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“If the brain were simple enough for us to understand, we 
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“What we know is enough to convince anyone that the brain, 

though complicated, works in a way that will probably 

someday be understood —and that the answers will not be so 

complicated that they can be understood only by people 

with degrees in computer science or particle physics.” 
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Abstract 

In this thesis, we investigated predictive coding and its relationship with 

perception and oscillations. We first reviewed my current understanding 

about facts of neuron and neocortex and state-of-the-arts of predictive 

coding in the introduction. In the main chapters, firstly, we proposed the 

idea that correlated spike times create selective inhibition in a non-

selective excitatory feedback network in a theoretical study. Then, we 

showed the perceptual effect of predictive coding: shape perception 

enhances perceived contrast. At last, we showed that predictive coding 

can use oscillations with different frequencies for feedforward and 

feedback. This thesis provided an innovative and viable neuronal 

mechanism for predictive coding and empirical evidence for excitatory 

predictive feedback and the close relationship between the predictive 

coding and oscillations.  

Keywords: predictive coding, temporal coding, excitatory feedback, 

oscillations 

  



Résumé 

Dans cette thèse, nous avons étudié le codage prédictif and sa relation 

avec la perception et les oscillations. Nous avons, dans l'introduction, fait 

une revue des connaissances sur les neurones et le néocortex et un état 

de l'art du codage prédictif. Dans les chapitres principaux, nous avons 

tout d'abord, proposé l'idée, au travers d’une étude théorique, que la 

temporalité de la décharge crée une inhibition sélective dans les 

réseaux excitateurs non-sélectifs rétroactifs. Ensuite, nous avons montré 

les effets perceptuels du codage prédictif: la perception de la forme 

améliore la perception du contraste. Enfin, nous avons montré que le 

codage prédictif peut utiliser des oscillations dans différentes bandes de 

fréquences pour transmettre les informations en avant et en rétroaction. 

Cette thèse a fourni un mécanisme neuronal viable et innovant pour le 

codage prédictif soutenu par des données empiriques démontrant des 

prédictions rétroactives excitatrices et une relation forte entre codage 

prédictif et oscillations.  

Mots-clés: codage prédictif, codage temporel, rétroactivité excitatoire, 

oscillation.  
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Résumé substantiel 

Dans cette thèse, nous avons étudié le codage prédictif et sa relation 

avec la perception et les oscillations.  

En introduction, il a été fait une revue des données empiriques qui nous 

semblaient fondamentales et universelles et un état de l'art des 

connaissances actuelles sur le codage prédictif.  

Dans le chapitre I, nous avons fait un examen théorique du codage 

prédictif, qui est au cœur de cette thèse. Puisque le modèle du codage 

prédictif classique n'est pas un modèle neuronal, nous avons proposé un 

modèle du codage prédictif basé sur la corrélation entre les moments 

de décharges neuronales. Cette étude a été motivée par les 

contradictions étonnantes dues à l'inhibition rétroactive: la rétroactivité 

peut avoir un effet à la fois sélectif et inhibiteur, alors que les connections 

rétroactives sont divergentes et excitatrices. Dans cette étude, nous 

avons démontré qu'il est possible de régénérer un effet d'inhibition 

sélective en utilisant la causalité entre les moments de décharges 

neuronales des aires supérieures et des aires les plus basses, et de la 

courbe de réponse entre phase et temporalité de décharge, une 

propriété de réponse fondamentale des neurones.  

Nous avons tout d’abord démontré, dans les simulations, que les 

neurones des aires les plus basses répondent moins à l'excitation par 

rétroaction (inhibition relative) quand le moment de décharge est 

corrélé avec les moments de décharge des neurones actifs dans les 

aires supérieures. Les mécanismes sous-tendant cet effet sont basés sur 

les différents déplacements vers l’avant des moments de décharge 
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neuronale pour différents temps de rétroaction par rapport au dernier 

moment de décharge du neurone de bas niveau. Les neurones 

prédictibles (ceux de bas niveau qui entrainent les neurones des aires 

supérieures) reçoivent des retours d'information juste après leurs 

dernières décharges, ces derniers ayant, par conséquent un effet très 

limité sur l'activité des neurones de bas niveau. D'un autre côté, les 

neurones imprédictibles (les neurones de bas niveaux qui n'entrainent 

pas les neurones des aires supérieures) reçoivent un déplacement vers 

l’avant moyen de la temporalité de leurs décharges. Nous avons ensuite 

montré les quatre facteurs qui peuvent influencer le retour d'information 

et la sélectivité basé sur le moment de décharge: la force du retour 

d'information, le délai de conduction axonal, bruit dans le système et la 

prévisibilité des neurones prédictibles. Nous avons montré que la force 

de retour de l'information permet de moduler la sélectivité de deux 

manières: d'une part au travers d'une relation monotone entre la 

sélectivité et le délai de conduction axonale (délai plus court et effet 

plus fort), et entre la sélectivité et la prévisibilité (les neurones de bas 

niveau plus prédictibles créent une sélectivité plus forte). Nous avons 

aussi montré la forte résistance de ce modèle face au bruit du système. 

Ensuite, nous avons démontré que la normalisation dans les aires plus 

basses peut transformer l'inhibition relative en inhibition absolue. Le 

principe computationnel proposé fourni un mécanisme neuronal viable 

pour un codage efficace avec une sélectivité basée sur des moments 

de décharge beaucoup plus flexible que la sélectivité traditionnelle 

basée sur les poids de connectivité.  

Nous avons subséquemment abordé la question du rôle de la plasticité 

dépendante des moments de décharge des neurones (« Spike-time 

depedent plasticity », STDP) dans de tels modèles. Nous avons montré 

que la corrélation entre les moments de décharge neuronale générée 
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dans le modèle peut bénéficier de la STDP pour augmenter les effets 

inhibiteurs et sélectifs existants.  

Dans le chapitre II, inspiré par les connections excitatrices rétroactives 

dans le modèle, nous avons employé une approche psychophysique 

pour évaluer l'effet perceptuel du codage prédictif puisque la majorité 

des études utilisant l'IRMf ont montré un effet inhibiteur du retour de 

l'information prédictif.  

Pour produire une rétroactivité prédictive, nous avons utilisé des stimuli 

similaires à ceux utilisés par Murray et collègues : c'est-à-dire des 

contours de formes en 3D et des versions de lignes aléatoires (Murray et 

al., 2002). Ces premières peuvent être facilement reconnaissables, et 

devraient normalement produire plus de rétroaction prédictive que ces 

dernières. Les deux types de stimuli (3D et lignes aléatoires) étaient 

montrés simultanément sur des disques gris à droite et à gauche d'un 

point de fixation sur fond noir. Les sujets avaient pour tâche de comparer 

la luminance de deux disques (et rapporter quel côté était le plus 

lumineux). Nous avons obtenu des réponses comportementales de 14 

sujets (incluant 2 sujets avec un oculomètre) et nous avons trouvé une 

réponse comportementale constante montrant que le disque derrière 

le stimulus en 3D était perçut comme plus lumineux contre un fond noir 

que le disque gris avec le stimulus composé de lignes aléatoires (sans 

sens). Puisque des études antérieures ont suggéré une relation 

monotone entre perception du contraste et activité dans les aires 

visuelles primaires (Dean, 1981; Boynton et al., 1999), nous interprétons 

ces résultats comme une preuve que la rétroactivité prédictive a un 

effet excitateur sur les activités sensorielles comme suggéré par notre 

modèle.  
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Nous avons effectué des expériences contrôles pour éliminer trois 

explications alternatives à nos résultats: un biais attentionnel, des 

facteurs locaux et un biais de réponse. Les manipulations effectuées 

pour réaliser les expériences contrôles incluaient le remplacement du 

point de fixation central par une tâche à forte demande attentionnelle 

(lettre RSVP), renversement de la polarité du contour des stimuli (de noir 

à blanc), la modification des instructions de réponse (en demandant 

"quel disque était plus foncé" au lieu de "quel disque était plus clair?), et 

en changeant la tâche des sujets (en tâche de perception 

même/différente luminance en demande "Est-ce que les deux disque 

avaient la même luminance?"). Ces expériences contrôles ont montré 

que les explications alternatives de nos résultats peuvent être écartées. 

Dans le chapitre III, nous avons décrit une étude sur la relation entre le 

codage prédictif et les oscillations. Puisque la théorie du codage 

prédictif suggérait que les interactions entre aires plus basses et aires 

supérieures étaient de nature itérative, il est intuitif de supposer que le 

codage prédictif bénéficie des oscillations neuronales et que les 

prédictions et les erreurs de prédictions pourraient moduler le traitement 

sensorielle périodiquement. Puisque la phase pourrait refléter l'état de 

l'oscillation, nous avons étudié la relation entre la phase pré-stimulus 

(puisqu'il n'y a pas de réinitialisation de celle-ci par le stimulus) et l'effet 

perceptuel du codage prédictif que nous avons observé dans l'étude 

précédente.  

Nous avons utilisé un paradigme similaire à l'étude précédente en 

induisant différentes quantités de rétroactivité prédictive (forme 3D ou 

lignes aléatoires), et nous avons mesuré les effets correspondant sur le 

jugement de la luminance comme marqueur pour chaque essai de 
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l'efficacité du codage prédictif en même temps que l'activité EEG était 

enregistrée. En analysant la relation entre décision après le stimulus et la 

phase de l'EEG avant le stimulus, qui est un marqueur de la phase 

présente lors que la prédiction arrive (après apparition de la forme 3D 

sa représentation dans les aires supérieures est renvoyée vers l’arrière), 

nous avons trouvé que deux oscillations spontanées avant le stimulus 

dans différentes régions et fréquences pouvaient fortement influencer 

le jugement de luminance: les oscillations thêta controlatérales frontales 

(aires supérieures) et les oscillations béta controlatérales occipitales 

(aires inférieures). La phase de l'oscillation thêta avant le 

déclanchement du stimulus pouvait expliquer 14% de la différence de 

jugement de luminance alors que la phase de l'oscillation beta pouvait 

en expliquer 19%. Des analyses contrôles ont éliminé la possibilité de 

contamination de la relation phase-comportement par des activités 

post-stimuli ou des artefacts oculaires. Ces résultats suggèrent non 

seulement que le codage prédictif est un processus périodique mais 

révèlent également deux périodicités avec des sources différentes: le 

cerveau renvoie les prédictions à une fréquence thêta, et les erreurs de 

prédiction à une fréquence béta. 

Pour conclure, nous avons effectué une discussion générale de cette 

thèse exposant ses forces et ses faiblesses et les possibilités de 

développement des thèmes abordés.   
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Introduction 
 

he brain is the hardware of our conscious self. We know that we 

use the brain to do different kinds of things everyday such as 

reading books, recognizing objects, identifying faces, driving cars, 

even when we are lying on the beach, we still need the brain to feel the 

heat from the sunshine on our back. It is amazing that nature itself could 

build this kind of organ. Even though neuroscience is a young field of 

research and there are so many questions we cannot answer, we are 

not absolutely ignorant about the brain.  

If we consider the brain as a machine, the fundamental pieces of this 

machine would be the neurons. The neurons are also called nerve cells, 

which are just nothing but one special kind of cells. However, one 

different point between neurons and other cells made neurons special: 

neurons send information through electrical and chemical signals via 

synapses. To start to understand the brain, the first thing we should 

understand is the neuron itself. The physical properties of individual 

neurons such as size, shape, axon/dendrites number and length are 

important since they determine physical possibilities of each neuron. 

Furthermore, different neurons’ morphology could be usually related to 

the types of neurotransmitters released from the neuron’s axon, which is 

important since it is directly linked to the functional role of each neuron. 

More importantly, neurons can connect together to form structures. 

Each neuron has its own dendrites and axons. The principle is simple: pre-

synaptic axon contacts the post-synaptic dendrites (sometimes, soma) 

T
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to form connections. However, the interconnections between different 

neurons and different groups of neurons are complicated. We could see 

this in two ways: if we want to understand the interconnections of one 

particular neuron, it is dependent on the properties of the surrounding 

environment of that neuron such as the density, location and 

surrounding neuron types. If we want to understand the interconnections 

between two connected neurons, the interconnections are dependent 

on the relative properties such as the relative hierarchical position 

(feedforward or feedback connections), relative distance and so on. 

One can imagine that the special physical properties are not the cause 

of functional purpose but the results of that. Since we have already 

observed common features of neurons and their structures, we should 

be able to infer the functional purpose.  

One structure in our brain probably has the most amazing functional 

purpose: the visual system. We see the world using the visual system, and 

gain most of the information from the outside world into our mind 

through this system. In the brain, we know that this system starts from 

retina (remember that the retina is a part of the brain), and there is a 

classical pathway to project the information to the back of the brain to 

the primary visual cortex, and then project back to the frontal area for 

decision and control (dorsal stream) or to the hippocampus for memory 

(ventral stream). Since the visual system is also formed by neurons, it 

should inherit features from neurons and the interconnection features 

between them. Nowadays, on one hand, we already know the basic 

mechanism of one single neuron, and we have enriched recording data 

from neurophysiology to know the features and connectivity of small 

groups of neurons; on the other hand, experimental psychologists and 

behavioral neuroscientists managed to help us to understand the 
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systematic functional purpose of the visual system using tools such as 

visual illusions, psychophysics experiments, and functional magnetic 

resonance imaging (fMRI) to locate the neuronal activation in the brain. 

However, the connection from the macro world and the micro world are 

not so clear: most models proposed by neurophysiologists are only trying 

to explain the recording data without considering any functional role, 

and most models proposed by experimental psychologists and 

behavioral neuroscientists are only trying to explain the functional role 

without considering the neurophysiological plausibility.  

Predictive coding is one of the theories that try to connect the macro 

and micro world. The idea behind predictive coding came long before 

the theory itself, from the efficient coding hypothesis. After the 

development of information theory in the end of 1940s, people wanted 

to explain the brain as a machine that reduces the amount of 

information and codes sensory input in the most efficient way. Under this 

influence, predictive coding is one implementation for this efficiency: 

the predicted response is inhibited by the feedback (prediction), and 

the feedforward signal only contains the difference between the 

incoming information and prediction. This method could dramatically 

reduce the information especially in a stable environment (most of the 

time of our daily life is in a stable environment) and it is a natural method 

to reduce the redundant sensory information. 

The brain should have only one unique model. This model should be 

based on our unique nervous system, inherit the basic features of 

neurons, neuronal connections, and follow the known structure, and 

functional role of different parts of the nervous system. In this thesis, we 
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tried to implement the neuronal circuits for the modern understanding 

of the efficient coding: predictive coding.  

In the introductory part of this thesis, I will review my current 

understanding about neuron, neocortex, and predictive coding. 

In the main chapters, first, I will present the core of this thesis: a modeling 

work on how to use the correlated spike-time to generate selectivity in a 

non-selectivity excitatory network. This model is also a viable mechanism 

for predictive coding. 

Then, I will present two empirical evidence on predictive coding: one is 

about the excitatory predictive feedback, the other is about the 

oscillations in predictive coding. 

In the end, I will conclude my thesis. I will also comment on my current 

work and propose several possible future projects not only about the 

computational modeling, but also about the experiments. 
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Neuron 

A huge tree that fills one’s arms grew from the tiniest sprout; a tower of 

nine storeys rose from a heap of earth; a journey of a thousand miles 

commenced with a single step. 

-Tao Te Ching, Laozi 

Ramón y Cajal (1852 – 1934) is the first scientist that reported neurons as 

individual: he demonstrated experimentally that the relationship 

between nerve cells was not continuous, but contiguous, by studying the 

small, star-shaped cells of the molecular layer of the cerebellum of birds 

in 1888 (Cajal, 1888; López-Muñoz et al., 2006; De Carlos and Borrell, 

2007). Then he successfully convinced the scientific community with the 

idea of the Neuron Doctrine: neurons are not connected in a meshwork, 

but discrete cells act as distinct units. Besides that, as a great histologist. 

Ramón y Cajal used Camillo Golgi’s silver nitrate preparation method to 

stain the neurons and did a lot of drawing of neurons. In this thesis, the 

focus is on the neocortex, the mammalian (human) brain area involved 

in functions such as sensory perception, attention, motor control, 

language, and conscious thought (Lui et al., 2011). Thus, the information 

about neurons is mostly from neocortex. 

From the end of the 19th century and the beginning of the 20th century, 

the pioneers of the field of neuroscience discovered several types of 

neurons and named them with their own names, such as the Golgi type 

I neuron, Golgi type II neuron (Camillo Golgi, 1843-1926), Purkinje neuron 

(Jan Evangelista Purkyně, 1787-1869), Lugaro neuron (Ernesto Lugaro, 

1870-1940), Betz neuron (Vladimir Alekseyevich Betz, 1834-1894), 



 

6 

 

Martinotti neuron (Carlo Martinotti, 1859-1918). Since the microscope is 

the only method to observe, all these classifications of neurons were 

based on the physical properties of neurons, or specifically, the shape of 

neurons. After the discovery of the neurotransmitters in 1921 by Otto 

Loewi (1873-1961), neurons were classified based on the different types 

of neurotransmitters. Then, after the first account of being capable of 

recording electrical discharges in single nerve fiber in the neuronal 

system in 1928 by Edgar Adrian (1889-1977), neurons were classified 

based on their electrical features. The physical properties, the 

neurotransmitters, and the electrophysiological properties tell us what 

one neuron can do. Furthermore, the connections between these 

properties can tell us the possible functional roles for different types of 

neurons. 

Physical properties 

Shape 

The most obvious feature of neurons under the microscope is their shape. 

However, since the descriptions of shape are subjective, there are many 

kinds of ways to describe a neuron’s shape. In most neuro-anatomy 

books (Susan Standring, 2009; Watson, Kirkaldie, & Paxinos, 2010), the 

shapes of neurons are usually described based on the structural polarity: 

unipolar (or pseudounipolar, axon and dendrite from same process), 

bipolar (one axon, one dendrite) and multipolar (one axon, multiple 

dendrites). However, one simple way to describe the neuron shapes was 
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proposed early (Sholl, 1956) with only two types of neurons: pyramidal 

and stellate neurons.  

Pyramidal neurons have the cell body shaped like a pyramid, with a 

single axon and multiple dendrites(Abeles, 1991). The soma size of 

pyramidal neurons is about 20 micrometers (order of magnitude: 10-2mm) 

(Larkman and Mason, 1990). The dendrite’s diameter is from less than 

half to a few micrometers (order of magnitude: 10-3mm). The dendrites 

could be divided into two types: basal and apical dendrites. The primary 

apical dendrite extends for several hundred micrometers before 

branching (order of magnitude: 10-1mm). The linear distance from the 

basal end to the apical end of the dendritic tree is from two hundreds 

Figure 1-1 Drawing of different neurons by Ramón y Cajal. Five classes of

neuronal populations of the cerebellum are in the picture: Purkinje, stellate, 

basket, Golgi and granule cells. Also note basket-cell axons terminating freely 

around the Purkinje cell bodies. A, Purkinje cell; D, stellate cell; F, Golgi cell; H,

granule cell; S, basket cell axons. 
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to one thousand micrometers (order of magnitude: 10-1mm). For the 

axon, the length could be tens of centimeters (order of magnitude: 

103mm) (Spruston, 2009). In the cortex, at least more than half of the 

neurons in the cortex are pyramidal neurons.  

Stellate neurons (see the Figure 1-3) have cell bodies shaped like a star, 

with a single axon and multiple dendrites extending from all aspects of 

the soma(Abeles, 1991). Stellate neurons have spherical or ovoidal cell 

bodies with the range from 9 micrometers to 14 micrometers (order of 

magnitude: 10-2 mm) (Wouterlood et al., 1984). The extending axon and 

dendrites create an axonal field with 100-150 micrometers (order of 

magnitude: 10-1 mm) and a dendritic field with 80-200 micrometers 

(order of magnitude: 10-1 mm) (Kisvarday et al., 1986). There are less 

stellate neurons than pyramidal neurons in the cortex (see Table 1-1). 

Figure 1-2 Morphology of layer 5 pyramidal neuron in macaque primary visual cortex. 

(Joshi, 2007) 
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From these data, we could clearly see that it is not common for the 

stellate neuron to receive input from neurons in other areas directly. For 

this reason, we could also call the pyramidal neurons as principal neuron, 

and the stellate neuron as intrinsic neuron. 

 

 

Figure 1-3 Spiny stellate neuron of layer 4B in macaque primary visual cortex. A and

B are the morphology, C is the computer reconstruction of dendrite in horizontal

view. 
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Animal Region Pyramidal Stellate Fusiform Animal Region Pyramidal Smooth 
stellate 

Others

Cat Visual 62% 34% 4% Rabbit Auditory 86.70% 9.50% 3.80%

Somatosensory 63% 35% 2% Rat Visual II + III 87%   

Motor 85% 10% 5% IV 90%   

Monkey Visual 52% 46% 2% V 89%   

Motor 74% 22% 4% VIa 97%   

Human Prefrontal 72% 26% 2%     

Table 1-1 The percentage of pyramidal neuron, stellate neuron in different 

regions in different animals. (Abeles, 1991) 

Dendritic spine 

One other physical property of the neurons discovered by Ramón y 

Cajal is the spine on the dendrite(Shepherd, 2004). There are two kinds 

of dendrites: one bears spines and another does not. Spines are 

filopodium, thin, stubby mushroom-shaped or cup-shaped with length of 

0.5 - 2 micrometers (order of magnitude: 10-3 mm) (Hering et al., 2001) 

(see Figure 1-4), and are rarely found in lower organisms. In neocortex, 

both pyramidal neurons and stellate neurons can have the dendritic 

spines. However, most GABA-releasing interneurons do not have 

dendritic spines. In fact, depending on the number of spines the 

dendrites have, we can determine whether a stellate neuron is a GABA-

releasing or glutamate-releasing neuron: the glutamate-releasing 

neurons have lots of dendritic spines, while the GABA-releasing neurons 

have few. Hence, we can divide the neurons into 3 classes: pyramidal 

neuron, spiny stellate neuron, and smooth stellate neuron. The pyramidal 
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neurons form about 70% of the neurons and smooth neurons from about 

20% (Shepherd, 2004).  

 

Figure 1-4 Hippocampus pyramidal neuron with dendritic spines. From 

MethoxyRoxy, Wikimedia Commons. 

Neurotransmitters  

As Ramón y Cajal suggested, the neurons are individuals, which means 

that the neurons are not sharing their electrical properties with other 

neurons (however, this is not true for the gap junctions between inhibitory 

neurons). Most neurons use chemical synapses to connect with each 

other. Most synapses connect axons to dendrites, but some also 

connect axons to soma. At the chemical synapse, the axon will release 

different neurotransmitters through the small gap of the synaptic cleft. 

The chemical synaptic cleft is about 20nm wide (order of magnitude: 10-
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6 mm) (Kendal et al., 2000). With such a short distance, the complicated 

chemical signal transmission process could be finished in less than 1 ms 

(usually 0.5 ms). Depending on the neurotransmitters one neuron 

releases, we can classify the neurons into two types: excitatory neurons 

and inhibitory neurons. These two kinds of neurotransmitters have very 

different effect on the reception neurons: the glutamate-releasing (or 

similar chemical material such as Acetylcholine, Catecholamines, 

Serotonin, Histamine) neuron makes the reception neuron fire more and 

the GABA-releasing (or similar chemical material such as GABOB, Proline) 

neuron makes the reception neuron fire less (Kendal et al., 2000; 

Shepherd, 2004). These two types of neurons are the keys to understand 

the dynamics of neuronal process in the brain.  

Excitatory neurons 

Based on the shape features described before, we know that there are 

two types of excitatory neurons: pyramidal neurons and spiny stellate 

neurons. There are many more pyramidal neurons than spiny stellate 

neurons: about 75% of the neurons in the cortex are pyramidal neurons, 

while only about 10% of the neurons are spiny stellate neurons (Abeles, 

1991). Furthermore, these spiny stellate neurons are only in the cortical 

sensory areas. In the non-sensory areas, there are few spiny stellate 

neurons; in some animals, there are no spiny stellate neurons outside 

sensory areas (Peters and Kara, 1985a, 1985b). 
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In the connections between excitatory neurons (including pyramidal 

and spiny stellate neuron) and pyramidal neurons, most excitatory 

synapses are made on the spines of post-synaptic neurons (65%-85%) 

while only most of excitatory synapses on spiny stellate neuron are on 

the shafts of dendrites (~60%). Excitatory synapses never land on the 

soma (Shepherd, 2004).   

Excitatory synapses generate excitatory post synaptic potential (EPSP). 

For one single neuron, the effect of the EPSP is very small. When there is 

a spike, and recording in the neuron body, one single spike only provides 

a 0.4-1 mV (Mason et al., 1991; Markram and Tsodyks, 1996) increase in 

the voltage between pyramidal neurons, and an about 1.5mV increase 

between spiny stellate neurons. The variability in the voltage gain 

Figure 1-5 Smooth stellate neuron and spiny stellate neuron. Photo a is a smooth basket

neuron in human prefrontal cortex(Benes and Berretta, 2001), photo b is a monkey layer 

IV spiny stellate cell(Churchill et al., 2004). 
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between pyramidal neurons are huge (from 0.05mV-2.08mV) (Mason et 

al., 1991). 

Inhibitory neurons 

Even though we can classify the inhibitory neurons into more than 10 

categories, the basic shape according to the shape classification 

method mentioned before, the inhibitory neurons are all in the same 

category: stellate neurons. However, at the same time, depended on 

the expressed genes, all the inhibitory neurons can be classified into 3 

main classes: Htr3a, Pvalb and Sst (See Table 1-2).  

Table 1-2 The three classes of inhibitory neurons and the inhibitory neurons that 

falls into the category. (Harris and Shepherd, 2015) 
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Figure 1-6 The percentage of different types of inhibitory neurons in different 

cortical layers. (Markram et al., 2004) 

From Figure 1-6 we can see that, most of the inhibitory neurons (about 

50% of all inhibitory neurons) are basket neurons (Markram et al., 2004). 

Basket neurons have a shape of basket with extensive axons to form 

lateral connections with 300-500 other neurons (most of them are 

pyramidal and spiny stellate neurons) with 10 synapses on 

average(Shepherd, 2004).  

Depending on different neuron types, the connection place between 

the inhibitory neuron and the reception neuron is different. For example, 

basket neurons connect their axon to the dendritic shaft and spines, 
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while the chandelier neurons connect their axon to the axon (Shepherd, 

2004). One other type of inhibitory neuron that was studied a lot is the 

Martinotti neuron. It was found that Martinotti neurons are linked to the 

cortical dampening mechanism by sending inhibitory signals to the 

surrounding neurons (Silberberg and Markram, 2007). 

Inhibitory synapses generate an inhibitory postsynaptic potential (IPSP). 

For one single neuron, compared to the EPSP, the effect of the IPSP is big. 

When there is a spike, and recording in the neuron body, one single spike 

provides a 10 mV decrease in the voltage in pyramidal neurons. IPSPs 

reach peaks at about 20-30 ms and have a duration of 200-300 ms 

(Shepherd, 2004). The inhibitory synapses land on the soma or the 

proximal dendrites, this could be one reason that inhibitory synapses 

have a bigger effect than excitatory synapse. 

Table 1-3 The order of magnitude of different parts of the neurons and 

neocortex. 

 Property Name Order of 
magnitude 

Pyramidal neurons Soma size 10-2 mm 
Dendrite’s diameter 10-3 mm 
Length of primary apical dendrite 10-1 mm 
Length from the basal end to the 
apical end 

10-1 mm 

Length of axon 103 mm 
Dendritic spine 10-3 mm 

 
Stellate neurons Body size 10-2 mm 

Axonal field 10-1 mm 
Dendritic field 10-1 mm 

 
Neurotransmitters Chemical synaptic cleft 10-6 mm 
   
Neocortex Thickness 100 mm 
 Distance between areas 101 mm 
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Electrophysiology 

One other important feature about the neuron is its electrophysiological 

properties. Since communication between neurons is based on spikes, it 

is important to know how the neuron spikes, the effect after the neuron’s 

firing (AHP or ADP), and is there any difference between different neuron 

groups’ effects and if there is, what is the possible reason for that.  

In this part, I took advantage of the data gained from 64 studies to 

investigate the electrophysiological properties of neurons. I created a 

database of studies including different neurons from different locations 

of neocortex based on a previous electrophysiological database 

(Tripathy et al., 2015). I show the statistical values of the properties 

gained from the data. The statistical value contains the medium value 

and the standard derivation.  

 

Figure 1-7 Different electrophysiological features of the action potential of a 

neuron. 
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Since information exchange in the brain takes advantage of the spike, 

or action potential, all of the electrophysiological properties are about 

that. For the action potential, as Figure 1-7 shows, there are different 

parts:  

• Resting membrane potential 

• Spike threshold 

• Spike amplitude (spike height) 

• Spike width 

• Input resistance 

• Membrane time constant 

• Firing frequency 

• Fi slope  

• AHP amplitude 

• AHP duration 

• Adaptation ratio 

Depending on their values in different types of neurons, we divide the 

properties into two categories: with similar values across different types 

of neurons and with different values across different types of neurons. 

Here, I will show the definition of these properties, the regular measure 

method in electrophysiology experiments and statistical values across 

studies. Then, I will speculate the possible reasons for the patterns of the 

values.  
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Properties with similar values across different neurons 

Resting membrane potential 

Resting membrane potential is the membrane potential in the 

“balanced state” or “resting state” of a neuron. The membrane 

potential is usually recorded using the patch clamp technique. The 

resting membrane potential is usually defined as the membrane 

potential of a neuron going for a long period of time without changing 

significantly. This “balanced state” could be described using the 

Goldman equation (Koch, 1998): 

 

Where the Em is the membrane potential, Pion is the permeability for the 

ion. [ion]out and the [ion]in is the extracellular and intracellular 

concentration of that ion, T is the temperature and R and F are constant. 

This equation describes that the resting membrane potential has 

relationship with the ion flow. The stable values in Figure 1-8 indicate that 

the ion channels of these neurons should be similar and the inside and 

outside environment of the neurons should be similar. 
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Figure 1-8 Resting membrane potential in different types of neurons 

 

Spike threshold 

Spike threshold is the voltage needed to initiate the action potential. It is 

usually measured by using the sudden rising slope of membrane voltage. 

We can see from Figure 1-9 that the spike threshold is constant in 

different types of neurons, which indicates that the biophysical 

requirements for action potential are similar in different kinds of neurons 

(they may use the same Hodgkin-Huxley theory for spike 

generation(Hodgkin and Huxley, 1952)).  However, some argue that this 

similarity is not true for the spike threshold in vivo. Studies showed that the 

spike threshold of cortical neurons has a larger variability and could be 

adapted over time. The variabilities are different in different kinds of 

neuron. They propose that the rate of rise of pre-spike membrane 
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potential (Azouz and Gray, 2000; Henze and Buzsáki, 2001; Fontaine et 

al., 2014) and the recent history of spikes (Henze and Buzsáki, 2001) 

correlates with the spike threshold. Evidence suggested that this 

mechanism increases the sensitivity to simultaneous synaptic inputs and 

functions as a coincidence detector (Azouz and Gray, 2000; Howard 

and Rubel, 2010). On the other hand, other authors suggested that this 

threshold variability observed in vivo reflects only measurement artifacts 

(Yu et al., 2008). Other researchers have suggested a lower spike 

threshold for the basket neurons (Buzsáki and Wang, 2012), however, this 

difference is not so obvious in an inter-studies point of view. (Figure 1-9) 

 

Figure 1-9 Spike threshold in different types of neurons 
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Spike amplitude 

Spike amplitude (spike height) is the height of the action potential. It is 

usually measured by calculating the difference between the peak of 

the action potential and the threshold of the action potential (or the 

AHP) using the first spike of the spike train.  

 

Figure 1-10 Spike amplitude  in different types of neurons  

Properties with different values across different neurons 

Input resistance and membrane time constant 

Input resistance is calculated using Ohm’s Law: R=V/I, where R is the 

resistance and V is the voltage increase, and I is the input current in the 

depolarization stage of the action potential. Input resistance is usually 

measured at steady-state voltage response to current injection. 
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However, for most membranes (e.g. soma), the voltage has a non-linear 

relationship with the input current (since the neurons are more like a RC 

circuit rather than simply the resistance), we can use the time constant 

to measure the voltage-input relationship more accurately (the time 

constant is a parameter of the exponential voltage). From the collected 

data, we can see that pyramidal neurons and basket neurons have 

relatively small input resistance/time constant. On the other hand, we 

can see that the inhibitory neurons express very different voltage-related 

properties.  

 

Figure 1-11 Input resistance  in different types of neurons 
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Figure 1-12 Membrane time constant  in different types of neurons 

Spike width 

Spike width is most often measured as the width at half-maximal spike 

amplitude. Spike width is one of the most obvious electrophysiological 

properties that difference between GABA-releasing neurons and 

glutamatergic pyramidal neurons: GABA-releasing neurons have 

narrower spikes than glutamate-releasing neurons(Bean, 2007). From the 

Figure 1-13, we can see it is true for the basket neurons and chandelier 

neurons; however, this is not true for the Martinotti neurons. Thus, we can 

distinguish the different types of inhibitory neurons and indicate a 

different role for Martinotti neurons. 
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Figure 1-13 Spike half width  in different types of neurons 

Firing frequency and Fi Slope 

This is the firing frequency of different types of neurons by injecting 

different amounts of current. We can see from Figure 1-14 that basket 

neurons fire much faster than all other kinds of neurons (this should be 

the reason that inhibitory interneurons are often called fast-spiking 

neurons). However, as we can see, Martinotti neurons have a rather low 

firing rate. This information also provides evidence that Martinotti 

neurons are very different from the fast-spiking inhibitory neurons as we 

understand. Because of this difference in firing frequency, Martinotti 

neurons have been linked to theta-band oscillations, while basket were 

neurons linked to gamma-band oscillation (Fanselow et al., 2008; Buzsáki 

and Wang, 2012). 
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Figure 1-14 Firing frequency  in different types of neurons. We only obtained the 

firing frequency for neocortex Martinotti cell, basket cell, layer 4 stellate cell 

and pyramidal cell in layer 5-6. 

On the other hand, the Fi slope normalizes the input current and suggests 

a linear frequency-current relationship (which is obviously not true). But 

from the Figure 1-15, we still can find a similar pattern as the firing 

frequency. Note that the Martinotti neurons do not have fast-spiking 

properties, but rather behave like an excitatory neuron.  
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Figure 1-15 Fi Slope  in different types of neurons 

Afterhyperpolarization (AHP) 

AHP is the hyperpolarized membrane potential after a neuron's action 

potential.   It falls below the normal resting potential. It is also possible for 

depolarization to occur after a neuron’s action potential (ADP) which 

usually is linked to the bursting neurons. For the pyramidal neurons, after 

the action potential, there is a fast AHP followed by an ADP, then there 

will be a slow AHP. The fast AHP is short (about 1 ms), the ADP is longer 

but in the same order of magnitude (about 5 ms), while a slow AHP is 

much longer (150-200 ms). From the Figure 1-16, we can see that for 

different types of neurons, the AHP amplitudes are different. 



 

28 

 

 

Figure 1-16 Action potential and after potentials in pyramidal neurons. (Mason 

and Larkman, 1990) 

 

Figure 1-17 Ahp amplitude  in different types of neurons 
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Adaptation ratio  

Adaptation ratio is the ratio of durations between early and late AP inter-

spike intervals in an AP train. The Figure 1-18 shows that inhibitory neurons 

have less adaptation than excitatory neurons except Martinotti neurons. 

This suggests that basket neurons can keep firing at a high frequency. 

 

Figure 1-18 Adaptation ration in different types of neurons 
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Neocortex 

If you do not make headway understanding a complex system, study its 

structure and knowledge of the function will follow automatically 

- Francis Crick 

Neocortex is the highest center of the brain. We understand it as the 

functional center of visual perception, auditory perception, motor 

controlling, reasoning, language and conscious thought. We can easily 

distinguish this part of the brain from the cerebellum, hippocampus, 

superior colliculus and some other areas. We consider various mammals, 

including rat, rabbit, monkey and human beings, have similar cortex in 

their brain.  

However, as pointed out by Douglas and Martin (2007), the only property 

that defines neocortex is the “six layer” structure, in which the number of 

the layers could be subjective: depending on the areas and the 

histological stains used to reveal the layers, the number varies. Thus, the 

concept of neocortex itself is rather vague (Douglas and Martin, 2007). 

We can divide approaches investigating the neocortex in history (and 

even nowadays) into two kinds: one is trying to find out the features of 

neocortical areas for different cognitive functions; the other is trying to 

find out the basic circuit for the neocortex. Since we still know little about 

the neocortex, we could say that both approaches are still ongoing. 

Scientists have tried a lot to understand the neocortex by looking at the 

human brain, even though the progress is slow.  
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Structure of neocortex 

Marco-structure of neocortex 

In the investigation of the functional roles of the neocortex, one well 

known metaphor for the functional organization of the neocortex is 

“Swiss Army Knife”: the neocortex has a series of special-purpose 

modules as the Swiss Army Knife, such as the modules for vision, audio, 

language and etc. (Douglas and Martin, 2007).  

Ironically, this idea first came from Franz Joseph Gall (1758-1828), the 

father of phrenology (1796, the pseudoscience claiming the size and 

shape of people’s head is linked to their characters and abilities) 

(Mountcastle, 1995). More than half a century after the creation of 

phrenology, by studying the brains of aphasic patients (persons with 

speech and language disorders resulting from brain injuries), Paul Broca 

(1824-1880) discovered the area specifically devoted to speech 

processing (~1861). Then, Vladimir Betz (1834-1894) discovered the motor 

area (~1874). He also first divided the brain into eight regions, including 

the anterior central convolution, the arciform convolution, the 

hippocampus, the third frontal convolution, the lobules paracentralis, 

the gyrus lingualis, lobules extremus and the ventral extremity of the 

polus temporalis. In 1881, Hermann Munk (1839–1912) won the debate 

with David Ferrier (1843-1928) and confirmed that the visual area is in the 

occipital lobe (Glickstein, 1988). 

Later, inspired by the influential evolutionary theory (~1862) of Herbert 

Spence (1820-1903), Hughlings Jackson (1835-1911) proposed his idea of 

a hierarchical brain (~1882). He stated that the brain is a sensorimotor 

machine and different brain regions represent the different hierarchical 
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levels, e.g. Anterior spinal horns and homologous cranial motor nerve 

nuclei represent the lowest motor level, the motor cortex and the basal 

ganglia represent the middle motor level and the premotor frontal 

cortex represents the highest motor level. Furthermore, he thought that 

the relationship between different hierarchical regions is that higher 

areas inhibit lower areas (York and Steinberg, 2006) which is consist with 

the modern theory of predictive coding (Rao and Ballard, 1999). He 

stated: 

The higher nervous arrangements evolved out of the lower keep down 

those lower, just as a government evolved out of a nation controls as 

well as directs that nation. If this be the process of evolution, then the 

reverse process of dissolution is not only a “taking off” of the higher, but 

is at the very same time a “letting go” of the lower.(Jackson, 1882) 

 

 

Afterwards, by examining the distribution of myelination of the fibers in 

the white matter immediately subjacent to the cortex (they call it 

Figure 1-19The areas charted by Paul Flechsig. The shaded ones are the “primordial” areas 

and the white ones are the “association” areas of the cerebral cortex.(Flechsig, 1920) 
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myeloarchitecture), Paul Flechsig (1847-1929) divided the brain into 40 

areas (~1896) and kept modifying this number ever since.  

After entering the 20th century, Alfred Walter Campbell (1868-1937) and 

Korbinian Brodmann (1868-1918) followed Flechsig’s work and continued 

to make a contribution to the lamination histology and the development 

of their own brain maps with their own observations and different 

naming styles. 

 

Campbell showed a brain map with 14 areas in the cortex based on a 

41 years old man (Campbell, 1905). Based on his studies (mainly autopsy 

of the patients with functional disability in rainhill mental hospital), he 

described the brain with a surprising modern information. He connected 

the functional role with different brain areas. For example, he described 

the vision areas (he even parted the visual areas into visuo-sensory and 

visuo-psychic) and auditory areas. He defined the precentral area as 

the motor area and the postcentral area as the sensory area(Campbell, 

1905).  

Figure 1-20 The areas charted by Alfred Walter Campbell.(Campbell, 1905) 
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Brodmann classified a more detailed brain map with 52 areas with 2 

areas only existing in primates based on his continuous work on different 

species (including human, guenon, marmoset, lemurs, flying fox, 

Cercoleptes caudivolvulus, rabbit, ground squirrel and Erinaceus 

europaeus). He defined 11 homologous regions in man and other 

mammals including postcentral region, precentral region, frontal region, 

insular region, parietal region, temporal region, occipital region, 

cingulate region, retrosplenial region, hippocampal region and 

olfactory region. Since most textbooks copied either Campbell’s or 

Brodmann’s brain map, their maps became the standard brain maps 

that we are still using nowadays.  

However, there were strong opposition opinions on these kinds of area 

classifications. For example, as Bailey and von Bonin pointed out, 

because of the sudden death of Brodmann, he did not finish his detailed 

Figure 1-21 The areas charted by Korbinian Brodmann. (Brodmann, 1909) 
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description of the areas indicated on his map of the human brain (he 

did that for the cercopithecus), and it is strange that the scientific world 

has accepted Brodmann’s brain map, for which no direct proof had 

ever been given. They also made photos over 300 sites in the cerebral 

cortex and they found out in most cases, they could not correlate the 

photos to the cortical positions and they made the conclusion that most 

brain areas cannot be distinguished by pure cytoarchitectonic criteria 

(Bailey and Bonin, 1951). Since Oskar Vogt (1870-1959) and his followers 

classified the brain into more than 100 areas, Bailey and von Bonin 

pointed out these subtle distinctions between different areas are “hair-

splitting” and have little influence (Bailey and Bonin, 1951; Jellison et al., 

2004). Furthermore, they suffered the same problem: no subject-wise 

variations were taken into account in their brain maps.  

Despite the criticism, we still use Brodmann’s map nowadays. Thus, we 

can consider the 1909 Brodmann’s areas as the state-of-the-arts of our 

knowledge of different brain areas. Brodmann’s areas gained 

unexpected popularity because of the development of the functional 

and structural neuroimaging technique. These kinds of reports were 

heavily relayed on these brain areas classification and Brodmann’s map 

was thus built into the processing softwares (Jellison et al., 2004). 

However, because of the criticism, a “Brodmann area” does not need 

to link to any functional meaning that Brodmann himself described or 

even imagined (Passingham and Wise, 2012).  

A more detailed human brain map (1925) with structure was created by 

Constantin von Economo (1876-1931). He divided the cortex into seven 

lobes (Lobi) with further subdivisions (Regiones and Areae), the lobes 

(Economo and Koskinas, 1925) are: Lobus frontalis (with 35 areas), Lobus 

limbicus superior (with 13 areas), Lobus insulae (with 6 areas), Lobus 
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parietalis (with 18 areas), Lobus occipitalis (with 7 areas), Lobus 

temporalis (with 14 areas) and Lobus limbicus inferior/Lobus hippocampi 

(with 14 areas). 

 

Figure 1-22 The areas charted by von Economo and Koskinas. (Economo and 

Koskinas, 1925) 

Modern monkey brain maps with letter naming system were developed 

by Von Bonin and Bailey based on architectonic subdivisions, they 

divided the brain areas not only according to the cytoarchitectonic 

criteria, but also according to the study of monkey brain architecture 

(Bonin and Bailey, 1947). Another widely used brain map is from Van 

Essen’s group. In 1980s, they were not satisfied with unclear borders with 

the Brodmann’s map, since Brodmann’s map was drawn on the three-

dimensional brain. Thus, they developed a technique to unfold the 

cerebral cortex (Van Essen and Maunsell, 1980). They applied such 

technique on monkeys and obtained an accurate two dimensional 

map. They published the influential paper on brain area structure in 1991 

(Felleman and Van Essen, 1991). The other maps by their group and 

other groups were also included in the brain image database such as 
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the Scalable Brain Atlas including several monkey brain maps (Paxinos 

et al., 1999; Lewis and Essen, 2000; Kötter and Wanke, 2005; Markov et 

al., 2011, 2014). 

 

Figure 1-23 The areas in a flat brain charted by Felleman and Van Essen. 

(Felleman and Van Essen, 1991)
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Figure 1-24 The brief history of our understanding of the macro-structure of the neo-cortex 
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Micro-structure of neocortex 

In the parallel time period, based on the cell types and properties in 

different brain areas, the development of cytoarchitecture helped the 

idea of functional organization of the brain. The French neuroscientist 

Jules Baillarger (1809-1890) began the first scientific investigation on the 

structure of the grey matter of the cortex and divided the cerebral 

cortex into 6 layers (~1840, this 6-layers structure is not well described due 

to the crude observation method). Theodor Meynert (1833-1892) first 

found regional variations (dividing allocortex from neocortex) in different 

cortical regions (~1867), with a detailed account for the structure in 

cerebral cortex in general by describing the areas we know today as 

the visual areas. Vladimir Betz also described different layers of the 

cortex in details (~1881). His observation of the lamination was translated 

(Bailey and Bonin, 1951) as: 

The cortical substance consists of five different layers which, from without 

inward, are superimposed on one another in the following manner: The 

first layer consists of a thick network called neuroglia in which are strewn, 

here and there, small granular bodies. The second layer contains, 

besides the neuroglia (which, moreover, all the layers contain) 

pyramidal cells not too large which, not very near each other, have their 

apices directed toward the first layer, the base toward the bottom. The 

third layer is composed of the same pyramidal cells, only two or three 

times larger, but in compensation less numerous and further apart from 

one another. The fourth layer, called the granular layer, consists of small, 

round or elliptical cells. The fifth layer finally consists of specific fusiform 

cells. This structure of five layers may be considered as the general type 
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of the cortical substance. 

Ramon y Cajal then used the Nissl method to identify in stained material 

a 9-layers structure (Cajal, 1899) including: 

1. plexiform layer (layer of horizontal cells) 

2. layer of small pyramids 

3. layer of medium pyramids 

4. layer of large stellate cells 

5. layer of small stellate cells 

6. layer of small pyramids with arcuate axons 

7. layer of giant pyramids (solitary cells of Meynert) 

8. layer of large pyramids with arcuate and ascending axons 

9. layer of triangular and fusiform cells 

Campbell liked to name the layers or area with description. He claimed 

7 layers laminar structure (Campbell, 1905): 

1. Plexiform Layer 

2. Layer of Small Pyramidal Cells 

3. Layer of Medium-Sized Pyramidal Cells 

4. External Layer of Large Pyramidal Cells 

5. Layer of Stellate Cells 

6. Internal Layer of Large Pyramidal Cells 

7. Layer of Spindle-Shaped Cells 
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Figure 1-25 The 7 layers of neocortex charted by Campbell. (Campbell, 1905) 

Brodmann not only created his famous Brodmann areas, but also 

created the 6 layers of laminar structure as we know (Brodmann, 1909). 

He liked to name the areas and layers with numbers.  His famous 

classification in monkey visual cortex (Brodmann, 1905) could be 

translated (Billings-Gagliardi et al., 1974) as: 

I. Lamina zonalis - the narrow cell-free cortical border. 

II. Lamina granularis externa - very feebly developed and hardly 

separable from the adjacent pyramidal layer. Fetal brains show 

this layer best. 
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III. Lamina pyramidalis - pyramidal cells are located superficially; 

somewhat larger pyramidal cells are found only in deeper parts. 

IV. (a) Lamina granularis interna superficialis - stands out in the 

photographs as a distinct dark cell stripe. At higher magnification 

many little round cells (so-called granules) can be recognized, 

apart from larger slender star- and pyramid-shaped cells. (b) 

Lamina (granularis interna) intermedia - contains the stripe of 

Gennari in fibre preparations. In cell preparations the layer stands 

out as a wide, cell-poor band containing single large cells, which 

arrange themselves here and there in the middle into a somewhat 

denser cell layer. (In other species, namely Cebus capucinus, 

these large ceils of the lamina intermedia form a distinct, 

compact cell layer in the middle of IVb, so that here one can 

again make three subdivisions.) (c) Lamina granularis interna 

profunda - This is the most cell-rich and, because of this, the 

darkest, most prominent layer in any cortical cross section. It 

contains predominantly densely packed granules. With exacting 

study, particularly with higher magnification or in Bielschowsky 

preparations, one can also differentiate two layers within this layer 

– a darker, outer layer composed of granules and large 

pleomorphic cells, and a light, somewhat thinner, inner layer 

possessing almost exclusively granules. In other brains, especially 

of Cebus capucinus, this difference is so significant and conclusive 

that one can demonstrate two separate layers. However, in the 

species studied here we ought to retain the layering system set 

forth for man since this state of things is only hinted at. 

V. Lamina ganglionaris - the most cell-poor and therefore the lightest 

layer of Area 17. It contains in its deeper portion (bordering on 

layer VI) a few scattered enormous pyramidal cells, the so-called 

solitary cells of Meynert.  
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VI. Lamina multiformis - can be more clearly subdivided than in man 

into two subdivisions: (a) Lamina triangularis, a darker outer layer 

containing mostly larger cells, and (b) Laminafusiformis, the lighter 

cell-poor inner layer, or the true spindle-cell layer, which stands out 

sharply against the white matter. 

Comparing different kinds of classification, we may notice that even if 

there are differences between different methods of classification, the 

common structure in these observations are similar, from outside to inside: 

one cell-free layer, one pyramid cells layer, one stellate cells layer, 

another pyramid cells layer and one triangular/fusiform cells layer (See 

more about the lamination classifications of different authors in 

Appendix).  I think we could use a much simpler way to describe the 

neocortex lamination: the supragranular layer, the granular layer and 

the infragranular layer. 

Same as for the macro-structure of the neocortex, since we still use 

brodmann’s classification as lamination structure of neocortex, we can 

consider the brodmann’s micro-structure map is the state-of-the-arts in 

this area. The more modern types of lamination classifications usually 

include the advancement of techniques. For example, Von Bonin used 

a combination of Nissl, Bodian, and Golgi methods to examine the visual 

cortex (Bonin, 1942). Garey used light and electron microscopic to study 

the visual cortex (Garey, 1971). Fatterpekar et al. used MR microscopy 

(9.4T MRI device) to investigate the human cerebral cortex (Fatterpekar 

et al., 2002).



 

44 

 

 

Table 1-4 Laminations of the visual cortex according to different authors (Brodmann, 1909) 
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Figure 1-26 Laminations of the neocortex according to different authors. 

(Billings-Gagliardi et al., 1974) 

On the lamination classification of neocortex, I think we should notice 

the following two points: 

1. The neocortex is a biological tissue and the laminar classification 
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is more about the degree of concentration of certain types of 

neurons (or shapes of neurons), thus, there are no hard lines 

between different layers. The variances are also big between 

different cortical areas. In vivo recording, the depths of the 

electrodes were recorded, but the layers of recordings were 

reported based on experience. Thus, as Douglas and Martin 

pointed out, “the six layered neocortex is something of a unicorn” 

(Douglas and Martin, 2007). 

2. The neurons in one layer can receive input from another layer. 

Since the thickness of human neocortex is from 1 to 4.5 mm (Order 

of magnitude: 100 mm) (Fischl and Dale, 2000), while the typical 

length of primary apical dendrite of pyramidal neuron have an 

order of magnitude of 10-1 mm, there is a very large possibility that 

the dendrite could cross more than one layer. Thus, we should be 

careful with the so called “laminar computation” (see (Larkum, 

2013)) and the observations of different input strength to different 

layers since the deeper layer could potentially receive the input 

from the shallower layers.  
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Figure 1-27 The brief history of our understanding of the micro structure of the neo-cortex 
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Connectivity of neocortex 

The brain is heavily connected. In humans, the volume of white matter 

reaches about 80% of the total volume (Zhang and Sejnowski, 2000), 

which contains mostly the glial cells which produce the myelin to speed 

up the connection between different areas. There is a strong correlation 

(see appendix) between the volume of gray matter and white matter, 

which suggests this heavy connection between different areas is not 

only applicable to human, but universal for different species (Zhang and 

Sejnowski, 2000). 

The connectivity of the neocortex was also heavily studied with different 

methods and is still on going. The most well studied connectivity is 

between different visual areas and it has been widely accepted that 

the brain employs a hierarchical structure to implement its different 

functions, thus, the connectivity between different areas usually 

characterized as “feedforward” or “feedback”. Furthermore, the studies 

on these different directions suggest different connection patterns. 

Hierarchical brain 

Hughlings Jackson first proposed the idea of a hierarchical brain based 

on the evolution theory in 1882 (York and Steinberg, 2011). He stated: 

The higher the centre the more numerous, different, and more complex, 

and more special movements it represents, and the wider region it 

represents-evolution. The highest centres represent innumerable, most 

complex and most special movements of the organism, and�…�each 

unit of them represents the organism differently. In consequence, the 

higher the centre the more numerous, complex and special movements 
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of a wider region are lost from a negative lesion of equal volume-

dissolution. (Jackson, 1882) 

This proposal is more like a general claim rather than a scientific 

conclusion since little evidence was given. Nowadays, the hierarchical 

brain evidence mostly comes from the visual system: Hubel and Wiesel 

showed a progressive increase in the complexity of the cat visual cortex 

(Hubel and Wiesel, 1962). Other studies showed that the connections 

from area 17 mostly rise from the supragranular layers and terminate in 

the layer 4 of the target areas and connections raised from the 

infragranular layers usually have terminals that avoid layer 4, see more 

from the review by Salin and Bullier (Salin and Bullier, 1995). Starting from 

these results, researchers began to assign the different brain areas with 

different brain hierarchy levels (Rockland and Pandya, 1979; Friedman, 

1983; Van Essen and Maunsell, 1983). This notion was confirmed by the 

famous paper by Felleman and Van Essen (Felleman and Van Essen, 

1991) which is published in the very first issue in the journal Cerebral 

Cortex . 
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Figure 1-28 The definition of feedforward and feedback connections. The 

nearby areas usually have a bilaminar origin and the distant areas usually have 

a unilaminar origin 

 

In their paper, they first defined 32 visual areas using their two 

dimensional map and then showed the connectivity between different 

areas. Felleman and Van Essen reported a 32 × 32 connectivity matrix 

with 305 known projections out of 992 possible pathways. Then they took 

advantage of the rising and terminal layer of the connection 

(feedforward connections rising from supragranular layers or 

supragranular & infragranular layers and terminate in layer 4, feedback 

connections rising from infragranular layers or supragranular & 

infragranular layers and terminate in all layers except layer 4) and 

created “feedforward” and “feedback” connections (Felleman and 
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Van Essen, 1991). The connections in neighboring areas (e.g. V1 and V2) 

usually have a bilaminar origin, while the connections in distant areas 

(e.g. V1 and MT) usually have a unilaminar origin (Salin and Bullier, 1995).  

 

Figure 1-29 A simplified connectivity map with the feedforward and feedback 

connections (Blue arrows: feedforward connections, red arrows: feedback 

connections). 

 

Subsequent studies were done using improved tracers and began to 

analyze the weight between different areas. Recent review showed that 

the improved tracer helped to find 36% new connections between 

different areas (Markov et al., 2013a). Furthermore, based on the idea of 

neighboring areas having bilaminar origin, while distant area has a 

unilaminar origin, researchers found a distance rule. Based on this 

distance rule, researchers checked the fraction of supragranular 

labelled neurons and modified the hierarchy order of different brain 

areas (Barone et al., 2000; Markov et al., 2011, 2013b).  
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Figure 1-30 Comparison of Felleman and Van Essen’s hierarchy order (left) and 

hierarchy order based on the unilaminar and bilaminar distant rule (right). From 

(Barone et al., 2000). 

Roles of feedforward and feedback connections 

Since we know the existence of two types of neuronal functions: 

excitatory and inhibitory, and brain areas are heavily connected with 

feedforward and feedback connections, it is interesting and important 

to know the roles of feedforward and feedback connections: are they 

excitatory or inhibitory? To answer this question, we need to consider the 

types of the projection neurons, the target neurons and the 

experimentally observed feedforward and feedback effects. 

Projection neurons:  

From the beginning of this thesis (page 14-18), we know that different 

types of neurons have different shapes and the pyramidal neurons are 
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the only type of neuron containing a long axon. Since the distance 

between different areas are far (from 6 mm to 45.6 mm in monkey, see 

details in Markov et al., 2013b, with the order of magnitude of 101 mm), 

it is physically impossible for other types of  neurons to play the role of 

projection neuron. Thus, the projection neurons for both feedforward 

and feedback connections are excitatory neurons. Experimental 

evidence supported the same conclusion as this physical limitation 

suggested (Johnson and Burkhalter, 1996). 

Target neurons:  

The target neurons are not much more diverse than the projection 

neurons. From 1970s, scientists begin to use electron microscope (EM) 

and tracer to investigate the connections. The electron microscope uses 

a beam of accelerated electrons as a source of illumination and can 

achieve the resolution to 50 pm (magnifications of up to 10,000,000x). 

Thus, it is possible to directly observe the synaptic connections. For the 

tracer, two methods are usually used: lesion and HRP. The lesion of one 

particular area (such as LGN) can lead to a degeneration (which is 

visible using the EM) of their synapses (such as the synapses connected 

to V1). The other way is using a special kind of method (iontophoretic 

delivery) to deliver the HRP or other kinds of tracer to neurons which can 

lead to a Golgi-stained effect (which is also visible using the EM). Under 

the EM, by simply counting the numbers of synapses in different target 

positions, we can know the properties of the synapses. 

Three possible synapse targets can be observed using the EM: dendritic 

spines, dendritic shafts and cell bodies (soma). Since only the excitatory 

neurons have dendritic spines, we can know the amount of neurons that 

are excitatory. In some studies, we can know a detailed ratio of the 

excitatory and inhibitory neurons: for the synapses that are connected 
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to the shafts (also soma, but there is few), we can test whether the post-

synaptic neuron is GABA positive or not. By multiplying this ratio and the 

percentage of the shaft/soma connections of the synapses, we can 

know the percentage of inhibitory targets. 

We show the data from different studies in the following table. For the 

thalamic feedforward (LGN to cortex), studies show a mostly excitatory 

targeting profile: About 80% of the connections from LGN to V1 target 

on the dendritic spines. About 20% of the connections target on the 

dendritic shafts. Single digit percentage of the connections target on 

the soma.  Further examinations on the positivity of the GABA show that 

about 4-9% of all the connections actually target on inhibitory neurons. 

For cortical feedforward connections (e.g. from V1 to LM in mouse), 

similar to the thalamic feedforward connections, about 80% of the 

connections target on the dendritic spines with about 20% on the 

dendritic shafts. But the confirmed GABA positive targeting ratio is higher: 

10-15% of all the connections actually target on the inhibitory neurons. 

For cortical feedback connections (e.g. from LM to V1 in mouse), about 

98% of the connections targets on the dendritic spines with about 2% of 

the connections targeting on the dendritic shafts. The confirmed GABA 

positive targeting ratio is also very low: ~2%. This suggests an excitatory 

profile for feedback connections. 

Additionally, for callosal connections (one hemisphere to another), 

studies showed that more than 96% of the connections are targeting on 

dendritic spines, regardless of the areas (the same or different areas) 

they are targeting on. For intrinsic connections, 90% of synapses that 

connect to the superficial layers’ neurons in rat target on the dendritic 

spines. In cat motor cortex, 60% layer 4 neurons’ synapses that connect 



 

55 

 

to the layer 2/3 target on the dendritic spines.  In cat V1, 28% layer 6 

neurons’ synapses that connected to the layer 4 target on dendritic 

spines.  

Furthermore, in mouse, Shao and Burkhalter found that thalamocortical 

inputs, feedforward and local connections inputs within V1 evoked 

monosynaptic excitatory postsynaptic potentials (EPSPs), followed by 

disynaptic, hyperpolarizing inhibitory postsynaptic potentials (IPSPs) 

(10/11, 91% for thalamocortical input; 17/19, 89% for feedforward; 12/13, 

92% for local connections). However, for the feedback connections, 

only 13/58, 22% connections showed such a profile (45/58, 78% of the 

cells in V1 activated by feedback input showed monosynaptic 

responses that were depolarizing only).  This result suggests that there is 

a stronger thalamocortical, feedforward, and local connection input 

into the inhibitory neurons than the feedback input. 

In summary, the profile for different kinds of connections are: a strong 

excitatory feedforward connection, an even stronger excitatory 

feedback connection, and complicated intrinsic connections. 
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Table 1-5 The targeted positions for different connections 

Study Species From area Observation site Method Connection 
number 

Targeting on Connected 
to GABA positive 

neurons Spine Shafts Soma 

(Peters and 
Feldman, 

1977) 

Sprague-
Dawley 

albino rats 

LGN V1 Layer 4 LGN Lesions and observe 
the degeneration in V1 256 213 (83%) 37 (15%) 6 (2%)  

All V1 Layer 4 Direct observation 500 

Asymmetric, 
372 (74%).

Symmetric, 5 
(1%) 

Asymmetric, 
62 (12%).

Symmetric, 
57 (12%) 

Symmetric,
 4 (1%)

 

 

(Garey and 
Powell, 1971)

Monkey LGN Area 17 Layer 4

LGN of Lesion 

294 247 (84%) 40 (14%) 7 (2%)  

Cat LGN Area 17 Layer 4 330 273 (83%) 48 (14%) 9 (3%)  

Cat LGN Area 18 Layer 4 255 179 (70%) 50 (20%) 26 (10%)  

Cat LGN Area 19 Layer 4 148 126 (85%) 21 (14%) 1 (<1%)  

(Freund et al., 
1985) Cat 

LGN Area 17 Layer 4, 
occasional layer 3 Iontophoresis horseradish 

peroxidase (HRP) 306 

X (~90%), X (~5%), X (~5%),  

Y (~80%) Y (~15%) Y (~5%)  

LGN Area 18 Layer 4 Y (~70%) Y (~25%) Y (~5%)  

(Freund et al., 
1989) Monkey 

LGN Area 17 
HRP 

 
PA (68.9%) PA (33%) PA(3.1%) PA (2/53), 3.8%. 

MA (51.5%) MA (47.2%) MA(1.3%) MA (14/229), 6.2% 

LGN Area 17  PA (55.4%) PA (43.1%) PA (1.5%) PA (4/65), 4.2% 
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Study Species From area Observation site Method Connection 
number 

Targeting on Connected 
to GABA positive 

neurons Spine Shafts Soma 

MA (64.3%) MA (35.7%) MA (0%) MA (12/126),9.5% 

(Lowenstein 
and Somogyi, 

1991) 
Cat 

V1 PMLS (middle 
layers) 

Iontophoretically delivered 
phosphate-buffered saline

190 158 (83%) 32 (17%)  

14.45%, based on 
the percentage of 
the test GABA+ 

shafts (11/13, 85%) 

All PMLS (middle 
layers) 893 634 (71%) 258 (29%)  

7.83%, based on the 
percentage of the 
test GABA+ shafts 

(71/258, 27%) 

(Kisvarday et 
al., 1986) Cat 

Area 17 Layer 
3 

Area 17 layer 3 
same column 

HRP 

191 62 (86.1%) 9 (12.5%) 1 (1.4%)

4.55%, based on the 
percentage of the 
test GABA+ shafts 

(4/12, 33.3%) 
Area 17 Layer 

3 
Area 17 Layer 5 

same column  31 (86.1%) 5 (13.9%)   

Area 17 Layer 
3 

Area 17 layer 3 
different column  61 (87.1%) 9 (12.9%)   

Area 17 Layer 
3 

Area 17 Layer 5 
different column   11 (84.6%) 2 (15.4%)   

(Bueno-Lopez 
et al., 1989) Cat All Area 17 Layer 4  794 421 (53%) 365 (46%)  

9.44%, based on the 
percentage of the 
test GABA+ shafts 
(75/365, 20.5%) 

(White and 
Czeiger, 

1991) 
Mouse 

Callsoal axon Intrinsic terminals

HRP 

1215 1174 (96.6%) 41 (3.4%)   

Callsoal axon Extrinsic terminals 277 269 (97.1%) 8 (2.9%)   

All Area 1 layer 2 and 
3 398 331 (83.2%) 67 (16.8%)   

All Area 40 layer 2 
and 3 388 309 (79.6%) 79 (20.4%)   
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Study Species From area Observation site Method Connection 
number 

Targeting on Connected 
to GABA positive 

neurons Spine Shafts Soma 

(McGuire et 
al., 1991) Monkey 

Area 17 layer 
3B Area 17 

HRP 

117 89 (76%) 28 (24%)   

All excitatory 
(asymmetric) Area 17 layer 3 267 181 (68%) 83 (31%) 3 (1%) 

33/300, 11%, based 
on the asymmetric 

and symmetric 
synapse number 

All inhibitory Area 17 Layer 3 33 11 (33%) 17 (52%) 5 (15%)  

(Symmetric)       

(Johnson and 
Burkhalter, 

1996) 

Long 
Evans rats 

All Area LM Layer 1

Anterograde axonal tracing 
with the kidney bean lectin 

haseolus 
vulgarisleucoagglutini 

 44 (89.8%) 5 (10.2%)  

10.2%, based on the 
percentage of the 
test GABA+ shafts 

(5/5, 100%) 

All Area LM Layer 2/3  67 (88.2%) 9 (11.8%)  

7.99%, based on the 
percentage of the 
test GABA+ shafts 

(6/9, 67.7%) 

All Area LM Layer 4  14 (87.5%) 2 (12.5%)  

6.25%, based on the 
percentage of the 
test GABA+ shafts 

(1/2, 50%) 

All Area 17 Layer 1  47 (87%) 7 (13%)  

7.42%, based on the 
percentage of the 
test GABA+ shafts 

(4/7, 57.1%) 

All Area 17 Layer 2/3  41 (85.4%) 7 (14.6%)  
12.5%, based on the 

percentage of the 
test GABA+ shafts 

(6/7, 85.7%) 

Area 17 Area LM layer 1  13 (100%)    
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Study Species From area Observation site Method Connection 
number 

Targeting on Connected 
to GABA positive 

neurons Spine Shafts Soma 

Area 17 Area LM layer 2/3  80 (89.9%) 9 (10.1%)  
10.1%, based on the 

percentage of the 
test GABA+ shafts 

(9/9, 100%) 

Area 17 Area LM Layer 4  26 (86.7%) 4 (13.3%)  

13.3%, based on the 
percentage of the 
test GABA+ shafts 

(4/4, 100%) 

Area LM Area 17 Layer 1  72 (100%) 0 (0%)   

Area LM Area 17 Layer 2/3  110 (97.3%) 3 (2.7%)  

2.7%, based on the 
percentage of the 
test GABA+ shafts 

(2/2, 100%) 

(Johnson and 
Burkhalter, 

1997) 

Long 
Evans rats 

Area 17 
feedforward 
connections

Area 17 Layer 1 
collateral 

connections 

biotinylated dextran amine 
labelling 

 43 (95.6%) 2 (4.4%)   

Area 17 
feedforward 
connections

Area 17 Layer 2/3 
collateral 

connections  
 16 (88.9%) 2(11.1%)   

Area LM 
feedback 

connections

Area LM Layer 1 
collateral 

connections 
 29 (93.5%) 2 (6.5%)   

Area LM 
feedback 

connections

Area LM Layer 2/3 
collateral 

connections 
 5 (100%) 0   

(Keller and 
Asanuma, 

1993) 
Cats 

Motor cortex 
Layer 4 

Motor cortex Layer 
2/3 

Neurobiotin 

161 101 (63%) 52 (32%) 8 (5%)  

Motor cortex 
Layer 4 

Motor cortex Layer 
2/3 pyramidal 

neuron 
20 18 (90%) 2 (10%)   
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Study Species From area Observation site Method Connection 
number 

Targeting on Connected 
to GABA positive 

neurons Spine Shafts Soma 

Motor cortex 
Layer 4 

Motor cortex Layer 
2/3 non-pyramidal 

neuron 
30 2 (6.7%) 20 (66.7%) 8 (22.6%)  

(McGuire et 
al., 1984) Cats Area 17 Layer 

6 Area 17 Layer 4 HRP 151 43 (28%) 108 (72%)   

(Gabbott et 
al., 1987) Cat 

Area 17 Layer 
5 Area 17 layer 4

HRP 

49 ~96% ~4%   

Area 17 Layer 
5 Area 18 layer 4 6 100%    

Area 17 Layer 
5 Area 17 layer 5 77 ~80% ~20%   

Area 17 Layer 
5 Area 18 layer 5 20 ~80% ~20%   

Area 17 Layer 
5 Area 17 layer 6 75 ~65% ~35%   

Area 17 Layer 
5 

Area 18 layer 6 39 ~70% ~30%   
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Observed effects:  

There are many methods to observe the effects of feedforward and 

feedback connections (e.g. lesion, cooling down or optogenetic 

activation or deactivation in higher or lower areas).  The underlying 

principle is simple: modify the activity of higher or lower area and 

observe the target areas’ response.  

For the feedforward connections, monkey recording studies by Girard et 

al showed that the neurons in V2 (~100%), V3a (~70%), V3 (~100%) and 

V4 (~100%) were not responding to the visual stimuli after reversibly 

inactivating V1 by cooling(Girard and Bullier, 1989; Girard et al., 1991a, 

1991b). These effects only worked on the neurons with receptive fields 

which were included in the visual field region coded by the inactivated 

zone, the neurons outside this region remained visually responsive. 

However, for V5/MT, Girard et al showed that most of the neurons (~80%, 

~20% not responding) were still responding to the visual stimuli when 

cooling V1 (Girard et al., 1992). Lesion studies on V1 also confirmed this 

observation: 66% of neurons in macaque MT still respond to visual 

stimulation 5-6 weeks after a lesion of V1 (Rodman et al., 1989).  

For the feedback connections, the observed effect is similar to the 

feedforward connections. In anesthetized animals, Sandell and Schiller 

showed that cooling down V2 would lead to an activity drop in V1 (~86%) 

(Sandell and Schiller, 1982). Hupé et al. showed that in most cases, 

cooling down MT would lead to an activity drop in V1, V2 and V3 (~84%), 

while in one extreme case of very low saliency stimuli, V3’s activity 

increased during the cooling(Hupé et al., 1998). Hupé et al. also showed 

similar results in V1 as Sandell and Schiller: tuning down V2 activity with 

GABA resulted in an activity drop in V1 (100%, but with only 6 neurons) 

(Hupe et al., 2001).  Wang et al. showed that cooling PTV in cat could 
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reduce the activity in V1 (~81%) (Wang et al., 2010).  

However, recent studies on awake animals showed that, when cooling 

down V2/V3, about half of affected neurons inside the classical 

receptive field in V1 increased their activity (~52% increased activity, ~48% 

decreased activity), and when including the surrounding neurons of the 

classical receptive field, most neurons increased their activity (~89% 

increased activity, ~11% decreased activity) (Nassi et al., 2013). In mouse, 

Zhang et al. showed that focal activation of Cg (frontal cortical area) 

axons in V1 caused a response increase at the activation site but a 

decrease at nearby locations (center-surround modulation) (Zhang et 

al., 2014). 

In summary, both feedforward and feedback have mostly an excitatory 

effect. But in certain conditions, they can also have an inhibitory effect. 

The excitatory and inhibitory effects could have different reasons, and 

affect different regions.  

 

 

 

Table 1-6 Effect of inactivation of the feedback from higher neuronal area. Modified 

from (Nassi et al., 2013) 
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The Convergence and Divergence 

One other aspect of the connectivity between different cortical areas is 

by measuring the convergence and divergence. Since most of the 

cortical areas connect to each other in a reciprocal fashion (one area 

both sends and receives signals from the other area), it would help us a 

great deal to know if there are differences between the feedforward 

and feedback connections. The studies about the convergence and 

divergence have demonstrated a rather clear image: feedforward 

connections are more convergent and feedback connections are more 

divergent. 

The most direct evidence for this conclusion may come from studies 

using retrograde and anterograde tracers between areas 17 and 18 in 

cat. To determine the feedforward convergence, Ferrer and colleagues 

used two different retrograde tracers (one with yellow color, and the 

other with blue color, the tracers go from the target neuron’s cell body 

to the target neuron’s dendrite, then to the projection neuron’s axon 

and then to the projection neuron’s cell body). They found out that 

when the boundaries of the dense central cores of two injection sites in 

area 18 were separated by at least 1.6 mm, the two corresponding 

distributions of labelled neurons in area 17 were just non-overlapping 

(Ferrer et al., 1988). This result suggested that the feedforward 

connections from one point in area 17 should only affect the neurons 

population with a size 0.8 mm larger in all directions in area 18. However, 

for the feedback connections in cat, Henry et al. showed that, by using 

the anterograde tracer (which goes from the target neuron’s cell body 

to the target neuron’s axon, then to the projection neuron’s cell body), 

small injections (usually 0.2 – 0.5 mm) in area 18 would lead to a 
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divergence labelling effect in area 17 (from 3.5 – 6 mm in the 

mediolateral direction and 7 – 8 mm in the rostrocaudal direction). This 

result suggests the feedback corticocortical connections are organized 

in a strongly divergent fashion (Henry et al., 1991).  

 

Figure 1-31 The convergence and divergence of feedforward and feedback 

connections. The left one measured the feedforward divergence and had a 

maximum of 1.6 mm spread for feedforward connection. The right one 

measured the feedback divergence and had a result of 3.5 - 8 mm spread for 

feedback connection. 

Another set of evidence for the feedforward and feedback 

convergence and divergence is axonal bifurcations. It is widely 

accepted that one important difference between feedforward and 

feedback is the amount of axonal bifurcations: in cat, there are very little 

axonal bifurcations (<3%) for the feedforward projections from area 17 

to area 18 and 19. But the feedback projections to area 17 contain 

much more axonal bifurcations (20%-30%) (Salin and Bullier, 1995). 

Furthermore, it is worth to notice that the proportions of neurons with 

bifurcations tend to be higher in infragranular than in supragranular 

layers (Kennedy and Bullier, 1985).  
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Temporal dynamic of neocortex 

Time delay between areas 

Time is required for the communication between different areas. It could 

be simply interpreted as the speed of signal transportation from different 

areas. However, there are various kinds of ways to measure this time 

delay and the concept of latency is very easy to be misunderstood. For 

the information to, travel from one area to another, spike (or electronic 

signal travelling using the voltage change of the axons) is the only tool. 

On the other hand, when we present stimuli to subject, at each of the 

visual areas, there is a significant increase of neurons’ firing rate or an 

event related response (ERP). Here, to better understand this time delay, 

we divided studies about the time delay into two categories: the axonal 

conduction delay and the response delay. They represent two 

fundamentally different measuring methods and functional meanings. 

Axonal conduction delay 

The axon of the neuron is the carrier of the neuronal signals. By changing 

the membrane potential, the electronic signal travels through the axon 

to the synaptic cleft, and to the dendrite of the next neuron. Even 

though the electronic signal transfer into the chemical signal, the time 

required for the signal to cross the synaptic cleft is very short (modelling 

study showed that 50% of the neurotransmitter finished their transmitting 

and cleared only in 0.05 ms and 90% in 0.5 ms, this time is usually included 

in the antidromic delay, see more in (Clements et al., 1992; Clements, 

1996)). Thus, the time needed to transfer signal from one neuron to 

another is mainly depended on the time spent on the axon.  
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Figure 1-32 Relationship between the conduction velocity and fiber diameter 

for myelinated and non-myelinated connections. 

The axons are like the cables of our brain, and more than 80% of the 

brain volume is to contain the axons. Two kinds of axons could be found 

in the brain: non-myelinated and myelinated. The fatty substance of 

myelin could help to speed up the transportation speed and in 

mammals, most of the inter-areal connections are myelinated axons 

(the reason for the white color of the white matter is the myelin). Another 

factor that affects the axonal conduction speed is the diameter of the 

axon. The axon diameter and the conduction velocity have a 

monotonic positive relationship: the thicker the axon, the higher the 

velocity is.  

One way to study this conduction delay is by using the antidromic 

method which can provide much clear results since the orthodromic 

recording can not be accurate because of the spontaneous spikes. The 

distribution of the axonal conduction delays usually has a peak at 1 – 

2ms with a long tail until tens of milliseconds (thus the mean value of such 

distribution can not reflect the features of the data). Connections 
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between different areas and within different species have different 

conduction delays, these conduction delays could change from 0.5 ms 

to more than 30 ms. Some argued that only the short conduction delay 

can reflect the real conduction delay and define the antidromic delay 

as “short latency” because the long antidromic delay may be caused 

by the recording method and noise. For example, since the antidromic 

delay is measured using the time from the electrical shock from one area 

to the foot of the antidromic spike. It is possible that the measured spike 

is not caused by direct electrical shock, but rather the antidromic spike 

from local neurons and the measured neuron is not directly connected 

to the electrically shocked area. 

Another property of the conduction delay worth noticing is that the 

conduction delay in one axon is very stable. In other words, the jitter of 

the conduction delay is very small: the usual criteria for antidromic spike 

is a latency jitter less than 0.1 ms, for orthodromic spikes, the jitter is 0.3 – 

0.5 ms (Girard et al., 2001).  

The measured results showed a very fast connection for different areas 

in cat and monkeys and suggested a similar conduction delay for 

feedforward and feedback connections. Girard et al showed that the 

mean delay for feedforward and feedback from V1 to V2 is 1.1 ms and 

1.25 ms (Girard et al., 2001). Similar values were showed between V1 and 

MT (1.3 ms) (Movshon et al., 1996), LIP and FEF (2.3 ms) (Ferraina et al., 

2002). However, in rat and rabbit, bigger values were measured: Nowak 

et al showed that the axonal conduction delay between V1 and V2 is 

about 5 ms to 6 ms (similar values were obtained for both feedforward 

and feedback)(Nowak et al., 1997). Swadlow et al showed similar values 

for V1 and V2 in rabbit (Swadlow and Weyand, 1981).  
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Figure 1-33 Typical distribution of the axonal conduction delay. This is the axonal 

conduction delay between the S1 and motor cortex, from (Waters et al., 1982) 

 

To sum up, the information transportation between areas is amazingly 

fast and stable: axonal conduction delays between areas are only 1-2 

ms between different cortical areas with the jitter less than 0.1 ms. These 

numbers are so small and they are even comparable with the 

industrialized modern information transportation tools: the time delay 

inside physically connected computer local area network is about 1 ms 

and the local WIFI time delay is about 10 ms to several hundred ms. These 

time delays are with a much bigger jitter. There must be a significant 

functional meaning for a biological organism to spend 80% of its brain 

volume and very costly materials (myelin) to achieve this industrial level 

conduction velocity. The advantage should include more than the fast 

reflex since simple reflex need as long as several hundred milliseconds 

while the conduction delay is much faster and could be achieved in low 

level species. 
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Table 1-7 Axonal conductional delays between different areas in different 

animals 

System species area N Distance 
(mm) 

Conduction 
time (ms) 

Conduction 
velocity (m/s) Refs 

Cortico-
cortical 

Rabbit S1- S2 48  (2.0 – 28.9) 
mean:11.0

(0.3 – 4.6) 
mean:1.3 

Swadlow, 
1990 

Rabbit V1 –V2  2.5-7.0 (2-12)  
mean:~6.5

(0.23-5.74) 
mean: 0.64 

(Swadlow and 
Weyand, 

1981) 

Rat V1-V2 12  (3.66 - 7.87) 
mean:5.69

(0.291-0.6) 
mean: 0.413 

(Nowak et al., 
1997) 

Rat V2-V1 11  (4.1 – 8.9) 
mean:6.00

(0.27 – 0.476) 
mean:0.377 

(Nowak et al., 
1997) 

Cat S1- S2 26  <2 and >30  Miller, 1975 

Cat S1-S2   <2 *  (Manzoni et 
al., 1979) 

Cat 
Area 

17/18 –
area 19 

  <2 (9.0 -21) (Toyama et 
al., 1974) 

Cat 
S1 – 
Motor 
cortex 

  87% 1-2.2
Longest 6.8  (Waters et al., 

1982) 

Cat 
S1-

Motor 
cortex 

  0.6 -7.2 
mean: 2.5  (Zarzecki et 

al., 1983) 

Cat 
Motor 
cortex 
– S1 

  90% <2 
10% 7-16ms  (Deschenes, 

1977) 

Monkey V1-V2   (1 – 2.5) 
mean:1.1  (Girard et al., 

2001) 
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System species area N Distance 
(mm) 

Conduction 
time (ms) 

Conduction 
velocity (m/s) Refs 

Monkey V2-V1   (0.25 – 4.5) 
mean:1.25  (Girard et al., 

2001) 

Monkey MT-V1 106  (1.0-1.7) 
mean:1.3  (Movshon et 

al., 1996) 

Monkey LIP-
FEF 329 30 (0.5 – 8.0 ) 

mean:2.3  Ferraina et al., 
2002 

Cortico-
thalamic 
(layer 6) 

Rabbit V1 124 17 (2.0 – 42.7) 
mean:14.3 (0.4 – 9.6 ) Swadlow and 

Weyand, 1987

Cat V1 134 20 (2.5 – 45.0) (0.4 - 8.0) 
Ferster and 
Lindstrom, 

1983 

Monkey V1 35  (2.0-20.0) 
mean:9.5  Briggs and 

Usrey, 2009 

Thalamo-
cortical 

Rabbit visual 127 17 (0.6 – 3.1) 
mean:1.2 

(5.5 – 28.0) 
mean: 14.8 

Swadlow and 
Weyand, 1985

Cat visual 250 ~ 20 (0.3 – 9.7)
mean:0.9 

(2.1- 67.0) 
mean: 22.2 

Cleland et al., 
1976 

Cat LGN-
V1 171  (0.5 – 1) 

mean:0.62  (Toyama et 
al., 1974) 

Corpus 
callosum 

Rabbit visual 40 ~18 (2.4 - 39.8) 
mean:16.5 (0.7 – 7.5) Swadlow, 

1974a 

Cat visual 36  (1.3 - 15.0)  
mean:2.7  Innocenti, 

1980 

Cat Sense- 
motor 87 10~20 (2.0 -  32.0)

mean:10.1 (1.0 - 10.0) Miller, 1975 

Monkey Visual 51 ~ 50 (2.6– 18.0) 
mean:7.0 

(3.0 –23.0) 
mean:7.0 

Swadlow et 
al., 1978 

*Defined conductional delay as short latency 
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Response delay 

Another type of delay is the response delay, which is usually measured 

in the visual system. By flashing a visual stimulus, at different stages in the 

visual system, there are different event related response times. This 

response delay could be measured directly using an electrophysiology 

method: recording the ERP time in different areas. Nowak and Bullier 

have reviewed this time delay explicitly (Nowak and Bullier, 1997).  

 

Figure 1-34 A time-delay map from Thorpe and Fabre-Thorpe. They suggested 

a 10 to 20 ms delay in every stage in the visual processing process. However, 

this conclusion was challenged by data obtained in Thorpe’s later study. For 

example, they found a 24 ms mean onset latencies in FEF in epileptic patients. 

The new results suggested a much faster response time. 
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Figure 1-35 The onset response latency in different areas concluded by (Nowak 

and Bullier, 1997). The response time have a large variance. 

Comparing with the axonal conduction delay, these delays have a 

much bigger value and variance. For example, the latency for V1 have 

a mean value of about 50 - 60 ms, but the latency for V2 is about 90 ms. 

This suggested a time delay between V1 and V2 of about 30 – 40 ms. 

Contrasted with the 1 – 2 ms axonal conduction delay, this delay is huge. 

Based on the response time to a flashed stimulus, Thorpe and Fabre-

Thorpe showed a time delay map between different areas in monkey 

and concluded that it takes about 10 ms to 20 ms in every stage of signal 

processing (Thorpe and Fabre-Thorpe, 2001). Nowak and Bullier tried to 

explain this difference between the response latency and axonal 

conduction delay using the neuronal integration time: they showed 

previous evidence suggesting that for neurons in resting membrane 
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potential, it takes 5 – 12 ms for a neuron to integrate and fire for the 

optimally oriented stimuli; for the stimuli with close to optimal orientation, 

it takes 6 – 15 ms.  However, they also showed evidence suggesting for 

a neuron that is close to the firing threshold, it takes only the EPSP rising 

time for the spike (which could be as short as 0.5 ms). They concluded 

that coincidence detection and temporal summation is the key factor 

for the response delay. I think the difference between the axonal 

conduction delay and response delay is the key computation window 

for the brain. 
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Oscillations 

Electrical activity of the brain 

The first discovery of the electrical excitability of the cerebral cortex was 

in 1870 by Fritsch and Hitzig and confirmed by Ferrier and others 

(Mountcastle, 1995).  The electrical activity of the brain was first 

discovered in 1874 by Richard Caton. In 1875, he reported his discovery 

of this electrical activity in the grey matter in animals and hypothesized 

the possible functional role of this electrical activity. 

 

 

Figure 1-36 Top: Caton's discovery of electrical activity of the brain. From the 

proceedings of the forty-third annual meeting of the british medical association 

in 1875. Bottom: First published Electroencephalogram of a human by Hans 

Berger in 1929. 
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However, this discovery was not taken seriously for 55 years. Hans Berger 

followed the work by Caton and showed the electrical activity of 

humans in 1924. The neurological community was shocked by this 

discovery. Hans Berger’s description is attractive because the usage of 

scalp recording technique (under the scalp) which was the first time that 

there is a method for studying the activity of the brain in waking, 

behaving human subjects (Mountcastle, 1995). Hans Berger also 

described the different waves or rhythms, such as the "Berger's wave" (~8 

Hz – ~13 Hz). Adrian and Mathews confirmed that this discovery was not 

an artifact in 1934 and showed that these “alpha waves” were 

generated mainly in the occipital regions. These neural oscillations were 

then classified into Delta (~0.1 Hz – 3 Hz), Theta (~4 Hz - ~7 Hz) Alpha (~8 

Hz - ~13 Hz), Beta (~14 Hz -~30 Hz) and Gamma (~30 Hz - ~100 Hz) 

frequency bands and were claimed to have different functional 

meanings.  
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Possible origins of the oscillations 

The origins of the oscillations are from the rhythmic firing/spiking of a 

population of neurons and the interactions between the excitatory 

neurons and the inhibitory neurons creating these rhythmic activities. 

Even though we still do not know clearly about the detailed source of 

the oscillations, two models were created to try to explain the observed 

Gamma-band rhythmic activities: the interneuron Gamma (ING) and 

the pyramidal-interneuron Gamma (PING) (Tiesinga and Sejnowski, 

2009).  

The ING model states that the rhythmic activities are caused by the 

interactions within inhibitory interneurons and then affect the excitatory 

neurons: the inhibitory neurons inhibit themselves and generate a 

rhythmic synchronized spiking pattern. This firing pattern created a time 

window for the excitatory neurons to fire and thus the oscillations reflect 

the rhythm of the inhibitory neurons inhibiting themselves. 

Figure 1-37 The ING model and PING model. Modified from 

(Tiesinga and Sejnowski, 2009) 
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The PING model states that the rhythmic activities are caused by the 

interactions between the inhibitory interneurons and excitatory 

pyramidal neurons: the inhibitory neurons are driven by the excitatory 

neurons and begin to fire, while these activities inhibit the excitatory 

neurons in a circular manner.  In this model, the rhythm of the network 

reflects the interaction between the excitatory and inhibitory neurons. 

In both of the models, the oscillations are related to the inhibitory 

neurons. In the neocortex, Kätzel et al showed that the pyramidal 

neurons are connected to the interneurons within the same layer (Kätzel 

et al., 2011) (Figure 1-38). This suggested that different layers can have 

oscillations with different frequencies. From the definitions of 

feedforward and feedback, we know that feedforward and feedback 

connections rely on specific layers. Laminar recording studies showed 

that high-frequency oscillations are prominently generated in superficial 

layers and low-frequency oscillations in deep layers (Roopun et al., 2006; 

Maier et al., 2010; Buffalo et al., 2011). Since feedforward synapses are 

from superficial layers and connect to mostly middle layers, and 

feedback synapses are from deep layers and connect to mostly non-

middle layers, the frequencies of the oscillations in feedforward and 

feedback connections can reflected by the oscillations in different 

layers. Thus, these results showed an oscillatory profile for feedforward 

and feedback: high frequency feedforward and low frequency 

feedback. Recent studies showed direct evidence for this notion: van 

Kerkoerle et al showed that, by inducing different frequency oscillations 

in different hierarchical areas with micro-stimulations and 

pharmacological method, the Gamma frequency oscillations 

propagate in the feedforward direction and Alpha frequency 

oscillations propagate in the feedback direction (van Kerkoerle et al., 

2014).
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Figure 1-38 Average strength of inhibitory input from the indicated source layers (rows) to excitatory neurons located in L2/3 (a), L4 

(b), L5A (c), L5B (d) and L6 (e). The data were from 30 neurons in M1, 54 neurons in S1 and 53 neurons in V1. The strength of a

connection is expressed as the average percentage of inhibitory charge flow arising from identified inputs in a layer. L5 represents 

the sum of L5A and L5B. Values are represented numerically (s.d. in parentheses) and by the intensity of gray shading. The figure is 

modified from (Kätzel et al., 2011). 
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Figure 1-39 The top down and bottom up connections and their relationship with 

Gamma and Alpha band activity. From (van Kerkoerle et al., 2014). 

Functional significance of ongoing oscillations 

As the center of the machine controlling the action, the inner state of one’s 

brain should have an effect on t behavior. The oscillations indeed have a big 

effect on the perception and behavior outcomes. Since the oscillations in 

each frequency have two properties: amplitude and phase, the investigations 

of the relationship between the behavior outcomes and amplitude/phase 

reveal the functional meaning of the different frequency oscillations.  

The experiments usually use EEG since modern techniques can accurately 

record scalp activities with only 10 – 100 µV precision. The pre-stimulus 

oscillatory activities are usually used since the post-stimulus activities are driven 

to a large extent by stimulus-related activity (e.g. evoked potentials). These 

activities could hide the effect of the on-going oscillations and induce stimulus-

related variability (e.g. eye-movement).  
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Figure 1-40 The pre-stimulus power difference in different perception. From (Hanslmayr 

et al., 2007) 

One significant discovery on the relationship between the oscillatory 

amplitude and behavior is on the alpha frequency band. It was confirmed by 

several studies that there exists a negative relationship between the alpha 

amplitude and perceptual ability. One example is by Hanslmayr et al: in a 

discrimination task (discriminating the letters: p, q, b and d by button pressing), 

the subjects were asked to respond as fast as possible to the perception of a 

target stimulus. Results showed that, compared to the unperceivable 

conditions (P-), the perceivable conditions (P+) have less pre-stimulus alpha 

power (500ms until stimulus presentation) (Hanslmayr et al., 2007). Researchers 

concluded from this evidence that Alpha frequency oscillations have an 

inhibitory role in information processing. 

Another very important discovery about the relationship between the 

oscillations and behavior is the phase-behavior relationship which was mainly 

discovered in our lab in 2009. Niko Busch and Rufin VanRullen published two 

papers on this: first they designed a visual detection task with a detection rate 

at ~50%. Subjects were asked to detect visual stimuli without moving their eyes 
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and report their perception while EEG was recorded. By using the measure of 

phase bifurcation index, they showed that pre-stimulus phase at ~7 Hz over 

fronto-central electrodes could influence the visual perception (the phase 

could decide ~16% perceptual performance) (Busch et al., 2009). Then, they 

confirmed that this effect only happened in a condition with attention (Busch 

and VanRullen, 2010) and contributed to the idea of a blinking spotlight of 

attention (VanRullen et al., 2007). 

 

Figure 1-41 The relationship between the pre-stimulus phase and post-stimulus 

perception. From (Busch and VanRullen, 2010). 
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Canonical Neural Circuits 

To sum up all the previous information about the brain, it is reasonable to build 

a canonical neural circuits model to further investigate the functional roles of 

different parts of the brain. From the beginning of neuroscience, researchers 

were beginning to search for canonical neural circuits and wanted to explain 

the brain using such circuits. Ramon Cajal was convinced that such canonical 

neural circuits exist. He claimed strongly that the neocortex was built of 

stereotyped circuits like those he had discovered in the other parts of the 

nervous system. However, he was not able to identify that canonical neural 

circuit (Douglas and Martin, 2007). 

 

Figure 1-42 The canonical neural circuits proposed by (Douglas et al., 1989). 

Douglas and Martin proposed their canonical neural circuits based on their 

recordings on cat. The circuit was first published in 1989 in a computational 

journal (Douglas et al., 1989) and then published in 1991 in a physiology journal 

(Douglas and Martin, 1991). In their circuit, they only described one stage of 
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processing (Thalamus to V1), in which the thalamus provides input to both 

smooth cells (inhibitory neurons) and pyramidal neurons in both layers 2, 3, 4 

(mostly) and layers 5, 6. The superficial layers and the deep layers connected 

to each other and to the smooth cells. The smooth cells provided inhibitory 

input to superficial layers and deep layers, too. This model provided a certain 

understanding of the basic structure of the neural circuits, however, it lacked 

one very important property in the neocortex: the feedforward and feedback 

connections. They are one of the most important and well-studied property 

and provide information for the possible neural processing procedure. 

Bastos et al. proposed a canonical neural circuit of predictive coding. They 

took advantage of a statistical description of the connections of different 

layers. They simplified parts of the original description and added some 

connections which were not evident in the data (they used the dash line to 

represent them). Then, they assigned so called “error” population and so 

Figure 1-43 The proposed canonical neural circuits of predictive coding by (Bastos et 

al., 2012). The left is the original statistical description and the right is the proposed

function of different groups of neurons. 
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called “representation” population to different parts of the neural elements. 

Even though this is a good attempt to try to fit the model with the empirical 

evidence, however, this circuit did not explain anything about the functional 

mechanism of predictive coding. For example, how is the predictive error 

generated? What is the functional significance of predictive coding?  

 

Figure 1-44 The proposed canonical neural circuit for distant areas (unilaminar). The 

circuit is based on the six-layer structure in the neocortex. We divided the six-layer into 

three parts: the surface layers (layer 2 and 3), middle layers (layer 4) and deep layers 

(layer 5 and 6). If the two areas are distant, feedforward connections (blue) projected 

only from the surface layer in the lower area with the Gamma oscillations generated 

within the local Pyramidal-inhibitory neuron loop. 85% of the feedforward connections 

target on the middle layer and 15% of them target on the inhibitory neurons. 95% of 

the feedback connection projected from the deep layers and targeted on the 

surface and deep layers (avoiding the middle layers) with the Alpha oscillations. The 

remaining 5% targeted on the inhibitory neurons. The feedforward and feedback 

connections are excitatory and the local inhibitory neurons provide the inhibition. 
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Based on the canonical neural circuits by Douglas and Martin and other recent 

evidence on the connections between areas, here, I propose one canonical 

neural circuit which includes the feedforward and feedback connections. 

These connections are from the classical research from Felleman and Van 

Essen (Felleman and Van Essen, 1991). Thus, there are two versions of the model: 

for neighboring areas, the connections are bilaminar; for distant areas, the 

connections are unilaminar. Since the anatomical evidence is strong and 

stable, any functional mechanism should be based on these basic structures. 

In the main text of this thesis, I propose one possible model for us to understand 

how such a simple and fixed structure could produce predictive coding, and 

further generate the significant functions of our brain. 

Figure 1-45 The proposed canonical neural circuit for neighboring areas 

(bilaminar). The structure is similar to the circuit showed before but with a bilaminar

feedforward and feedback (projected from both surface layers and deep layers).
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Predictive coding 

As usual, only more experiments, guided by the sort of insights provided by Rao 

and Ballard, will help unravel the complexities and multiple facets of 

information processing in the brain. 

-Christof Koch and Tomaso Poggio 

From efficient coding to predictive coding 

Predictive coding is perceived as “the model” of the brain by many 

researchers. However, predictive coding was not born without any context. 

The idea of predictive coding comes from other ideas from more than 50 years 

ago. In 1948, Claude Shannon (1916-2001) published the classic paper “A 

Theory of Communication”.  This theory uses the amount of information to 

describe the world and gained such a success that changed the whole 

human society. Just few years after this discovery, scientists found out the 

similarity between the brain and a signal processing machine and had the 

idea to use the information theory to explain the brain. Fred Attneave (1919-

1991) argued that many psychological facts of perception could be explained 

using the idea of information redundancy reduction by proposing several mind 

experiments (Attneave, 1954). In one of his mind experiments, he states: 

…To begin, we give him an 80 X 50 sheet of graph paper, telling him that he is 

to guess whether each cell is white, black, or brown, starting in the lower left 

corner and proceeding across the first row, then across the second, and so on 

to the last cell in the upper right corner. Whenever he makes an error, he is 

allowed to guess a second and, if necessary, a third time until he is correct. He 
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keeps a record of the cells he has been over by filling in black and brown ones 

with pencil marks of appropriate color, leaving white ones blank. After a few 

errors at the beginning of the first row, he will discover that the next cell is 

"always" white, and predict accordingly. This prediction will be correct as far 

as Column 20, but on 21 it will be wrong. After a few more errors he will learn 

that "brown" is his best prediction, as in fact it is to the end of the row. Chances 

are good that the subject will assume the second row to be exactly like the 

first, in which case he will guess it with no errors; otherwise he may make an 

error or two at the beginning, or at the edge of the "table," as before. He is 

almost certain to be entirely correct on Row 3, and on subsequent rows 

through 20. On Row 21, however, it is equally certain that he will erroneously 

predict a transition from white to brown on Column 21, where the corner of the 

table is passed. (Attneave, 1954) 

Attneave concluded from this mind experiment that the information 

redundancy exists in the graph paper. But in the same time, he pointed out 

one natural strategy to deal with redundancy: predicting the future and 

correcting the prediction with the errors.  

In 1961, Horace Barlow (1921-) proposed the hypothesis of efficient coding. He 

proposed that the possible principles of sensory system included that “They 

recode sensory messages, extracting signals of high relative entropy from the 

highly redundant sensory input” (Barlow, 1961a). In 1972, Barlow proposed a 

more detailed version of this efficient coding theory, he stated: “The sensory 

system is organized to achieve as complete a representation of the sensory 

stimulus as possible with the minimum number of active neurons” (Barlow, 1972). 
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Figure 1-46 The learned basis functions (receptive field) using the sparse coding as 

prior. From (Olshausen, 1996). 

In 1987, David Field provided evidence for this efficient coding idea. He found 

that the orientation and spatial-frequency tuning of mammalian simple cells 

suited well with the statistics of the natural images (Field, 1987). In 1996, Bruno 

Olshausen and David Field followed Barlow’s idea and created sparse coding, 

which is literally to learn the basis functions (receptive field in the sense of 

neuroscience) based on the minimum number of active neurons. They found 

out the learned basis functions are just like the receptive fields in V1 (Olshausen, 

1996) (see Figure 1-46). This algorithm gained a success in both the field of 

neuroscience and computer vision. In neuroscience, it could be one of the 

biggest discovery from the era since Hubel and Wiesel’s discovery of the shape 

of the receptive fields. On the other hand, in computer vision, it is possible to 

solve many problems that traditional methods could not, as illustrated in Figure 

1-47. 
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Figure 1-47 Image restoration achieved by sparse coding. The right image is restored 

using the information from left image and trained basis functions on natural images. 

Rajesh Rao and Dana Ballard proposed the idea of predictive coding in 1999 

which tried to provide a hypothesis for a fundamental brain mechanism. The 

study was motivated by the properties of extra-classical receptive-field such 

as the end-stopping, occlusion, perceptual grouping, illusory contours and etc. 

Then they argued the extra-classical receptive-fields are caused by the 

predictive coding of natural images. 

In the proposed predictive coding model, there are three main components: 

the feedforward pathway, the feedback pathway and the predictive 

estimator. The feedback pathways carry predictions of neural activity at the 

lower level; the feedforward pathways carry residual errors between the 

predictions and actual neural activity. The predictive estimator uses the 

residual error to correct its current estimate of the input signal and generate 

the next prediction. 
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Figure 1-48 Proposed predictive coding model from (Rao and Ballard, 1999) 

In their implementation, they used four kinds of neurons:  

(1) Feedforward pathway neurons 

(2) Feedback pathway neurons 

(3) Error neurons, which stored the difference between the input signal and the 

feedback prediction 

(4) Optimization neurons, which optimize the representation using gradient 

descent on the following cost function (E) with respect to the representation 

(r): 
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which is to minimize the sum of the feedforward representation (1), difference 

between the feedback representation and input signal (3) and other control 

parameters.  

 

Figure 1-49 Different kinds of neurons in the predictive coding model 

Their model could achieve a lot of functions of the extra-receptive field such 

as end stopping, pop-out texture, orientation contrast and etc. 

After the publication of this predictive coding model, Christof Koch and 

Tomaso Poggio published a commentary on this model. They praised that: 

Predictive coding is a general framework for interpreting information 

processing in complex natural and artificial systems, and many mechanisms 

may be seen in this light. (Koch and Poggio, 1999) 

In 2005, Karl Friston developed his theory and tried to connect the predictive 

coding model with cortex laminar structure (Friston, 2005). However, his theory 

is hard to understand and applied mechanically the detailed implementations 

of Rao and Ballard’s model, suggesting there are two groups of neurons inside 

the cortex: the representation neurons and error detecting neurons (which 

reflect type 4 and 3 neurons in the Rao and Ballard’s model, respectively).  
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However, it is impossible to ask real neurons to do gradient descent. His 

misunderstanding had a huge and detrimental effect and many 

neuroscientists and psychologists tried very hard to find the “error neurons” and 

explained the excitatory feedback effect as “representation neurons”.  

In 2008, Michael Spratling contributed to the predictive coding framework and 

proposed the double-inhibition model to reconcile predictive coding with the 

neurophysiological and anatomical data showing that feedback is mainly 

excitatory.  

In his model, instead of using direct inhibitory feedback to achieve the “error 

detecting” or “explaining away” effect, his model used a double-inhibition 

method: the higher area sends excitatory feedback to the representation 

neurons in the lower area; then these representation neurons send inhibitory 

input to the error neurons within one area; the error neurons receive excitatory 

input from a lower area and sends the excitatory output to the representation 

neurons. Thus, the simple error detecting neurons in Rao and Ballard changed 

from 

r (t + 1)  ∝ r(t) − r (t) 
to 

r( + 1) ∝ r( ) + r ( ) − 2r ( ) 
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Figure 1-50 Proposed double inhibition model of predictive coding  from (Spratling, 

2008a) . a is the simplified Rao and Ballard’s model, and b is proposed model. 

In 2013, Andy Clark, a professor of philosophy, opened a discussion about 

predictive coding with the proposal that predictive coding is the future of 

cognitive science. Many researchers in psychology and neuroscience 

interested in predictive coding participated in this discussion (Clark, 2013). In 

the discussion, researchers mentioned the experimental approach to 

investigate predictive coding. In recent studies of predictive coding, the 

researches have three main topics: 

(1) What is the effect of predictive coding? 

(2) What is the relationship between predictive coding and attention? 

(3) What is the relationship between predictive coding and oscillation? 

I review some of the papers about these topics in the next section. 
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Empirical evidence of predictive coding 

Effects of predictive coding 

The first empirical evidence about predictive coding is from Murray et al in 2002. 

They used three fMRI experiments to try to prove that shape perception could 

reduce activity in V1 (Murray et al., 2002). 

 

Figure 1-51 Predictive feedback inhibit primary visual cortex response. A is the stimuli 

that generate the predictive feedback. B is the different amount of activation in visual 

areas. C is the overall response in LOC and V1. D is the time-dependent response in 

LOC and V1. The results showed that 3D shape could activated the higher area (LOC) 

more and reduced activity in lower area (V1). 
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In the first experiment of their 3 experiments design, they used stimuli with 

random lines, 2D shape and 3D shape. They found that 3D shape stimuli 

produced more activity in LOC and less activity in V1 than the Random-line 

stimuli. Since the LOC is a higher area and should send predictive feedback to 

V1, Rao interpreted these activity decrease in V1 as the inhibitory effect 

caused by the predictive feedback. Murray et al did two other experiments 

(one using structure-from-motion and the other using Diamond motion) to 

confirm similar results of shape perception decreasing the activity in V1. 

 

Figure 1-52 The connectivity increased by expectation. (a) subjects were asked to 

indicate whether the presented stimulus is a face or not (in ‘face set’ blocks) in a 

presentation of randomly intermixed degraded and masked images of faces, houses, 

and cars. (b) the task enhanced top-down connectivity from vMFC to amygdala and 

FFA, while both stimuli and task affected bottom-up connectivity from the IOG to the 

FFA and amygdala. (c)Proposed predictive coding’s effect in visual perception.  

Modified from (Summerfield and Egner, 2009). 

Summerfield et al. began to link expectation with predictive coding. They 

found more MFC activity and enhanced connections between the higher 
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area and lower area in the predicted condition (e.g. face stimuli in the block 

with face stimuli)(Summerfield et al., 2006). In this study, the face stimulus was 

presented for 100 ms, followed by a randomly selected mask (300 ms). The task 

was to discriminate face stimuli. In this study, they showed that in face stimuli 

block (with face expectation, or predictive feedback), the activity of face 

stimuli was higher than in the house stimuli block (without face expectation, or 

predictive feedback).  

 

Figure 1-53 Repetition decreased face stimuli response in FFA. (Summerfield et al., 2008) 

In 2008, Summerfield et al used fMRI to investigate the effect of repetition 

suppression. In the experiment, they compared the activity of the same face 

stimuli in the repetition trial and in the alteration trial. They found that the 

activity in FFA is lower in the repetition trial than in the alteration trial. Since 

repetition should send a predictive feedback to the lower area, they 

concluded that there is a relative reduction of the prediction error when the 

stimulus was expected, compared with an unexpected stimulus (Summerfield 

et al., 2008). In this experiment, the expectation cue (the first face) was shown 
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for 250 ms with a 500 ms gap with no stimuli on the screen and the target stimuli 

was shown for another 250 ms. The task was to detect upside down face stimuli. 

This finding is different from their 2006 result and the authors do not have a clear 

explanation for this difference, but we could take the different stimuli 

presentation time and tasks as parts of the reasons. 

In 2009, Summerfield and Egner summed up the discoveries on expectation 

and claimed that the expectation is not the same as attention (Summerfield 

and Egner, 2009). 

 

Figure 1-54 Expectation produced an activity pattern fitting the predictive coding 

model. Note that the main effect of different expectation in D is not significant.  

In 2010, Egner et al showed that with different levels of expectation (low: 25%; 

medium: 50%; high: 75%; using different color box to indicate), the FFA activity 

fits better with the predictive coding model than feature-detection, baseline 

shift, multiplicative gain model (Egner et al., 2010). 
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Figure 1-55 Prediction of a moving stimuli reduced the activity in V1 but not in MT.(Alink 

et al., 2010) 

In 2010, Alink et al used a moving stimuli and found that the average V1 

response is lower in the condition that the stimuli were in a predictable path 

(but the hMT response is basically the same), comparing to an unpredictable 

condition (Alink et al., 2010).  This result suggested an inhibitory role for the 

predicted condition (with predictive feedback). 
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Figure 1-56 A,B: Expected repetition suppress Event Related Field (ERF) and gamma 

band power  more than the unexpected repetition. C, D: Expected omission suppress 

ERF and gamma band power more than the unexpected omission. (Todorovic et al., 

2011) 

In 2011, Todorovic et al investigated the effect of expectation using auditory 

stimuli in blocks with expected/unexpected tone repetitions. By recording MEG, 

they found that repetition suppression was significantly larger for expected 

than unexpected repetitions in both ERF and Gamma-band activity. They 

concluded that predictive coding could help the repetition suppression. 
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Figure 1-57 The expected orientation tilt in both orientation detection task and 

contrast task suppressed BOLD activity and increased MVPA classification accuracy. 

(Kok et al., 2012a) 

In 2012, Kok et al used both orientation judgment task and contrast judgement 

task of two gratings in a sequence to investigate the effect of expectation. 

They found out, for gratings with an expected orientation, there were less 

activity in V1 than gratings with an unexpected orientation. In the same time, 

by using a MVPA method, the V1 orientation classifier accuracy was higher in 

the expected orientation condition than in the unexpected orientation 

condition. They concluded that expectation (predictive feedback) could lead 

to a better representation of orientation (Kok et al., 2012a). Furthermore, 

Rohenkohl et al showed a similar effect in temporal expectation (Rohenkohl et 

al., 2012). However, previous studies have showed that attention could bias 

the MVPA representation of the object (Reddy et al., 2009) which suggested 

the observed effect may not be caused by the predictive feedback but rather 

attention (or attention and predictive feedback are the same thing). 
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Figure 1-58 The contribution of the predictive feedback to different parts of V1 cortex. 

A is the used “Kanizsa” shape stimulus; B is the control stimulus; C is the experimental 

paradigm and D is the activity change in the retinotopic area in primary visual cortex. 

The results showed that the activity of the Pacman part reduced and the activity of 

the illusory part increased. (Kok and de Lange, 2014) 

In 2014, Kok and de Lange used a “Kanizsa” stimulus to investigate the 

predictive feedback’s contribution of different parts of the shape prediction. 

They found out that for a 500 ms illusory stimuli, the V1 cortex with a retinotopic 

position corresponding to the part inducing the illusion have an inhibitory effect 

from the feedback, the other part of V1 cortex have an excitatory effect. 

To summary, we could conclude that: 

(1) Predictive feedback could both reduce (Murray et al., 2002; 

Summerfield et al., 2008; Alink et al., 2010; Egner et al., 2010; Kok et al., 

2012a; Kok and de Lange, 2014) and increase (Summerfield et al., 2006; 

Kok and de Lange, 2014) the lower area activity. 
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(2) Predictive coding could enhance the connectivity between 

higher/lower areas (Summerfield et al., 2006). 

(3) Predictive coding could sharpen the representation (Kok et al., 2012a). 
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Predictive coding and attention 

Another topic about predictive coding is its relationship with attention. Until 

2009, the concepts of expectation/prediction and attention were not 

separated: the expectation was thought to be a part of attention. Even after 

Summerfield et al claimed that expectation and attention are different things, 

there was a debate about the relationship between expectation, attention 

and predictive coding. For example, Spratling created a predictive coding 

model which could be reconciled with the biased competition effect of 

attention (Spratling, 2008a). In the experimental literature, expectation and 

attention were defined as different operations (e.g. a cue in the beginning of 

the block as expectation and a cue just before the stimuli onset as attention).  

In 2012, Kok et al found that attention could reverse the inhibitory effect of 

predictive feedback: in stimulus present condition, without attention, 

prediction reduced the activity of early visual cortex (significant in V1, N.S in V2 

V3); with attention, prediction increased the activity of early visual cortex 

(significant in V1, V2, V3). In stimulus absent condition, attention increased 

activity for unpredicted omission. (Kok et al., 2012b) 
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Figure 1-59 Attention reversed the silencing effect of predictive feedback. A and B 

are the activity change in different areas (V1, V2 and V3). C and D are the paradigms 

of attention and expectation in the experiment. E is the brain map and the general 

activity patterns of V1, V2 and V3. 

In 2013, Jiang et al used a searchlight MVPA method on face and 

house/indoor stimuli with attention (detection task target) and expectation 

(audio cue before each trial), and found out that attention makes it easier to 

distinguish the expected/unexpected face stimuli in right FFA and 

expected/unexpected scene stimuli in the right PPA. (Jiang et al., 2013) 
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There are few studies that focused on the relationship between attention and 

predictive coding. From these studies, there are no obvious conclusion. But at 

least, the evidence suggests predictive coding and attention are not two 

totally independent process. 

Figure 1-60 Attention makes the distinction between the expected and unexpected

condition easier to identify. If attention promotes error signals, then the representations of

unexpected stimuli more different from those of expected stimuli (C, left cluster), whereas 

the opposite would hold for attentional suppression of prediction errors (C, right cluster).  The 

results showed that attention enhances the distinction between unexpected and expected

stimuli (D). (Jiang et al., 2013) 



 

106 

 

Predictive coding and oscillations 

In 2011, Arnal et al used congruent/incongruent audiovisual speech stimuli to 

investigate the relationship between predictive coding and oscillations. They 

found that in the condition of incongruent audiovisual stimuli, there are 

marginally significant positive correlations between the phase locking factor in 

15-16 Hz and ERF amplitude (p<0.05) and significant correlation between the 

power in 80-90 Hz and ERF amplitude (p<0.001) around 400ms after stimuli onset. 

There is also a significant negative correlation between the phase locking 

factor and ERF amplitude in 5-6 Hz around the same time. There is also a 

significate phase-power correlation in the period of 350 ms – 500 ms after stimuli 

onset. They did not mention the functional role of the observed theta 

frequency and all other effects observed in other time period. (Arnal et al., 

2011) 

Figure 1-61 Audio-vision incongruent condition increased correlation between the ERF and

phase locking in beta band and increased correlation between the ERF and power in 

Gamma band around 400ms after stimulus-onset. The beta-band phase locking also 

correlated with the gamma-band power. The author concluded from this results that

predictive feedforward functions at gamma frequency and predictive feedback functions

at beta frequency. Note that the beta frequency correlation increase is marginal significant

and there is a more significant negative correlation between the theta frequency phase

locking and ERF/gamma band power. (Arnal et al., 2011) 
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Figure 1-62 Proposed model of the relationship between the predictive coding and 

oscillations in different frequencies. (Arnal and Giraud, 2012) 

In 2012, Arnal et al proposed a model for the relationship between predictive 

coding and oscillations. In the model, they proposed that the bottom-up 

(feedforward) pathway carries the predictive error, and top-down (feedback) 

pathway carries the prediction. Affected by Karl Friston, they also claimed 

there are representation and error units within one area of cortex. Then they 

assigned gamma band oscillation and beta band oscillation to the 

feedforward pathway and the beta band oscillation to the representation 

unit/error unit interaction.  
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The studies of predictive coding and oscillations are not as sound as other 

effects. There is room for further experiment to improve our understanding. 

What’s wrong and what’s more?  

For the state-of-the-arts studies about predictive coding, I have some concerns 

about the theory part and experimental part of predictive coding. 

The concerns about the theory (modeling) part of the predictive coding are 

that: 

(1) Is the predictive feedback always inhibitory? Even though from the Rao 

and Ballard, the predictive feedback was assumed to be inhibitory, the 

neurophysiological evidence suggested that feedback is dominantly 

excitatory.  Spratling tried to reconcile the predictive coding model with 

the excitatory feedback, but the double-inhibition strategy seems to be 

not very economically sound since the system uses an excitatory 

interareal feedback and two inhibitory intrareal feedback steps to 

achieve the simple subtraction operation. Furthermore, there is no 

evidence for an accurate inhibitory intrareal connection since inhibitory 

neurons usually have a large effect on the overall area nearby. 

 

(2) Does the distinction between the representation unit and error unit exist? 

Even though lots of the modeling work on predictive coding assumed 

these two units from Friston’s interpretation of the Rao and Ballard’s 

model, there is no direct evidence suggesting the existence of the two 

different groups of neurons. In their hypothesis, the superficial layers 

represent the error units and deep layers represent the representation 
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units. This should lead to two distinct types of receptive fields and firing 

patterns, however, there is no evidence for that. 

About the experimental part of predictive coding, I think we could do more on 

the following points: 

(1) Current studies mostly used the fMRI method which has a bad temporal 

resolution. The evidence about predictive coding usually showed a 

decreased activity (except some of the work by Summerfield et al and 

Kok et al) in lower area, however, the neurophysiological evidence 

mentioned before showed that feedback should have the excitatory 

role. Therefore, it worth to use methods with a better resolution 

(psychophysics or EEG/MEG) to measure predictive coding’s effect on 

each time point, there may be a rich temporal profile. 

(2) Another concern is about predictive coding and oscillations. As 

described before, there is room for improvement in the work about the 

relationship between predictive coding and oscillations. It would be 

interesting to know the precise oscillatory frequency that predictive 

coding performs on. It would be also interesting to know what is the 

properties of these oscillations: are they changing with the task or stimuli?  

Do they have any functional meaning in the framework of predictive 

coding? 

In this thesis, my studies about predictive coding and they included both 

theoretical and experimental parts about predictive coding: 

In my investigation of the theoretical part of predictive coding, I asked the 

question: “What is a better neuronal model for predictive coding under our 

current knowledge about the brain?” 
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In the investigation on empirical evidence of predictive coding, I asked two 

questions: 

(1) What is the perceptual effect of predictive coding? 

(2) What is the relationship between oscillations and predictive coding? 

I think we could understand much more about the predictive coding and the 

brain after we answer these questions. Even though there is also room for 

improvement of my work, I do hope my work can help the researchers in this 

field to consider the predictive coding and observed brain properties as a 

whole. As a promising universal theory of brain, predictive coding theory 

requires this kind of thinking, and the reconciliation of predictive coding and 

neurophysiological and behavioral evidence could help us to understand 

predictive coding, and further to understand the working principles of our brain. 
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Chapter I 
 

redictive coding is a unifying framework for efficient coding in the 

nervous system. It uses the principle of eliminating the predictable 

neuronal responses and thereby permitting exclusive processing and 

transmission of unpredicted portions of the sensory input to promote an 

efficient way of coding.  

It is obvious that the classical predictive coding model (Rao and Ballard, 1999) 

is not a neuronal model: it uses matrix instead of spiking neuronal network to 

represent the activity in neurons, and takes advantage of computational 

operations that are impossible in real neurons such as the “gradient descent”. 

The most interesting thing in predictive coding is its underlying idea: using the 

feedback to achieve extra-classical receptive field effects by selectively 

inhibiting the predictable response.  

To directly convert the classical predictive coding into a neuronal model, the 

simplest thing to do is to use the combinations of excitatory and inhibitory 

neurons to achieve a selective inhibitory feedback. For example, a neural 

network with a selective inhibitory neuron in the higher or lower area that 

directly inhibits the predictable response can generate this kind of selectivity. 

This is also the standard neuronal implementation of predictive coding: the 

feedback connections carry predictions of expected neural activity and the 

feedforward connections carry the residual activity between the predictions 

and initial lower area activity. To carry the residual, the feedforward 

connections are supposed to be excitatory, whereas to produce the residual 

the feedback connections are supposed to be inhibitory. To sum up, the 

P
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standard neuronal models of predictive coding hold that the different 

hierarchical levels interact by excitatory feedforward carrying residual activity 

and inhibitory feedback carrying predictions. Furthermore, we could interpret 

from this standard model that the neurons in one cortical area can be divided 

into two sub-populations, one coding for predictions/representations and one 

for prediction errors (Friston, 2005). 

However, theories must follow facts. From the information we learned from the 

introduction part of this thesis, we know that physiological observations showed 

almost opposite evidence for the standard implementation of predictive 

coding: 

(1) Most inter-areal feedback connections are excitatory and target 

excitatory neurons. Feedback usually project from excitatory neurons 

and targets on excitatory neurons.  See more about the roles of 

feedforward and feedback connections in the introduction part of this 

thesis. 

(2) Feedback usually exerts a divergent connection pattern. It has been 

shown by using tracers in the neurons that feedback connections target 

a much wider area in a lower area than feedforward connections do. 

See more about the convergence and divergence of the feedforward 

and feedback connections in the introduction part of this thesis. 

Naturally, we asked the question: how could the brain implement the principles 

of predictive coding under such neuronal settings? 
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Correlated spike times create selective inhibition in a non-

selective excitatory feedback network 

Abstract 

One of the most interesting contradictions in the study of neural networks 

relates to feedback inhibition. Specifically, feedback inhibition has been 

widely observed in the brain; however, most feedback connections and 

targeted neurons are excitatory. In addition, computational theories such as 

predictive coding suggest that such inhibition should be selective; however, 

neurophysiological observations indicate a divergent feedback pattern. Here, 

we propose a simple computational principle that essentially resolves these 

contradictions. We implement simple 2-layer hierarchical neural networks with 

non-selective excitatory feedback and demonstrate that it is possible to 

generate a selective inhibition effect by taking advantage of the spike time 

causality between lower and higher area neurons, together with a 

fundamental neuronal response property known as the “phase response 

curve”. With computational modeling, we first show that lower area neurons 

are less responsive to feedback excitation (relative inhibition) when their spike 

times are correlated with those of active neurons in the higher area. This basic 

principle enables the feedback selectivity in a non-selective feedback 

network. Furthermore, we show that normalization in the lower area can turn 

the relative inhibition into absolute inhibition. The proposed computational 

principle provides a viable neuronal mechanism for efficient coding with a 

much more flexible spike-time based selectivity than traditional connection-

weight based selectivity, and is supported by empirical evidence related to 

predictive coding. 
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Introduction 

Neurons in the visual system follow a hierarchical structure: visual information 

flows from lower to higher cortical areas. Early studies demonstrated that 

neurons are excited by optimal stimuli in their classical receptive field (CRF) 

(Hubel and Wiesel, 1965, 1968), while stimuli in the receptive field surround 

(extra-classical receptive field, ERF) usually result in inhibition (Blakemore and 

Tobin, 1972; Nelson and Frost, 1978; Allman et al., 1985; Gilbert and Wiesel, 1990; 

Knierim and van Essen, 1992; DeAngelis et al., 1994; Levitt and Lund, 1997).  

Researchers from both computational neuroscience and neurophysiology 

have proposed a unique idea to explain the ERF effect: feedback connections 

are the most likely source of surround suppression (Rao and Ballard, 1999; 

Angelucci et al., 2002; Angelucci and Bullier, 2003). In computational 

neuroscience, this idea is also related to predictive coding, which suggests that 

the inhibitory effect of feedback is exerted selectively on active neurons in the 

lower area whose response drove specific neurons in the higher area 

(predictable response). This idea can be extended to any two hierarchically 

connected areas (Summerfield and Egner, 2009) and is supported by 

substantial empirical evidence of an inhibitory feedback effect (Hupé et al., 

1998; Murray et al., 2002; Summerfield et al., 2008; Alink et al., 2010; Egner et al., 

2010; Kok et al., 2012; Schneider et al., 2014). However, such selective inhibitory 

feedback appears to contradict other classical neurophysiological 

observations in the neural system. 

Firstly, most inter-areal feedback connections are excitatory and target 

excitatory neurons (Johnson and Burkhalter, 1996, 1997). Since only the 

excitatory neurons have long enough axons to travel across different areas, it 

is physically impossible for other types of neurons in one area to send 
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information to a different area. Furthermore, electron microscope studies have 

shown that feedback targeted neurons are also mostly excitatory (Johnson 

and Burkhalter, 1996, 1997). Secondly, feedback connections are rather 

divergent. Using retrograde and anterograde tracers, researchers have shown 

that feedback connections target a much wider area in a lower area than 

feedforward connections do (Ferrer et al., 1988; Henry et al., 1991; Salin and 

Bullier, 1995). Likewise, feedback connections have a much wider area of 

effect than horizontal connections; in addition, higher hierarchical order 

feedback is wider than lower hierarchical order feedback (e.g. the feedback 

effect from MT to V1 is wider than from V2 to V1) (Angelucci et al., 2002; 

Angelucci and Bullier, 2003). Thus, the evidence suggests a divergent/non-

selective and excitatory feedback connection. 

In this paper, we tried to address the contradiction between the observed non-

selective excitatory feedback connections and the selective inhibitory 

feedback effect required by theory by proposing a computational principle of 

spike-time based selectivity. We tested simple hierarchical neural networks and 

demonstrated that correlated spike time can turn non-selective excitatory 

feedback into selective inhibition. If we define the predictable response as the 

lower area activities that driving the higher area neurons and the 

unpredictable response as the lower area activities that not driving the higher 

area neurons, the proposed computational principle can inhibit the 

predicable response (relatively, comparing to the unpredictable response, or 

absolutely, comparing to without feedback). Thus, it is also a viable neuronal 

mechanism for predictive coding, the modern implementation of efficient 

coding.  
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Results 

We propose a mechanism of spike-time based selectivity as follows: 

1) A set A of active neurons in a lower area drive specific neurons B in a 

higher area, thus the spike times of A and B populations are causally 

related. 

2) The higher area sends non-selective, divergent excitatory feedback to 

the lower area. 

3) Although this will tend to drive activity uniformly across the lower area, 

those neurons that have fired recently (i.e., those that drove the higher 

area in the first place) will be less sensitive to that excitation. This lack of 

excitation is effectively a relative inhibition of the originally active cells, 

as required by theory. 

Thus simple facts of spike timing could establish a selective modulation of 

responses despite the feedback itself having no selectivity. 

In order to test this computational principle, we built several increasingly 

complex two-layer hierarchical neural networks: 

1) A three-neuron network (two in the lower area, one in the higher area) 

to establish that the basic principle works, and to explore its dynamics as 

parameters are changed 
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2) A larger network (~100 cells in the lower area), to explore how the 

balance of excitation and inhibition in the lower area can transform 

relative inhibition into absolute inhibition. 

Basic principle of spike-time based selectivity 

To demonstrate the underlying principle of spike-time based selectivity, as 

shown in Figure 2-1A, we used the simplest possible non-selective excitatory 

feedback model architecture: one higher area excitatory neuron sending 

non-selective excitatory feedback to two lower area excitatory neurons. On 

the other hand, the feedforward connections are selective: the predictable 

neuron (Ex ) drives the higher area neuron, while the unpredictable neuron 

( Ex ) does not contribute to the higher area neuron’s activity. The 

predictable and unpredictable neurons receive the same amount of external 

input. The axonal conduction delay between higher and lower areas was set 

according to experimental observations in monkey V1 and V2: 1.1ms for 

feedforward and 1.25ms for feedback (Girard et al., 2001). 

The other fundamental neuronal property we took advantage of here is the 

phase/spike-time response curve (PRC). This curve represents the relationship 

between the injection time of an input spike or current (relative to the last 

output spike) and the next output spike’s time advance for spiking neurons 

driven by a constant input. The spike time advance represents the change in 

the next output spike time caused by the additional injection, relative to the 

normal situation (without additional injection). Single-neuron recordings have 

shown that the PRC in a variety of neurons have a similar shape (Figure 2-1 B): 

a flat (or negative in type 2 PRC (Hansel et al., 1995)) spike time advance in 

the beginning of the curve (injection just after the neuron’s last output spike), 

followed by an increase in spike time advance from the middle of the curve 
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(injection delayed after the neuron’s last spike), with a decrease in spike time 

advance in the end usually due to the absolute time advance limitation (there 

is an output spike immediately after injection, but the possible time advance is 

short because the injection is already late in the cycle) (Reyes and Fetz, 1993; 

Galán et al., 2005a; Lengyel et al., 2005; Preyer and Butera, 2005; Goldberg et 

al., 2007; Tsubo et al., 2007; Kwag and Paulsen, 2009; Smeal et al., 2010). This 

curve reflects the fundamental time-related input/output properties of single 

neurons. It shows that the same input to a neuron will have different results 

dependent on input time, and that inputs just after the neuron’s last spike have 

less effect than inputs at other time points. 

In our simple network, by definition, predictable neurons drive higher area 

neurons and unpredictable neurons do not drive higher area neurons. Thus, 

there is a strong spike-time correlation between the predictable neurons and 

higher area neurons: higher area neurons tend to fire just after predictable 

neurons. If the higher area neurons then send non-selective feedback to both 

predictable neurons and unpredictable neurons, the feedback would arrive 

(on average) at different time points in their PRC: at the beginning of the curve 

for the predictable neurons (determined solely by the axonal conduction 

delay between different areas), but uniformly across the PRC for unpredictable 

neurons (Figure 2-1 B). The relationship between injection time and membrane 

potential, spiking activity and firing rates is shown in the supplemental materials 

(Figure 2-S1). 

The proposed computational principle is based on these different spike-time 

advances for different feedback times (relative to the neuron’s last output 

spike time). The predictable neurons receive feedback in a rather fixed time 

window (just after their last spike), thus, the feedback has very limited effect on 

their activity. On the other hand, the feedback time to unpredictable neurons 
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has no correlation with their last spike, thus it can increase their activity, on 

average by the same amount as the average spike time advance of the PRC. 

This difference in spike-time advance for the predicable and unpredictable 

neurons produces a relative inhibition in predictable neurons. Moreover, this 

difference (or selectivity) is solely dependent on the spike-time correlation, 

suggesting that the targets of the selectivity (the inhibited neurons) can be 

changed without changing any synaptic weight and the predictable neurons 

are always inhibited. Therefore, even with the exact same feedback, the 

different feedback time correlation for the predictable and unpredictable 

neurons could lead to a robust firing rate difference between them, and the 

difference is only decided by the functional roles of the neurons (predictable 

or unpredictable). 

Taking advantage of the simple non-selective excitatory feedback model 

(Figure 2-1 A) and the phase/spike-time response curve (Figure 2-1 B), we 

verified the effect of spike-time correlation on firing rate using a neural network 

simulation. As shown in Figure 2-1 C, when there was no feedback from the 

higher area neuron (feedback was artificially turned off), we observed similar 

activity patterns in the two lower area cells, both in the spike raster plot (Figure 

2-1 C upper panel, which shows the spike activity for 100 simulation repeats) 

and the averaged firing rate plot (Figure 2-1 C lower panel, which shows the 

average time-varying firing rate for 100 simulation repeats). However, when 

feedback was turned on (at 400ms), a robust spike frequency difference 

between the predictable neurons and unpredictable neurons emerged. The 

mean firing rate for predictable and unpredictable neurons exhibits a 10Hz 

difference, while the higher area neuron had a similar firing rate as the 

predictable neurons (Figure 2-1 D). These results show that correlated spike 

times between the predictable neurons and higher area neurons created a 
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robust selective inhibition for the predictable neurons (relative to the 

unpredictable neurons, or relative inhibition).  

 

Figure 2-1 Basic principle of spike-time based selectivity. (A) The simplest non-selective 

excitatory feedback network.  neuron is the higher area neuron,  and  

 neurons are the predictable neurons and unpredictable neurons (neurons 

produce predicable/unpredictable response) in the lower area.  neuron drives  neuron and  neuron sends non-selective excitatory feedback to both 

 neuron and  neuron. The  neuron and  neuron receive 

same amount of Poisson spike input from the outside. The axonal conduction delay 
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between higher and lower areas was set to 1.1ms for feedforward and 1.25ms for 

feedback according to experimental observations. (B) The phase/spike-time response 

curve. Above, the same strength of injection with different injection time result 

different next spike time advance: the red, green and blue dot indicated the different 

injection time for the red, green and blue membrane potential trail. The black trail 

indicated the membrane potential without the injection. The relationship between the 

next spike time advance and injection time since last spike was plotted blow. They 

showed that at the injection just after last spike lead to less spike time advance than 

injection at other time points. Combining with the model’s architecture, the feedback 

from  should land only at the beginning of  neuron’s phase/spike-time 

response curve, while feedback from  could land at any time point of  

neuron’s phase/spike-time response curve. (C) Network activity of 100 times of 

simulations was showed. In the simulations, the feedback was artificially turned down 

in the first 400ms and then turned on. Both the spike raster plot above and the average 

time-varying firing rate showed a similar activity pattern for the  neuron and 

 neuron when the feedback were off. After turning on the feedback, more firing 

rate increase was observed in both the spike raster plot (more concentrated spikes) 

and time varying firing rate plot (higher firing rate) in  neuron than in  

neuron. (D) Mean firing rate for different neurons in 100 times simulation (1000ms for 

each simulation) with feedback on and feedback off. Error bar indicated the 

standard derivation of different simulations. 

 

Network Dynamics with different parameter settings 

In our simple network, four key factors can affect the feedback and therefore 

affect the proposed computational principle: the feedback strength, the 

axonal conduction delays, the input noise, and the ability of predictable 

neurons to drive the higher area neurons. To investigate the effects of different 
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factors in the network, we measured the firing rate difference between the 

predictable neurons and unpredictable neurons with different parameter 

settings. 

As shown in Figure 2-2 A, the feedback amplitude can modulate the spike-time 

based selectivity up and down: the effect of feedback strength on selectivity 

is not linear, but rather shows a peak at values around 10 mV, with low 

selectivity for both high and low strengths. We investigated the reasons 

underlying this result using phase/spike-time response curves with different 

feedback strength (Figure 2-S2). The results showed that the stronger feedback 

can lead to an increase in average spike time advance but the spike-time 

based selectivity also required a smaller axonal conduction delay between 

areas. Thus, the interactions between these two factors resulted in the 

observed relationship between the feedback strength and selectivity.  

On the other hand, the axonal conduction delay between different areas 

showed a monotonic relationship with the spike-time based selectivity: the 

smaller the axonal conduction delay, the stronger the selectivity (Figure 2-2 B). 

The results also provided a reasonable time window for axonal conduction 

delay (selectivity emerged with less than 10ms total axonal conduction delay).  

Furthermore, the proposed spike-time based selectivity showed very strong 

resistance to noise: the selectivity was still retained when the neurons received 

white noise with 1 nA variance (Figure 2-2 C; for the same simulated neuron, 1 

nA input can generate 80 Hz spiking activity). 

For the investigation on the relationship between the neuron’s predictability 

(their ability to drive higher area neuron) and spike-time based selectivity, we 

used a different model architecture: the unpredictable neurons were 
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connected to the higher area neuron and could also contribute to its activity. 

The weight ratio between the predictable neurons to higher neurons and 

unpredictable neurons to higher neurons was adjusted to obtain different 

driving ability of predictable neurons (the higher the ratio, the stronger driving 

ability of the predictable neurons). Since the definition of the predictable and 

unpredictable neurons were based on their ability of driving the higher area 

neurons, an unpredictable neuron could easily turn to predictable neuron 

when the weight ratio is low. Thus, we used 100 neurons as unpredictable 

neurons and computed their average response as the response of the 

unpredictable neuron group (Figure 2-3 A). To generate differences in 

predictability, we had to change the feedforward weight for different groups 

of neurons in the lower area, however, this operation can potentially change 

the firing rate of higher area neurons and thus affect the feedback strength. 

Since we want to investigate the effect of predictability only, to avoid such 

change in feedback strength, we obtained a similar feedback (i.e. similar firing 

rate of higher area neurons and same feedback) with different feedforward 

weight ratio conditions while keeping the ratio of the feedforward input to the 

higher area. Results showed a monotonic relationship between the driving 

ability of the predictable neuron and the spike-time based selectivity: the 

stronger ability, the stronger the selectivity (Figure 2-3 B). These results suggest 

that the more predictable the neuron, the stronger inhibition it receives. 
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Figure 2-2 Firing rate difference between  and  with different parameter 

settings. (A) The relationship between the firing-rate difference and feedback strength. 

It showed that for a fixed axonal conduction delay between the higher and lower 

area, the feedback strength increase first increase the spike-time based selectivity 

and then decreased it. The possible reason behind the observed optimal feedback 

strength is that the increase of the feedback strength can increase the spike time 

advance, but in the same time, the selectivity is depended on the axonal conduction 

delay (as illustrated in Fig S2). (B) The relationship between the mean firing-rate 

difference between   and  and axonal conduction delay in 100 

simulations. It showed that a smaller axonal conduction delay leads to a stronger 

spike-time based selectivity. (C) The relationship between the mean firing-rate 

difference and noise variance in single neurons in 100 simulations. Results showed that 

the spike-time based selectivity persisted with very high single neuron noise (In the 

same neuron, 1 nA input can generate about 80 Hz activity). Results suggested the 

proposed computational principle is very robust. Shaded area in all three plots 

represented the SEM of the firing rate difference across different simulations.  
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Figure 2-3 (A) The model architecture for the simulation with different  neurons 

driving ability. Instead of using the  as the only types of neurons that contributing 

to the higher area activity, both  and  neurons were set to connect with 

the higher area neurons with different weight. By adjust the weight ratio between the 

 to  and  to , the driving ability of  neurons to  

were modulated. Since it is possible that one single  neuron (not driving the 

higher area neurons) can be turned into  (driving the higher area neurons) 

when the weight ratio is low, Therefore more  neurons (100 neurons here) were 

used in the simulation and their mean response were used as the response of . 

(E) The relationship between the weight ratio (  to  :  to ) and 

firing rate difference between  and  while keeping a similar  firing 
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rate and the same non-selectivity feedback strength. The green bar showed the 

mean firing rate of the  and the yellow bar showed the mean firing rate 

difference in 100 simulations. Error bar indicated the SEM across different simulations. 

Results showed that the stronger the driving ability of  is, the bigger the firing 

rate difference between the  and . 

 

The balance of excitation and inhibition converts relative inhibition into 

absolute inhibition 

It has been shown that the inhibition generated in a cortical area is 

proportional to the total excitation (Vreeswijk and Sompolinsky, 1996; Anderson 

et al., 2000; Wehr and Zador, 2003; Zhang et al., 2003; Haider et al., 2006; Okun 

and Lampl, 2008; Atallah and Scanziani, 2009; Poo and Isaacson, 2009). For the 

proposed computational principle, the non-selective excitatory feedback 

from the higher area can increase the total excitation in the lower area, with 

the property that the predictable neurons receive less excitation and 

unpredictable neurons receive more. Such an increase in excitation should 

lead to an increase in inhibition, which could be able to convert the relative 

inhibition into absolute inhibition in certain conditions. 

We tested this idea by adding a lower area inhibitory neuron into the model 

(Figure 2-5 A). This inhibitory neuron receives input from all lower area excitatory 

neurons and sends the inhibition to them with the same weight (In the literature, 

this is usually called “feedback inhibition”(Isaacson et al., 2011). Note that the 

term “feedback” here is different from the feedback in the proposed 

computational principle). Simulations showed that feedback from the higher 

area can increase the activity of the lower area inhibitory neuron (Figure 2-5 B, 

red bar). At the same time, it can generate spike-time based selectivity: 
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predictable neurons were relatively inhibited compared to unpredictable 

neurons (Figure 2-5 B, dark blue vs light blue bars). Furthermore, the predictable 

neurons were absolutely inhibited by the feedback: lower firing rates were 

observed with feedback than without (Figure 2-5 B, shaded dark blue bar vs 

the gray bar on its left side). On the other hand, the unpredictable neurons’ 

activity was absolutely enhanced (Fig 2-5 B, light blue bar vs the gray bar on 

its left side). Thus, the observed results verified the idea that the balance of 

excitation and inhibition can turn the relative inhibition generated by the 

correlated spike-time into absolute inhibition.  

 

Figure 2-4 The balance of excitation and inhibition can convert the relative inhibition 

into absolute inhibition. (A) The model architecture is built upon the previous model 

(Figure 2-4 A) with an additional lower area inhibitory neuron (In ). The inhibitory 

neuron receives the same input from all lower area excitatory neurons (both Ex  

and Ex ) and sends the same inhibition to them. (B) The activity comparison 

between the without feedback (gray bars), with feedback but without inhibition 

(color bars) and with feedback and with inhibition (shaded bars). The results showed 

that, in a balanced excitation and inhibition network, feedback can produce the 

spike-time based selectivity (dark blue bar and light blue bar). In the same time, in the 

condition with inhibition, the increased activity in the lower area inhibitory neurons 

(In , shaded red bar) can turn the relative inhibition (between the Ex  and Ex , 
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dark blue bar and light blue bar) into the absolute inhibition (between the Ex  

activities with and without feedback, shaded dark blue bar and the gray bar on its 

left). 

Discussion 

One advantage of the proposed principle is that it fits well with our empirical 

understanding of the brain. Experimental evidence has shown that feedback 

connections are usually excitatory and divergent. In addition to the physical 

limitation that only excitatory neurons provide axons long enough to travel 

across different areas, these axons in feedback connections also usually target 

excitatory neurons. One study of the feedback connections between area LM 

and area 17 in rats showed that all of the observed feedback-targeted 

neurons in layer 1 are excitatory and only 2 out of 113 observed feedback 

connections targeted GABA-positive neurons in layer 2/3 (Johnson and 

Burkhalter, 1996). Similar results were obtained using a different labeling 

technique (Johnson and Burkhalter, 1997). Functionally, feedback has 

sometimes been found to be excitatory (Sandell and Schiller, 1982; Hupé et al., 

1998; Wang et al., 2010). However, in contrast to the overwhelming evidence 

for excitatory feedback connections, evidence has also showed that 

feedback can often have an inhibitory effect (Hupé et al., 1998; Nassi et al., 

2013; Zhang et al., 2014). For this inhibitory effect, the source of the inhibition 

was usually assumed to be local inhibitory neurons in the lower area (Zhang et 

al., 2014). Regarding convergence and divergence, using retrograde and 

anterograde tracers, researchers found more divergent feedback 

connections than feedforward connections (Henry et al., 1991; Salin and Bullier, 

1995; Angelucci et al., 2002; Angelucci and Bullier, 2003) which suggests less 

selective feedback. Thus, the fundamental architecture in our proposed 

computational principle is founded on experimentally observed structures. 
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For the delays between different areas, although an average delay of 10 – 

20ms for information to travel from one area to another has been reported 

(Nowak and Bullier, 1997; Thorpe and Fabre-Thorpe, 2001), axonal conduction 

delays are much smaller. In monkeys, the feedforward and feedback 

connections between V1 and V2 take median delays of 1.1ms and 1.25ms 

(Girard et al., 2001), respectively. The connections from MT to V1 only take 

1.3ms (Movshon et al., 1996) and from LIP to FEF only take 2.3ms (Ferraina et al., 

2002). In cats, from area 17/18 to area 19, it takes less than 2ms (Toyama et al., 

1974). Similar values were observed in connections from S1 to S2 (Manzoni et 

al., 1979), from S1 to motor cortex (Waters et al., 1982; Zarzecki et al., 1983) and 

from motor cortex to S1 (Deschenes, 1977). These experimentally observed 

short axonal conduction delays make spike-time based selectivity possible. 

Naturally, the proposed computational principle touches on the temporal 

coding vs. rate coding debate. Even though computational modeling studies 

have shown that temporal coding could be more accurate and carry more 

information (Van Rullen and Thorpe, 2001; VanRullen and Thorpe, 2002; Bohte, 

2004; VanRullen et al., 2005), the rate coding scheme seems to be more 

intuitive: in different trials with the same input stimuli, the observed spike trains 

usually have a similar and reliable spiking rate (Adrian, 1926; Werner and 

Mountcastle, 1965; Tolhurst et al., 1983; Tolhurst, 1989; Britten and Shadlen, 1992; 

Tovee and Rolls, 1993; Petersen et al., 2000). However, on the other hand, the 

observed spike times are assumed to be too variable to support robust 

computation: the exact spike timing is random (which is usually modeled as a 

Poisson process) and the index of dispersion, spike counts’ variance-to-mean 

ratios for the same stimuli, are near 1 (Tolhurst et al., 1983; Britten and Shadlen, 

1993; Buracas et al., 1998; Shadlen and Newsome, 1998; McAdams and 

Maunsell, 1999). The proposed spike-time computational principle, however, 

relies on a more reliable kind of spike-time than the precise absolute spike 
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timing: spike-time correlation. The cortex is organized as a hierarchy 

(references), in which certain neurons in one area drive the activity of neurons 

in the next higher area. If these higher area neurons send direct divergent 

feedback to the lower area, there will be a spike-time correlation, and the 

robustness of this correlation is determined only by the variance of the 

conduction delays (which encompass the axonal conductional delay and 

neuronal integration time) and the robustness of the phase/spike-time 

response mechanism. The axonal conductional delays are very stable: the 

usual criteria for the delay jitter in experiments is less than 0.1ms (Girard et al., 

2001). Furthermore, if the neurons in the feedforward pathway are doing 

coincidence detection rather than temporal integration (Softky and Koch, 

1993; Roy and Alloway, 2001), the integration time may be negligible. Similarly, 

the phase/spike-time response curve is one of the fundamental properties of 

neurons, arising from the leaky nature of the cell membrane and has been 

robustly observed in experiments, and with similar shapes (Ermentrout, 1996; 

Netoff et al., 2004; Galán et al., 2005b; Lengyel et al., 2005; Tsubo et al., 2007; 

Kwag and Paulsen, 2009; Schultheiss et al., 2012). Thus, again, the 

computational mechanisms underlying the proposed spike-time based 

selectivity are well supported experimentally. 

The proposed computational principle also provides a flexible coding scheme. 

On one side, the proposed principle provides a real time solution for efficient 

coding (Barlow, 1961). Traditionally, selectivity is provided by synaptic weights, 

which are ultimately set by synaptic plasticity, a long term process (significant 

change was observed after 20 min repeated stimulations in a spike-timing-

dependent plasticity experiment (Bi and Poo, 1998)). These biological facts 

limit the flexibility of the neural network and it seems to be impossible to reduce 

the information redundancy (Barlow, 1961), or to inhibit predictable neurons 

(Rao and Ballard, 1999) in real time under this synaptic weight framework. The 
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proposed principle solves this problem using spike time correlation: the 

predictable neurons always get inhibited regardless of which specific neurons 

are involved, and the role of the neurons as unpredictable or predictable can 

evolve rapidly since the spike-time correlation is the only basis for selectivity. 

On the other side, the proposed principle provides a flexible definition for the 

higher area neurons. A higher area neuron needs to “know” which lower area 

neurons contributed to its activity in order to modulate them with feedback. 

For example, if a familiar face is represented in the higher area, the higher area 

needs to know which neurons in lower areas (e.g. simple cells in V1) 

contributed to the face perception in order to modulate them. However, 

many different lower level inputs can produce this face-specific response: we 

can recognize the same face under very different lighting conditions, points of 

view and distances, which correspond to very different groups of lower level 

neurons. In the synaptic weight framework, in order to send the appropriate 

feedback, for each lighting condition, point of view, and distance, one higher 

area face neuron needs to be created and set with a corresponding weight 

for each condition. Since the number of the possible scenarios is infinite, such 

arrangement seems implausible. In the proposed spike-time based selectivity 

framework, the problem is solved using a dynamic spike-time correlation 

instead of a fixed synaptic weight: only one higher area face neuron is needed 

and the feedback selectivity is automatically created.   

The proposed model can also be a viable neuronal mechanism of predictive 

coding. Predictive coding (Rao and Ballard, 1999; Huang and Rao, 2011) is a 

framework for understanding redundancy reduction and a modern 

implementation of efficient coding theory (Barlow, 1961, 1972). In this 

hierarchical network framework, the feedback carries the prediction and 

explains away the predictable response in the lower area, while the 

feedforward only carries the residual errors between the predictions and 
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actual neural activity (Rao and Ballard, 1999). However, in the classical 

implementation of predictive coding, to selectively inhibit predictable 

response, it requires a complicated structure for feedback to mirror the 

synaptic weight patterns of the feedforward connections. In the proposed 

computational principle, the feedback achieves this function using the spike-

timing correlation between the predictable response and higher area 

neuronal activity: predictable neurons are naturally inhibited in the model and 

activity in the remaining unpredictable neurons represents the error signal. 

Furthermore, the absolute inhibition in the proposed principle can explain the 

observed reduction in neural response in the lower area in the predictive 

coding literature (Murray et al., 2002; Summerfield et al., 2008; Alink et al., 2010; 

Egner et al., 2010; Kok et al., 2012). Using a “Kanizsa” illusion, it has been 

reported that the neurons in primary visual cortex corresponding to the illusory 

percept were inhibited by feedback, while the other neurons nearby were 

excited (Kok and de Lange, 2014). These observed activity patterns, with 

predictive feedback-induced excitation and inhibition for neurons with 

different roles, are compatible with our simulation (Figure 2-5 B). Therefore, the 

proposed computational principle can not only fit the predictive coding 

model, but also express activity patterns similar to the observed neural 

evidence. 

To sum up, we proposed the computational principle of spike time based 

selectivity. Since the spike times of the higher area neuron are causally related 

to the spike times of certain neurons (predictable neurons, the neurons that 

drives higher area neuron) in the lower areas, robust temporal coding can be 

created using these spike times relationship. Especially, in a non-selective 

excitatory feedback network, the feedback can turn to be selective (relative 

inhibition for predictable neurons) because of the phase response curve. The 

balanced excitation and inhibition will turn the relative inhibition into absolute 
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inhibition (less activity for predictable neurons in condition with predictive 

feedback than without feedback). The proposed principle can help us to 

understand the redundancy reduction process of the brain and serve as a 

viable mechanism for predictive coding, the modern implementation of 

efficient coding.  

Materials and Methods 

Model Architectures and Neuron Types 

In order to present the basic principle of spike-time based selectivity clearly 

and explore the dynamic in a larger and more complex environment, we 

adopt different model architectures in different simulations built on the same 

principle: a two-layer hierarchical neural network with non-selective excitatory 

feedback. Since it has been suggested that the horizontal connections are too 

slow and cover too small a part of the visual field to achieve the ERF related 

effect (Angelucci et al., 2002; Angelucci and Bullier, 2003), the excitatory 

neurons in the same area were set to be not connected to each other in our 

architectures. On the other hand, the inhibitory neurons act as the normalizing 

interneurons (Carandini and Heeger, 2011) and connected to (both sending 

signal to and receiving signal from) all the excitatory neurons in the same area. 

In all model architectures, there are 4 types of neurons: higher area excitatory 

neuron (Ex ), lower area predictable excitatory neuron (Ex ), lower area 

unpredictable excitatory neuron (Ex ), and lower area inhibitory neuron 

(In ). The predicable neurons and unpredictable neurons are defined by 

their ability to drive the higher area neurons: predictable neurons are the 
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dominant driving force, while unpredictable neurons are not. Each model 

architecture is composed of some or all of the 4 types neurons. 

Specifically, higher area excitatory neurons (i.e. located in the high-tier areas) 

receive feedforward input from the lower area neurons and send non-

selective excitatory feedback to all lower area neurons. Given that lower area 

predictable neurons drive the higher area neurons as well, higher area neurons 

could obtain the representation of the lower area neurons and predict their 

response. Vice versa, the lower area unpredictable neurons do not drive the 

higher area neurons and cannot be predicted by the higher area neurons.  

Table 0-1 Network parameter set 

Neuronal Model and Synaptic Connections 

To follow the observed neuronal response properties precisely, especially the 

phase response curve (PRC, or spike time response curve, STRC), we used a 

version of the conductance-based leaky integrate-and-fire model, specifically 

the adaptive exponential integrate-and-fire model (aEIF) (Brette and Gerstner, 

Pars        

Values 281 pF 30 nS -70.6 mV -50.4 mV 1.5 mV 144 ms 4 nS 
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2005), with random initial states in the simulations. In the model, the membrane 

potential obeys to the following equation: 

= − ( − ) + Δ − + + ( ) 
Where  is the membrane capacitance,  is the leak conductance,  is the 

resting potential,  is the slope factor,  is the threshold potential, I  is an 

adaptation variable,  is the synaptic current, and ( ) is a Gaussian noise 

term. The adaptation variable I  is defined by: 

= ( − ) −  

Where  is the time constant and  represents the level of subthreshold 

adaptation. At spike time ( > 20 ), the membrane potential is turned back 

to the resting potential E . 

To demonstrate that the proposed principle does not depend on the absolute 

refractory period, we did not set any extra refractory term in the model. We 

used different parameters for the inhibitory neurons and excitatory neurons to 

fit the different neuronal characteristics, see Table 2-1. The parameters are 

modified from (Brette and Gerstner, 2005).  

The external input to the network connect the lower area neurons using 

simulated Poisson input neurons where the synaptic current ( ) follows: 

( ) = ( ) 
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Where the  is the synaptic current from one single Poisson input neuron 

outside of the network. In both conditions, all lower area optimal neurons 

(Ex ) receive the same outside input (same input current or connected to 

the same amount of Poisson input neurons with the same firing rates). 

For the connections within the network, similar additive synaptic current 

equation was used, with an additional weight term: 

I ( ) = ( ) ⋅  

The conduction delays are considered when establishing the connections 

within the network. Since the proposed model is most likely to represent a 

neuronal mechanism in the early visual system, unless otherwise specified, we 

used the observed conduction delays between V1 and V2 in the simulations: 

1.1 ms and 1.25 ms for feedforward and feedback connections, respectively 

(Girard et al., 2001). 

Comparison Metrics 

We used the traditional spike-rate based metric to measure spike-time based 

selectivity. Even though predictable ( Ex ) and unpredictable ( Ex ) 

neurons receive the same external input, and higher area neurons (Ex ) send 

the same feedback to both types of neurons, we still expect that the 

predictable neurons are selectively inhibited. Thus, we used either overall firing 

rate to measure the inhibition over the total simulation duration or a sliding 

time-window firing rate to determine the dynamics of excitation and inhibition. 
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To evaluate the different effects on predictable neurons and unpredictable 

neurons, we used the percentage of the firing-rate difference (Δf) to measure 

the effect: 

Δf( , ) = −
 

Where the (x) is the mean firing rate of neuron type x. 

We investigated two types of inhibition in the simulations: 

(1) Relative inhibition.  

Since the only input difference between the lower area predictable and 

unpredictable neurons is the spike time correlation with the higher area neuron, 

we defined a lower firing rate in predictable neurons than in unpredictable 

neurons as relative inhibition. 

(2) Absolute inhibition 

Since the final goal is to investigate the contribution of the excitatory feedback 

to the predictable neurons, we defined a decreased response in predictable 

neurons with feedback than in predictable neurons without feedback as 

absolute inhibition. 
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Figure 2-S 1 The different response with the same input in different phase/spike-

time. (A) The relationship between the membrane potential and the different 

input injection time. It showed the same amount of initial increase in the 

membrane potential, but different next spike advancement. (B) The spike 

raster plot showed that the same input with different injection phase (relative 

to neuron’s last spike) can lead to a difference spike time. (C) The relationship 

between the firing rate and the injection time since last spike. 
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Figure 2-S 2 The phase/spike-time response curve. The curve showed the 

relationship between the spike time advance and current injection time since 

last spike. The average spike time advance (the dash lines) increases with more 

current and the cross point between the curve and average spike time 

advance is shifted toward the left side which suggested that faster conduction 

delay is required to achieve the spike-time based selectivity in the proposed 

computational principle.  
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Spike-timing dependent plasticity can enhance the spike-

time based selectivity  

Another well recognized computational principle in the neocortex is spike-

timing dependent plasticity (Bi and Poo, 1998; Abbott and Nelson, 2000; Song 

et al., 2000; Caporale and Dan, 2008). With empirical evidence, the principle 

states that if a presynaptic neuron is often active just before spiking in the 

postsynaptic neuron, the synaptic weight between the two increases; on the 

other hand, if the presynaptic neuron is active just after the postsynaptic, the 

synaptic weight decreases. In the computational principle presented before, 

feedback always arrives just after a predictable neuron’s action potential 

(since the feedback is caused by the predictable neurons) and will tend to 

arrive just before an unpredictable neuron’s action potential (because the 

feedback itself tends to drive their activity). Thus, the feedback weight to the 

predictable neurons should decrease and feedback weight to the 

unpredictable neurons should increase (Figure 2-5 A). In such a situation, the 

proposed spike-time based selectivity should be enhanced. 

We tested this idea by implementing STDP rules at the feedback synapses in 

the original 3-neuron model. The STDP followed the classical additive weight 

update rule (Song et al., 2000): the weight for the synapses increased and 

decreased in an exponential fashion. In the learning simulation, we used: the 

weight for pair ( , ) increased and decreased for the postsynaptic and 

presynaptic spike from  to , respectively: 
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Figure 2-5 Spike-time based selectivity can be enhanced by the spike timing 

dependent plasticity. (A) The schematic diagram of the changing weight. In 

the initial state, the feedback weights are the same to both predictable 

neurons and unpredictable neurons (W _ = W _ ). After learning, the 

feedback weights to predictable neurons increased and to unpredictable 

neurons decreased. (B) The relationship between the weight and time. The 

initial weights for W _  and W _  were set to the same value (50% of the 
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maximum weight). In the learning stage, the W _  decreased and  W _  

increased. The decreasing rate is higher than the increasing rate. (C) The firing 

rate of predictable neurons decreased and unpredictable neurons increased 

in the learning period. 

 

Conclusion 

In this chapter, we asked the question: how to create a better model of 

predictive coding based on the neurophysiological facts that most inter-areal 

feedback connections are excitatory and target excitatory neurons, and 

feedback usually exert a divergent connection pattern. We solved this 

question in a creative way by proposing a computational principle of spike 

time based selectivity: in a non-selective excitatory feedback network, the 

spike times of the higher area neuron are causally related to the spikes times 

of the predictable neurons in the lower areas, thus, the non-selective excitatory 

feedback will turn to a selective one due to the spike-time (different spike time 

advance in different positions in the phase response curve). The parameter 

setting simulations suggested that the proposed mechanism is biologically 

plausible and very robust. The balanced excitation and inhibition will turn the 

relative inhibition (relative to unpredictable neurons) into absolute inhibition 

(compare the situation with and without predictive feedback).  

We also showed that if we apply the classical STDP rules to the neurons in this 

network, the non-selective excitatory feedback will turn to a selective 

excitatory feedback network where the excitatory feedback weight to 

predictable neurons will decrease and the excitatory feedback weight to 
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unpredictable neurons will increase. This STDP based dynamic will enhance the 

spike-time based selectivity. 

This combination of the observed network structure and fundamental neuronal 

property made a convincing and probably universal computational principle. 

Indeed, we need more empirical evidence to prove this principle. However, if 

this principle is true, we will have a much deeper understanding of the working 

principle of the brain. 
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Chapter II 
 

redictive coding is an exciting field of research since there are many 

advantages in this theory: (1) predictive coding is based on the theory 

of efficient coding, which is accepted as the design principle of the 

brain by many researchers. (2) some of the empirical evidence supported the 

inhibitory feedback as described in the predictive coding theory. (3) many 

researchers describe predictive coding as “the model” of the brain and the 

future of the field of neuroscience. 

As a promising model, predictive coding requires empirical evidence to 

support it. Indeed, there are some empirical evidence supporting the idea of 

predictive coding, especially about the inhibitory feedback. As I reviewed in 

the Introduction part of this thesis, the evidence on predictive coding mostly 

use the fMRI method. For example, Murray et al used three experiments to try 

to prove that shape perception could reduce activity in V1 (Murray et al., 2002). 

Further experimental work has linked predictive coding with expectation 

(Summerfield and Egner, 2009; Alink et al., 2010; Todorovic et al., 2011; 

Summerfield and de Lange, 2014), repetition suppression (Summerfield et al., 

2008, 2011; Todorovic et al., 2011) and etc. 

However, if we consider the predictive coding as a universal model for the 

interactions between the hierarchical areas, there are lots of problems with the 

original predictive coding model: 

(1) In the neural circuits level, as described in the previous chapter, the original 

predictive coding does not fit the neurophysiological observation in the 

P
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excitatory role of feedback connections and the divergent connection 

patterns.  

(2) At the neuronal populations level (psychophysics, fMRI, EEG, or MEG), one 

biggest problem is how to reconcile the predictive coding and attention 

since attention is usually considered as a feedback process and widely 

accepted as an excitatory role in the hierarchal brain. Empirical evidence 

usually shows an excitatory effect with attention. 

Facing these problems about predictive coding, researchers usually use two 

types of strategies:  

(1) Treating the predictive coding and the observed opposite evidence as 

fundamentally different mechanisms. For the difference between the 

original predictive coding model and observed neural circuits properties, 

researchers may argue that there is an intermediate stage (which usually is 

treated as a magical black box) between the neuronal population and 

neural circuits and the observed properties of neural circuits do not apply 

to the predictive coding which is supposed to be a population behavior. 

For the difference between attention and predictive coding, researchers 

may argue they use different neuronal populations or connections to realize 

them. Thus, for example, any observed excitatory feedback effects would 

be treated as evidence of attention, but inhibitory feedback effects would 

be treated as evidence of predictive coding. 

(2) Try to reconcile predictive coding with only parts of observed evidence 

(which is supported by the original predictive coding model) and ignore 

other evidence (which is not supported by the original predictive coding 

model). For example, some researchers argued that predictive feedback 
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can be formed either about the content (leading to explaining away of 

incoming input, corresponding to weaker evoked responses) or the 

precision of lower-level input (leading to positive modulatory effects on the 

evoked responses, akin to attention). However, the fact that attention can 

also increase the lower-level activity (which is well supported by the biased 

competition theory) is ignored.  

In this thesis, we used a very different strategy to face the problems in the 

original predictive coding theory: theory must follow the facts, not vice versa. 

Thus, instead of trying to find out new evidence that supports predictive coding 

theory, we modified the original theory itself and proposed a model based on 

the idea of spike-time based selectivity: in a non-selective excitatory feedback 

network, the spike times of the higher area neuron are causally related to the 

spikes times of the predictable neurons in the lower areas, thus, the non-

selective excitatory feedback will turn to a selective one due to the spike-time 

(different spike time advance in different positions in the phase response 

curve). 

Under the proposed model, the feedback should not exert only one type of 

roles. However, in the predictive coding related evidence, we only see the 

inhibitory role of predictive feedback. Since these kinds of experiments only 

used the fMRI method which does not have a good temporal resolution, one 

possible reason for not detecting an excitatory effect of predictive feedback 

may be caused by the method. Thus, we used a psychophysical method to 

reinvestigate one of the first evidence about the inhibitory predictive feedback 

effect. Since the psychophysical method has a good temporal resolution, this 

study provides more information about predictive coding and its effect. 
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Shape perception enhances perceived contrast: 

evidence for excitatory predictive feedback? 

Abstract 

Predictive coding theory suggests that target-related responses are 

“explained away” (i.e., reduced) by feedback. Experimental evidence for 

feedback inhibition, however, is inconsistent: most neuroimaging studies show 

reduced activity by predictive feedback, while neurophysiology indicates that 

most inter-areal cortical feedback is excitatory and targets excitatory neurons. 

In this study, we asked subjects to judge the luminance of two gray disks 

containing stimulus outlines: one enabling predictive feedback (a 3D-shape) 

and one impeding it (random-lines). These outlines were comparable to those 

used in past neuroimaging studies. All 14 subjects consistently perceived the 

disk with a 3D-shape stimulus brighter; thus, predictive feedback enhanced 

perceived contrast. Since early visual cortex activity at the population level 

has been shown to have a monotonic relationship with subjective contrast 

perception, we speculate that the perceived contrast enhancement could 

reflect an increase in neuronal activity. In other words, predictive feedback 

may have had an excitatory influence on neuronal responses. Control 

experiments ruled out attention bias, local feature differences and response 

bias as alternate explanations.  
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Introduction 

Predictive coding is a form of efficient sensory coding(Barlow, 1961b) that relies 

on the elimination of predictable neuronal responses and thereby the 

exclusive processing and transmission of unpredicted portions of the sensory 

input(Koch and Poggio, 1999; Rao and Ballard, 1999; Friston, 2005; Clark, 2013). 

As such, predictive coding could have important implications for the dynamics 

of information flow among the different levels of a sensory hierarchy such as 

the visual cortex. 

Standard neuronal implementations of predictive coding assume that the 

feedback connections carry predictions of expected neural activity and the 

feedforward connections carry the residual activity between the predictions 

and initial lower area activity. To carry the residual, the feedforward 

connections are supposed to be excitatory, whereas to produce the residual 

the feedback connections are supposed to be inhibitory(Rao and Ballard, 

1999; Friston, 2005). To simplify, standard neuronal models of predictive coding 

hold that the different hierarchical levels interact by excitatory feedforward 

carrying residual activity and inhibitory feedback carrying predictions. Recent 

implementations of predictive coding have divided neurons in each cortical 

area into two sub-populations, one coding for predictions/representations and 

one for prediction errors(Friston, 2005; Spratling, 2008a). These models 

suggested that only error units would be suppressed through either direct or 

indirect inhibition from the prediction units; the prediction/representation units, 

on the other hand, may actually be enhanced by predictive 

feedback(Spratling, 2008a, 2008b). Since theory must follow fact, it appears 

important to investigate the overall perceptual effect of feedback in 

predictive coding: is it excitatory or inhibitory? 
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Neurophysiology and neuroimaging provide converging supporting evidence 

for the hierarchical structure and excitatory feedforward connections of 

predictive coding models(Van Essen and Maunsell, 1983; Girard and Bullier, 

1989; Girard et al., 1991b; Coogan and Burkhalter, 1993), but the experimental 

data are less unanimous regarding the inhibitory or excitatory nature of 

predictive feedback(Bastos et al., 2012): most neuroimaging studies show 

reduced activity by predictive feedback(Murray et al., 2002; Harrison et al., 

2007; Summerfield et al., 2008; Alink et al., 2010), while neurophysiology 

indicates that most inter-areal cortical feedback is excitatory and targets 

mostly on the lower area excitatory neurons(Sandell and Schiller, 1982; Shao 

and Burkhalter, 1996; Johnson and Burkhalter, 1997; Hupé et al., 1998; Wang et 

al., 2000; Liu et al., 2013). In summary, the experimental literature does not 

clearly and unambiguously support the notion of inhibitory feedback, which is 

nonetheless an integral part of many models of predictive coding.  

Here, we employed a psychophysical approach to investigate the properties 

of predictive coding. To produce predictive feedback, we employed similar 

stimuli as in Murray et al.: 3D-shape outlines and random-lines versions of the 

same stimuli(Murray et al., 2002). The former can be easily recognized, and 

should thus normally produce more predictive feedback than the latter. The 

two kinds of stimuli (3D shape and random lines) were displayed on gray disks 

simultaneously on the left and right of a fixation point on a black background. 

Subjects were asked to compare the luminance of the two disks (report the 

side of the brightest disk). The 3D-shape disk was perceived systematically 

brighter than the random-lines disk. Since there is experimental evidence 

suggesting a monotonic relationship between perceived contrast and 

neuronal activity in early visual areas(Dean, 1981; Boynton et al., 1999), we 

speculate that, at least at the moment at which subjects made their 
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perceptual decision about local contrast, predictive feedback was excitatory 

rather than inhibitory. 

Results 

Main Experiment: luminance judgment.  

Participants (N=14) were instructed to fixate on the fixation point and judge the 

luminance of two gray disks on a black background on the left or right of 

fixation; each disk had either a 3D-shape or a random-lines pattern (randomly 

assigned) superimposed in its center (Figure 1, A). As these stimuli differentially 

activate higher visual areas (such as the lateral occipital  complex, 

LOC(Murray et al., 2002)), one can reasonably expect different amounts of 

predictive feedback for the two locations(Murray et al., 2002), with more 

feedback towards the 3D-shape disk. Since anatomical evidence shows that 

feedback connections are strongly divergent(Salin and Bullier, 1995), we 

reasoned that the influence of predictive feedback might be measurable over 

the entire disk. We thus asked the participants to report the side of the disk that 

they perceived as brighter (after the stimuli offset, they received the instruction 

“which disk was brighter?”, and responded via button press). 

In each block of trials, one disk type was assigned with a fixed luminance value, 

while the other disk was assigned with a variable value around that level, 

different on each trial. The positions of the fixed-luminance and variable-

luminance disks (and thus of the 3D-shape and random-lines stimuli) were 

randomly assigned in each trial. Two psychometric functions were computed 

from the data, one for blocks in which the random-lines disks had variable 

luminance values, and one for the other block type in which the 3D-shape disks 
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had variable luminance values. We finally compared these two psychometric 

functions: the psychometric shift was defined as the difference between the 

two psychometric thresholds (variable luminance value at which selection 

probability reaches 50%). A positive psychometric shift would suggest that the 

luminance of the random-lines disk at which it is perceived equiluminant to the 

fixed-luminance 3D-shape disk is higher than the luminance of the 3D-shape 

disk at which it is perceived equiluminant to the fixed-luminance random-lines 

disk. In simpler terms, a positive effect indicates that 3D-shape disks are 

perceived as brighter than random-lines disks, while a negative effect implies 

the opposite relation. 

Results showed a positive effect for all 14 subjects, i.e. they perceived 3D-shape 

disks brighter than random-lines disks (Figure 1, B-C). The psychometric shift was 

8.04% ± 2.82% (average ± standard deviation across subjects) normalized 

luminance and the grand average psychometric shift (when pooling data 

over all subjects) was 7.93%. A student's paired t test for the psychometric shift 

shows t(13)=10.69, p < 8.29×10-8 with a confidence interval of (6.42%, 9.67%). 

This effect was unlikely to be due to eye movements or faulty fixation: in two 

subjects (indicated in Figure 1.C by colored bars) eye position was monitored 

by an eye-tracker and any trial with sizeable eye movements were discarded; 

these two subjects still produced positive psychometric shift (3.57% and 5.51%) 

that were well within the range of the group. Since luminance/contrast 

discrimination judgments are linked to neuronal activity in early visual cortical 

areas(Dean, 1981; Boynton et al., 1999), these results indicate that at the 

moment at which subjects made a decision about luminance/contrast 

discrimination, the 3D-shape had presumably produced more neuronal 

activity in early cortical areas than the random-lines stimulus. As the 3D-shape 

is more recognizable than the random-lines and thus more likely to induce 

predictive feedback signals, we tentatively conclude that predictive 
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feedback had an excitatory effect on neuronal activity in early visual cortex. 

However, we also tested several alternative explanations. 

 

Figure 3-1. Main experiment and results. (A) Experimental paradigm. Each trial 

consisted of a 200-800ms blank screen, a 750ms stimulus screen and a response screen 

that remained visible until the response was provided. The stimulus screen consisted 

of a fixation point, one circular gray disk with a 3D-shape stimulus and another with a 

random-lines stimulus (with randomized positions on the left and right of fixation for 

every trial). One disk had a fixed contrast level and the other a variable contrast value 

around that level (randomly assigned on every trial). Subjects were instructed to 

compare the luminance of the two disks. No feedback was given after the response. 

(B) Comparison of the grand average psychometric functions (when pooling data 

over all subjects). Each curve represents the selection probability of the variable disk 

when this disk contained the 3D-shape (green) or the random-lines stimulus (red). Error 
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bars represent standard error of the mean (SEM) across subjects (C) Psychometric shift 

for each subject and mean across subjects. Psychometric shift was defined as the 

difference between the two psychometric functions at 50% selection probability. All 

14 subjects showed a positive effect, with the disk behind the 3D-shape stimulus 

perceived brighter against the black background than the one behind the random-

lines. Subjects 1 and 4, marked by colored bars, performed the experiment while their 

eye position was monitored, and any eye movement or break of fixation discarded. 

Error bar represents SEM. 

Control experiment: attention bias.  

An obvious possible confound with our experimental design could be a 

systematic attention bias towards 3D-shape stimuli. Indeed, previous fMRI 

studies showed that attention can increase activity in early visual cortical 

areas(Corbetta et al., 1995; Gandhi et al., 1999) and alter stimulus appearance 

including perceived contrast(Carrasco et al., 2004). Is the enhanced 

perceived contrast for 3D shapes simply a product of increased attention? If 

this was the case, then one would expect the psychometric shift to decrease 

when attention is diverted from the peripheral disks using a challenging central 

task(Corbetta et al., 1991). We thus replaced the fixation point with a rapid 

serial visual presentation (RSVP) stream of letters. The observers (a subset of 

participants from the main experiment; N=7) were instructed to count the 

number of occurrences (from 1 to 4) of the letter "T" (Figure 2, A), a task known 

to demand important attentional resources(Joseph et al., 1997; Braun, 1998). 

To ensure that attention was properly engaged by this central task, we used a 

presentation speed (6.67 letters/s) that made the task highly challenging 

(correct rate, 72.48% ± 12.37%, average ± standard deviation across subjects). 

Participants were instructed to prioritize the counting task and to respond to it 
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first; negative auditory feedback was given after every mistake in this counting 

task.  

Two psychometric functions were generated using the same method as in the 

main experiment, and compared with the psychometric functions obtained 

from the same participants during the main experiment (Figure 2, B-C). The 

psychometric functions had significantly shallower slopes (as measured by the 

standard deviation of a fitted cumulative normal distribution) than in the main 

experiment (attention bias control vs. main experiment 0.33 ± 0.13 vs. 0.16 ± 

0.07, average ± standard deviation, t(13)=4.7, p<4.23×10-4, the psychometric 

function with 3D-shape disk as the variable-luminance disk and the 

psychometric function with random-lines disk as the variable-luminance disk 

were analyzed jointly, and 14 pairs of standard deviation values were thus 

compared for the analysis), suggesting that attention was properly engaged 

and that subjects were therefore less sensitive to contrast differences(Corbetta 

et al., 1991). Given that attention was significantly engaged in the central 

counting task, and regardless of the magnitude of this engagement (i.e., even 

if only a portion of attentional resources was engaged), an attentional 

account of our previously observed contrast perception shift should predict 

that the shift would decrease during the dual-task condition. However, the 

psychometric shift was not decreased (if anything, it even increased 

marginally): across subjects, the psychometric shift for this control experiment 

was 9.27% ± 6.13% (average ± standard deviation across subjects) when 

including all trials, and 9.34% ± 6.86% when including only those trials in which 

the counting task was performed correctly (and thus attention was presumably 

more efficiently engaged); this is to be compared with a psychometric shift of 

8.3% ± 3.2% during the main experiment. Paired t-tests showed that the result 

differences between the control experiment and the main experiment were 

not significant (including all trials vs. main experiment: t(6)=0.467, p>0.65; 
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counting task correct trials vs. main experiment: t(6)=0.407, p>0.69). The grand 

average psychometric shift (when the psychometric functions were computed 

from the grand-average data across the seven participants) was 8.82% for all 

trials, and 8.70% for counting-task correct trials, relative to a psychometric shift 

of 8.18% during the main experiment.  

 

Figure 3-2 Attention bias control (A) Experimental paradigm. Each trial consisted of a 

200-800ms blank screen, a 2250ms letter RSVP sequence in the center, a 750ms 

stimulus screen starting 750ms after the beginning of the letter RSVP, and two 

successive response screens, each presented until a response was provided. The RSVP 

sequence displayed randomly drawn letters every 150ms (the same letter could not 

appear twice in a row). The stimulus screen was the same as in the main experiment, 

expect for the replacement of the fixation point by the RSVP sequence. Subjects were 
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instructed to first count the number of letters “T” in the RSVP, and (as a secondary task) 

to compare the luminance of the two disks. Negative auditory feedback was given 

after every mistake in the counting task. (B) Comparison of grand average 

psychometric functions for the same subjects in the attention bias control (solid lines) 

and in the main experiment (dashed lines). (C) Comparison of psychometric shift for 

the same subjects in the main experiment and during the attention bias control, either 

including all trials, or only those in which the counting task was performed correctly. 

Similar psychometric shift was obtained for all conditions, indicating that attention bias 

is unlikely to explain our findings. Error bars represent SEM. 

Control experiment: local features. 

We tested yet another alternative interpretation: that low-level local features 

altered the perceived contrast. Even though the paired 3D-shape and 

random-lines stimuli have the same number of line segments, comparable line 

orientations, retinotopic distribution and overall luminance, they also differ in 

some respects, for example the presence of corners and line junctions in 3D-

shapes only. It is conceivable that such local features could influence the 

processing of local contrast, and that in turn this local alteration of perceived 

contrast could propagate to the entire disk via filling-in mechanisms. This local 

contrast alteration mechanism, however, is different from the postulated 

excitatory feedback effect, since the latter is assumed to depend on the entire 

shape and thus to be more global in nature. Thus, the two alternative accounts 

make different predictions about the consequence of changing the contrast 

polarity of the stimulus outline (black vs. white) while keeping the disk 

luminance (gray) and the screen background luminance (black) unchanged. 

Indeed, if local features are affecting contrast perception locally, then a white 

outline on a gray disk (instead of a black outline on a gray disk, as in the main 

experiment) should result in a reversed contrast effect (3D-shape disk 

perceived darker than the random-lines disk). On the other hand, the effect of 
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global feedback should not solely depend on the luminance of the stimulus 

outline (black or white), but also on the contrast between the (gray) disk and 

its (black) background; if that contrast does not change, the effect of global 

feedback might be expected to decrease, but should not fully reverse. To 

distinguish between these alternatives, in this control experiment we replaced 

the black outline of the 3D-shape and random-lines with white outlines 

(keeping the disks gray and the screen background black), and asked subjects 

to perform the same comparison task as in the main experiment (judge which 

of the two disks is brighter). 

We found that the effect was not reversed by the change of contrast polarity 

(Figure 3). The psychometric shift for this control experiment was 3.23% ± 4.44% 

(average ± standard deviation across subjects; N=10 including 4 participants 

from the main experiment); the grand average psychometric shift (when the 

psychometric functions were computed from the grand-average data across 

participants) was 3.1%. A one-sample Student’s t-test showed that this effect 

was incompatible with a full reversal (null hypothesis of an psychometric shift 

of -8.04%, based on the results reported in Figure 1; t(9)= 8.03 , p < 2.15×10-5); in 

fact, this effect was still greater than zero (p < 0.05). This implies that the local 

contrast polarity is not the sole determinant of the observed effect, and that 

global feedback must also contribute to it. Therefore, our interpretation of an 

excitatory feedback still remains viable. 
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Figure 3-3 Comparison of the grand average psychometric functions in the “local 

features” control experiment. In this experiment, the contrast polarity of the stimulus 

outline was reversed (from black to white) to evaluate the contribution of local 

features on psychometric shift. While the grand average psychometric shift was 

reduced, it remained positive (p<0.05), and did not fully reverse (p < 2.15×10-5) as 

would have been predicted if local features were responsible for the entire effect. 

Error bars represent SEM. 

Control experiment: response bias. 

We also tested the possible influence of a response bias. One might imagine 

that when observers do not truly perceive any contrast difference between 

the 3D-shape and the random-lines disks, but are still confronted with a forced 

choice between two responses, they could be inclined to systematically 

choose the one stimulus that they recognized (i.e. the 3D-shape). If this was the 

case, however, reversing the task instructions (asking “which disk was darker?” 

instead of “which disk was brighter?”) should not affect this response bias, and 
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should thus produce a reversed psychometric shift (3D-shape disk perceived 

darker than random-lines disk). We re-tested seven participants from the main 

experiment using these reversed instructions (Figure 4). None of them showed 

a reversed effect. The psychometric shift was 8.11% ± 3.54% (average ± 

standard deviation across subjects), compared with 8.59% ± 2.75% for the same 

subjects during the main experiment. A paired t-test showed that the 

differences were not significant (t(6)=0.2891, p > 0.78). The grand average 

psychometric shift was 8.06% compared with 8.46 % for the main experiment. 

Thus, response bias is unlikely to account for our findings. 

 

Figure 3-4 (A) Comparison of the grand average psychometric functions in the 

“response bias” control. (B) Comparison of mean psychometric shift for the same 

subjects in the main experiment and the “response bias” control. In this experiment, 

the response instruction was reversed (report the darker disk) to measure the influence 

of a possible response bias. Psychometric shifts were similar in the two conditions (t-

test, p > 0.78), indicating that response bias is unlikely to play any major role in the 

effect. Error bars represent SEM. 
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Control experiment: same/different judgment. 

Finally, as an even more stringent test against response bias, we instructed 

subjects (N=5) to perform a same/different luminance judgment task (asking 

“Did the two disks have the same luminance?” at the end of each trial). Any 

response bias towards either the 3D shape or the random lines stimulus would 

not be expected to affect responses in this sort of task. For different types of 

trials (3D-shape or random-lines inside of the variable-luminance disk), we 

measured the probability of “same luminance” response as a function of the 

luminance of the variable-luminance disk. If shape perception truly has an 

effect on contrast/luminance perception, we should expect a shift of the 

distributions. Indeed, we found a right-shift of the distribution of “same” 

responses when random lines were inside of the variable-luminance disk 

(relative to the distribution of “same” responses when 3D shape were inside of 

the variable disk), indicating that 3D shape enhanced perceived 

contrast/luminance (Figure 5). By fitting each distribution to a Gaussian 

function and comparing their peaks, we found an average psychometric shift 

of 5.10% ± 2.43% (average ± standard deviation across subjects). This 

psychometric shift corresponded to a p value of 0.0093 with a confidence 

interval of (2.08%, 8.12%). To compute the grand average psychometric shift, 

we first normalized the response distributions of each subject relative to their 

mean value across all possible variable luminance, and then we fitted the 

average normalized distributions with Gaussian functions. The grand average 

psychometric shift over 5 subjects was 3.98%. Since this measurement is less 

prone to response biases, we thus re-confirmed our findings with convergent 

evidence. 
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Figure 3-5 (A) Comparison of the grand average psychometric functions in the 

“same/different” experiment. In this experiment, we instructed subjects to report 

whether the two disks had the same or different luminance. By comparing the 

distribution of normalized “same luminance” responses (normalized by mean 

response probability) on different types of trials (3D-shape or random-lines inside of 

the variable-luminance disk), we could determine which disk was perceived brighter. 

The right-shift of the “same” response distribution with random lines inside of the 

variable disk (or the left-shift of the “same” response distribution with 3D shape inside 

of the variable disk) indicates that 3D shape enhanced perceived 

contrast/luminance. (B) Psychometric shift for each subject and mean across subjects. 

Psychometric shift was defined as the difference between the peaks of the two 

psychometric functions. All 5 subjects showed a positive effect, with a right-shift of the 

“same” response distribution with random lines inside of the variable disk. Error bar 

represents SEM across subjects. 
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Discussion 

In the present study, consistent behavioral responses of 14 subjects (Figure 3-1) 

revealed that the disk behind the 3D-shape stimulus (which could be easily 

recognized, and give rise to predictive feedback) was perceived brighter 

against the black background than the one behind the random-lines 

(meaningless) stimulus. Given previous evidence suggesting a monotonic 

relationship between contrast perception and neural activity in early visual 

areas(Dean, 1981; Boynton et al., 1999), we tentatively interpret these results as 

evidence that predictive feedback had an excitatory effect on sensory 

activity, at least at the time point at which contrast perception was established.  

We performed four control experiments to rule out alternative explanations of 

our results. By replacing the center fixation point with an attentional 

demanding task (letter RSVP), we obtained similar psychometric shifts for all 

conditions, indicating that attention bias was unlikely to explain our findings 

(Figure 3-2). In the main experiment, two contrasts could have contributed to 

the perceived disk luminance: a local one reflecting the luminance difference 

between stimulus lines and disk, and a more global one caused by the 

luminance difference between disk and screen background. Both contrasts 

could have been affected by predictive feedback (e.g., due to divergent 

feedback connections); but in addition, the local contrast could also have 

been modulated by more local confounding factors, such as systematic 

physical differences in the random lines vs. 3D-shapes stimuli (although the 

number of lines and corresponding numbers of pixels were equated, higher-

order statistics reflecting inter-pixel relations were not equated). To test if the 

local factors could solely account for our results, we examined the relative 

contribution of local and global contrast to the perceived disk luminance by 

reversing the polarity of the stimuli outline, from black to white. This operation 
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reversed the direction of the contribution from local contrast: if it had previously 

resulted in the disk being perceived brighter, it should have now caused it to 

be perceived darker. We showed, however, that psychometric shifts did not 

fully reverse, indicating that local factors were unlikely to explain all of our 

findings (Figure 3-3). Finally, we used two separate experimental manipulations 

to assess the effect of response biases on our results: we modified the response 

instructions (asking “which disk was darker?” instead of “which disk was 

brighter?”, Figure 3-4), and in a separate control we changed the subjects’ 

task (to a same/different perception task, by asking “Did the two disks have 

the same luminance?”, Figure 3-5). The comparable psychometric shifts 

obtained regardless of task instructions indicated that response biases were 

unlikely to explain our findings. 

These results concur with neurophysiological evidence that cortico-cortical 

feedback connections are mainly excitatory(Sandell and Schiller, 1982; Shao 

and Burkhalter, 1996; Johnson and Burkhalter, 1997; Hupé et al., 1998; Wang et 

al., 2000). However, they also appear to contradict neuro-imaging evidence 

suggesting that predictive feedback is inhibitory, using a similar paradigm and 

the same set of stimuli as in the present study(Murray et al., 2002). The major 

difference between our study and that of Murray et al.(Murray et al., 2002) is 

the dependent variable used to estimate neural activity: perceived contrast 

vs. BOLD activity. The existence of a monotonic relationship between contrast 

and neural activity in early visual cortical areas has been well established in 

neurophysiology(Dean, 1981). The contrast response function of striate cortex 

neurons has been directly measured in cat and monkey(Albrecht and 

Hamilton, 1982). In human primary visual cortex, contrast is directly related to 

BOLD responses(Goodyear and Menon, 1998), and psychophysical contrast 

judgments (i.e., perceived contrast) are also linked to BOLD responses in visual 

areas V1, V2d, V3d and V3A(Boynton et al., 1999). Selective contrast tuning 
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exists for some V4 neurons, however, contrast still has a monotonic and positive 

relationship with the activity of overall V4 neuron populations(Sani et al., 2013). 

It thus appears reasonable to use perceived contrast as a proxy for overall 

neuronal activity in early visual cortex. On the other hand, perceived contrast 

and BOLD activity certainly differ in terms of their temporal resolution: 

perceptual decisions can be made within a few hundred milliseconds, 

whereas BOLD signals have a slower time course and a much poorer temporal 

resolution (on the order of seconds) due to the nature of the hemodynamic 

response function. Thus, it is possible to envision that predictive feedback could 

play an excitatory role during early stages of stimulus processing, and yet have 

a long-lasting inhibitory effect on subsequent neuronal activity.  

With the same set of stimuli but complementary methods, the combination of 

our psychophysical study and previous neuro-imaging results(Murray et al., 

2002) thus highlights a possibly more comprehensive temporal profile for 

predictive feedback. But, is this profile universal? Is it comparable across all 

brain regions? Summerfield et al. and Egner et al. investigated predictive 

feedback by measuring BOLD responses in FFA(Summerfield et al., 2006; Egner 

et al., 2010). With 750ms-long face images, Egner et al. showed that FFA 

responses decreased with high prior expectation compared to low 

expectation. On the other hand, with masked 100ms-long face images, 

Summerfield et al. found that FFA responses increased during a face-related 

task compared to a non-face-related task. Even though none of these authors 

explicitly linked these two studies with respect to stimulus timing, the 

corresponding time-line of predictive feedback in FFA appears compatible 

with our hypothesis. At the opposite end of the visual system, Olsen et al. 

showed that the corticothalamic feedback from layer 6 of mouse V1 to lateral 

geniculate nucleus (LGN) played an inhibitory role: a large proportion of 

visually evoked activity in LGN relay neurons was inhibited when driving V1 
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layer 6 neurons optogenetically(Olsen et al., 2012). Nonetheless, anatomical 

evidence suggests that direct feedback connections from visual cortex to LGN 

relay cells are actually excitatory(Guillery and Sherman, 2001), but visual cortex 

also sends excitatory feedback to the thalamic reticular nucleus (TRN), a layer 

of inhibitory neurons adjacent to the thalamus, which can in turn inhibit LGN 

relay neurons. It thus seems plausible that direct corticothalamic excitatory 

feedback might influence LGN relay cells before the arrival of indirect inhibitory 

feedback from the TRN. Thus, even for connections between other areas than 

V1 and extrastriate visual cortex, predictive coding may present the same 

hypothesized temporal profile: excitation followed by inhibition. 

Furthermore, even though inter-areal feedback connections are carried out 

only via the excitatory neurons (since only they have long enough axons to 

connect different areas) and mostly target excitatory neurons(Johnson and 

Burkhalter, 1996, 1997), the net effects of feedback are not always 

excitatory(Bastos et al., 2012). Hupé et al. showed that with very low saliency 

stimuli, cooling down V5, and thus interrupting its feedback, actually increased 

neural activities in V3(Hupé et al., 1998). Schneider et al. also revealed 

inhibitory effects of feedback in auditory cortex(Schneider et al., 2014). One 

possible mechanism for such inhibitory effects is excitatory cortico-cortical 

feedback reducing lower level activities by activating local inhibitory 

circuits(Schneider et al., 2014; Zhang et al., 2014). This possible mechanism may 

help us reconcile our findings with neuroimaging results: one group of neurons 

in early visual cortex may be excited by the top-down prediction (i.e. the 3D 

shape); this enhancement could in turn activate the local inhibitory circuits to 

inhibit other groups of neurons, leading to an overall inhibitory effect. Since the 

excited neurons and the inhibited ones belong to different populations, this 

mechanism might result in a spatial dissociation of excitatory and inhibitory 

effects (rather than, or in addition to, the postulated temporal dissociation). 
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Kok et al. provided evidence for such a spatial dissociation: they observed 

enhanced activity in the area where a Kanisza-like illusory shape was 

perceived, but reduced activity for the surrounding inducers(Kok and de 

Lange, 2014).  

Predictive coding is a powerful scheme that describes perception as an 

inferential process “explaining away” predicted responses from input 

signals(Rao and Ballard, 1999; Friston, 2005). However, only limited 

experimental observations on this phenomenon are available. Based on these 

limited observations, several neuronal models of predictive coding have been 

put forward. Friston et al. (Friston, 2005; Friston and Kiebel, 2009) improved on 

Rao and Ballard’s original predictive coding model(Rao and Ballard, 1999) and 

proposed a specific distribution of functional roles across the cortical 

layers(Mumford and Mumford, 1992). Spratling(Spratling, 2008a) advocated a 

neuronal model with excitatory feedback which, according to our logic 

described before, fits better with the anatomical and neurophysiological 

evidence(Sandell and Schiller, 1982; Shao and Burkhalter, 1996; Johnson and 

Burkhalter, 1997; Hupé et al., 1998; Wang et al., 2000).  

As pointed out already by Spratling(Spratling, 2008a), one possible way to 

dissolve the conceptual tension between classical models of feedback (e.g. 

biased competition) and predictive coding is by hypothesizing that all 

predictive coding schemes employ two types of neurons within each layer of 

the cortical hierarchy: prediction or representation units (P) and prediction 

error units (E). Feedback aims to inhibit the error units, but thereby also 

strengthens the representation at the lower level. Under some simplifying 

assumptions, this hypothesis makes classical models of biased competition and 

predictive coding mathematically equivalent(Spratling, 2008a). In line with this 

notion, Kok et al. observed reduced overall activity for expected stimuli, yet an 
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increased stimulus representation(Kok et al., 2012b). These findings are 

inconsistent with the idea that feedback globally inhibits sensory 

representations; rather, they support the notion that it is only the error units that 

are suppressed, and thereby predictions increase the signal-to-noise ratio.  

In conclusion, the present psychophysical study showed an excitatory 

influence of predictive feedback at the perceptual level. To build an optimal 

neuronal model of predictive coding, the consideration of the entire range of 

neuroimaging, neurophysiological and psychophysical evidence is necessary. 

We hope the observed excitatory influence of predictive feedback could thus 

help improve the design of future predictive coding models.  
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Methods 

Subjects 

Based on pilot experiments, we expected an average psychometric function 

shift of at least 5%, with a variability of 5% in the point of subjective equality of 

psychometric functions. To reach a statistical power of at least 95%, we 

determined that the sample size was twelve subjects. To monitor eye 

movements, we added two more subjects with an eye-tracker. Finally, 

fourteen volunteers (7 female, mean age 27.78 ± 3.78 years, one left handed, 

five with left eye dominance) participated in the main experiment.  

Seven of these main experiment participants (4 female; mean age 28.5 ± 1.2 

years; all right handed) performed the attention control experiment. Four main 

experiment participants and six other volunteers (10 participants, 5 female, 

mean age 28.1 ± 4.9years) performed the “local features” control experiment. 

Seven main experiment participants (3 female, mean age 29.6 ± 4.2 years) 

performed the “response bias” control experiment. Two main experiment 

participants and three other volunteers (5 participants, 3 female, mean age 

28.8 ± 2.2 years) performed the “same/different” control experiment. These 

sample sizes for control experiments were determined, based on the effect size 

obtained in the results of the main experiment, so as to ensure a minimum 

statistical power of 80% for each control experiment. 

All subjects in the main experiment and all control experiments had normal or 

corrected to normal vision. The study was approved by the local ethics 

committee “Sud-Ouest et Outre-Mer I” and followed the Code of Ethics of the 
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World Medical Association (Declaration of Helsinki). All subjects provided 

signed informed consent before starting the experiments. 

Apparatus 

Stimuli were presented at 57 cm distance using a desktop computer (2.09 GHz 

Intel processor, Windows XP) with a cathode ray monitor (resolution: 800×600 

pixels; refresh rate: 120 Hz, Gamma corrected luminance function). Stimuli 

were designed and presented via the Psychophysics Toolbox(Brainard, 1997) 

running in MATLAB (MathWorks). 

Stimuli and tasks 

Twenty pairs of 3D-shape and random-lines stimuli were first generated. Similar 

to Murray et al. (2002), 3D-shapes were generated by randomly selecting 4–6 

vertices, connecting the vertices and adding small extensions to render 

perceived depth. Random-lines stimuli were created by breaking the 3D-

shape at its intersections and randomly shifting the lines (crossings were 

avoided) within the display. The diameter of both 3D-shape and random-lines 

stimuli was 3 degrees. In all experiments except the “local features” control 

experiment, the stimulus outlines were black. In the “local features” control 

experiment, these outlines were white.  

Main experiment. Stimuli consisted of a central white fixation point (diameter: 

0.2 degrees of visual angle) and two circular gray disks (diameter: 4 degrees 

each). One 3D-shape stimulus was in the center of one disk (3D-shape disk) 

and one random-lines in the other (random-lines disk). The disks were 

presented at an eccentricity of 3 degrees randomly on either side (left or right) 
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of fixation. The luminance of the disks ranged from 20.17 cd/m2 to 32.3 cd/m2 

(measured with a Minolta Chroma Meter CS-100, Minolta Co., Ltd, Osaka, 

Japan). To compute normalized luminance, the measured luminance values 

were divided by the middle value of the luminance range, i.e. 26.235 cd/m2. 

One disk had a fixed luminance level (100% normalized luminance) and the 

other a variable luminance value, randomly drawn from the normalized 

luminance set [80%, 84%, 88%, 92%, 94%, 96%, 98%, 100%, 102%, 104%, 106%, 

108%, 112%, 116%, 120%]. Disks were presented on a black background 

(normalized luminance 0.0145 %). Before stimulus onset, there was a blank 

screen that lasted from 200 to 800ms (random uniform distribution). The stimulus 

lasted for 750 ms and then the instruction "Which disk was brighter? Press the 

arrows" appeared on the screen until the subject’s response. Subjects were 

presented with 5 blocks of 200 trials, and asked to fixate the fixation point and 

use the arrow keys on a standard 105 key keyboard to respond (left arrow for 

left is brighter, right arrow for right is brighter). There was no feedback after the 

response. To monitor for breaks in fixation, eye movements of two subjects were 

recorded using a video-based eye tracker (EyeLink 1000 plus, SR Research, 

Ontario, Canada) with a sampling rate of 1000 Hz. The eye tracker was 

calibrated at the beginning of each block (only 4 blocks of 200 trials were 

performed by these subjects). For each trial, if the maximal deviation from 

fixation during stimulus presentation was bigger than 0.5 degrees from the 

fixation point, the trial was rejected automatically and the instruction “Please 

fixate on the fixation point” appeared on the screen.  

Control experiment: attention. The fixation point was replaced by a rapid serial 

visual presentation (RSVP) stream of letters. The RSVP was made up of letters 

randomly drawn from the set [T, L, K, J, B, C, D], 2 degrees in diameter. Each 

letter was presented for 150 ms. A letter could not appear twice in a row, and 

the letter "T" appeared from one to four times (randomized from trial to trial). 
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The RSVP sequence started before the disks presentation and ended after the 

disks. Fifteen letters were presented from time 0 to 2250 ms, while the disks were 

presented from time 750 to 1500 ms. The instruction "How many Ts were there? 

press the key of 1-4" appeared at time 2250ms, until the subject’s response 

(using the keys 1,2,3,4 in the numeric keypad). There was a short beep sound 

feedback if subjects answered incorrectly in this task. After the subject’s 

response to the letter counting task, the instruction "Which disk was brighter? 

Press the arrows" appeared, and subjects performed the luminance judgment 

task as in the main experiment. Subjects were presented with 8 blocks of 100 

stimuli. They were instructed that their primary task was to count the number of 

occurrences of the letter "T". 

Control experiment: local features. Stimuli were white 3D-shape and random-

lines on a gray disk. The task was the same as in the main experiment. 

Control experiment: response bias. Stimuli were the same as in the main 

experiment. The variable luminance value was randomly drawn from the 

normalized luminance set [80%, 86%, 92%, 96%, 98%, 100%, 102%, 104%, 108%, 

114%, 120%]. The question given after each trial was: "Which disk was darker? 

Press the arrows", and subjects were instructed to choose the darker disk using 

the arrow keys. 

Control experiment: same/different judgment. Stimuli were the same as in the 

main experiment. The question given after each trial was: "Did the two disks 

have the same luminance?", and subjects pressed one key to indicate that 

they perceived the same luminance and another key when they perceived a 

different luminance. 
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Data analysis 

The trials were classified into two categories: either the 3D-shape disk had a 

variable luminance value, or the random-lines disk had a variable luminance 

value. For all experiments except the same/different luminance experiment, 

for each trial type, the selection probability of the disk with the variable 

luminance value was computed, separately for each variable luminance 

value. Two psychometric functions were generated, one for each trial type, 

expressing the selection probability as a function of the variable luminance 

value, and fitted using normal cumulative distribution functions (each pair of 

psychometric functions was fitted with Gaussian cumulative functions with six 

parameters: mean and standard deviation separately for each psychometric 

function, and a common guess rate and lapse rate for both functions; the 

guess rate was set in the range of [0,1] and the lapse rate was set in the range 

of [0, 1-guess rate], which limited the maximum and minimum values of the 

psychometric functions to 1 and 0, respectively). Finally, we compared these 

two psychometric functions. The difference between the two psychometric 

functions at 50% selection probability was defined as the psychometric shift 

(and the difference between the two grand-average psychometric functions 

was defined as the average psychometric shift). A student's t test against the 

null hypothesis of a psychometric shift equal to zero (both disks perceived 

equally bright) was performed using psychometric shift from all subjects. For 

the same/different judgment, the probability of reporting “same luminance” 

was computed for each variable luminance value, and two psychometric 

functions were generated and fitted using Gaussian distribution functions, 

separately for each trial type. The difference between the peaks of the two 

Gaussian functions was defined as the psychometric shift in this experiment. 
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Conclusion 

In this chapter, we reinvestigated one of the first evidence about the inhibitory 

predictive feedback effect: shape perception. By using the psychophysical 

method, we can obtain a much better temporal resolution than the traditional 

fMRI method. We obtained surprising and consistent results in the view of 

traditional predictive coding: we found out that shape perception can 

enhance the perceived contrast. Then we used the perceived contrast as a 

proxy for overall neuronal activity in early visual cortex and concluded that 

shape perception can increase the neuronal activity in early visual cortex. We 

performed control experiments to exclude three possible alternative 

explanations of our results: attention bias, local factors and response bias.  

Our psychophysical study showed an excitatory influence of predictive 

feedback at the perceptual level. This result seems to be contradictory to the 

first inhibitory evidence of predictive feedback and suggested a different 

effect in perception and fMRI results. Since we used the same stimuli as the first 

inhibitory evidence of predictive coding and our control experiments on 

traditional attention effect, the evidence is hard to be treated as “attention” 

effect or ignored. I think the contradiction may reveal a rich profile of the 

predictive feedback and two potential possibilities may explain the observed 

contradictions: 

(1) A comprehensive temporal profile for predictive feedback. Since 

perceived contrast and BOLD activity in fMRI differ in terms of their temporal 

resolution (a few hundred milliseconds for perception and several seconds 

for BOLD signal), it is possible to envision that predictive feedback could 

play an excitatory role during early stages of stimulus processing, and yet 

have a long-lasting inhibitory effect on subsequent neuronal activity. 



 

174 

 

(2) A comprehensive spatial profile for predictive feedback. Since 

neurophysiological evidence showed that the local inhibitory circuits can 

be activated by the excitatory cortico-cortical feedback and result in 

absolute inhibitory effect, it is possible that one group of neurons in early 

visual cortex may be excited by the top-down prediction and the 

activation of the local inhibitory circuits can inhibit other groups of neurons, 

leading to an overall inhibitory effect and result in a spatial dissociation of 

excitatory and inhibitory effects. 

The observed excitatory effect of predictive feedback fits the 

neurophysiologic evidence that feedback is excitatory and the proposed 

model in the previous chapter. Combining the observed results and previous 

fMRI evidence, we could have more comprehensive understandings about 

the roles of predictive feedback and the possible underlying neural circuits. 
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Chapter III 
 

nother well observed property of neocortex are the oscillations. 

Neural oscillations are the rhythmic neural activity in the neocortex, 

which can be observed throughout all levels of activities including 

spike trains, local field potentials and EEG/MEG.  

Recent studies used recordings and micro-stimulation in different layers of 

neocortex and since superficial and deep layers correspond respectively to 

the feedback and forward projections (Barbas and Rempel-Clower, 1997; 

Douglas and Martin, 2004; Wang, 2010), they could tell the frequency of 

feedback and feedforward oscillations.  The evidence suggested that the 

feedforward and feedback processing have their own signature in frequency: 

lower frequency (Theta or Alpha frequency) for feedback propagation and 

higher frequency (Beta or Gamma frequency) for feedforward propagation 

(Maier et al., 2010; Buffalo et al., 2011; Bastos et al., 2012; van Kerkoerle et al., 

2014). 

If predictive coding is a universal theory about the feedforward and feedback 

pathways, it should be able to explain the interactions between the 

hierarchically higher and lower areas. Thus, the empirical evidence about 

predictive coding should also show similar oscillatory patterns for feedforward 

and feedback connections. 

Indeed, as we reviewed in the introduction part of this thesis, there are only few 

evidence about the relationship between oscillations and predictive coding. 

However, the existing evidence have some problems: 

A
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(1) The evidence is not very clear. For example, in the MEG study by Arnal et al, 

there are several interesting frequency bands in different time points in their 

correlation between the phase locking factor and ERF, however, they only 

focused on one frequency band with prior assumption.  Furthermore, there 

is a more significant negative correlation between the theta frequency 

phase locking and ERF/gamma band power, but they could not tell the 

possible reasons.  

(2) The sources of the oscillations are not clear. In the same study, it is very hard 

to tell the hierarchical regions of the correlations in their topographical plot. 

Thus, even though they proposed a similar oscillation pattern as the recent 

evidences about feedforward and feedback connections, it is still very hard to 

convince other researchers that predictive coding actually use their proposed 

frequency band to communicate. 

Here, to further prove that predictive coding is using the same frequency 

patterns as the observed neurophysiological evidence, we used a similar 

paradigm as the previous psychophysical study to investigate the relationship 

between oscillations and predictive coding. We tried to verify the hypothesis 

that prediction error propagates in a higher frequency and predictive 

feedback propagates in a lower frequency. 
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The rhythms of predictive coding: pre-stimulus oscillatory 

phase modulates the influence of shape perception on 

luminance judgments 

Abstract  

Neurophysiological evidence suggests a hierarchy of visual areas pervaded 

by oscillatory activity. Predictive coding theory provides a canonical neural 

circuit for the communication between lower- and higher-level areas: a 

feedforward pathway carrying predictive errors, and a feedback pathway 

carrying predictions. Because of the iterative nature of this 

prediction/correction process, we hypothesized that predictions could 

modulate sensory processing periodically, following the phase of specific brain 

oscillations. Two gray disks with different versions of the same stimulus, one 

enabling predictive feedback (a 3D-shape) and one impeding it (random-

lines), were simultaneously presented on the left and right of fixation. Human 

subjects judged the luminance of the two disks while EEG was recorded. We 

compared the phases of pre-stimulus ongoing oscillations across different post-

stimulus judgments. Independently of the spatial response (left/right), the 

choice of 3D-shape or random-lines as the brighter disk (our measure of the 

efficiency of predictive coding on each trial) fluctuated along with the pre-

stimulus phase of two spontaneous oscillations: a theta oscillation (~5 Hz) in the 

contralateral frontal electrodes and a beta oscillation (~16 Hz) in the 

contralateral occipital electrodes. This pattern of results shows that predictive 

coding takes advantage of higher frequency oscillations in the low-level areas 

and lower frequency oscillations in the high-level areas. Together with recent 

studies on predictive coding and feedforward/feedback pathways, our 

findings support the notion that predictive coding is a periodic process with 
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faster oscillations in lower areas feeding forward prediction errors, and slower 

oscillations in higher areas feeding back predictions. 

Significance Statement 

Predictive coding is an influential model of brain function emphasizing the 

interactions between feedforward and feedback signals. We investigated the 

temporal dynamics of predictive coding in the context of shape perception 

with electroencephalogram (EEG) recordings. By analyzing the relationship 

between pre-stimulus phase and post-stimulus behavior, we found that 

contralateral frontal theta-frequency oscillations and contralateral occipital 

beta-frequency oscillations participated in the predictive coding process, by 

periodically biasing luminance perception towards the side on which 

prediction signals were stronger. Together with recent studies, these results 

support the notion that predictive coding is a rhythmic process, whereby the 

brain sends feedforward prediction error signals using a faster oscillation, and 

feedback prediction signals using a slower oscillation. 
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Introduction 

The outside world provides us only the light, but our visual system is 

capable of extracting the basic features in low-level areas and 

understanding them as meaningful concepts in high-level areas. 

Predictive coding theory suggests that the brain employs an efficient 

coding strategy to achieve this by generating predictions in higher-level 

areas and comparing them with the incoming sensory signals in the 

lower-level areas (Rao and Ballard, 1999; Friston, 2005). Previous 

neuroimaging evidence revealed the existence of such two-way 

communication (Murray et al., 2002; Harrison et al., 2007; Summerfield et 

al., 2008; Alink et al., 2010; Egner et al., 2010). However, the underlying 

mechanisms in this dynamical process, especially in the temporal 

domain, remain unknown. 

It has been proposed that the feed-forward and feedback in predictive 

coding take advantage of oscillations for information processing 

(Fontolan et al., 2014). On the one hand, recent neurophysiological 

evidence on laminar-specific oscillations and the functional roles of 

different layers suggested a faster oscillation for the feed-forward 

pathway and a slower oscillation for the feedback pathway (Maier et 

al., 2010; Buffalo et al., 2011; Bastos et al., 2012; Fontolan et al., 2014; van 

Kerkoerle et al., 2014). On the other hand, recent studies showed a link 

between behavioral performance and cortical oscillations in perception 

(Busch and VanRullen, 2010; Dugué et al., 2011) and reaction time 

(Drewes and VanRullen, 2011; Song et al., 2014). Since neural oscillations 

can reflect the cyclic fluctuations of excitability in a network, 

investigation of the relationship between trial-to-trial variability and the 
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phase of ongoing oscillations could link specific oscillations to cognitive 

functions (e.g. attention).  

Here, we used this approach to investigate the specific influence of 

ongoing oscillations on predictive coding, by measuring its effect on 

perception for different pre-stimulus oscillatory phases. In a typical 

predictive coding experiment, two conditions must be created: one with 

strong prediction signals, one without. Since the predictions are sent via 

feedback signals to lower areas, they will affect the lower-level activity 

and thus presumably also affect perception. Here, we chose one of the 

first paradigms in predictive coding to generate different amounts of 

predictive feedback (Murray et al., 2002): shape perception. 

Specifically, 3D-shape outlines and random-lines versions of the same 

stimuli, similar to the stimuli used in a previous influential study (Murray et 

al., 2002), were used in this experiment. It has been shown that 3D-shape 

outlines can be easily recognized and thus produce more predictive 

feedback than the random-lines versions (Murray et al., 2002). To 

measure the effect of different amounts of predictive feedback, we 

asked the subjects to judge the luminance (report the side of the brighter 

disk) of two gray disks simultaneously displayed on the left and right of 

fixation on a black background, one containing the 3D-shape outlines 

and the other containing the random-lines version. The luminance of the 

disks was adjusted to achieve about 50% choice rate for 3D-

shape/random-lines disk (this was achieved by slightly increasing the 

luminance of the random-lines disk, as demonstrated in one of our 

previous studies (Han and VanRullen, 2014)). We recorded EEG signals 

and analyzed the relationship between pre-stimulus oscillation phase 

and the post-stimulus judgment. We found that, independent from the 
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spatial choice (left/right side), the phase of 5Hz contralateral frontal and 

16Hz contralateral occipital pre-stimulus oscillations modulated the 

subject’s choice of a brighter 3D-shape disk (more effective predictive 

feedback) or a brighter random-lines disk (less effective predictive 

feedback). Since higher hierarchical level areas are assumed to send 

predictive feedback and lower hierarchical level areas to send 

predictive error, our results imply that the brain sends predictive 

feedback periodically at a preferred phase of a theta frequency 

oscillation in the frontal region, and sends predictive errors periodically 

at a preferred phase of a beta frequency oscillation in the occipital 

region. 

Results 

Human observers judged the luminance of two disks that were 

presented for 150ms on the left and right of a central fixation point. The 

disks contained different versions of the same stimulus, one with a 3D-

shape enabling predictive feedback, and the other with a random-lines 

version of the same shape which impeded predictive feedback (Figure 

4-1). Before the stimulus onset there was a random period of time (1000-

1500ms) with only the fixation point on the screen. After the stimulus offset 

a question mark appeared at the center and the subjects were 

instructed to report the side with the brighter disk. In the main 

experimental trials, the luminance of the disks was adjusted, such that 

observers reported the 3D-shape disk as brighter in half of the trials. 15% 

of trials were catch trials: extreme luminance values were assigned to 

one disk to monitor the subject’s ability to judge the luminance 

difference. 
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Behavioral Results 

On average, subjects judged the 3D-shape disk as brighter in half of the 

trials (49.24% ± 1.57%, mean ± standard error of the mean, SEM) in the 

main experimental condition, as expected. The luminance judgment 

correct rate in the catch trials (subjects judged the disk with higher 

luminance value as brighter or judged the disk with lower luminance 

value as darker) was high (93.98% ± 1.83%, mean ± SEM), indicating that 

subjects were adequately engaged in the luminance judgment task. 

Electrophysiological Results 

We focused on the relationship between oscillatory phase and the trial-

by-trial variations in the efficiency of predictive coding. EEG was 

recorded during the experiment. We expected the relation between 

oscillatory phase and behavior to be most visible in the pre-stimulus time 

window, where phase information reflects spontaneous fluctuations in 

neuronal excitability (Bishop, 1932; Buzsáki and Draguhn, 2004; Fries et al., 

2007; Busch et al., 2009; Jensen et al., 2012). In contrast, post-stimulus 

phase information is driven to a large extent by stimulus-locked activity 

(e.g. evoked potentials) and is thus further removed from spontaneous 

activity. We used classical stimuli (Murray et al., 2002) for inducing 

different amounts of predictive feedback on the left and right of the 

screen: 3D-shape and random-lines versions of the same stimuli (Figure 

4-1; the 3D-shape version enabling predictive feedback, the random-

lines simultaneously impeding it). To measure the effective amount of 

predictive feedback on each trial, we probed the perceived luminance 

of the disks under the stimuli. We have previously demonstrated that the 

net effect of predictive feedback on these stimuli is a relative increase 
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of perceived luminance for the disk containing the 3D-shape (Han and 

VanRullen, 2014). Here, this net effect was compensated on each trial 

by slightly lowering the luminance of that disk so that the average 

likelihood of perceiving either disk brighter was about 50% (see Methods); 

therefore, residual fluctuations of luminance perception on every trial 

can be thought to arise from trial-by-trial fluctuations in the efficiency of 

predictive coding (the 3D-shape disk may still be perceived brighter on 

trials where predictive coding was more efficient than average, and 

darker on trials where it was less efficient than average). Of course, 

spatial bias and/or trial-by-trial fluctuations in the direction of spatial 

attention may well also contribute to the choice of which disk appears 

brighter on a given trial. Thus, for each subject we divided all trials into 

two datasets based on their spatial choice (left-side choice vs. right-side 

choice), and we only investigated the relation between pre-stimulus EEG 

phase and 3D-shape/random-lines choice within each dataset. As the 

correlates of choosing the prediction-consistent stimulus (3D-shape) 

were expected to be strongest on electrodes contralateral to that 

stimulus, which would map onto opposite hemispheres for the two 

datasets, before plotting any scalp topographies we permuted the 

electrode positions (symmetrically across the midline axis) of all right-side 

choice trials. This procedure resulted in a mapping of ipsilateral effects 

to the spatial choice onto left electrodes, and contralateral effects onto 

right electrodes.  
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Figure 4-1 Illustration of the experimental paradigm. In each run of trials, a blank 

screen with only a central fixation point was presented for 1000 to 1500ms 

randomly. Then, two circular gray disks, one with a 3D-shape stimulus in the 

center and the other with random-lines, were presented randomly on either 

side (left or right) of the fixation point for 150ms. Subsequently, a question mark 

appeared in the center of the screen. Subjects were instructed to fixate the 

fixation point all the time, and report the side of the brighter disk with the 

corresponding arrow key after the question mark appeared. In the main 

experimental trials, luminance values of the disks were adjusted to obtain a 50% 

selection probability of 3D-shape/random-lines disk. In addition, there were 15% 

catch trials intermixed with the main experimental trials to monitor the subjects’ 

ability to judge the luminance difference throughout the experiment. In these 

catch trials, one disk was 20% brighter/darker than in the main experimental 

trials. 

We estimated the relation between EEG phase and predictive coding 

via the phase opposition product (POP, see Methods). This measure 

should be maximal when 3D-shape choice trials (prediction-consistent) 

and random-lines choice trials (prediction-inconsistent) tend to have 

opposite phase values. For each subject, dataset, electrode, time point 
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and oscillatory frequency, we obtained surrogate POP values 

(80,000,000 surrogates) by randomly permuting the trial outcomes, 

keeping the number of trials constant. Both real and surrogate POP 

values were averaged across datasets and subjects. The significance 

was determined as the proportion of surrogate POP values that were 

more extreme than the observed value. P-values were corrected for 

multiple comparisons across time points, frequencies and electrodes 

(100×30×64) using the FDR method (FDR α=0.05, corresponding to a P 

value threshold of 9.53 × 10-6). To show the overall POP in the time-

frequency domain, a z-score was computed by comparing the real POP 

values (combined across all subjects, datasets, and electrodes) to the 

mean and standard deviation of a null-hypothesis distribution with 10,000 

surrogate POP values (generated using the same procedure described 

before, and also combined across all subjects, datasets, and 

electrodes). This analysis revealed a significant relation between the 

post-stimulus 3D-shape/random-lines choice and two pre-stimulus 

oscillations (Figure 4-2. A): one theta-frequency oscillation (~3.1 Hz to 7.6 

Hz) in the time window from -545 ms to -268 ms, and one beta-frequency 

oscillation (~13.2 Hz to 25.7 Hz) in the time window from -107 ms to -25 ms. 

Green outlines mark the significant time-frequency regions (at least one 

significant electrode) after FDR correction. 

Scalp topographies of the z-score show that the two oscillatory effects 

involve distinct electrode groups and presumably distinct brain regions 

(Figure 4-2. B and C): the theta-frequency effect is maximal over frontal 

regions and the beta-frequency effect over occipital regions. In both 

cases, these effects are contralateral to the side that subjects chose as 

“brighter” (i.e., the right side of the topographies, due to our electrode 

permutation procedure). Electrodes with at least one significant time-
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frequency point (after FDR correction) inside the corresponding time-

frequency window are highlighted in green.  

 

Figure 4-2 Pre-stimulus EEG phase predicts luminance judgment of 3D-shape 

disk vs. random-lines disk. (A) The relation between pre-stimulus phase and 

luminance judgment (our measure of predictive coding) is assessed using POP 

values (phase opposition product; see details in Methods). The time-frequency 

map is the z-score of observed POP values (combined across all subjects, 

datasets and electrodes), each value compared with a null-hypothesis 

distribution of 10,000 surrogate POP values (also combined across all subjects, 

datasets and electrodes) characterized by its mean and SD. Time 0 indicates 

stimulus onset. P-values were derived from a comparison of POP values against 

80,000,000 surrogates, and corrected for multiple comparisons across all time 

points, frequencies and electrodes using the FDR method (FDR α = 0.05, 

corresponding to a P value threshold of 9.53 × 10-6). The green outlines mark the 

significant time-frequency regions (at least one significant electrode) after FDR 

correction. A significant relation is apparent between the effect of shape 

perception on luminance judgments and the EEG phase of ~5 Hz and ~16 Hz 
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pre-stimulus oscillations. (B) Scalp topography of (z-scored) POP values around 

16 Hz (frequency range 13.2 to 25.7 Hz; time range -107 to -25 ms). Electrodes 

highlighted in green have at least one significant time-frequency point (after 

FDR correction) inside the corresponding red box. Due to our electrode-

permutation procedure, in this topography the electrodes ipsilateral to the 

spatial choice are displayed on the left and those contralateral to the spatial 

choice are displayed on the right. Thus, the topography shows a contralateral 

occipital effect for the 16 Hz oscillation. (C) Same as B, but for the ~ 5 Hz 

oscillations (frequency range 3.1 to 7.6 Hz; time range -545 to -268 ms). The 

topography shows a contralateral frontal effect for the 5 Hz oscillation. 

To quantify the influence of pre-stimulus oscillations on post-stimulus 

choice, we binned single trials according to the phase at the optimal 

time-frequency point (for the theta oscillation: -397 ms, 5.4Hz; for the 

beta oscillation: -68 ms, 16.5 Hz). Single trials were thus sorted in 13 phase 

bins based on the average phase of the significant electrodes for each 

oscillation (four frontal electrodes for the theta oscillation, three occipital 

electrodes for the beta oscillation). For each phase bin we then 

computed the post-stimulus choice probability of the 3D-shape disk. 

These choice probabilities were normalized by dividing them by the 

overall 3D-shape choice probability across all phase bins. For each 

experimental dataset (left- vs. right-side choice), phase bins were 

rotated such that the phase at which 3D-shape disk choice probability 

was largest was aligned to a phase angle of zero. As a result of this 

alignment, the 3D-shape choice probability is necessarily maximal at a 

phase angle of zero; therefore, the zero-phase bin was discarded from 

further analyses. For both frequencies, the 3D-shape disk choice 

probability monotonically decreased to a minimum at the opposite 

phase angle, confirming that pre-stimulus phase affected post-stimulus 

judgment (Figure 4-3). A one-way ANOVA showed that both pre-stimulus 
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theta phase and pre-stimulus beta phase significantly modulated the 

3D-shape disk choice probability (for theta oscillation, F(11, 27) = 3.95, p = 

2.23 × 10-5; for beta oscillation F(11, 27)=6.17, p=3.86 × 10-9). The magnitude 

of each effect was determined as the difference between the 

maximum and minimum 3D-shape disk choice probabilities across all 

phase bins. The frontal theta oscillation accounted for a difference of 

~14% of the 3D-shape disk choice probability between phase bins, and 

the occipital beta oscillation accounted for a difference of ~19%. 

 

Figure 4-3 Normalized choice probability of 3D-shape disks as a function of pre-

stimulus phase. (A) Relationship between frontal pre-stimulus theta phase and 

choice of 3D-shape disk as the brighter disk. Single trials were binned into 13 

bins, centered on the maximal phase bin for each subject (central bin was then 

discarded). The curve indicates that the oscillatory phase of frontal electrodes 

(4 significant electrodes shown in inset topography) at 5.4 Hz and -397 ms 

modulates the luminance judgment by ~14%. Error bars represent SEM across 

subjects. (B) Same as A, but for the occipital beta pre-stimulus phase. The 

oscillatory phase of occipital electrodes (3 significant electrodes shown in inset 
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topography) at 16.5 Hz and -68 ms modulates the luminance judgment by 

~19%. 

Because the time-frequency analysis relies on signal convolution with 

wavelet filters whose duration is non-negligible, one might wonder 

whether the observed pre-stimulus phase differences could actually be 

driven by stimulus-evoked activity. For example, at 16 Hz the above time-

frequency analysis used a 250 ms time window (4 cycles, 125 ms from 

the past and 125 ms into the future); thus, significant phase effects 

observed at -67ms pre-stimulus may be contaminated by post-stimulus 

activity. To rule out such contamination, we repeated the POP time-

frequency analysis with one-cycle wavelets at all frequencies, and 

compared the timing of pre-stimulus phase effects with the time-

frequency region of possible post-stimulus contamination, determined 

using the wavelet window length at each frequency (Figure 4-4). Both 

theta- and beta-frequency phase effects were replicated in this analysis, 

and were found to lie outside of the possible post-stimulus contamination 

zone. 
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Figure 4-4 Significance of POP values in a one-cycle wavelet analysis. (A) P-

value map of the POP values combined across previously identified frontal 

electrodes (green points in inset topography) for the theta-frequency phase 

effect. The P-values were calculated by comparing the observed POP values 

with 80,000,000 surrogates. The semi-transparent red area on the time-

frequency map indicates the zone of possible contamination by post-stimulus 

activity (based on the wavelet window length at each frequency, centered 

on the time of stimulus onset, 0 ms). The previously observed theta-frequency 

phase effect lies outside of the contamination zone. (B) Same as A, but for the 

beta-frequency phase effect. The beta-frequency phase effect also lies 

outside the contamination zone. Altogether, these findings indicate that pre-

stimulus phase differences are not caused by post-stimulus evoked activity. 

We also ascertained that phase effects were not caused by any eye 

movement artifacts that may have survived our artifact rejection 

procedure. For example, the observed pre-stimulus phase differences 

could be thought to reflect different patterns of eye blink or saccades 

for different perceptual outcomes. Therefore, we applied our POP time-

frequency analysis to the horizontal and vertical EOG signals. P-value 

maps (obtained by comparison of POP values against 80,000,000 

surrogates) did not reveal any signs of systematic eye movements in 
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either the theta- or the beta-frequency bands (Figure 4-5), ruling out an 

explanation of our pre-stimulus phase effects in terms of ocular artifacts. 

 

Figure 4-5 Significance of the POP values of VEOG and HEOG signals. (A) P-

value map of the POP values for the VEOG. The P-values were calculated using 

a similar procedure as in the main analysis: comparing the observed POP 

values with 80,000,000 surrogate POP values. (B) Same as A, but for the HEOG. 

There was no significant pre-stimulus time-frequency window with significant 

POP values in either VEOG or HEOG, indicating that the observed phase effects 

were not due to ocular artifacts. 

Discussion 

We investigated the temporal dynamics of predictive coding by 

exploring the relation between pre-stimulus oscillatory phase and the 

presumed trial-by-trial variations in predictive feedback. We used 3D-

shape outlines and random-lines versions of the same stimuli (as in one 

of the seminal predictive coding studies (Murray et al., 2002)) to induce 

different amounts of predictive feedback (Figure 4-1), and measured 

the corresponding effects on luminance judgment as trial-by-trial 

markers of the efficiency of predictive coding. We found that two pre-
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stimulus ongoing oscillations from different regions and frequencies 

could strongly influence the luminance judgment: a contralateral frontal 

theta oscillation and a contralateral occipital beta oscillation (Figure 4-

2). The phase of the theta oscillation before stimulus onset could explain 

14% of the luminance judgment difference while the phase of the beta 

oscillation could explain 19% (Figure 4-3). Control analyses ruled out 

contamination of the phase-behavior relationship by post-stimulus 

activity (Figure 4-4) or ocular artifacts (Figure 4-5). These results not only 

imply that predictive coding is a periodic process, but also reveal two 

periodicities with different sources. Since the occipital and frontal signals 

likely reflect activity from hierarchically lower and higher areas, 

respectively, and since predictive coding theory suggests that the brain 

sends back predictions from higher areas and sends predictive errors 

from lower areas, our results suggest one possible temporal dynamic for 

predictive coding: predictions sent periodically at a theta frequency, 

predictive errors sent periodically at a beta frequency. 

The experimental paradigm used in this study takes advantage of the 

relationship between shape perception and predictive coding: 3D-

shape outlines are assumed to generate more predictive feedback than 

the random-lines version of the same stimulus. Murray et al (2002) used 

similar stimuli to provide one of the first evidence of predictive coding: 

compared to the random-lines, 3D-shape outlines increased activity in 

the lateral occipital complex (LOC), but decreased it in primary visual 

cortex (V1), suggesting an increase of predictive feedback 

accompanied by a decrease in prediction errors (Murray et al., 2002; 

Clark, 2013). Here, we used the same paired stimuli as in the original study, 

placed them on two gray disks and asked subjects to judge the 

luminance of the disks. This luminance judgment, associated with 
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perceived contrast, is likely to have a positive and monotonic 

relationship with neural activity in early visual cortex (Dean, 1981; 

Albrecht and Hamilton, 1982; Goodyear and Menon, 1998; Boynton et 

al., 1999). Thus, the variability in luminance judgment associated with the 

3D-shape vs. random-lines stimuli could reflect trial-by-trial changes in 

the effect of predictive feedback on neural activity in early visual cortex.  

Previous fMRI studies showed that shape perception could not only 

reduce (Murray et al., 2002), but also up-regulate neural activity in V1 

(Kok and de Lange, 2014). Our own previous study found that 3D-shape 

disks were generally perceived brighter than random-lines disks, and 

that this effect could be attributed to predictive coding rather than 

attentional biases (Han and VanRullen, 2014). In the present study, we 

compensated for this net effect by adjusting the disks’ luminance to 

obtain a 50% selection probability of 3D-shape/random-lines disks, and 

we focused on the remaining variability in luminance judgement as a 

trial-by-trial marker of the efficiency of predictive coding. On the other 

hand, systematic spatial biases (e.g. a general tendency to respond to 

the left or right stimulus) and/or trial-by-trial fluctuations in the direction 

of spatial attention can also be expected to affect the luminance 

judgement (Carrasco et al., 2004). As a matter of fact, spatial attention 

itself appears to involve a periodic process (Busch et al., 2009; Busch and 

VanRullen, 2010; Landau and Fries, 2012; Fiebelkorn et al., 2013) which 

could potentially influence the luminance judgement. We carefully 

avoided these potential confounding factors by dividing the trials into 

two datasets based on the post-stimulus spatial response (left/right) and 

performing the analysis within each dataset. If spatial attention biases, 

for example, were the only cause of the perceived luminance changes, 

the left-response dataset would pool all trials with a left-side attention 
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bias (and similarly for the right-response dataset), and within each 

dataset pre-stimulus oscillatory phases would not bear any relation to 

post-stimulus luminance judgments. The existence of significant phase-

behavior relationships in our analysis can therefore be safely attributed 

to predictive coding mechanisms rather than spatial attention or other 

biases. 

Neurophysiological recordings have shown that feedforward and 

feedback may take advantage of oscillations in different frequencies. 

Laminar recordings showed that high-frequency oscillations are 

prominently generated in superficial layers and low-frequency 

oscillations in deep layers (Roopun et al., 2006; Maier et al., 2010; Buffalo 

et al., 2011). Since superficial and deep layers correspond respectively 

to the main sources of feedback and forward projections (Barbas and 

Rempel-Clower, 1997; Douglas and Martin, 2004; Wang, 2010), it follows 

that feedforward communication takes advantage of high-frequency 

oscillations and feedback takes advantage of low-frequency 

oscillations. A recent study with simultaneous recordings and micro-

stimulation in different layers in V1 and V4 confirmed this notion (van 

Kerkoerle et al., 2014). Several authors have independently proposed 

that low-frequency oscillations send predictions via feedback, while 

high-frequency oscillations send predictive errors via feedforward 

(Todorovic et al., 2011; Arnal and Giraud, 2012; Bastos et al., 2012; 

Yordanova et al., 2012; Bauer et al., 2014; Fontolan et al., 2014). Our 

results provide clear support for this hypothesis at the EEG and 

behavioral level. 

Our results also provide supportive evidence for the hypothesized 

functions of frontal theta-band and occipital beta-band oscillations. Our 
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conclusions are in line with the notion that 5-10 Hz oscillations could 

contribute to “top-down” control (Jensen et al., 2012; VanRullen, 2013), 

which has already been suggested based on attentional phase effects 

on perception (Busch et al., 2009; Busch and VanRullen, 2010), reaction 

time (Drewes and VanRullen, 2011; Song et al., 2014; Huang et al., 2015) 

and perceptual variability in TMS-induced effects (Dugué et al., 2011, 

2015). We found the origin of such theta periodicity in contralateral 

frontal electrodes, compatible with the involvement of frontal areas in 

the top-down controlling process (Summerfield et al., 2006; Summerfield 

and Egner, 2009; Summerfield and de Lange, 2014) and with the 

involvement of 5-10 Hz oscillations in this region (Phillips et al., 2014). On 

the other hand, local field potential (LFP) recordings showed that, in 

mammalian visual cortex, beta frequency oscillations are also prominent 

during the deployment of top-down control (Lopes da Silva et al., 1970; 

Bekisz and Wróbel, 2003; Buschman and Miller, 2007; Bosman et al., 2012; 

Grothe et al., 2012). Our findings of beta frequency phase effects on 

predictive feedback in the occipital area are concordant with such LFP 

results and suggest a valuable role for the beta frequency oscillations in 

predictive coding. 

In summary, we measured the relation between pre-stimulus oscillations 

and a predictive feedback-induced effect to investigate the neural 

oscillations involved in predictive coding. We found that the pre-stimulus 

phases of frontal theta-frequency oscillations and occipital beta-

frequency oscillations jointly determine post-stimulus subjective 

judgments. These results shed light on the temporal dynamics of 

predictive coding, and suggest a periodic predictive coding process 

with faster oscillations in lower areas and slower oscillations in higher 

areas. 
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Materials and Methods 

Subjects  

Fifteen volunteers participated in the experiment. One participant was 

excluded from the analysis due to the poor behavioral performance in 

catch trials (<60% trials were correctly reported, with a chance level of 

50%, see below). Fourteen participants remained in the sample (8 

female, mean age 28.01 ± 4.81 years, four left-handed, four with left eye 

dominance). All subjects had normal or corrected to normal vision. 

Apparatus 

Stimuli were presented at 57 cm distance using a desktop computer 

(2.09 GHz Intel processor, Windows XP) with a cathode ray monitor 

(resolution: 800×600 pixels; refresh rate: 140 Hz, Gamma corrected 

luminance function). Stimuli were designed and presented via the 

Psychophysics Toolbox (Brainard, 1997) running in MATLAB (MathWorks). 

Stimuli and tasks 

Stimuli consisted of a central white fixation point (diameter: 0.2 degrees 

of visual angle) and two circular gray disks (diameter: 4 degrees each) 

presented randomly to the left and right of fixation (3 degrees 

eccentricity). One 3D-shape stimulus was in the center of one disk (3D-

shape disk) and one random-lines version of the same stimulus in the 

other (random-lines disk). The 3D-shape and random-lines stimulus pair 
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was randomly chosen from twenty pairs of stimuli generated 

beforehand using a method similar to Murray et al. (2002): 3D-shapes 

were generated by randomly selecting 4–6 vertices, connecting the 

vertices and adding small extensions to render perceived depth; 

random-lines stimuli were created by breaking the 3D-shape at its 

intersections and randomly shifting the lines within the display (Murray et 

al., 2002). The diameter of both 3D-shape and random-lines stimuli was 

3 degrees. The stimulus outlines were black.  

Before stimulus onset, there was a blank screen with only the fixation 

point that lasted from 1000 to 1500ms (random uniform distribution). Then 

the two disks and the fixation point appeared for 150ms. After that, a 

question mark appeared in the center of the screen. There were two 

kinds of randomly mixed experimental trials: the main experimental trials 

and the catch trials. In main experimental trials, the luminance of the 

disks was adjusted (i.e. the random-line disks were set 1.45% brighter than 

the 3D-shape disks) based on a previous study (Han and VanRullen, 2014) 

to obtain an average 50% selection rate of 3D-shape/random-lines disks. 

In catch trials, one of the disks had its luminance value changed up or 

down by 20% compared to the luminance used in the main 

experimental trials, while the other disk kept the same luminance as in 

the main experimental trials. Subjects were presented with 4 or 8 blocks 

of 200 trials with 85% main experimental trials and 15% catch trials (the 

first 6 of the 14 subjects performed only 4 blocks of the present 

experiment, together with 4 blocks of another experiment that was 

eventually canceled and whose data were not analyzed). Subjects 

were instructed to fixate the fixation point all the time, judge the 

luminance of the disks and respond using the arrow keys (left arrow to 

indicate that left disk is brighter, right arrow for right disk brighter) on a 
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standard 105 key keyboard when the question mark appeared. There 

was no feedback after the response. 

EEG data acquisition and analysis 

EEG was recorded at 1024 Hz using a Biosemi system (64 active 

electrodes). Horizontal and vertical electro-oculograms (EOG) were 

recorded by three additional electrodes around the subjects’ eyes. For 

data pre-processing, the EEG and EOG data were downsampled offline 

to 256 Hz, re-referenced to average reference and epoched around the 

stimulus onset in each trial for data analysis via the MATLAB (MathWorks) 

and EEGLAB toolbox (Delorme and Makeig, 2004). Individual electrode 

data were visually inspected, and channel data containing artifacts 

were interpolated by the mean of adjacent electrodes (three subjects 

had one electrode containing artifacts, one subject had two; the 

positions of the interpolated electrodes were different across subjects).  

As the post-stimulus spatial choice was lateralized on each trial to the 

left or right side, the pre-stimulus oscillatory correlates of the post-stimulus 

luminance judgment may not only reflect the oscillation’s influence on 

shape perception and predictive coding, but also its influence on spatial 

choice (i.e., pre-stimulus oscillations may bias the left/right spatial choice 

independently of the 3D-shape/random-lines content inside of the disk). 

To avoid any contribution from the spatial choice, we first divided the 

trials for each subject into two trial datasets based on the post-stimulus 

spatial choice, and performed the time-frequency analysis (described 

below) within each dataset. We reasoned that this analysis would lead 

to shape perception correlates not on a given fixed set of electrodes, 

but rather on different electrode groups depending on the side of 
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choice (i.e., electrodes “contralateral” or “ipsilateral” to the spatial 

choice). Therefore, we arbitrarily chose to permute the electrode 

locations for the dataset corresponding to a right-side choice: we 

replaced the left-hemisphere electrodes by the symmetric ones from the 

right and vice versa (midline electrodes were unaffected). With this new 

electrode assignment, left-hemisphere electrodes would thus always 

correspond to those ipsilateral to the spatial choice, and right-

hemisphere electrodes to contralateral ones. 

For the time-frequency analysis, time-frequency transformations were 

first generated over all channels using EEGLAB with a function akin to a 

wavelet transform, starting with 3 cycles at 2Hz and increasing to 5 cycles 

at 50 Hz in the multiple-cycle analysis, and with 1 cycle from 2Hz to 50 Hz 

in the one-cycle analysis. This yields a complex representation of the 

amplitude, A, and the phase, φ, for trial j at time t and frequency f: 

tf ( , ) = ( , ) ( , ) 
The phase of this representation can be extracted by normalizing the 

complex vector to the unit length: 

Φ ( , ) = tf ( , )tf ( , )  

Phase locking value (PLV or inter-trial coherence, ITC) measures the 

phase consistency across trials. We calculated the PLV using the method 

described previously (Lachaux et al., 1999): 



 

200 

 

( , ) = 1 Φ ( , )  

where N is the number of trials in one group of trials. 

Here, we wanted to evaluate the relation between the pre-stimulus 

oscillatory phase and the influence of shape perception on luminance 

judgment (our measure of the efficiency of predictive coding). Would a 

particular pre-stimulus phase occur more frequently for trials with post-

stimulus 3D-shape disk choice, and the opposite phase for trials with 

post-stimulus random-lines disk choice? In the pre-stimulus period, 

because intertrial intervals are randomized and unpredictable, the 

phase of the spontaneous EEG signal at a given pre-stimulus time should 

follow a uniform distribution over all trials. However, if there is a systematic 

relation between EEG phase and behavioral outcome, higher-than-

chance phase-locking should be observed in each of the trial subgroups. 

In that case, the product or the sum of the two subgroup phase-locking 

values could summarize, in a single variable, the strength of the phase-

behavior relation (Busch et al., 2009; VanRullen et al., 2011). Here we thus 

introduce a new measure of the phase-behavior relation: Phase 

Opposition Product (POP). This measure is calculated using the product 

of the phase locking values of different trial subgroups: 

= ⋅  

To accurately assess the significance of the phase-behavior relation 

without any assumption about the probability distribution of the POP 

values, we performed a nonparametric permutation test: We first 

computed the POP values for each point in the time-frequency plane 
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from -650 to 150ms, from 2 to 50 Hz for each electrode, dataset, and 

subject and then averaged across all datasets and all subjects. 

Surrogate POP values were obtained by randomly assigning the trials to 

one or the other condition for each subject (keeping the number of trials 

in each condition constant) and recalculating the grand-average POP 

values. We computed the P value by simply counting the number of 

surrogate POP values that were more extreme than the observed value. 

Here, we used 80,000,000 surrogates and thus assigned the P value of 

1.25 × 10-8 to the points without any more extreme POP values in the 

surrogates. The P values were corrected for multiple comparisons over 

time points, frequencies and electrodes using the FDR method (FDR 

α=0.05, corresponding to a P value threshold of 9.53×10-6). To show the 

overall POP in the time-frequency domain, we computed a z-score by 

combining the observed POPs across all datasets, subjects, and 

electrodes and comparing the value with the mean and SD of a null-

hypothesis distribution with 10,000 surrogate POP values (generated 

using the procedure described before, and also combined across all 

electrodes, subjects, and datasets). 
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Conclusion 

In this chapter, we investigated the relationship between the predictive 

coding and neural oscillations. By using a similar paradigm as in the 

previous chapter, we analyzed the relationship between pre-stimulus 

phase in the recorded EEG signals and post-stimulus behavior (choosing 

the 3D-shape disk or random-lines disk as the brighter disk, or predictive 

feedback’s efficiency on perception). The results showed that a theta 

oscillation (~5 Hz) in the contralateral frontal electrodes and a beta 

oscillation (~16 Hz) in the contralateral occipital electrodes are 

correlated with the efficiency of predictive coding on each trial. Control 

analysis exclude stimulus-evoked activity contamination and eye 

movement artifacts as the alterative explanations of the observations. 

Our results support the notion that predictive coding is a periodic 

process with faster oscillations in lower areas feeding forward prediction 

errors, and slower oscillations in higher areas feeding back predictions 

which has been proposed by other researchers. However, this study 

provided much better evidence than the previous studies: 

(1) We showed a very clear evidence of two oscillations with different 

frequencies which their pre-stimulus phase can modulate the post-

stimulus luminance judgement. The two oscillations are the only 

significant oscillations in the pre-stimulus time window.  

(2) The topographical plot showed very clear sources of the different 

oscillations: contralateral frontal electrodes for the ~5 Hz oscillation 

and contralateral occipital electrodes for the ~16 Hz oscillation. The 

positons of the electrodes (frontal and occipital) are clear indications 
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of the hierarchically higher or lower area activity (frontal for higher, 

occipital for lower). 

(3) The 80,000,000 simulations guaranteed the statistical accuracy of our 

analysis. Since the measures of EEG usually do not show normal 

distributions in statistic, our non-parametric method ensured that the 

observed results are genuine.  

Together, we provided clear and convincing evidence for the 

relationship between the predictive coding and oscillations. We 

supported the view that oscillations with different frequencies may have 

a different role in predictive coding. 
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Discussion 
Summing-up 

Motivation 

In this thesis, we investigated predictive coding and its relationship with 

perception and oscillations. Predictive coding is a promising theory of 

the brain and many researchers have an interest in it. However, there 

are a thousand Hamlets in a thousand people's eyes. The ways that the 

researcher treat predictive coding theory is determined by his/her 

background and experience in the field of research. 

For example, many cognitive neuroscientists treat predictive coding as 

a phenomenon. In their points of view, predictive coding is an instrument 

that can explain the inhibitory effect in the observation. Thus, there are 

numerous studies trying to find out an inhibitory feedback effect and 

connect the known inhibitory effects (such as repetition suppression, 

mismatch negativity) with predictive coding. There is no system 

difference between the predictive coding and the magical attention 

effect: it is only a way to explain the observed data. Thus, predictive 

coding can appear in the same data with attention in a parallel way: 

explaining the excitatory effect using attention and explaining the 

inhibitory effect using predictive coding. 

On the other hand, many theoretical neuroscientists treat predictive 

coding as one of the Bayesian approaches to brain function and there 

is no difference between predictive coding and Kalman filter: they are 
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all factors in Bayesian equations. In this situation, the researchers 

consider predictive coding in a very abstract way, so that all the 

neurophysiological limitations are not applying to predictive coding. 

Sometimes, different types of neurons, different layers of neocortex or 

different types of neural connections set to match the different 

components of predictive coding while the proposed model is simply 

impossible under well recognized principles of the brain. 

For sure, these ways of research indeed helped us to believe that 

predictive coding really exists in the brain and it has a functional 

significance in the computation. However, in my mind, both of the 

methods of treating predictive coding are not optimal and we can learn 

very limited information about the brain from these experiments.  

In this thesis, we applied a different perspective: keeping the core of the 

predictive coding principle unchanged and trying to fit the model as 

close as possible to the neurophysiological evidence since the 

neuroanatomy is very strong and stable and there are few alternative 

ways to explain neurophysiological evidence. I believe that if predictive 

coding is the universal principle for the interaction between 

hierarchically higher and lower areas, we can find out a special design 

in our brain and this design is already lying under the well observed 

evidence of the brain. This design may not have the exact appearance 

as described in the original predictive coding model, but it must share a 

common working principle as the predictive coding. If we can find out 

this unique design, we can develop a “better model” for predictive 

coding and we can understand more about the brain in the process. 

Then, we can apply the “better model” to behavioral experiments and 

more neurophysiological experiments. If we can keep on doing this, we 
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cannot only verify the model itself, but also integrate the existing 

knowledge about the brain and finally build an ultimate model of the 

brain. 

The content 

The first step to accomplish this goal is to identify the neurophysiological 

evidence that we believe to be fundamental and universal. Even 

though neuroscience is still a young field of research, we do know some 

facts of the brain for sure. For instance, we know that the basic elements 

of our working brain are the neurons and they have the physical axons 

and use the action potential to carry the information from one neuron 

to another. If we believe these as the facts of the brain, we can eliminate 

lots of alternative explanations of observed data. 

Thus, in the first part of my thesis, I reviewed neuroscience facts as the 

limitations that we are required to obey in the model and see them as 

the foundation of the principle of the brain. In this part, I reviewed my 

current understanding about neuron and neocortex.  

First, I reviewed our knowledge of the neuron from a historical point of 

view. From Ramón y Cajal, the first scientist that reported neurons as 

individual (1888), to the different neurons discovered by the pioneers of 

the field of neuroscience, we could understand the origins of basic ideas 

in neuroscience. Then I reviewed the known features of the neurons: 

three categories of the properties were investigated: physical properties, 

neurotransmitters and electrophysiology.  
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For the physical properties, I first reviewed the knowledge about the 

neuronal shape related information such as the difference between the 

Pyramidal neurons and stellate neurons, the size of the neuron, the size 

of the different parts of the neuron and the numbers of different types of 

neurons. With clear photos of the neurons in the neocortex, we could 

know directly about the neurons. The shapes of neurons alone could tell 

us a lot about the limitations of the neuronal models. For example, the 

axonal field of the stellate neurons only have a length of 100-150 

micrometers, which suggested that it is impossible for stellate neurons to 

send information to other areas in the brain, and the pyramidal neuron 

are the only known neuron type that can send information to another 

area in the brain. The absence of layer 4 stellate neurons in non-sensory 

regions also suggested a weaker role for the stellate neurons. Then, I 

reviewed the information about the dendritic spine, which could be only 

found in the excitatory neurons. From this information and the well 

accepted idea that dendritic spines are the key elements for the spike-

timing dependent plasticity and the building of long-term potential and 

long-term depression, it seems to be obvious that it would be hard to 

learn the synaptic weights to the inhibitory neurons.  

Then, I reviewed the two types of neurotransmitters in the brain and the 

two types of neurons in the brain: glutamate-releasing neurons 

(excitatory) and GABA-releasing neurons (inhibitory). Dale’s law also 

forbids the neurons to be both glutamate-releasing and GABA-releasing. 

Thus, the excitatory and inhibitory neurons are the basic types of neurons 

that we are interested in. Further information about the excitatory and 

inhibitory synapses tells us that most of the selectivity are built-in only the 

pyramidal neurons (since most excitatory synapses land on the dendrites 

shafts of spiny stellate neurons).  
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At last, I reviewed electrophysiological properties of the neurons. In this 

part, since there are plenty of different kinds of electrophysiological 

properties, I used a modern data collection method to gain an accurate 

understanding of these properties: I took the data from 64 studies and 

used the statistical values as my understanding. For all the 

electrophysiological properties, we found out that some of the values 

are always similar across different types of neurons such as the resting 

membrane potential, the spike threshold and spike amplitude. Some 

other values are different across different types of neurons such as the 

input resistance, membrane time constant, spike width (excitatory 

neurons usually have a bigger spike width, the Martinotti cell is an 

exception), firing rate (inhibitory neurons usually fires faster except the 

Martinotti cell), Ahp Amplitude and adaptation ratio (inhibitory neurons 

usually are easier for adaptation except Martinotti cell). 

Secondly, I reviewed my understanding of the neocortex. Neocortex is 

the center of visual perception, auditory perception, motor controlling, 

reasoning, language and conscious thought. It is one of the most 

important parts of the brain since most of the functions of the brain 

depend on it. I reviewed my understanding about the structure, the 

connectivity and the temporal dynamic of neocortex. Then I combined 

these understandings and other neural circuits information and 

proposed a canonical neural circuits. 

To understand the structure of neocortex, I make good use of our 

knowledge about the two kinds of levels to investigate that: the macro-

structure (different areas) and the micro-structure (different layers). 

Since our current understanding about the structure of neocortex is 

based on the studies made more than 100 years ago (e.g. Works by 
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Brodmann), we used a historical point of view of the evolution of our 

understanding of the structure. For the macro-structure, we learned the 

first idea of the hierarchical brain from Hughlings Jackson and his 

thought that the relationship between different hierarchical regions is 

that higher areas inhibit lower areas. We showed the development of 

different kinds of the brain maps based cytoarchitectonic criteria. We 

also pointed out the existence of strong opposition opinions on the 

functional meanings based solely on cytoarchitectonic criteria or the 

detailed classification of brain maps. For the micro-structure, we showed 

the development of the classification of the different layers of the cortex. 

We pointed out that there are many ways to divide cortex into different 

layers. And since the neocortex is a biological tissue, there are no hard 

lines between different layers, but rather only different degrees of 

concentration. Furthermore, the computation based on the strict 

classification of different layers of the cortex is not very realistic since the 

neurons in one layer could also receive input in another layer. 

For the connectivity of neocortex, we reviewed evidence for the 

hierarchical brain, the roles of feedforward and feedback connections 

and the convergence and divergence of the connections. For the 

hierarchical brain, we showed one of the foundations of modern 

neuroscience: the feedforward and feedback connections. On the roles 

of feedforward and feedback connections, we showed that the only 

type of neurons that can travel across different areas is the pyramidal 

neurons which suggested that for both feedforward and feedback 

connections, the projection neurons are always excitatory. For the target 

neurons, the electron microscope evidence showed that both 

feedforward and feedback connections mostly targeted on the 

excitatory neurons. The feedforward sends more input to the inhibitory 
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neurons (10% connections) than the feedback connections (less than 2% 

connections). These evidence suggested an excitatory loop in the 

feedforward and feedback connections. However, we also showed that 

even in the neurophysiological data, the inhibitory feedback effect has 

been found. For the convergence and divergence of the connections, 

we showed evidence of neuron tracing and axonal bifurcations 

suggesting that feedback is divergent. 

For the temporal dynamic of neocortex, we reviewed the evidence on 

the time delay between areas and oscillations. We divided the time 

delay into two types: axonal conduction delay and response delay. We 

showed evidence that axonal conduction delay is very short (1-2ms) 

between different cortical areas with a very small jitter (less than 0.1ms). 

These properties allow an accurate and robust computation based on 

spike timing relationship between two areas. We also showed that the 

response delays between different areas are much longer (10-20ms for 

every stage of information processing). I proposed that the difference 

between the axonal conduction delay and response delay is the key 

computation window for the brain. For the oscillations, we showed the 

existence, the possible origins and the functional significance of 

oscillations (both power and phase). 

At the end of the introduction of the previous neuroscience evidence, I 

combined the known information about the brain and tried to propose 

a canonical neural circuits.  

From all of the evidence we reviewed, we could conclude the rules of 

the brain that we need to obey: 
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(1) Neurons and action potentials are the basics of every brain function. 

It is possible that the brain uses a complex method to implement 

these functions, however, the basics about the neurons could not be 

broken.  

(2) The shapes of the neurons decided that only pyramidal neurons can 

carry information across areas and stellate neurons can only deal 

with local activities. 

(3) The excitatory and inhibitory neurons are the basic functional 

elements of the brain. 

(4) Feedforward and feedback connections are the basic connection 

types in the brain. 

(5) Feedforward and feedback connections are mainly excitatory. 

(6) Feedback connections are divergent. 

We could also conclude some points that may be correct: 

(1) The absence of layer 4 stellate neurons in non-sensory regions may 

suggest a weaker role for the stellate neurons for computation. 

(2) It may be hard to learn the synaptic weights to the inhibitory neurons 

because of the absence of dendritic spines. 

(3) We should rely less on the current classifications of the brain areas 

and cortical layers for their functional meanings. The laminar 

computation may be not particularly realistic. 

(4) The excitatory recurrent feedforward and feedback network may be 

the typical structure in the brain. 

(5) The difference between the axonal conduction delay and response 

delay may be the key computation window for the brain. 
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After the introduction of my understandings of the brain, I concluded my 

opinion about why I think predictive coding is a great model for the brain. 

I reviewed the development of the information theory’s approach to 

understand the brain and suggested that predictive coding is a modern 

implementation of efficient coding theory and can be linked to the 

specific neural mechanism. I also reviewed the current literature about 

predictive coding, including the effects of predictive coding, its 

relationship with attention and oscillations. Taking into account these 

understandings of the brain, I proposed my motivation for my studies in 

my PhD. 

In my PhD, I did three investigations: one theoretical investigation with 

the question “What is a better neuronal model for predictive coding 

under our current knowledge about the brain? ” And two empirical 

investigations with the questions “What is the perceptual effect of 

predictive coding? ” And “What is the relationship between oscillations 

and predictive coding? ”. 

In Chapter I, we showed the theoretical investigation of predictive 

coding, which is also the core of this thesis. Since we know that the 

classical predictive coding model does not constitute a neuronal model, 

we proposed a predictive coding model based on correlated spike 

times. The motivation for this study is from the interesting contradictions 

about feedback inhibition: feedback can have a selective and 

inhibitory effect, but feedback connections are divergent and 

excitatory. In this study, we demonstrated that it is possible to generate 

a selective inhibition effect by taking full advantage of the higher and 

lower area neurons’ spike-time causality and phase/spike-time response 

curve, a fundamental neuronal response property.  
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In the simulations, we first showed that lower area neurons are less 

responsive to feedback excitation (relative inhibition) when their spike 

times are correlated with the active neurons in the higher area. The 

mechanism underlying it is based on different spike-time advances for 

different feedback time relative to lower neuron’s last spike time. 

Predictable neurons (lower area neurons that are driving higher area 

neuron) receive feedback just after their last spike, thus, the feedback 

has very limited effect on their activity. On the other hand, the feedback 

time to unpredictable neurons (lower area neurons that are not driving 

higher area neuron) receives an average spike time advance. We then 

showed the four factors that can affect the feedback and therefore 

affect the proposed spike timing based selectivity: the feedback 

strength, the axonal conduction delay, the noise in the system and the 

predictability of the predictable neurons. We showed that feedback 

strengths modulate the selectivity in both ways, a monotonic relationship 

between the selectivity and axonal conduction delay (smaller the delay, 

bigger the effect), and between the selectivity and the predictability 

(more predictable lower area neurons create stronger selectivity). We 

also showed the strong resistance of such model to the noise in the 

system. Then, we showed that normalization in the lower area can turn 

the relative inhibition into absolute inhibition. The proposed 

computational principle provides a viable neuronal mechanism for 

efficient coding with a much more flexible spike-time based selectivity 

than traditional connection-weight based selectivity. 

We then further asked the question about the role of the spike timing 

dependent plasticity in such model. We demonstrated that the spike-

time relationship generated by the model can take advantage of the 

STDP to enhance the existing selective inhibitory effect.  
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In Chapter II, inspired by the excitatory feedback connections in the 

model, we employed a psychophysics approach for the perceptual 

effect of predictive coding since most studies using fMRI showed that 

predictive feedback is inhibitory.  

To produce predictive feedback, we employed similar stimuli as in 

Murray et al.: 3D-shape outlines and random-lines versions of the same 

stimuli(Murray et al., 2002). The former can be readily recognized, and 

should thus normally produce more predictive feedback than the latter. 

The two kinds of stimuli (3D shape and random lines) were displayed on 

gray disks simultaneously on the left and right of a fixation point on a 

black background. Subjects were asked to compare the luminance of 

the two disks (report the side of the brightest disk). We obtained 

behavioral responses from 14 subjects (including 2 subjects with eye-

tracker) and we found out a consistent behavioral response showing 

that the disk behind the 3D-shape stimulus was perceived brighter 

against the black background than the one behind the random-lines 

(meaningless) stimulus. Since previous evidence suggested a monotonic 

relationship between contrast perception and neural activity in early 

visual areas(Dean, 1981; Boynton et al., 1999), we interpret these results 

as evidence that predictive feedback had an excitatory effect on 

sensory activity as suggested in our model. 

We performed control experiments to exclude three possible alternative 

explanations of our results: attention bias, local factors and response bias. 

Operations for the control experiments included replacing the center 

fixation point with an attentional demanding task (letter RSVP), reversing 

the polarity of the stimuli outline, from black to white, modifying the 

response instructions (asking “which disk was darker?” Instead of “which 
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disk was brighter?”), and changing the subjects’ task (to a 

same/different perception task, by asking “Did the two disks have the 

same luminance?”). These control experiments showed that the 

alternative explanations of our results can be ruled out. 

In Chapter III, we showed a study about the relationship between 

predictive coding and oscillations. Since predictive coding theory 

suggested an iterative nature of the interactions between lower- and 

higher-level areas, it is intuitive to assume that predictive coding also 

takes advantage of neural oscillations and predictions/prediction error 

could modulate sensory processing periodically. Since the phase could 

reflect the state of the oscillation, we investigated the relationship 

between the pre-stimulus phase (since it is not reset by the stimuli) and 

predictive coding’s perceptual effect which we observed in the 

previous study. 

We used a similar paradigm as the previous study to induce different 

amounts of predictive feedback (3D-shape and random-lines), and 

measured the corresponding effects on luminance judgment as trial-by-

trial markers of the efficiency of predictive coding while the EEG activity 

was recorded. By analyzing the relationship between the post-stimulus 

decision and pre-stimulus EEG phase which is a reflection of the phase 

when prediction comes (after 3D-shape onset, the shape representation 

in higher area feeds back its prediction), we found that two pre-stimulus 

ongoing oscillations from different regions and frequencies could 

strongly influence the luminance judgment: a contralateral frontal 

(higher area) theta oscillation and a contralateral occipital (lower area) 

beta oscillation. The phase of the theta oscillation before stimulus onset 

could explain 14% of the luminance judgment difference while the 
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phase of the beta oscillation could explain 19%. Control analyses ruled 

out contamination of the phase-behavior relationship by post-stimulus 

activity or ocular artifacts. These results not only imply that predictive 

coding is a periodic process, but also reveal two periodicities with 

different sources: the brain sends back predictions in a theta frequency, 

and sends forward predictive errors at a beta frequency. 

 

Strengths and weaknesses 

In this thesis, I presented my current understanding about the limitations 

of the brain and three studies that are closely linked to predictive coding. 

I believe these studies have the following strengths and weaknesses: 

Strengths 

Neurophysiological facts driven research philosophy 

In our path to find out the working principles of the brain, there are two 

main research philosophies: 

The first one usually comes with the analogy such as “we can’t 

understand how the computer works by opening up the computer itself”. 

This analogy appears to be reasonable and is believed by many 

researchers in the traditional psychology research. It also implies that the 

neurophysiological evidence is not important for us to understand the 

brain and the only good way to understand it is to perform experiments 
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on waking subjects. Under this philosophy, the brain is treated as a black 

box and the researchers try to interpret its function by simply interacting 

with this black box. However, I believe that this is not an optimal way to 

understand the brain. It is possible to understand the working principle of 

a computer by looking into the detailed electrical designs, and this is 

extremely useful if we could combine the designs with information we 

obtained from the interaction of the computer. Without any knowledge 

from neuroscience, we will end up with a lot of very vague words about 

the brain, such as attention and consciousness, which no one really 

understands.  

The second philosophy usually has the name of “connectome”, in which 

the goal of such research is to obtain a comprehensive map of neural 

connections in the brain. Many researchers in neuroscience favor this 

philosophy and claim that the brain will be understood the day that we 

know every detail of the connections and the structure. Many detailed 

models of the connections (even in the resolution of the synapse level) 

were created. I believe that this is also not the optimal way to 

understand the brain. Even when we have the truthful and detailed data 

about the connections, since the data are huge and complicated, it is 

possible that we still cannot abstract the working principles from those 

data. 

My philosophy of research is to combine the neurophysiological facts 

and empirical evidence with the guidance of computational theory 

such as efficient coding. The neurophysiological facts are the basic of 

the research since they are robust and stable. With the discovery of 

many hard working neurophysiologists, now it is hard to find out new and 

universal facts that we have not discovered yet. When there is a 
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contradiction between the neurophysiological evidence and the theory, 

we should not change the evidence to fit the theory, but rather the other 

way around. The combination of the neurophysiological facts and 

empirical evidence can help us to create a much better model for the 

brain. 

Innovative theoretical model 

In the theoretical model, we combined the causally related spike-time 

and the phase response curve, one fundamental property of the neuron 

to generate the selectivity. This selectivity also fit the prediction of the 

predictive coding theory. 

The proposed model creatively solved the feedback selectivity problem. 

It is not difficult to imagine that STDP can help the feedforward pathway 

to generate the selectivity: if lower area neuron always drives the higher 

area neuron, their spike-timing relationship follows the requirement for 

an increasing weight. However, it is difficult to see the emergence of the 

feedback selectivity. In the proposed model, we used non-selective 

connections and generated the feedback selectivity using the causally 

related spike time. 

The proposed model also solved the problem of robustness in temporal 

coding. The neural spike times are too variable to support robust 

computation: the exact spike-timing is random and the index of 

dispersion is considerable. The lack of robustness is the main reason why 

the neuroscience community believes in rate coding rather in temporal 

coding. In the proposed model, we used the spike-time correlation 
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rather than the absolute spike-time, which is much robust. The simulation 

showed that it can resist huge amounts of noise. 

The proposed model can also fit well with the neurophysiological 

evidence. For example, the architecture of the model fit well with the 

evidence that feedback connections are excitatory and divergent. 

Furthermore, the phase/spike-time response curve is one of the 

fundamental properties of neurons. Thus, the computational 

mechanisms underlying the proposed spike-time based selectivity are 

well supported experimentally. 

Excitatory and divergent feedback also fits the classical observation of 

“attention”. The proposed model has a lot of similarity with the known 

features of “attention”. The non-selective feedback fits the spot-light 

assumption of attention and the excitatory feedback fit the biased 

competition theory. Different higher area in the proposed model may 

correspond to different types of attention: if the higher area represents 

the low level features such as color, shape, the proposed model may 

correspond to feature-based attention, if the higher area represents the 

object, the proposed model may correspond to the object-based 

attention. The inhibitory effect of the model may link to the inhibition of 

return effect in attention. Thus, the proposed model may be also a viable 

mechanism for the classical observation of “attention”. 

Convincing empirical evidence 

We obtained very convincing empirical evidence in the two 

experimental studies. For the study of the perceptual effect of predictive 

coding, we obtained consistent behavioral responses of 14 subjects and 
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we performed four control experiments to rule out the alternative 

explanations for our results. For the study of the relationship between the 

predictive coding and oscillation, we performed a non-parametric test 

of 80,000,000 simulations to obtain the significance of the observed 

effect. I consider these efforts made the observed empirical evidence 

convincing. 

Weaknesses 

Direct evidence is required 

Even though we proposed an innovative and promising model of 

predictive coding, we still require more evidence to prove the proposed 

mechanism. It is hard to obtain the spike times relationship from two 

neurons in different areas since it requires simultaneous recordings in 

separate regions. Luckily, with improved recording methods and newly 

developed techniques such as optogenetics, now, it is possible to do 

these types of experiments. I believe that we can put the proposed 

computational model to the test in the near future. 

Better experimental methods are required 

In the psychophysics experiment, we found an opposite effect as the 

traditional predictive coding evidence: we showed that predictive 

feedback can have an excitatory role rather than inhibitory. The 

methods used in both our study and the previous study are not optimal: 

the previous fMRI method had a poor temporal resolution and even 

though the psychophysics have a good temporal resolution, it is not the 

most direct way to observe excitatory or inhibitory signals in the brain. 
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We hope a better experimental method can enable us to solve the 

problem using a direct and accurate manner. This problem is also 

applicable to the EEG study. Due to the nature of the EEG system, we 

can hardly measure the neural oscillations with a frequency higher than 

the beta band. We may conclude that this is the probable cause for the 

absence of gamma band oscillations in our analysis. I think that we can 

obtain a much more comprehensive profile of the relationship between 

oscillations and predictive coding if we can use a better way to measure 

oscillatory activity in the brain. 

 

Perspective and future work 

Rate coding vs. Temporal coding 

Rate coding vs. Temporal coding is a long existing debate in the field of 

neuroscience. From 1920s, Edgar Adrian already observed that the firing 

rates of a frog muscle’s stretch receptor increases as a function of the 

load on the muscle. Many experiments showed that the rate coding 

scheme is preferred since the spike trains for the same input stimulus 

usually have a similar firing rates in different trials. The rate coding 

scheme also is shown to have a functional role in perception (such as 

the direct link between the firing rate and the strength of the stimulus).  

For temporal coding, the main arguments lie on three main points: (1) 

the response of the brain is too fast for rate coding. For example, 

experimental studies of neurons in various parts of the monkey brain 
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showed a selective response only 100-150 ms after stimulus onset, some 

neurons can have a selective response in only 80 – 90 ms. There is just not 

enough time for counting the number of spikes. (2) The very first spike for 

the stimuli jitter from trial to trial was less than 1 ms, thus, it is possible to 

use the first spike for a temporal coding. (3) Temporal coding obviously 

carries more information than rate coding. However, the fatal flaw of 

temporal coding is that the absolute spike time is random. Thus, it is 

basically impossible to use the spike time for any robust computation. 

In our model, we proposed to use the relative spike time rather than the 

absolute spike time. This proposal increased the robustness of the 

temporal coding significantly. We considered that the only purpose of a 

single spike is to advance or delay the next spike time of the target 

neuron. The leaky nature of the membrane decided that this 

advancement is sensitive to the input time. Thus, by changing the 

temporal coding, we can modify the spiking rate, which is usually used 

as the indicator of neural activity. The proposed model redefines the 

concept of temporal coding and allows a much more robust and 

effective computation. 

In the future, I think it worth to use the neurophysiological evidence to 

prove or disprove the proposed model. If the proposed model can be 

verified, this could be potentially a working principle of the brain. 

Excitatory non-selective feedback vs. Inhibitory selective 

feedback 

The debate between the excitatory non-selective feedback and 

inhibitory selective feedback relies on the researcher’s philosophy to 
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deal with the relationship between the theory and neurophysiological 

evidence. It’s true that there is evidence for a selective inhibitory 

feedback, not only in theory but also in fMRI experiments. However, the 

evidence at a fine resolution (such as studies in neuroanatomy and 

electron microscope evidence) should be the basic evidence we 

should follow. It is possible to have a non-selective excitatory physical 

connections and generate a selective inhibitory effect. However, it is 

impossible to change the neuroanatomical and electron microscope 

evidence simply because an opposite effect was found in the 

population-level. Should we change the evidence to fit the theory, or 

should we change the theory to fit the evidence? This seems to be a 

simple question, however, some scientists find it much easier to do the 

former one since it does not require explaining the contradictions 

between the existing model and evidence. I think one of the most 

interesting things in the research of neuroscience is to solve these 

contradictions, rather than avoid these contradictions. I think we can 

understand more about the brain using this method. 

Of course, there are evidence showing the inhibitory feedback 

connections (some scientists are trying hard to find out evidence for that) 

or excitatory feedback targeted on lower area inhibitory neurons, 

however, the relative percentage should tell us more about the 

functional importance (e.g. much less inhibitory neurons are targeted by 

feedback connections than feedforward connections). For the non-

selectivity, the non-selectivity is not only limited to the space domain 

(non-selective spatial effect), but also other domains (e.g. feature 

domain, object domain). In these conditions, the feedback from these 

areas should be able to produce non-selective feature or object effect. 
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In the future, I think that more evidence is required for us to understand 

the details and mechanism of the brain. I think it is interesting to use 

different methods to show that the neural activity in the population level 

follows the basics of neurophysiology using a specific neuronal 

mechanism. It is interesting to show both the evidence and propose 

better models that can fit both the neurophysiological evidence and the 

neural activity in the population level. 

Attention vs. Expectation 

Attention and expectation are two vague words from the field of 

psychology. Is it possible to distinguish the two words? Many researchers 

argued that expectation and attention belongs to two distinct brain 

operations. However, when they perform the experiments, they usually 

used very similar tasks to achieve the expectation and attention 

operations. Sometimes, the same operation was used in two papers 

while one paper calls it expectation and the other calls it attention. 

Furthermore, it is worth noticing that there are different kinds of attention 

also (e.g. feature-based attention, object-based attention, etc.). 

Firstly, I think it is useful to avoid to use the words such as “attention” and 

“expectation” since they describe a subjective feeling rather than an 

objective measure. I think it is better to call them “feedback” since we 

can know clearly that it means the signal sending from higher area to 

lower area. Secondly, I think it is possible and better to combine all the 

expectation and attention claims into a more explicit manner. For 

example, it would be considerably better to label every expectation 

operation and attention operation by their features, such as the type of 

the cues, the appearance time of the cues and so on. At last, we should 
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acknowledge that the feedback may come from different higher areas 

and have different features. We can describe the possible origins (such 

as a moving face cue may suggest the feedback may come from the 

MT and FFA) in the higher area and study the effects of these different 

types of feedback. 

In the future, we can investigate more on the relationship between 

predictive coding and attention. As suggested above, with the new 

name feedback, we could investigate the effect of different types of 

feedback (e.g. different modalities, different feature levels’ feedback).  
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Conclusion 

In this thesis, I presented my research on predictive coding in my PhD. I 

tried to address one of the key problems in predictive coding: predictive 

feedback. With the guidance of evidence from neurophysiology, I 

proposed the nature of feedback (excitatory) and the general 

modulation characters (non-selectivity). We proposed a creative model 

to implement predictive coding using the phase response curve and 

causally related spike times between the higher area neurons and 

predictable neurons in the lower area. We also showed that the classical 

STDP rule can enhance the selectivity created by the spike times. Two 

empirical evidence was also showed in the thesis to discuss the 

relationship among predictive coding, perception and oscillations. 

Robust system with complicated functions usually follows simple basic 

rules. Any system with complex rules are vulnerable to the unstable 

environment. Human brains are working in more than 7 billion bodies with 

very low defect rate. Thus, it is reasonable to assume simple rules for the 

human brain. These simple rules should not be determined by the 

subjective experience (e.g. attention, consciousness), but rather the 

objective observations (e.g. neuron, feedforward and feedback). The 

proposed model takes advantages of one fundamental property of 

neurons in the temporal domain (phase response curve) and the 

properties of feedback connections (non-selective excitatory). The 

causally related spike-times created the selective inhibitory effect in 

predictive coding, a modern theory of efficient coding. The proposed 

model has its significance in the process of understanding the brain. The 

final answers of the brain should not be and will not be too complicated 

for us to understand. 
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Appendix 
Table: references for the electrophysiological data 

 Title Year Author 

1 Prolonged synaptic integration in perirhinal cortical neurons. 2000 Brown TH 

2 Subtype-specific dendritic Ca(2+) dynamics of inhibitory interneurons in 
the rat visual cortex. 2010 Rhie DJ 

3 The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory 
interneurons in UP-DOWN states of mouse neocortex. 2010 Connors BW

4 Glutamatergic nonpyramidal neurons from neocortical layer VI and their 
comparison with pyramidal and spiny stellate neurons. 2009 Lambolez B

5 Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal 
neurons in mouse auditory cortex. 2008 Reyes AD 

6 Characterization of neuronal migration disorders in neocortical structures. 
II. Intracellular in vitro recordings. 1998 Zilles K 

7 Epileptogenesis following neocortical trauma from two sources of 
disinhibition. 1997 Benardo LS

8 Specialized cortical subnetworks differentially connect frontal cortex to 
parahippocampal areas. 2012 Kawaguchi 

Y 

9 Sensory experience alters cortical connectivity and synaptic function site 
specifically. 2007 Finnerty GT

10 Background synaptic activity is sparse in neocortex. 2006 Helmchen F

11 Mechanisms and consequences of action potential burst firing in rat 
neocortical pyramidal neurons. 1999 Stuart GJ 
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12 Properties of layer 6 pyramidal neuron apical dendrites. 2010 Larkum ME 

13 Early exposure to alcohol leads to permanent impairment of dendritic 
excitability in neocortical pyramidal neurons. 2012 Larkum ME 

14 GABAA receptor-mediated currents in interneurons and pyramidal cells of 
rat visual cortex. 1998 Prince DA 

15 Differential effects of Na+-K+ ATPase blockade on cortical layer V 
neurons. 2010 Prince DA 

16 Action potential initiation and propagation in layer 5 pyramidal neurons of 
the rat prefrontal cortex: absence of dopamine modulation. 2003 Stuart GJ 

17 GABAergic synaptic inhibition is reduced before seizure onset in a genetic 
model of cortical malformation. 2006 Lee KS 

18 Glutamatergic nonpyramidal neurons from neocortical layer VI and their 
comparison with pyramidal and spiny stellate neurons. 2009 Lambolez B

19 Morphological and physiological characterization of layer VI corticofugal 
neurons of mouse primary visual cortex. 2003 Yuste R 

20 Epileptogenesis following neocortical trauma from two sources of 
disinhibition. 1997 Benardo LS

21 Increased excitability and inward rectification in layer V cortical pyramidal 
neurons in the epileptic mutant mouse Stargazer. 1997 Noebels JL 

22 Specialized cortical subnetworks differentially connect frontal cortex to 
parahippocampal areas. 2012 Kawaguchi 

Y 

23 Enhanced function of prefrontal serotonin 5-HT(2) receptors in a rat model 
of psychiatric vulnerability. 2010 Vaidya VA 

24 
Dopamine and corticotropin-releasing factor synergistically alter 
basolateral amygdala-to-medial prefrontal cortex synaptic transmission: 
functional switch after chronic cocaine administration. 

2008 Gallagher 
JP 
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25 Postnatal development of synaptic transmission in local networks of L5A 
pyramidal neurons in rat somatosensory cortex. 2007 Sakmann B 

26 Flexible spike timing of layer 5 neurons during dynamic beta oscillation 
shifts in rat prefrontal cortex. 2009 Mansvelder 

HD 

27 Electrophysiological Abnormalities in Both Axotomized and 
Nonaxotomized Pyramidal Neurons following Mild Traumatic Brain Injury. 2012 Jacobs KM 

28 Predomice of late-spiking neurons in layer VI of rat perirhinal cortex. 2001 Brown TH 

29 Characterization of thalamocortical responses of regular-spiking and fast-
spiking neurons of the mouse auditory cortex in vitro and in silico. 2012 Reyes AD 

30 Response sensitivity of barrel neuron subpopulations to simulated 
thalamic input. 2010 Pinto DJ 

31 Glutamatergic nonpyramidal neurons from neocortical layer VI and their 
comparison with pyramidal and spiny stellate neurons. 2009 Lambolez B

32 Auditory thalamocortical transmission is reliable and temporally precise. 2005 Metherate R

33 mGluR5 in cortical excitatory neurons exerts both cell-autonomous and -
nonautonomous influences on cortical somatosensory circuit formation. 2010 Lu HC 

34 Mechanisms of dopamine activation of fast-spiking interneurons that exert 
inhibition in rat prefrontal cortex. 2002 Yang CR 

35 Predomice of late-spiking neurons in layer VI of rat perirhinal cortex. 2001 Brown TH 

36 Major differences in inhibitory synaptic transmission onto two neocortical 
interneuron subclasses. 2003 Prince DA 

37 Subtype-specific dendritic Ca(2+) dynamics of inhibitory interneurons in 
the rat visual cortex. 2010 Rhie DJ 

38 GABAA receptor-mediated currents in interneurons and pyramidal cells of 
rat visual cortex. 1998 Prince DA 



 

255 

 

39 Differential effects of Na+-K+ ATPase blockade on cortical layer V 
neurons. 2010 Prince DA 

40 Characterization of thalamocortical responses of regular-spiking and fast-
spiking neurons of the mouse auditory cortex in vitro and in silico. 2012 Reyes AD 

41 The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory 
interneurons in UP-DOWN states of mouse neocortex. 2010 Connors BW

42 Response sensitivity of barrel neuron subpopulations to simulated 
thalamic input. 2010 Pinto DJ 

43 Parvalbumin-positive basket interneurons in monkey and rat prefrontal 
cortex. 2008 Krimer LS 

44 Auditory thalamocortical transmission is reliable and temporally precise. 2005 Metherate R

45 Functional properties of fast spiking interneurons and their synaptic 
connections with pyramidal cells in primate dorsolateral prefrontal cortex. 2005 Lewis DA 

46 
Neuregulin-1 signals from the periphery regulate AMPA receptor 
sensitivity and expression in GABAergic interneurons in developing 
neocortex. 

2011 Nawa H 

47 The synaptic representation of sound source location in auditory cortex. 2009 Margrie TW 

48 Spike-timing-dependent plasticity of neocortical excitatory synapses on 
inhibitory interneurons depends on target cell type. 2007 Zhang XH 

49 Physiologically distinct temporal cohorts of cortical interneurons arise 
from telencephalic Olig2-expressing precursors. 2007 Fishell G 

50 Background synaptic activity is sparse in neocortex. 2006 Helmchen F

51 Developmental synaptic changes increase the range of integrative 
capabilities of an identified excitatory neocortical connection. 1999 Audinat E 

52 Flexible spike timing of layer 5 neurons during dynamic beta oscillation 
shifts in rat prefrontal cortex. 2009 Mansvelder 

HD 
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53 Anatomical physiological and molecular properties of Martinotti cells in the 
somatosensory cortex of the juvenile rat. 2004 Markram H 

54 The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory 
interneurons in UP-DOWN states of mouse neocortex. 2010 Connors BW

55 Electrophysiological classification of somatostatin-positive interneurons in 
mouse sensorimotor cortex. 2006 Prince DA 

56 Spike-timing-dependent plasticity of neocortical excitatory synapses on 
inhibitory interneurons depends on target cell type. 2007 Zhang XH 

57 Impaired inhibitory control of cortical synchronization in fragile X 
syndrome. 2011 Huntsman 

MM 

58 Dense inhibitory connectivity in neocortex. 2011 Yuste R 

59 
Cluster analysis-based physiological classification and morphological 
properties of inhibitory neurons in layers 2-3 of monkey dorsolateral 
prefrontal cortex. 

2005 Lewis DA 

60 Functional properties of fast spiking interneurons and their synaptic 
connections with pyramidal cells in primate dorsolateral prefrontal cortex. 2005 Lewis DA 

61 Functional characterization of intrinsic cholinergic interneurons in the 
cortex. 2007 Monyer H 

62 Specificity in the interaction of HVA Ca2+ channel types with Ca2+-
dependent AHPs and firing behavior in neocortical pyramidal neurons. 1998 Foehring RC

63 Fear conditioning and extinction differentially modify the intrinsic 
excitability of infralimbic neurons. 2008 Porter JT 

64 The synaptic representation of sound source location in auditory cortex. 2009 Margrie TW 

* Data obtained from NeuroElectro.org 
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