7.4 Percentage (Mean±SD) of injured female (Missing limbs/pereopods) during mating under different male-female ratios

8.1 Proximate composition of feeds (Mean±SD), fed to the mud crab broodstock for ovary maturation

8.2 Amino acid composition (%) of feeds (Mean±SD) fed to the mud crab broodstock for gonad maturation

8.3 Fatty acid composition (% of total fatty acids detected) in feeds (Mean±SD) fed to the mud crab broodstock for gonad maturation

8.4 Successive reproductive performance (Mean±SD) of the green mud crab S. paramamosain developed under captive condition

8.5 Fatty acid composition (% of total fatty acids detected) of newly hatched larvae samples (Mean±SD) under successive spawning of captive broodstock

8.6 Amino acid composition (% of total amino acids detected) of newly hatched larvae samples (Mean±SD) under successive spawning of captive broodstock

8.7 Mean±SD of reproductive performance and biochemical composition in newly hatched larvae of natural and captive broodstock
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Trend in global production of mud crab (Source: FAO, 2014; FishStat, FIGIS)</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Trend of ammonia under different feeding regimens of the green mud crab larvae rearing</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Trends in daily survival (%) of mud crab larvae treated with different feeds (T1= feeding with solely Artemia; T2= feeding with rotifer + Artemia; and T3= feeding with rotifer and commercial diet)</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Pattern of larval stage index (LSI) under different treatments during the culture period (T1= feeding with solely Artemia; T2= feeding with rotifer + Artemia; and T3= feeding with rotifer and commercial diet)</td>
<td>59</td>
</tr>
<tr>
<td>5.1</td>
<td>Trend in growth of male green mud crab cultured under outdoor tank condition; A: weight increment trend, B: carapace width increment pattern</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Trend in growth of female green mud crab under different culture protocols; A: weight increment trend, B: carapace width increment trend</td>
<td>79</td>
</tr>
<tr>
<td>6.1</td>
<td>Composition (%) of different gonad maturity stages (stage-1: immature, stage-2: maturing, and stage-3: mature) in relation to the age of the male mud crab</td>
<td>94</td>
</tr>
<tr>
<td>6.2</td>
<td>Scatterplot relationship between internal carapace width (ICW) and allometric secondary growth organs (LPL= left propodus length; LPW= left propodus width and LCH= left chela height) of the male mud crab showing discrete growth at maturity</td>
<td>95</td>
</tr>
<tr>
<td>6.3</td>
<td>Incidence of different gonad development stages in relation to various abdominal shapes of the female; [S-1= stage-1, S-2= stage-2,........., S-5= stage-5]</td>
<td>101</td>
</tr>
<tr>
<td>6.4</td>
<td>Composition (%) of different ovary maturity stages in relation to age of the female green mud crab grown under different protocols in captive condition</td>
<td>103</td>
</tr>
</tbody>
</table>
7.1 Relationship between size of the crab and time spent for different stages during mating; A: Courtship time and female size, B: Pre moult guarding and female size, C: moulting time and female size, D: Copulation time and male size, and E: Post copulation guarding and male size

7.2 Mating success of mud crab under captive condition; A: apparent (physical) mating success; B: actual mating (fertilization) success; and C: category of the unfertilized females

8.1 Mortality pattern of successively spawned larvae of the domesticated green mud crab broodstock under starvation stress test
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Photos showing four distinct species of mud crab (Scylla sp): A: Scylla serrate, B: S. paramamosain, C: S. olivacea, and D: S. tranquebarica (Keenan et al., 1998)</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Photos of incubation or hatching tank; A: Hatching tank covered with canvas sheet to create darkness, B: Berried brood inside the hatching tank</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Techniques for measurement of body size of crabs; CW: carapace width, CL: carapace length</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Photos of larvae rearing methodologies; A: incubation/hatching tanks; B: larvae rearing tanks; C: microalgae culture bags; D: rotifer culture tank; E: enrichment of rotifer and Artemia nauplii with Nannochloropsis sp and fish oil (SELCO)</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Measurement procedure of body length (BL) of larvae at three major stages; A: Zoea stage, B: Megalopa stage, and C: Crablet (crab instars) stage</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Photos of deformities of larvae at Z5 stage; A: Normal Z5, B: Extra growth in chelipod, C: Broken dorsal spine, and D: Advanced shading in exoskeleton but tail region improper and infected</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Some features in megalopa stage; A: Normal megalopa (dorsal view), B: Excess depth in chelipod (dorsal view), C: Normal megalopa (ventral view), D: Deformity in chelipod (ventral view), and E: Molting death syndrome</td>
<td>68</td>
</tr>
<tr>
<td>5.1</td>
<td>Photos on grow out of mud crab under captive condition, A: grow out in plastic drawer/ compartments, B: grow out in plastic boxes, C: grow out in open tanks, D: growing of sea weed (Ulva) as shelter</td>
<td>74</td>
</tr>
<tr>
<td>6.1</td>
<td>Measurement techniques of the male allometric organs; PL: propodus length, PD: propodus depth/breadth, and CH: chelae height</td>
<td>88</td>
</tr>
<tr>
<td>6.2</td>
<td>Histological features of three different gonad development stages of male mud crab in captivity; A: Immature (spermatogonia), B: Maturing (spermatocytes), C: Mature (spermatids and spermatozoa)</td>
<td>91</td>
</tr>
</tbody>
</table>
6.3 Anatomical view of different gonad developmental stages of male mud crab in captivity; A: Immature (spermatogonia), B: Maturing (spermatocytes), C: Mature (spermatids and spermatozoa)

6.4 Histological features of different gonad developmental stages in female mud crab in captivity; A: Proliferation, B: Pre-vitellogenesis, C: Primary vitellogenesis, D: Secondary vitellogenesis, E: Tertiary vitellogenesis (mature)

6.5 Anatomical view of different gonad developmental stages of female mud crab in captivity; A: Proliferation, B: Pre-vitellogenesis, C: Primary vitellogenesis, D: Secondary vitellogenesis, E: Tertiary vitellogenesis (mature)

6.6 Different shapes and color of the abdominal flap of female green mud crab during progress in gonad maturation; A: V-shape, B: intermediate, and C: U-shape

7.1 Pictorial views of the mating tanks, A: single mating tanks, B: group/communal mating tanks

7.2 Scenarios of the major phases of mating of mud crab under captive condition; A: mate selection and courtship, B: pre-copulation guarding, C: moulting break and guarding, D: mating or copulation, and E: post-copulation guarding

8.1 View of the spawning tanks under captive condition; A: single spawning tanks, B: group/communal spawning tanks

8.2 Disinfection of berried brood and egg sample collection procedure; A: disinfection procedure, B: egg sample collection technique

8.3 Quality observation of eggs; A: egg diameter (ED) after spawning, B: fertilized eggs (FE) & unfertilized egg (UE)

8.4 Setting of the starvation test vessels for stress test to the larvae
LIST OF ABBREVIATIONS, SYMBOLS AND UNITS

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>ELABORATIONS/ MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
</tr>
<tr>
<td>∑</td>
<td>Sum or total</td>
</tr>
<tr>
<td>≤</td>
<td>Less than or equal</td>
</tr>
<tr>
<td>µ</td>
<td>Micron</td>
</tr>
<tr>
<td>µl</td>
<td>Micro litre</td>
</tr>
<tr>
<td>µm</td>
<td>Micro metre</td>
</tr>
<tr>
<td>°C</td>
<td>Degree centigrade</td>
</tr>
<tr>
<td>AD</td>
<td>Artificial diet</td>
</tr>
<tr>
<td>ADC</td>
<td>Apparent digestibility coefficient</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha-linoleic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variances</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Analytical Chemists</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>ARA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>BL</td>
<td>Body length</td>
</tr>
<tr>
<td>C</td>
<td>Crab instars</td>
</tr>
<tr>
<td>C1</td>
<td>Crablet-1 stage (Crab instars)</td>
</tr>
<tr>
<td>C3</td>
<td>Crab-3 stage</td>
</tr>
<tr>
<td>CEMACS</td>
<td>Centre for Marine and coastal studies</td>
</tr>
<tr>
<td>CH</td>
<td>Chelae height</td>
</tr>
<tr>
<td>CL</td>
<td>Carapace length</td>
</tr>
<tr>
<td>CW</td>
<td>Carapace width</td>
</tr>
<tr>
<td>CWm</td>
<td>Carapace width at median (50%) sexual maturity</td>
</tr>
</tbody>
</table>
DAH Day at hatching
DHA Docosahexaenoic acid
DMRT Duncan’s Multiple Range Test
DNA Deoxyribonucleic acid
EFA Essential fatty acid
EPA Eicosapentaenoic acid
F1 First generation
F2 Second generation
FAME Fatty acid methyl ester
FAO Food and Agriculture Organization
g Gram
GC Gas chromatography
GPS Geographical positioning system
GSI Gonad somatic index
HUFA Highly Unsaturated Fatty Acid
ICW Internal carapace width
LSI Larval stage index
M Megalopa
MA50 Age at median (50%) sexual maturity
MDS Moulting death syndrome
MD50 Medium Death (50% death)
Mg/l Milligram per litre
mm Millimetre
MT Metric tons
MUFA Monounsaturated fatty acid
n-3 Omega-3
ND Not detected
NF Natural feed
NFE Nitrogen free extract
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>Base population</td>
</tr>
<tr>
<td>PB</td>
<td>Propodus breadth</td>
</tr>
<tr>
<td>PL</td>
<td>Propodus length</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>ppt</td>
<td>Parts per thousand</td>
</tr>
<tr>
<td>RM</td>
<td>Malaysian Ringgit</td>
</tr>
<tr>
<td>S1 to S5</td>
<td>Maturity stage-1 to maturity stage-5</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>SGR</td>
<td>Specific growth rate</td>
</tr>
<tr>
<td>SM50</td>
<td>50% sexual maturity</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>TW</td>
<td>Total weight</td>
</tr>
<tr>
<td>UFA</td>
<td>Unsaturated fatty acid</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USM</td>
<td>Universiti Sains Malaysia</td>
</tr>
<tr>
<td>Viz., or ie.,</td>
<td>Videlicet, namely, especially</td>
</tr>
<tr>
<td>WSSV</td>
<td>White Spot Syndrome Virus</td>
</tr>
<tr>
<td>YHV</td>
<td>Yellow Head Virus</td>
</tr>
<tr>
<td>Z1 – Z5</td>
<td>Zoea-1 to Zoea-5</td>
</tr>
<tr>
<td>OSR</td>
<td>Operational sex ratio</td>
</tr>
<tr>
<td>ESR</td>
<td>Estimated sex ratio</td>
</tr>
<tr>
<td>GT</td>
<td>Guarding time</td>
</tr>
<tr>
<td>♂</td>
<td>Male</td>
</tr>
<tr>
<td>♀</td>
<td>Female</td>
</tr>
</tbody>
</table>
PEMBIAKBAKAAN DAN PEMELIHARAAN LARVA KETAM NIPAH, *Scylla paramamosain* (Estampador 1949) DALAM KURUNGAN

ABSTRAK

Kajian perintis pembiakbakaan induk ketam nipah (*Scylla paramamosain*) ini melibatkan beberapa siri eksperimen. Pada peringkat ternakan percubaan larva diberi makan *Artemia* umbrella, rotifer diperkaya dan rotifer daripada peringkat Z1 ke Z2, diikuti dengan *Artemia* nauplii, *Artemia* nauplli diperkaya dan diet komersial, masing-masing daripada peringkat Z3 sehingga megalopa. Indeks peringkat larva (LSI) yang amat tinggi, secara signifikannya menunjukkan bahawa megalopa dan kemandirian anak ketam adalah amat tinggi (p<0.05) yang terhasil daripada stok induk yang diberi makan dengan rotifer diperkaya dan diikuti dengan skema pemakanan *Artemia* diperkaya yang mengandungi asid eikosapentaenoik (EPA), asid dokosaheksarnoik (DHA), n-6 hingga n-3 dan EPA tinggi DHA, iaitu 17.32%, 3.82%, 0.20 dan 0.22, masing-masing semasa di peringkat megalopa untuk proses metamorfosis anak ketam secara berturutan. Pertumbuhan ketam bakau memaparkan corak sigmoid bagi kedua-dua jantina dengan pertambahan berat dalam ketam jantan, secara signifikannya adalah amat tinggi (p<0.05). Walaupun ketam bakau betina membesar lebih cepat (p<0.05) di dalam sangkar-luar, namun kemandirian serta perkadaran intak ketam adalah amat tinggi (p<0.05) di dalam sangkar-tertutup dan sangkar-terapung di luar. Ketam bakau jantan mencapai kematangan seks selepas spermatogonia, spermatosit dan spermatozoa, manakala, ketam betina mencapai kematangan sepenuhnya melalui proliferasi, previtelogenesis, vitelogenesis primer, vitelogenesis sekunder dan vitelogenesis tertier. Bagi anak ketam, kematangan seks kali pertama bagi kedua-dua ketam jantan dan betina bermula pada 5 bulan dan 5 hingga 5.5 bulan masing-masing. Umur matang medium (MA50) bagi ketam jantan dan betina adalah 6.5 bulan dan 6.5 hingga 7 bulan masing-masing. Diperhatikan xxii
bahawa kematangan adalah lebih cepat dalam ketam jantan, tidak sinkroni pada intraseks dan serentak pada interseks. Ketam bakau mengawan secara lengkap dengan turutan perlaku seperti memikat, pengawalan sebelum mengawan, penyalinan kulit, kopulasi, dan pengawalan selepas kopulasi. Masa yang diambil dalam setiap peringkat menunjukkan hubungan linear yang kuat \(p<0.01 \) dengan sama ada saiz badan ketam jantan atau betina dalam nisbah 1:1. Dapatan nisbah seks operasi jantina (OSR), masa pengawalan (GT) dan perkadaran intak betina semasa “communal mating” mencadangkan bahawa nisbah jantan-betina 2:4 hingga 2:8 sebagai superior dengan kepadatan 1.2 hingga 2/m\(^2\) masing-masing. Prestasi pembiakan dan kualiti larva adalah sama \(p>0.05 \) dalam kalangan stok induk ternakan dan induk semula jadi, kecuali fekunditi yang tinggi dan jumlah larva fototaksi pada induk semula jadi. Dalam kes pembenihan daripada pengawanan tunggal, pembenihan pertama dan kedua mempunyai fekunditi yang amat tinggi dan keguguran telur yang amat sedikit. Asid lemak penting seperti EPA, DHA, jumlah n-3; dan jumlah asid amino penting (EAA) adalah secara signifikannya adalah amat tinggi \(p<0.05 \) dalam pembenihan pertama dan kedua larva. Justeru, masa bertahan paling lama \(p<0.05 \) terhadap kelaparan berbanding dengan larva dalam pembenihan ketiga. Secara pragmatiknya, stok induk ketam bakau dapat dikembangkan atau boleh ditemak dengan jayanya dalam sangkar atau kurungan, yang mungkin menyokong operasi penetasan tanpa henti atau secara berterusan.
BREEDING AND LARVAE REARING OF THE GREEN MUD CRAB, *Scylla paramamosain* (Estampador 1949) IN CAPTIVITY

ABSTRACT

This pioneer study on the captive broodstock breeding of the mud crab (*Scylla paramamosain*) consisted with a series of experiments. The larvae rearing trial was fed with *Artemia* umbrella, enriched rotifer and rotifer from Z1 to Z2 stages followed by *Artemia* nauplii, enriched *Artemia* nauplii and commercial diet, respectively from Z3 to megalopa. Highest larval stage index (LSI), significantly higher (p<0.05) megalopa and crablet survival was achieved from enriched rotifer followed by enriched *Artemia* feeding schemes that had the eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), n-6 to n-3 and EPA to DHA ratios of 17.32%, 3.82%, 0.20 and 0.22, respectively in megalopa for subsequent metamorphosis to crablet. Growth of mud crab displayed the sigmoid pattern for both sexes with significantly higher (p<0.05) weight gain in males. The female mud crab grew faster (p<0.05) in outdoor tanks, but survival and the proportion of intact crabs were higher (p<0.05) under indoor compartment and outdoor floating boxes. The male crabs attained sexual maturity following spermatogonia, spermatocytes and spermatozoa, whilst, the females completed gonad maturity through proliferation, previtellogenesis, primary vitellogenesis, secondary vitellogenesis and tertiary vitellogenesis. The first sexual maturity appeared at 5 months and 5 to 5.5 months for male and female crabs, respectively, after settlement as crablet. The median maturity age (MA₅₀) was 6.5 months and 6.5 to 7 months for male and females, respectively. Faster maturation in male, asynchrony in intra-sexual and simultaneous intersexual maturation was
observed. Mud crab completed the mating with sequential behavior of courtship, pre-
mate guarding, moulting, copulation and post copulation guarding. Time spent in
each step showed strong-linear relationship (p<0.01) with either male or female body
size under 1:1 ratio. Findings on operational sex ratio (OSR), guarding time (GT) and the proportion of intact females under communal mating suggested that the 2: 4 to 2: 8 male-female ratios as superior that had densities of 1.2 to 2/m², respectively.
Reproductive performance and larvae quality seemed similar (p>0.05) among
domesticated and natural broodstocks, except higher fecundity and amount of
phototaxis larvae in natural broodstock. In case of successive spawning from a single
mating event, the 1st and 2nd spawning had higher fecundity and lower dropped eggs.
The essential fatty acids of EPA, DHA, total n-3; and total essential amino acid
(EAA) were significantly higher (p<0.05) in 1st and 2nd spawned larvae, thus
withstanding longer time (p<0.05) against starvation than the 3rd spawned larvae.
Pragmatically, mud crab broodstock could be developed successfully under captive
condition that might support uninterrupted hatchery operation.
CHAPTER- 1

GENERAL INTRODUCTION

1.1 Background

World fish production has increased at a steady rate since the last five decades, whereas, both aquaculture and capture based fisheries have increased dramatically during the immediate past decade (FAO, 2014). Aquaculture has expanded tremendously by means of culture area, farming system, the adoption of new technologies and species diversification, but still to date, the total global aquaculture yield is somewhat lower than capture based fisheries yield, thereby accounting for 46% of total fish food supply (FAO, 2014). The world aquaculture production of edible fish has reached more than double from 32.4 million tons in 2000 to 70.5 million tons in the year 2013 (FAO, 2014). Asia has occupied top world ranking by producing 88.39% of total edible food fish, of which, China has contributed 61.69% as the single largest producer (FAO, 2014). Even though, in 2010, China’s aquaculture production has collapsed by about 1.7 million tons as a result of disease, natural disaster and environment pollution, China is still the top ranking nation among Asian countries (FAO, 2014).

In world aquaculture, among the major groups, crustacean aquaculture has diversified rapidly and the production has increased exponentially during the last decade. In 2012, the world aquaculture production was dominated by freshwater finfish (57.9%), whereas, crustacean augmented a production of 6.4 million tons, which was 9.7% of total aquaculture food fish production and 22.4% of that of the
Among crustaceans, only penaeid shrimps, freshwater prawns and crabs are being cultured commercially (Wickins and Lee, 2002) and white leg penaeid shrimp has been regarded as the largest commodity and highly valued species, thereby accounting for 1.6 million metric tons of production in 2002 (Rosenberry, 2003) with 15% of the international trade value of fishery products in the year 2008 (FAO, 2011). During the year 1994 to 1997, shrimp aquaculture had severely faced the outbreak of white spot syndrome virus (WSSV) and yellow head virus (YHV) (FAO, 1997; Hill, 2002), which resulted in significant financial losses in the sector (FAO, 1997; Flegel and Alday-Sanz, 1998). This has caused the farmers to find alternate species of shrimp, which are hardy, practical, commercially important and environmentally friendly (FAO, 1997) to be cultured in extensive shrimp ponds (Christensen et al., 2004).

Apart from shrimp, mud crab aquaculture has subsequently attracted the attention within a short time and this has accelerated the production tremendously. The global mud crab production of 10,000 tons in 2001 (FAO, 2002; FishStat, FIGIS) has drastically increased to 140,321 tons, which contributed a total value of $396 million in the year 2010 (FAO, 2011). The global production of mud crab had increased rapidly during the early 21st century, after showing fluctuations during the later part of the 20th century. According to FAO (1997), the global production decreased to almost half in 1995 (3,000 tons) compared to that of the production in 1993 (6,000 tons) which had been reportedly associated with the production fluctuations of major crab production in some countries. Sri Lankan’s export of the crab had decreased from 973.75 MT in 1985 to a minimum level of only 45.02 MT in 1990 (Jayamanne, 1991). In the Philippines, mud crab production increased gradually from 1983 and
in 1989 the total production was recorded as 1610 MT, it declined in 1990 to the level of 179 MT but further increased 2782 MT in 1995 with an average production of 920 kg/ha (Fortes, 1997). Such type of regional fluctuations in crab production was primarily associated with the indiscriminate destruction of natural habitat, especially the mangroves (Hill, 2002; Sombat, 1991; Walton et al., 2006; Shelley and Lovatelli, 2011). However, the global production of mud crab further increased radically to 173,068 tons in 2012 (FAO, 2014; FishStat, FIGIS) and this was mainly associated with the over exploitation of the resources around the Indo-Pacific Ocean (Le Vay et al., 2007); indiscriminate harvests of all size groups to gain more incentives (Takeharu, 2001; Kosuge, 2001) and partial support from hatchery produced seeds to grow out which added a considerable aquaculture production to the total yield (Shelley and Lovatelli, 2011).

Mud crab is an export oriented commodity being captured, cultured for long duration or fattened within short time and exported in live forms, whereas soft-shell crabs are exported in frozen form. Mud crab has rapidly drawn the attention of farmers due to its giant size, fast growth, a hardy nature and its relatively high immunity to diseases (Keenan, 1999; Shelley and Lovatelli, 2011). With its high quality flesh, luxurious taste and richness in protein, vitamins and minerals (Radhakrishnan, 2000) mud crab is considered as a valuable item for seafood restaurants in many countries. Mud crab has a thriving market in China, Japan, Korea, USA, Hong Kong and Thailand (Ferdoushi et al., 2010), while mud crabs from Bangladesh are exported to Taiwan, Singapore, Hong Kong, Malaysia, Thailand and USA (Chandra et al., 2012). The demand of live mud crab, soft-shelled crab and crab meat has been increasing tremendously worldwide (Cholik, 1999; Keenan, 1999; Wickins and Lee, 2002).
However, as an emergent species in aquaculture, mud crab (*Scylla* spp.) has become a non-conventional fishery commodity playing a vital role in foreign exchange earnings, income generation and livelihood improvement for poor people globally in the coastal region, especially in South-East Asian countries. Thus, mud crab has become the key research interest to many crustacean research groups.

1.2 Mud crab aquaculture, research and constraints

At the beginning, mud crab was considered as monospecies of *Scylla serrata*, according to Stephenson and Campbell (1960). On the basis of morphometric and genetic characteristic, Keenan *et al.* (1998) further revised the classification into four distinct species, viz, *Scylla serrata*, *S. olivacea*, *S. paramamosain* and *S. tranquabarica*. *Scylla serrata* is large in size and has the widest distribution. *Scylla* species are mainly discovered in areas of the Indo-West Pacific Ocean to the Red Sea as well as along the seas of Australia, Taiwan, Philippines, South Africa, Japan, the Pacific Islands (Keenan *et al.*, 1998) and other tropical and sub-tropical regions. *Scylla* species are large in size and able to tolerate a wider range of ecological conditions (Hill, 1979). Naturally, mud crabs are moderately resistant to diseases and they grow faster by consuming a wide variety of foods (Williams and Primavera, 2001).

In the natural life cycle, mud crabs are euryhaline, usually preferring to inhabit in the intertidal mud flats, shallow lagoons, rocky sheltered estuaries, and bushy mangrove forests (Hill, 1974; Robertson, 1989; Le Vay, 2001). The juveniles are relatively abundant in intertidal mud flats within estuarine mangroves, whereas the adults are more plentiful in the estuarine subtidal regions (Le Vay, 2001; Shelley and Lovatelli, 2011). This type of different habitat selection is mainly associated with the growth
and maturity of mud crab through moultng (Du Plessis, 1971). The maturity stages of mud crab have previously been studied by many researchers (Poovachiranon, 1992; Robertson and Kruger, 1994; Quinitio et al., 2007; Islam et al., 2010; Islam and Kurokura, 2012; Azmie et al., 2012) on samples collected from wild sources. All the collected samples were not individually identified, thus might have possibilities of mixture of different age groups, originating from different parents or have more than a single species. However, all those studies have been conducted from the stock management point of view (Goshima et al., 2000; Conan et al., 2001) for minimum legal size implementation. It is strongly believed that a clear concept of first sexual maturity of both male and females of the same age group would enable the hatchery manager’s to manage successful copulation (mating). Any mistake in determining the sexual maturity period might cause unsuccessful mating or eventually cause the death of the female due to the aggressive nature and cannibalistic behavior of the partner as the female remains in a vulnerable state during moultng (Churchill, 2003; Shelley, 2008). On the other hand, an understanding of gonad maturation stages is a prerequisite for breeding and the establishment of hatchery management protocol such as when and what should be done. However, there are still no documented records of maturity study of hatchery reared same age group of animals.

Mature broodstock move to the estuary and inshore areas in search of mates for copulation. Mating takes place in the estuarine environment as the female remains in its soft shell condition at pubertal moultng (Churchill, 2003, Shelley, 2008). However, the mating of mud crab is a complex and risky process for the female and there is no documented information on the mating process, male-female interaction and male-female density or ratio for successful mating. During mating, the sperms
are transferred into the spermathecae of the female, stored therein for a long time, even after moult ing (Bliss, 1983). Female mud crabs are capable of fertilizing three successive batches of eggs from the stored sperms without further mating (Churchill, 2003; Shelley and Lovatelli, 2011). This capability of the female mud crab is therefore an opportunity for the hatchery managers to save time in searching or rearing of the new broodstock. This will minimize the cost of purchasing new broodstock or for the rearing of the males. However, still to date, a majority of hatchery managers or even researchers have to only use the females for the first spawning. This is either due to their ignorance about successive spawning or because they believe that successive spawning would not produce good quality larvae. However, there are still no published documents on the successive reproductive performance and larvae quality from a single mating except for some preliminary reports on reproductive performance made by Quinitio et al. (2010).

Immediately after mating, the female will migrate to the sea where spawning and hatching takes place (Ong, 1966; Shelley and Lovatelli, 2011), while mature females migrate out of estuaries into the deep sea to spawn and stay there until the eggs hatch (Hill, 1975; Heasman and Fielder, 1983; Hill, 1994; Shelley, 2008). The newly hatched larvae will stay in the deep sea until it reaches into crablet and migrate back to the estuarine environment, intertidal mudflats and mangroves (Keenan, 1999) to grow further. This type of catadromous behavior and frequent change in habitat is the main constraint of sufficient data collection on the crucial phases of the mud crab life cycle.

Virtually, mud crab aquaculture was first started traditionally in China more than 100 years back and gradually spread over to other Asian countries for the last 30
years (Keenan, 1995; Shen and Li, 1994). Meanwhile, mud crab aquaculture has been diversified worldwide with the adoption of farming technology, including the grow out in earthen ponds (Duc, 1997; Kennan, 1995; Tuan and Hai, 1992; Trino et al. 1999; Trino et al. 1999a; Catacutan et al., 2003), pen culture (Trino and Rodriguez, 2002; Agbayani, 2001; Ikhwanuddin et al., 2011), the fattening in communal basis (Csavas, 1995), individually fattening in boxes or cages (Cholik and Hanafi, 1992; Liong, 1992; Felix et al., 1995; Sivasubramain and Angel, 1992; Begum et al., 2010; Shelley and Lovatelli, 2011) and soft shell shedding (Sivasubramain and Angel, 1992; Shelley and Lovatelli, 2011). The survival rate has increased from 40% up to 75% for the grow out (Cholik and Hanafi, 1992; Macintosh et al., 1993) and more than 90% for the individual fattening (Begum et al., 2010). All these led to a drastically increased global production of 173,068 tons in 2012 (FAO, 2014; FishStat, FIGIS) and has turned the industry as a promising sector globally.

Despite the emerging industry, the bottleneck that hinders further expansion and commercialization of mud crab aquaculture is the dependence on natural juveniles as seed (Williams and Primavera, 2001). This is because the natural seeds are not sufficient to support the present size of the mud crab industry (Cowan, 1984; Liong, 1992) thereby making the industry unreliable and unsustainable (Le Vay, 2001). Hatchery technology, ie, a sustainable seed production protocol in commercial scale, is the pre-requisite for sustainable development that will help to further flourish mud crab aquaculture (Camacho and Apya, 2001; Shelley and Lovatelli, 2011). In fact, seed production technology for some of the commercial marine fin fish species (Phelps, 2010) and that of some crustacean (Penaeid shrimp and giant freshwater shrimp) has been established successfully (Mahmud, 1993; Uddin et al., 2013). Until
today, the seed production of mud crabs seems difficult due to the low and inconsistent quantities of crablets production. In many Asian countries, the seed production of mud crab is still under experimental stages, including Malaysia. Despite the low survival rate of larvae from early zoea to crablet stage, Vietnam, China, Philippines, Japan and Australia are trying to produce crablets in commercial scale (Shelley, 2008). Although, in recent years, the average survival rate has increased (Wang et al., 2005) it is still not sufficient for the global demand, it is even far back from the recent need of the seed producer countries though it has a big support from natural seeds.

The reasons behind this low rate of seed production is mainly associated with its sole dependence on natural broodstock (Keenan, 1999; Shelley, 2008), the unavailability of required good quality broodstock in due time (Robertson and Kruger, 1994) and coupled with unpredictable reproductive performance and unreliable larvae quality of the natural broodstock (Churchill, 2003; Quinitio and Parado-Estepa, 2008; Thach, 2009). The reproductive performance and larvae quality often vary within species (DeMartini, 1991), depending on the ambient environment where they were grown and developed (Brooks et al., 1997), and especially by temperature as well as seasonal rainfall (Heasman et al., 1985). The maternal factors which vastly affect the reproductive performance and larvae quality involve the diet of the brood, endocrine status at the time of oocyte development and subsequent physiological condition of brood (Brooks et al., 1997). Indeed, egg and larvae quality are strongly regulated by the instinct nutrient which they receive from the maternal side during oogenesis and embryogenesis (Luquet and Watanabe, 1986). However, nutrition in broodstock affects the egg and larvae quality in fish (Lavens et al., 1999; Kabir, 2012), in
crustaceans (Lavens et al., 1991; Palacios et al., 1998) and in crabs (Millamena and Quinitio, 2000; Djunaidah et al., 2003; Veronica et al., 2007a). Thus, the biochemical composition of eggs and larvae has been regarded as a prospective indicator for the assessment of eggs and larvae quality (Brooks et al., 1997; Bell et al., 1997).

Despite the potential roles of the biochemical composition of eggs and larvae to determine larvae quality, a majority of the studies focused on macro-nutrients, i.e. proteins, fats and carbohydrates (Brooks et al., 1997). Of course, the level of lipid plays a vital role in egg formation, while the composition or quality of lipid i.e, fatty acid composition, regulates the quality of eggs and larvae of fish (Harel et al., 1994; Carrillo et al., 1995; Kabir, 2012) and also of crustaceans (Harrison, 1990; Jones et al., 1997; Churchill, 2003). Indeed, one of the major nutritional factors that has been found to significantly affect the reproductive performance of fish is the essential fatty acid contents (Watanabe et al., 1984b; Kabir, 2012). The percentage of morphologically normal eggs and viable larvae has been found to have an increased level of n-3 HUFA (Fernandez et al., 1995; Jones et al., 1997; Churchill, 2003). Besides, the level of protein, the amino acid composition in protein is also considered as an indicator to assess the quality of eggs and viable larvae, as major free amino acids decrease with egg embryogenesis (Veronica, 2004).

In these circumstances, domesticated broodstock development might be the best solution for smooth and uninterrupted management of hatchery protocol to support the extended demand of seeds. It has been strongly believed that a captive broodstock would augment sufficient precise information on biological perspectives, including growth, maturation, mating and spawning, as well as on nutritional
requirement. Only captive broodstock could allow nutritional requirement study and enhance genetic selection for resistance to disease (Bachere et al., 1995) which might upgrade the egg and larvae quality and ensure quarantine indeed. Broodstock development of many commercial fish species (Nguyen et al., 2010; Kabir, 2012), some of the marine fish such as grouper (Mathew, 2009; Ranjan et al., 2014) and crustacean, such as giant freshwater prawn (Mohanta, 2000) has been established and has provided a significant contribution for the successful hatchery operation. However, broodstock management is still definitely one of the most poorly researched areas for those species newly introduced in commercial farming, such as mud crab. Studies on broodstock development of mud crab is still limited and scanty except for the partial observation made by Churchill (2003) and Quinitio et al. (2010), who collected gravid broods of Scylla serrata from wild or pond sources and managed their breeding after a short rearing.

However, majority of the research and development on the mud crab aquaculture has been done especially on Scylla serrata. The green mud crab Scylla paramamosain as a potential candidate providing lion share of production in the South-East Asian countries is poorly researched yet. Little is known about captive broodstock development, breeding and larvae rearing of Scylla paramamosain in Malaysia, even globally. By taking into consideration as a whole, this study aims to develop protocols for the development of broodstock of the green mud crab (Scylla paramamosain) in captivity and the management of breeding as a baseline guide with the emphasis on reproductive performance and larvae quality assessment through morphological, physical and bio-chemical component evaluation.
1.3 Broader research themes

The aim of this study is to domesticate the green mud crab (*Scylla paramamosain*) broodstock under exclusively captive/hatchery conditions, maturation and breeding and to observe the reproductive performance and larvae quality.

1.4 Specific objectives

The specific objectives of this study are:

i) To determine the effect of different natural and commercial diet on larvae rearing of the green mud crab *S. paramamosain*;

ii) To assess the impact of different grow out protocols on growth, survival and suitability as broodstock of the green mud crab *S. paramamosain* in captive condition;

iii) To determine the age and size at first maturity and gonad developmental stages of the green mud crab in captive condition;

iv) Assessment of mating behavior, male-female interactions and optimum male-female ratios in captive mating of the green mud crab (*Scylla paramamosain*); and

v) To evaluate the reproductive performance and larvae quality of green mud crab *S. paramamosain* successively spawned from the single mating event in captive condition.
CHAPTER- 2

LITERATURE REVIEW

2.1 General information

2.1.1 Taxonomic classification, morphology and identification

Mud crab, under the genus *Scylla*, is known as mangrove crab or swimming crab. It is also known as portunid crab, based on its family. The taxonomic classification of mud crab (Stephenson and Campbell, 1960) is as bellows:

- Phylum: Arthropoda
- Class: Crustacea
- Subclass: Decapoda
- Infraorder: Brachyura
- Family: Portunidae
- Genus: *Scylla*
- Species: *S. serrata*, *S. olivacea*,
 S. tranquebarica, *S. paramamosain*

Broader carapace with smooth surface and large claws are the main identifying characteristics of mud crab that makes it different from other crab species. Mud crab contains six spines at the frontal margin in between the eyes and nine spines on each anterolateral margin (Stephenson and Campbell, 1960; Keenan *et al*., 1998). The carapace width can reach up to 24 cm and total body weight attains as much as 3.5 kg for *S. serrata*. The body color of the mud crab differs from species to species and generally ranges between dark brown to mottled green (Keenan *et al*., 1998; Shelley and Lovatelli, 2011). Male mud crabs are easily distinguishable from that of the female with their narrow abdominal flap and strong, larger claws (Phelan and Grubert, 2007).
Table 2.1 Distinguishing characteristics of four species of the genus *Scylla* (modified after Kennan *et al.*, 1998)

<table>
<thead>
<tr>
<th>Species (English name)</th>
<th>Frontal spine</th>
<th>Chelaepods</th>
<th>Color and polygonal marking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shape</td>
<td>Height</td>
<td>Carpus spines</td>
</tr>
<tr>
<td>Scylla serrata (Giant mud crab)</td>
<td>pointed</td>
<td>High</td>
<td>both present</td>
</tr>
<tr>
<td>S. tranquebarica (Purple mud crab)</td>
<td>blunt</td>
<td>Moderate</td>
<td>both present</td>
</tr>
<tr>
<td>S. olivacea (Orange mud crab)</td>
<td>rounded</td>
<td>Low</td>
<td>inner absent, outer reduced</td>
</tr>
<tr>
<td>S. paramamosain (Green mud crab)</td>
<td>triangular</td>
<td>moderately high</td>
<td>inner absent, outer reduced</td>
</tr>
</tbody>
</table>

Plate 2.1 Photos showing four distinct species of mud crab (*Scylla sp*); A: *Scylla serrata*, B: *S. paramamosain*, C: *S. olivacea*, and D: *S. tranquebarica* (Keenan *et al.*, 1998)
2.1.2 Ecological and regional distribution

Mud crab is distributed from the Indo-West Pacific Ocean to the Red Sea along with in Australia, Taiwan, the Philippines, South Africa, Japan and the Pacific Islands (Keenan et al., 1998) and other tropical and sub-tropical regions. Among four distinct species, S. serrata is largest in size and widely distributed in Japan, Western Indian Ocean and South Pacific Islands. S. tranquebarica and S. olivacea are mainly spread over the Indian Ocean, South China Sea and the Western Pacific region, whereas, S. paramamosain is restricted within the South China Sea and Java Sea (Le Vay et al., 2001b). In Asian countries, mud crab is distributed in Bangladesh, Myanmar, Sri Lanka, India, Thailand, Vietnam, The Philippine, Malaysia and Cambodia (Kennan, et al., 1998). In Malaysia, Scylla olivacea and Scylla tranquebarica are plentiful in Sarawak (Ikhwanuddin and Oakley, 1998), but Scylla serrata is mainly found in Perak (Takeharu, 2001). Whilst, Darlina et al. (2012) stated the absence of S. serrata in the Malaysian environment during their study of molecular analysis (DNA) of mud crab samples collected from different locations of Peninsular Malaysian coasts. In Bangladesh mud crabs are found in the southeast and south-west coastal districts, while abundant in Khulna, Bagerhat and Satkhira districts (Zafar and Siddique, 2000) of the south-west coastal region those are adjacent to the Sundarbans mangrove forest but the species composition not yet identified.

2.1.3 Local distribution, habitat and niche selection

Mud crabs are capable to withstand wider ecological variations, mainly salinity and temperature fluctuations (Hill, 1979) and are known to be euryhaline species (Hill, 1974; Robertson, 1989; Le Vay, 2001). Mud crabs are capable to tolerate salinity ranges from 5 to 40 ppt (Shelley and Lovatelli, 2011). In natural habitat, mud crabs
ingest varieties of food; grow faster and moderately capable to resist disease (Williams and Primavera, 2001). Diversified habitat selection of mud crab is mostly associated with size and the ontogenetic developmental stages (Churchill, 2003). Mud crabs usually prefer to inhabit in the intertidal mud flats, shallow lagoons, rocky sheltered estuaries, and bushy mangrove forests (Hill, 1974; Robertson, 1989; Le Vay, 2001). Different size groups inhabit separate niches within the mangrove forests and the adjoining sub-tidal areas (Walton et al., 2006). Smaller juveniles occupy within sea grasses, seaweeds and bushy mangrove roots of the shallow waters to further upstream (Chandrasekaran and Natarajan, 1994). Juveniles are plentiful in the estuarine intertidal mud flats, while, adult crabs with carapace width >8 cm are copious in the estuarine sub-tidal areas (Le Vay, 2001). In the case of *Scylla paramamosain*, small crablets of carapace width up to 1.5 cm settle on the outer mangrove edge and move to deep forest as size increased, while larger crabs with carapace width 4.5 cm prefer to live in burrows in the sub-tidal zone with feeding migration to the forest at high tide period, whereas main adult crabs permanently live in sub-tidal, offshore (Shelly and Lovatelli, 2011). Most of the crabs show little movement within the local niche of typical mangrove forest (Hill, 1975; Le Vay et al., 2007). Thus, the boundary of the mangroves and mud flats is identified as an area that can support higher densities of crabs (Shelly and Lovatelli, 2011).

2.1.4 Life cycle and migration

Mature male and female moves to the estuary and inshore areas to find mates for copulation. Mating takes place in the estuarine environment as the female remains in soft shelled condition at pubertal moult (Churchill, 2003). As the matting is completed the female migrate to the offshore for spawning and stay until hatching
the eggs to first zoea (Hill, 1975; Heasman and Fielder, 1983; Hill, 1994). Spawning takes place in the offshore region with favorable salinity of 30 to 31 ppt. Mud crab is highly fecund and individual female can produce approximately 1 to 6 million of eggs per spawn (Shelley and Lovatelli, 2011) depending on size. Hatching and larval development occurs in the offshore region and the larvae spends about 30 days as a planktonic form and complete 6 larval stages (5 zoeal stages, Z1 to Z5; and a megalop stage) which leads to the crab instars (Phelan and Grubert, 2007; Shelley, 2008). The first crablet then enter into the estuarine environment and settle down on intertidal mudflats and mangrove shelters (Keenan, 1999) for grow out and attains maturity.

2.1.5 Natural food and feeding habit

Mud crab prefers to feed on a variety of foods and thus they are opportunistic omnivore (Warner, 1977). However, in some cases, they are passive carnivores and herbivores, scavengers and cannibals, prefer to ingest anything that encounter, including bivalves, worms, fish, as well as vegetative material and smaller crabs (Phelan and Grubert, 2007). Juvenile crabs have frequent movement and feed on small crabs, prawns, small fishes and other tiny invertebrates (Joel and Sanjeevaraj, 1986). Adult crabs have no specific feed items and feeds on carrion, molluscs, prawns, submerged vegetation and detritus (Hill, 1979; Joel and Sanjeevaraj 1986; Paterson and Whitfield, 1997). However, environmental factors such as temperature and physiological factors like moult condition, mostly regulate feeding activity of mud crab (Phelan and Grubert, 2007).
2.2 Mud crab aquaculture and production

Initially mud crab was harvested as a bycatch from the brackishwater shrimp ponds and from other brackishwater fin-fish or integrated aquaculture systems, without stocking of crablets. Such type of mud crab aquaculture was first initiated in China before 100 years back and gradually spread over to other Asian countries (Keenan, 1999; Shen and Lai, 1994).

From past to date, mud crab aquaculture evolved two major types of practice, grow out and fattening/hardening; while the recent addition in mud crab aquaculture is soft shell crab shedding. In grow out system, juvenile crabs of body weight 10 to 100 g each are stocked in earthen ponds or mangrove pens and cultured for 3 to 8 months (Duc, 1997) until reach to marketable size. The stocking density remains 500 to 1000 crabs/m² (Keenan, 1999) however, the survival rate is poor (<40%). In Vietnam, during the 1990s, from integrated aquaculture of shrimp, seaweed and mud crab practice, augmented production of 150 kg/ha for mud crab and 150-250 kg/ha for shrimp (Tuan and Hai, 1992). Survival in earthen pond culture is usually lower due to cannibalism and escaping (Liong, 1992). While, in monoculture with densities from 5,000 to 10,000 crabs/m² and provision of adequate shelter like seaweed following selective harvesting (Trino et al., 1999) and supply of feeds with low-cost vegetable and animal source (Catacutan et al., 2003; Rodriguez et al., 2003) can contribute better harvests of 340 kg crab/ha/year (Tuan and Haï, 1992). In Vietnam, mud crab farming with the stocking densities of 1-1.5/m², produce 1.5t/ha of crab per crop with an average body weight of 300 g to 450 g when fed with small fish and molluscs (Nguyen Co Thach, 2003).
Secondly, pen culture has been practiced in deforested and/or reforested mangrove flats with stocking densities of 2.5 to 5 crabs/m2 which leads to better survival and production (Agbayani, 2001; Trino and Rodriguez, 2002). In Malaysia, mud crab culture is conducted in mangrove ecosystem, but farming is still limited due to the scarcity of seed supply (Chang, 1997). Survival in grow out seems lower (40 to 60%), sometimes exceed 75%, depending on grow out facilities (Cholik and Hanafi, 1992; Macintosh et al., 1993) including regular feeding and provision of adequate shelters.

Amongst all types of mud crab aquaculture practices, fattening is regarded as a popular method, simplest procedure and higher turnover within short duration. In fattening, crabs with insufficient meat content or female crabs without sufficient gonad or with immature gonad (body weight >250 g) are reared for a short period, usually within 10 to 20 days (Csavas, 1995), feeding with trash fish or waste products to build as a value added product. Fattening is done in earthen ponds, fencing by nylon net or bamboo splits with a stocking density of 5 to 15 crabs/m2, where the production and survival is low in pond culture due to cannibalism and escaping (Liong, 1992). To avoid escaping and cannibalism, fattening is done in sophisticated methods by stocking of individual crabs in separate bamboo made boxes/compartment, net cages or in galvanizing wire boxes (Cholik and Hanafi, 1992; Liong, 1992; Felix et al., 1995; Shelley and Lovatelli, 2011) or in floating cages/boxes (Sivasubramain and Angel, 1992) and this increased the survival rate more than 90% (Begum, et al., 2010) and cannibalism is low as no moulting takes place (Rattanachote and Dangwattanakul, 1992). The majority of cannibalism happened during grow out period due to frequent moulting (Shelley and Lovatelli, 2011).
In mud crab aquaculture, latest addition is the soft shell crab production with sub-adult crabs (around or <100 g) under indoor conditions in plastic or fibre glass tanks; in outdoor floating cages (Sivasubramain and Angel, 1992), plastic boxes or bamboo made compartments floating on the pond water surface to shed single crab in each box/compartment (Shelley and Lovatelli, 2011). Newly moulted crabs are picked out immediately (within 6 hours) before their shell hardened, processed and frozen for export.

Shelley (2008) reported that the production of mud crab in Malaysia has decreased from 623 tons in 1995 to 162 tons in 2005 and mud crab production is dominated by China with a production of 11423 tons in the year 2005. In Bangladesh, mud crab production is season based and a production of 6945.62 tons was recorded in 2010 from Khulna-Satkhira-Bagerhat district, which is the major crab producing area (Chandra, et al., 2012).

The trend in global production of mud crab is shown in Fig. 2.1. Up to 2001 the aquaculture production was lower than the natural harvest. Though the production of mud crab has shown an increasing trend since 1980, but had fluctuations during the late 20th century (1990 to 2002). By that time, over-exploitation in coupled with natural disaster (Tsunami, cyclone, etc.) affected the mud crab production in some Asian countries like Sri Lanka, Japan, Malaysia and Philippine (Jayamanne, 1991; Fortes, 1999; Takeharu, 2001; Shelley, 2008). Since 2003, the natural harvest has increased gradually but the aquaculture production has increased dramatically. Diversification of farming system by means of culture pattern (like grow out, mangrove pen culture, fattening and soft-shell shedding) and cultural areas as well as the partial support of hatchery produced seeds are triggering factors for the drastic increase of aquaculture production in the last decade.
2.3 Demand, market price and export of mud crab

All forms of marketable sized mud crabs are sought as luxury seafood items. Mud crabs are exported in live forms and the main markets of the mud crab include China, USA, Japan, Korea and Thailand (Ferdoushi et al., 2010). The market price of crabs varies from country to country, seasons, occasion and especially on size, sex and condition of the crabs; live gravid females demand premium prices (Keenan, 1999; Agbayani, 2001) than other forms in Asian countries. In Malaysia, intact female full with ovary priced from RM 28 to RM 60/kg (personal market survey). A growing market demand for frozen, soft-shelled mud crab have also been noticed in the USA, and demand of mud crab meat for value added in products is mounting internationally (Cholik, 1999; Keenan, 1999; Wickins and Lee, 2002). In Malaysia, about two tones of mud crabs are being imported daily from India, Indonesia, Sri Lanka and Bangladesh (Sivasubramain and Angel, 1992), which indicates a shortage of mud crab production and high requirement to mitigate local market demands and increasing over the years (Muchlisin and Azizah, 2009).
2.4 Broodstock

2.4.1 Grow out and maturation

Like other crustaceans, growth of mud crab occurs through regular moult ing. Any interruption in moult ing may cause a slowing down in growth, susceptible to disease or eventually may die. Growth of mud crab varies depending on sex, species, while males grow faster than female (Trino et al., 1999; Christensen et al., 2004). Mud crabs usually undergo 16 to 17 mouls in its total life span of 3 to 4 years, of which 6 times at the larvae stage (Z1 to C1), 2 times at the crablet stage (C1 to C3), 5 to 6 at grow out stage followed by 1 pubertal moult ing to attain sexual maturity, whereas, the remaining two/three mouls occurs during further reproductive re-maturation (Shelley and Lovatelli, 2011). The intermoult duration increase as the crab grew bigger, like that of other crustacean such as spiny lobster (Ehrhardt, 2008). It has been reported that, generally all species of mud crab attain maturity within one year from settling as crablet (C1), S. serrata shows maturity signs at 147 days (Field, 2006 by Shelley, 2008), whereas, S. paramamosain within 160 days with carapace width of approximately 10.2 cm (Le Vay et al., 2007). Mean carapace width (CW) measures approximately 8.6 cm at median sexual maturity (CWm) for wild female crabs in Thailand (Tongdee, 2001), while, as estimated by applying a logistic model it was found that 50% of the wild female S. olivacea attained first maturity at a mean carapace width (CW) of 9.55 cm (Jirapunpipat, 2008) from the same agro-ecological environment. Hamasaki et al. (2011) studied the size at sexual maturity of natural S. paramamosain and stated that 50% of the females reached maturity (SM50) at 112.0 mm carapace width and for the male the maturity (SM50) happened at the 106.4 mm CW on the basis of allometric growth of chela height and carapace width ratio. Mud crab (S. serrata) in East Africa showed a sigmoid pattern in carapace width...
increment, reached sexual maturity around 9.9 months after settlement with 300 g of weight (Moksnes et al., 2014) and growth in cage culture system was about 40% lower than the natural pond system culture, they added.

It is noteworthy to mention that mud crab attains the functional maturity through a series of step-wise gonad/physiological maturation process (Poovachiranon, 1992; Robertson and Kruger, 1994; Quinitio, et al., 2007; Islam et al., 2010; Shelley and Lovatelli, 2011; Islam and Kurokura, 2012; Azmie et al., 2012), which is expressed by several morphological features like abdominal shape and color for the female. Male mud crabs do not show any remarkable external characteristics except mating scars (Phelan and Grubert, 2007) and sudden increase in chelae height and propodus length (Islam and Kurokura, 2012).

Male mud crab of *Scylla olivacea* attains full sexual maturity with the completion of three gonad development stages (Islam and Kurokura, 2012). Five ovarian development stages are identified in natural female *S. paramamosain* (Islam et al., 2010) and *S. serrata* (Quinitio et al., 2007). On the other hand, ovarian development stages are classified into six stages in wild female *S. serrata* (Robertson and Kruger, 1994) and four stages in wild female *S. olivacea* (Azmie et al., 2012). This contradictory observation might happen due to collection of wild animal and improper identification followed by laps of any stages. Thus, the hatchery produced uniform animal is therefore able to provide exact information including age at maturity.
2.4.2 Reproductive behavior

Mud crabs are dioecious in nature and fertilization occurs through direct copulation between sexually matured male and female (Churchill, 2003). The entire mating system is a complex procedure and takes about for a few days of time, whereas, the actual mating (copulation) occurs at night during the high tidal period. The actual mating takes place as much as within 48 hours of pubertal moulting of the female as the shell remains soft (FAO, 2011; Shelley and Lovatelli, 2011), while the male is therefore in the hardened condition. At mating, the male transfer the enviable sperms into the spermathecae of the female and it is stored up to 6 months (Nghia et al. 2001a) or as long as the female spawn (Phelan and Grubert, 2007). The female can fertilize two to three successive batches of eggs without further mating with the male (Shelley, 2008). Immediately after mating, the female takes a long migration for searching a suitable spawning environment; ingest diverse type and huge amount of food to nourish the development of the gonad and the ovulation duration can be from 30 to 60 days after mating (FAO, 2011) or more.

2.4.3 Broodstock husbandry, feeding and management

To achieve satisfactory reproductive performance and larvae quality, a good husbandry facility for brood stock is necessary, including maintenance of hygiene, well feeding and minimizing of stress. Gravid brood stock needs to rear for a few weeks to spawn and can be reared in communal basis with a density of 1.5/m² in larger tanks, or separately in small tanks with shallow water depth (80 to 100 cm) for nutritional or genetic study (Shelley and Lovatelli, 2011). Unlike other commercial species, inert or commercial diet for mud crab grow out not developed yet. Most commercial diets developed for shrimp/prawn are being used for nutritional
experimental purposes of mud crab (Nghia et al., 2001a). Thus, gravid broods are generally fed with fresh natural diet, like small trash fishes, squid, mussel meat, and sometimes with slaughterhouse wastes (Quinitio and Parado-Estepa, 2008; Nguyen Co Thach, 2009). Raw feeds are offered at the rate of 6 to 10% of body weight daily (Millamena and Qunitio, 2000), at 8% of body weight (Trino, et al., 1999), at 5–15% of body weight per day with the frequencies of twice in a day (Shelley and Lovatelli, 2011). Thus produce large amount of detritus and deteriorates water quality. Regular cleaning of uneaten feeds and wastes and high exchange of water following manual or through a biofilter should ensure good water quality and hygiene condition for broodstock management (Quinitio and Parado-Estepa, 2008; Nguyen Co Thach, 2009; Shelley and Lovatelli, 2011).

2.4.4 Spawning behavior and management

It has been reported that, darkened condition that minimizes the stress and provision of sand bed or sand tray helps the proper arrangement of eggs into the pleopods, ultimately, enhance reproductive performance and hatching rates (Shelley and Lovatelli, 2011). Perhaps, a sand bed or tray may influence the moulting and act as catalyst for spawning. Immediately after spawning is completed, the spawner accumulates and aggregate the extruded eggs properly with the walking legs and attach them onto the filamentous setae of pleopods under the abdominal flap (Shelley and Lovatelli, 2011; Phelan and Grubert, 2007; Shelley, 2008). Spawning seasons of the mud crab are mostly temperature dependent. Spawning of the mud crab occurs throughout the year in the tropical region with a peak during the rainy season, whereas, in the sub-tropical areas of Southern China, the peak spawning season has been detected in summer season (Le Vay et al., 2001b). The fecundity of mud crab