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a b s t r a c t 

An atomistically-meaningful pseudocontinuum representation for the nontrivial lattice dynamics of a fi- 

nite monatomic chain with linear elastic interactions between nearest neighbor atoms is analytically de- 

duced by mean of a dynamic mechanical analysis extending the memory-dependent pseudocontinuum 

viewpoint suggested in [M. Charlotte and L. Truskinovsky, Lattice dynamics from a continuum viewpoint , J. 

Mech. Phys. Solids, 60, pages 1508–1544 (2012)]. For a correct description of the lattice dynamics at its 

interstice length scale, the pseudocontinuum model integrates both the bulk and boundary inertial (heat- 

vibration) effects of the atomistic medium through specific modifications of the classical elastodynamic 

Newton’s law model: these modifications involve a generalization of the D’Alembert’s principle of inertial 

forces and Neumann-Robin’s boundary conditions, without increasing the number of initial and boundary 

conditions of the generic mechanical evolution problem, unlike all other generalized continuum models 

proposed in the literature up to this date. Owing to the spatially local and one-dimensional nature of 

the discrete and pseudocontinuum models, relationships are thus more clearly pinpointed between the 

elastodynamic normal stress field of that exact generalized continuum representation and the cohesive 

(or internal) and inertial forces operating at the lattice sites within the bulk of a finite-size monatomic 

chain and at its boundary. 
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. Introduction 

It has been already understood for long that, in order to

econcile the particle viewpoint with the continuum one, the

olids with discrete/granular microstructures must be described

ith nonclassical continuum theories involving multiple length

nd time scales, and that in linear elasticity those ones are

n part or essentially embedded into the phonon dispersion re-

ations. Dispersive properties can be obtained in a continuum

ramework indeed with various enhancing ingredients such as

patial nonlocality ( Blanc et al., 2002; Charlotte and Truski-

ovsky, 2008; Eringen, 1972; Eringen and Eringen, 1976; Erin-

en and Kim, 1977; Fafalis et al., 2012; Jirásek, 2004; Kroner,

968; Krumshansl and Wallis, 1965; Kunin, 1982; Mindlin, 1964,

965; Pichugin et al., 2008; Rogula, 1982; Silling, 20 0 0; Suiker

nd de Borst, 2005; Sunyk and Steinmann, 2003; Toupin, 1962 ),

emporal nonlocality ( Askes et al., 2008; Bishop, 1952; Char-

otte and Truskinovsky, 2012; Jirásek, 2004; Love, 2009; Metrikine

nd Askes, 2002a,b; Mindlin, 1964; Mindlin and Herrmann,

950; Mindlin and McNiven, 1960; Mühlhaus and Oka, 1996;

ichugin et al., 2008; Rayleigh, 1945 ) or/and multi-fields/modes
E-mail address: miguel.charlotte@isae.fr 

l  

c  
 Charlotte and Truskinovsky, 2008; Cosserat and Cosserat, 1909;

ringen, 1966; Eringen and Eringen, 1976; Eringen and Liebowitz,

968; Il’iushina, 1969; Kunin, 1982; Mindlin and Herrmann, 1950;

indlin and McNiven, 1960; Vasiliev et al., 2010 ) while using dif-

erent kinematic and mechanic arguments. However, some of these

nhanced continuum models lack of a physical reality or a mathe-

atical consistency as they do not take into account correctly the

ispersive, attenuating, and inertial effects related to the discrete

istributions of masses ( Charlotte and Truskinovsky, 2012; Milton

nd Willis, 2007; Willis, 1981; Willis and Suquet, 1997 ). One can

eet for instance some difficulties to ensure the stability of these

ontinuum models with respect to short wavelengths ( Charlotte

nd Truskinovsky, 2008, 2012; Jirásek, 2004; Kunin, 1982; Pichugin

t al., 2008; Rogula, 1982; Suiker and de Borst, 2005 ), or else to

redict the filtering of high-frequency phonons that are linked to

he natural capabilities of the aforementioned microstructured me-

ia to dissipate certain singularities in the material particle mo-

ions. 

Besides, and apart from the fact that it is not always clear

ow to consider initial and boundary/interfacial conditions for the

rior enhanced continuum models (except by variational formu-

ation when possible), another important difficulty for all these

ontinuum-atomistic connections is to correctly relate quantities

http://dx.doi.org/10.1016/j.ijsolstr.2016.07.027
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Fig. 1. The generic monatomic chain and its pseudocontinuum reference domain S . 
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such as strain and stress tensors between two levels, but also these

same quantities to forces and displacements used in the molecular

model ( Zimmerman et al., 2002, 2004, 2010 ). This may require in

particular a correct atomistic interpretation of the local Cauchy’s

or Piola-Kirchhoff’s stress tensors. That last nontrivial point has

been a subject of great debate and controversy (see for instance

Zhou, 2003 ). This important issue has been explored from many

different perspectives for nearly two hundred years and has led to

various definitions that do not appear to be consistent with each

other; moreover those ones have not often fully appreciated the

difference between pointwise stress measures and temporal and/or

spatially-averaged quantities, as reported by Admal and Tadmor

(2010, 2016) ; Murdoch (1982, 20 03, 20 07) ; Murdoch and Bedeaux

(1993, 1994) ; Zimmerman et al. (20 02, 20 04, 2010) . Currently,

there are at least three definitions for the stress tensor which are

commonly used in atomistic simulations: the virial stress ( Clausius,

1870; Maxwell, 1870, 1874 ), the Tsai’s traction ( Tsai, 1979 ) and the

Hardy’s stress ( Hardy, 1982 ). Other coarse grained continuum mod-

els use other averaged Cauchy’s stress definitions associated with

the names of Irving and Kirkwood (1950) , Lehoucq and Lilienfeld-

oal (2010) ; Noll (1955, 2009) (which may be related to the one

inferred for the peridynamics ( Lehoucq and Silling, 2008; Silling,

20 0 0 )), or Murdoch and Bedeaux ( Admal and Tadmor, 2010, 2016;

Murdoch, 1982, 20 03, 20 07; Murdoch and Bedeaux, 1993, 1994 ),

to mention just a few them; those ones are in a general multi-

dimensional Eulerian’s description of granular materials with arbi-

trary pair potentials of interactions or central cohesive forces be-

tween particles. 

At the margins of these different viewpoints, this work attempts

to identify what kind of local atomistic stress concept can be asso-

ciated with an accurate temporally nonlocal pseudocontinuum 

1 ( TN

PC ) representation of a finite chain of particles with nearest neigh-

bor harmonic interactions ( NNI ) like the one depicted on Fig. 1 ,

that is submitted to soft loading devices and where the surface

dynamic pressure generated by the particle vibration at the chain

boundary needs to be accounted for as well. The elastodynamics of

this Born-Von Kármán’s finite, one-dimensional, monoatomic lat-

tice corresponds to the simplest medium of simple structure , accord-

ing to Kunin’s classification ( Kunin, 1982 ), since the only kinematic

variable is a displacement (vector) that determines the state of the
1 In nonlocal elasticity theories, the notion of pseudo-continuum, i.e. continuum 

theories incorporating internal space and time scales, was also called quasi- 

ontinuum in the sense of Krumshansl and Wallis (1965) , Kunin (1982) and Rogula 

1982) (see also Eringen, 1982 ). Historically, this concept was introduced to treat 

iscrete and continuous elastic models in the scope of the same formalism ( Kunin, 

1982 ), what fortuitously may help multi-scale numerical methods coupling (gen- 

eralized) continuous model with atomistic-lattice ones. Following partly the origi- 

nal idea of Kunin, the term quasicontinuum was later purposely borrowed and in- 

troduced in the computational mechanics by Shenoy et al. (1999) ; Tadmor et al. 

(1996) as a multi-scale numerical method coupling the classical continuum elasticity 

theory with the nonlocal atomistic-crystal lattice one. Developing such an averaging 

computational viewpoint is not however the purpose of this article. 

o  

t  

p  

o  

t  

d  

d  

s  

o  

i  

m  

a  
edium completely. However, from the continuum viewpoint, the

ne dynamic behavior of such a simple lattice is in fact very com-

lex already even in its linear regime due to the intrinsic occur-

ence of multiple scales of length and times of evolution ( Brillouin

nd Parodi, 1956; Charlotte and Truskinovsky, 2008, 2012; Kunin,

982; Maradudin et al., 1971 ) (as hereinafter the two time-scales

 

−1 ∗ and T ∗ and two length-scales a and L ) and to the importance

f the micro-structural inertial forces. 

The aforementioned TN PC viewpoint that is on target here

s the one introduced previously in Charlotte and Truskinovsky

2012) for an infinite lattice domain: it assumes that the non-

rivial dynamics of the considered lattice model can be interpreted

ithin that continuous framework by the presence of inertial

nd pseudo-dissipative post-Newtonian forces yielding a spatio-

emporal blending of the inertial and elastic forces. Compared

o Charlotte and Truskinovsky (2012) and the many numerical

r analytical works that have dealt with the considered lattice

odel, this new analytical development shows two main nov-

lties: firstly, the inertial forces of the lattice model induce an

lastodynamic normal stress field satisfying nonstandard Neumann-

obin’s boundary conditions , with notably time-dependent properties

n the TN PC model; secondly, the elastodynamic normal stress

eld of TN PC model can be related to a simple atomistic inter-

retation at the atom level. With this pseudocontinuum modeling,

he dispersion of elementary wave-functions (or phonons) gener-

ted by the singular loading pulses becomes possible and pro-

ibits the propagation of singularities in S characterizing the well-

nown failure of the classical continuum ( CC ) theory under im-

act load or sudden unloading. Thus, by its salient features of

emory-dependent/hereditary media (that have also been antici-

ated for other dispersive vibrational properties of lattices and pe-

iodic material systems such as metamaterials ( Milton and Willis,

007; Willis, 1981; Willis and Suquet, 1997 ) for instance), the TN

C contrast with the spatially nonlocal pseudocontinuum ( SN PC )

odel proposed by Eringen (1972) ; Eringen and Eringen (1976) ;

ringen and Kim (1977) , Krumshansl and Wallis (1965) , Kunin

1982) , Rogula (1982) . Indeed that latter assumes clearly distin-

uishable classical inertia and a strong spatial nonlocal elasticity

ielding in fact a spatial blending of the bulk and boundary forces

as will demonstrate a subsequent article on this finite chain and

oundary loading effects). Additionally, by not placing any restric-

ion on the support of the applied loading in order to deal with

oint impact loadings as naturally as the original discrete theory,

he TN PC model manages to overcome one major drawback of the

erived SN PC model, which can be both applicable and accurate

nly for certain types of data that make the SN model inoperable

nd unenforceable with concentrated loads. 

This paper is organized as follows. As standard in continuum

echanics, the formulation of the TN PC model relies on a spe-

ific space-time description of the particle system displacements.

ection 2 begins therefore by reminding the main properties of the

iscrete chain motion and how the particle displacements u can

e analytically expressed in terms of the one of the two “natural”

ontinuous interpolation fields G of the discrete impulse response

f this mechanical model. To illustrate some specifities of the par-

icle displacements u , a couple of complementary tests are pur-

osely performed, one is taken from a singular category and the

ther one is taken from a smooth category. Section 3 presents then

he memory/history dependent continuum mechanics that can be

erived from the molecular foundation to include the scale depen-

ence of mass density and boundaries of solid bodies. The main

teps of the derivation of that TN model are first discussed, based

n the properties of the continuous kernel G . This yields integrod-

fferential equations of motion involving a generalized linear mo-

entum field I 1 [ u ], generalized normal stress field I ε [ u ] and the

dditional inertial forces I surf 
p [ u ] acting at the boundary. It is shown
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hen that an equivalence with the generic discrete model is recov-

rable from the prediction of this TN model with singular repre-

entations of the external and initial inertial loads. In particular, for

hat TN PC theory, the interpolating displacement field u is merely

he response to concentrated loading conditions. Section 4 shows

hen that the related continuum stress field I ε [ u ] is linked to a

pecific interpretation of the discrete atomistic forces. Connections

ith few other derivations in the litterature are also briefly dis-

ussed. Finally, some perspectives of investigation are outlined in

he concluding Section 5 . 

. The discrete linear elastodynamic model 

.1. Material description and loads 

aterial properties. The lattice dynamics model considered in this

ork is a basic finite chain of (N + 1) -ordered particles, with N ≥
, as the one shown in Fig. 1 , the particles being labeled with in-

egers k ∈ N 

def = { 0 , 1 , . . . , N} . The (lattice) parameter a > 0 denotes

he reference lattice length scale of the considered chain model

nd L 
def = Na its reference total length. Then the mass of a single

article is defined as ρa , where ρ > 0 represents the lineic mass

ensity with respect to a reference continuum S ⊆ a R overlapping

he reference lattice a N . Each particle interacts only with its near-

st neighbors through weightless linear elastic springs with elastic-

ty constant αa where α > 0 is the elastic modulus of that chain.

sually, the material constants allow to coarsely assess the refer-

nce time 

 

−1 
∗

def = 

a 

2 

√ 

ρ

α
= 

a 

2 c 
(1) 

nd the propagating wave speed limit c 
def = 

√ 

α/ρ that are specific

rom the macroscopic viewpoint of the classical continuumization

ased on the long wavelength deformations. 

inematic hypotheses of motion and load conditions. The kinematic

nd load fields involved in the considered discrete linear mechan-

cal problem are best described in the framework of generalized

unction (distribution) theory for causal evolutions ( Roddier, 1971 ;

chwartz, 1966 ; Schwartz, 1983 ); while broadening the class of ad-

issible loading inputs that can be applied onto the chain, this

ramework allows to derive and highlight the appropriate class

f admissible continuous systems linked to the TN PC model. To

eal with the allowed singularities, the ( particle or material ) par-

ial time derivative of a (scalar or vector-valued) function y ( t ) in

he usual/classical sense of continuous functions, denoted as ˙ y (t) ,

ill be explicitly distinguished when necessary from the one in

he Schwartz’ causal distribution sense D t y ( t ). As seen hereafter

or both the discrete mechanical model and the TN PC one, the

llowed kinematic singularities occur in fact only under the action

f singular external loading corresponding to impacts. 

Regarding more specifically the atomic chain kinematics, here

he particles are only allowed to move colinearly (either longitu-

inally or transversally) to the chain, their time-dependent dis-

lacements u (t) = { u k (t) } k ∈N being measured so from the homo-

eneous lattice equilibrium position. These displacements u ( t ) are

ssumed to be continuous (as verified a posteriori, even with lo-

alized impact loadings) while excluding however particle colli-

ions for simplicity 2 , each of particle velocities ˙ u (t) = { ̇ u k (t) } k ∈N 
ay possibly be discontinuous. Moreover, the following initial val-

es are notably ascribed to the displacements and velocities 
2 This hypothesis allows so to mimic crystal solid properties but it may be re- 

eased if the aim is to model granular crystals with contact interactions. 

m  

i

u (0) , ˙ u (0 

−) 
)

= 

(
u 

o , v o 
)

with u 

o def = { u 

o 
k } k ∈N and 

v o def = { v o k } k ∈N . (2) 

The departure from the last configurational state is partly gen-

rated by applied external forces a f (t) = { a f k (t) } k ∈N . These ones

re assumed to be time-varying generalized functions giving f ( t )

0 for t < 0 and possessing appropriated properties of growth

nd singularity in time for t > 0. For instance, as shown hereafter

ach loading contribution af k will be allowed to impact at a non-

ccumulating point set of instants like 

 I [ f k ](t ) 
def = 

{ 
t q ∈ [0 , t ] ; s.c. p̄ k (t q ) � = 0 

} 
q ∈ N 

, for t ∈ ω 

−1 
∗ R , (3)

n a way that af k can be decomposed into a sum of a piecewise

ontinuous time varying function a ̃  f k (t) and a set of impulses of

mpact { ̄p k (t p ) } t p ∈T I [ f k ](t) , like 

f k (t) = a ̃  f k (t) + 

∑ 

t p ∈T I [ f k ](t) 

p̄ k (t p ) δ+ (t − t p ) . (4)

hese impact load formulas involve the “causal” Dirac’s delta func-

ion 

+ (t) ≡ D t H(t) 
def = lim 

ε↘ 0 + 

H(t) − H(t − ε) 

ε
, (5) 

hich represents the generalized partial time derivative of the

eaviside’s step function 

(t) 
def = 

{
0 , if t < 0 

1 , if t ≥ 0 

. (6) 

or the generalized external loads a f ( t ) in (4) , one can measure

hen both its impulses with 

 

∫ t 

0 

f k ( ̂ t ) d ̂ t = a 

∫ t 

0 

˜ f k ( ̂ t ) d ̂ t 

+ 

∑ 

t p ∈T I [ f k ](t) 

p̄ k (t p ) H(t − t p ) for (k, t) ∈ N × ω 

−1 
∗ R (7) 

nd the work done within the motion displacements u by a classi-

al regularizing limit process like 

 g [ f , u ](t) 
def = lim 

ε↘ 0 
P r [ f 

ε , u 

ε](t) ≡ lim 

ε↘ 0 

∫ t 

0 

∑ 

k ∈N 
a f εk ( ̌t ) ˙ u 

ε
k ( ̌t ) d ̌t (8)

here 

im 

↘ 0 
( f ε (t) , u 

ε (t)) = ( f (t) , u (t)) , with f ε (t) ≡ 0 for t ≤ 0 . (9)

n that regularizing limit process, P g [ f , u ](t) can be interpreted as

 generalized function of t while P r [ f , u ](t) as a standard (regu-

ar) function of t ; f ε (t) = { f ε
k 
(t) } k ∈N represents any sequence of

on-impacting (or sufficiently regular time-varying) load functions

hat (like for instance the one that is implicitly proposed at Eq.

5) ) distributionally tends toward the generic loads f ( t ) formed by

he components in Eq. (4) ; lately, u 

ε (t) = { u ε
k 
(t) } k ∈N represents the

equence of displacement functions outputed by the forthcoming

ewtonian equations with f ε ( t ) and that distributionally tends to

 ( t ). 

.2. The chain dynamic motion 

he Newtonian equations of motion. Within the framework of

chwartz’ generalized function (distribution) theory ( Roddier, 1971 ;

chwartz, 1966, 1983 ), the (N − 1) -bulk equations and its two Neu-

ann’s boundary equations 3 that govern the dynamical motion of
3 Dirichlet’s boundary conditions can also be considered but they would not lead 

nformation about the surface inertial forces that are of interest in this analysis. 
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this chain of (N + 1) particles from its initial configuration state

given by Eq. (2) can be described in two equivalent forms. De-

noting the Kronecker’s symbol as δk, p for any couple of integers

(k, p) ∈ Z 

2 , the more classical form is constituted by 

ρD 

2 
t u k = 

α

a 2 

{[
u k +1 − u k 

]
(1 − δk,N ) + 

[
u k −1 − u k 

]
(1 − δk, 0 ) 

}
+ f k , for (k, t) ∈ N × ω 

−1 
∗ R 

+ (10)

and must be completed by the initial conditions in (2) . Like

in Charlotte and Truskinovsky (2012) , the equivalent causal form

is less classical and involves only 

ρD 

2 
t [H u k ] = 

α

a 2 
H 

{[
u k +1 − u k 

]
(1 − δk,N ) + 

[
u k −1 − u k 

]
(1 − δk, 0 ) 

}
+ f k + ρD 

2 
t u k , for (k, t) ∈ N × ω 

−1 
∗ R (11a)

the following initial inertial loads replacing the initial conditions in

(2) 

ρa D 

2 
t u (t) = 

{
ρa D 

2 
t u k (t) 

}
k ∈N 

def = ρa 
[
v o δ+ (t) + u 

o D t δ+ (t) 
]
, 

for t ∈ ω 

−1 
∗ R . (11b)

This causal formulation of the dynamic motions has certain ad-

vantages. It notably allows a clear analysis of the balance of forces

in action and of their effects. In particular, by summing the set

of Eqs. (11a) , one can infer accordingly with the principle of con-

servation of momentum that no overall dynamic rigid motion of

translation can occur for the chain barycenter if the external load-

ing and initial kinematic data satisfy 

a 
∑ 

k ∈N 

[
f k (t) + ρD 

2 
t u k (t) 

]
= 0 , for t ∈ ω 

−1 
∗ R . (12)

For convenience, the following analysis will consider only such a

type of loading cases. 

Lately, a meaningful expression of work for the initial inertial

loads ρa D 

2 
t u (t) can moreover be associated like 

P init [ ρD 

2 
t u , u ](t) 

def = H(t) ρa 
∑ 

k ∈N 

[ 
v o k ˙ u k (0 

+ ) − u 

o 
k ̈u k (0 

+ ) 
] 
. (13)

The latter can be interpreted with respect to the ones in Eq. (8) as

follows if f (0 + ) = 0 4 (and no particle collision) at initial time 

P init [ ρD 

2 
t u , u ](t) ≡ P g [ ρD 

2 
t u , u ](t) ≡ P r [ ρD 

2 
t u , u ](t) 

≡ 2 E e [ u ](0) + 2 E k [ u ](0) . (14)

The last equivalence in Eq. (14) follows by virtue of the Euler’s the-

orem for homogeneous functions and the initial expression of the

classical Newtonian equations of motion for u ( t ) in (10) at t = 0 + 

(and therefore D 

2 
t u k (0 + ) = ü k (0 + ) ). It introduces the initial value

of the Hamiltonian potential energy of classical mechanics, with

the elastic potential energy 

E e [ u ](t) 
def = a 

N ∑ 

k =1 

α

2 

[
u k (t) − u k −1 (t) 

a 

]2 

, for t ∈ ω 

−1 
∗ R 

+ (15a)

and the kinetic energy 

E k [ u ](t) 
def = a 

N ∑ 

k =0 

ρ

2 

[ 
˙ u k (t) 

] 2 
, for almost all t ∈ ω 

−1 
∗ R 

+ (15b)

that are well-defined only at instants t ≥ 0 where the couple ( u ( t ),

D t u ( t )) is regular. 
4 Otherwise, in presence of external load impacts, this kind of Clapeyron’s theo- 

rem of “potential energy” equivalence ( Love, 1927 ) can be applied only to the “ho- 

ogeneous” (or complementary) part of the solution u that depends only on the 

nitial kinematical conditions. 

T  

 

c  

s  

f

olution of motion. The solution of the Cauchy’s initial boundary

alue problem ( IBVP ) formulated in (11) can be analytically ob-

ained by using the (LT) Laplace Transform, which is couched in

his analysis for any arbitrary function of time y ( t ) like 

 (t) 
LT → y (ω) = 

∫ ∞ 

0 

y (t) e 
−iωt 

dt, for  m (ω) < −ω̌ b ≤ 0 ; (16a)

ccordingly, its inversion is obtained with the following formulas

 (ω) → y (t) = 

1 

2 π

∫ −iω b + ∞ 

−iω b −∞ 

y (ω ) e iωt dω . ∀ ω b > ω̌ b ≥ 0 . (16b)

The positive real number ω̌ b in (16a) must notably be suffi-

iently large to ensure the existence of the integral as a holomor-

hic function over a semi-plane of the complex plane ω ∗C ; � e ( ·)
nd  m ( ·) denote respectively the real and imaginary parts of the

omplex number in argument; i is the principal square-root deter-

ination of the imaginary number related to i 2 = −1 . 

The LT of the Cauchy’s IBVP in (10) and (2) and the one in (11a) ,

ead to the same auxiliary spectral boundary value problem ( BVP ),

hich is 

ρ ω 

2 u k (ω) = 

α

a 2 

{[
u k +1 (ω) − u k (ω) 

]
(1 − δk,N ) 

+ 

[
u k −1 (ω) − u k (ω) 

]
(1 − δk, 0 ) 

}
+ f k (ω) + D 

2 
t u k (ω) (17)

or k ∈ N and where D 

2 
t u (ω) = iωu 

o + v o . The solution of the BVP

n (17) can be obtained analytically in Laplace space by the well-

nown Green function method that provides formally 

 k (ω) = 

∑ 

j∈N 
G (ka, ja, ω ) 

[ 
f j (ω ) 

ρ
+ D 

2 
t u j (ω ) 

] 
, for k ∈ N . (18)

e look then for the kernel G (s, ̂  s , ω) for (s, ̂  s ) ∈ ([0 , L ]) 2 that

olves the BVP constituted by the bulk equations for (k, p) ∈ (N \
 0 , N} ) 2 

ω 

2 G (ka, pa, ω) + 

α

a 2 
[ G (ka + a, pa, ω) + G (ka − a, pa, ω) 

−2 G (ka, pa, ω) ] = −ρ δk,p (19a)

nd the boundary conditions for p ∈ N (and while reminding L =
a ) 

ρ ω 

2 G (0 , pa, ω) = 

α

a 2 

[
G (a, pa, ω) − G (0 , pa, ω) 

]
+ ρ δ0 ,p , (19b)

ρ ω 

2 G (L, pa, ω) = 

α

a 2 

[
G (L − a, pa, ω) − G (L, pa, ω) 

]
+ ρ δN,p . 

(19c)

One can also replace these inhomogeneous Robin-like boundary

onditions by the following homogeneous Neumann-like ones [
G (0 , ̂  s , ω) − G (−a, ̂  s , ω) 

]
= 0 and 

α
[
G (L + a, ̂  s , ω) − G (L, ̂  s , ω) 

]
= 0 , for ˆ s ∈ [0 , L ] . (20)

t follows that one can explicitly couch 

 (s, ̂  s , ω) 
def = −ρa 2 

2 α

×
cos 

(
λo (ω)(L − | s − ˆ s | + a ) 

)
+ cos 

(
λo (ω)(L − s − ˆ s ) 

)
sin 

(
λo (ω) a 

)
sin 

(
λo (ω)(L + a ) 

) , 

for (s, ̂  s ) ∈ ([0 , L ]) 2 . (21)

his last one can also be continuously extended to all (s, ̂  s ) ∈
(a R ) 2 ). It conveys several important information to spectrally

haracterize the time-dependent material properties of the con-

idered lattice model amongst which the following complex

unction 



Fig. 2. Phonon dispersion and attenuation curves (λo (ω ) , ω 

2 ) ∈ a −1 C × ω 

2 
∗R 

+ with in (a) the dispersion relation λ = λo (ω) with ω = ω r + i 0 ± (see ( Charlotte and Truski- 

novsky, 2012 ) for evolution details) and in (b) the phonon propagation wavelength 
 −(ω r ) and the phonon attenuation wavelength 
 + (ω r ) ; these lengths are respectively 

defined from that the lower and upper branches of the dispersion curves λo ( ω) in a. 
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a  

S  
o (ω ) 
def = 

−i 

a 
log 

( 

1 − 2 ω 

2 

ω 

2 ∗
− 2 i 

ω 

ω ∗

√ 

1 − ω 

2 

ω 

2 ∗

) 

≡ −2 

a 
arcsin 

(
ω 

ω ∗

)
(22) 

hat is well-defined everywhere in ω ∗C outside the branch-cuts

 

def = ω ∗R \ [ −ω ∗, ω ∗] . 

From the viewpoint of an infinite chain case with finite a = L/N

 viz. the thermodynamic limit), λo ( ω) for ω ∈ ω ∗R defines an ex-

licit dispersion-relation, which is illustrated on Fig. 2 (a). Its full

mage is located into the strip 

 0 
def = 

{
λ = λr + iλi ∈ a −1 C ; | λr a | ≤ π, (λr a, λi a ) ∈ R 

2 
}

(23)

hat contains the fundamental Brillouin’s interval K 

def = 

[
−

/a, π/a 
]
. Following ( Brillouin and Parodi, 1956; Charlotte and

ruskinovsky, 2012 ), one can define then from λo ( ω) for ω ∈ ω ∗R
wo important frequency-dependent wavelengths: 

ne is for the propagation of waves (or phonons) through the

hain, as well as their observable interferences into resonant stand-

ng modes (also said stationary or normal modes) of vibration at

pecific frequencies { ω p } p∈N (given in Appendix A ), 

 −(ω) 
def = 

a 

arccos 

(
1 − 2 ω 2 

ω 2 ∗

) ≡ | λo (ω) | −1 ∈ [0 , π ] , 

for ω ∈ [ −ω ∗, ω ∗] , (24a) 

he other one is for their attenuation through chain by (local) in-

rtia, 


 + (ω) 
def = 

a 

ln 

[ 
2 ω 2 

ω 2 ∗
− 1 + 

2 | ω| 
ω ∗

√ 

ω 2 

ω 2 ∗
− 1 

] ≡ ∣∣∣λo (ω) + 

π

a 
sgn (ω) 

∣∣∣−1

≥ 0 , for ω ∈ C. (24b)

Moreover, the following functions (while reminding (1) ) repre-

ent respectively, for ω ∈ [ −ω ∗, ω ∗] , the group and phase velocities

f propagating waves that are relevant for physicists and acoustic

ngineers 

 gr (ω) 
def = − dω 

dλo 
(λo (ω)) ≡ ω ∗a 

2 

cos (λo (ω) a/ 2) ≡ c 

√ 

1 − ω 

2 

ω 

2 ∗
(25a) 
t

 ph (ω) 
def = − ω 

λo (ω) 
≡ ω ∗ sin (λo (ω) a/ 2) 

λo (ω) 
≡ c 

sin (λo (ω) a/ 2) 

λo (ω) a/ 2 

. 

(25b) 

Now in time space, the solution of the Cauchy’s problem in

10) and (2) , as well as in (11a) , is like 

 k (t) = 

∑ 

j∈N 

[ ∫ t 

0 

G (ka, ja, t − ˆ t ) 
f j ( ̂ t ) 

ρ
d ̂ t 

+ D t ̂
 G (ka, ja, t) u 

o 
j + ̂

 G (ka, ja, t) v o j 
] 
, 

for (k, t) ∈ N × ω 

−1 
∗ R . (26) 

he last expression for u k ( t ) relies on the following acausal kernel

that can also be extended for (s, ̂  s ) ∈ (a R ) 2 ) ̂ G (s, ̂  s , t) 
def = G (s, ̂  s , t) − G (s, ̂  s , −t) ≡ sgn (t) G (s, ̂  s , | t| ) , 

for (s, ̂  s , t) ∈ (a N ) 2 × ω 

−1 
∗ R , (27) 

hich is defined from the causal kernel 

G (s, ̂  s , t) ≡ H(t ) ̂  G (s, ̂  s , t ) = 

1 

2 π

∫ −iω b + ∞ 

−iω b −∞ 

G (s, ̂  s , ω) e 
iωt 

dω, 

for (s, ̂  s , t) ∈ (a N ) 2 × ω 

−1 
∗ R . (28) 

he latter that is computed explicitly in Appendix A and its LT

 (s, ̂  s , ω) in (21) satisfy important difference-differential properties

hat are worth mentioning for the comparison with the integro-

ifferential ones in Appendix B . Notably, G (s, ̂  s , t) solves the IBVP

ormed by the following system of equations for (k, p, t) ∈ N 

2 ×
 

−1 ∗ R 

ρ D 

2 
t G (ka, pa, t) = 

α

a 2 

{[
G (ka + a, pa, t) − G (ka, pa, t) 

]
(1 − δk,N )

+ 

[
G (ka − a, pa, t) − G (ka, pa, t) 

]
(1 − δk, 0 ) 

}
+ ρ δk,p δ+ (t) 

(29a)

nd the initial conditions 

 (ka, pa, t) ≡ 0 , for (k, p) ∈ N 

2 and t ≤ 0 (29ba)

 t G (ka, pa, 0 

+ ) ≡ ˙ G (ka, pa, 0 

+ ) = δk,p , for (k, p) ∈ N 

2 . (29bb)

.3. Quasiperiodic and nonlocal features of the atomistic motions 

The dynamic motion of this lattice has nontrivial features that

re not so well-known and deserve therefore a special emphasis.

ome of these features can be illustrated with the two following

ypes of standard rheological tests. 



Fig. 3. Impact test responses with N = L/a = 10 : the normalized displacements u ( t )/ u ref (with u ref = p̄ /ρω ∗a = p̄ / 2 ρc) of the (N + 1) -atoms over two intervals of time. The 

time T ∗ represents the pseudo-period of vibration of the chain introduced in Eq. (35) and the displacements u ( t ) are analytically given by Eq. (31) . 
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Impact tests. Here a simple self-balanced couple of impact loads

(or equivalently, initial velocities) at two points and satisfying

(12) is considered. The knowledge of the response of the system to

singular impact loading is of fundamental importance in both ex-

perimental and theoretical characterization of linear discrete sys-

tems because it allows one to fully identify the corresponding

Green’s functions (which are also named as impulse responses).

Moreover such a load is one for which the CC elasto-dynamics

fails, as shown in Charlotte and Truskinovsky (2012) for the infi-

nite material domain. Fig. (3 ) illustrates over different ranges of

time the displacement ratios 2 ρcu (t) / ̄p that are generated by loads

a f (t) = { a f k (t) } k ∈N impacting the chain with 

a f k (t) = p̄ [ δk,N − δk, 0 ] δ+ (t) , (30)

p̄ being a constant real parameter prescribing an impulse at ini-

tial time t = 0 ; the chain is initially at its rest state ( i.e. with u 

o =
0 = v o ). According to (26) , the resulting displacements u ( t ) read

component-wisely then as follows 

u k (t) = [ G (ka, L, t) − G (ka, 0 , t)] 
p̄ 

ρa 
, for (k, t) ∈ N × ω 

−1 
∗ R 

+ . 

(31)

As shown in Appendix C with the more general impacting load

cases f in (4) , the energy introduced in the system can be com-

puted analytically with the expression of work in (8) and accord-

ingly with Eqs. (29b), giving so 

P g [ f , u ](t) = H(t) 
∑ 

k ∈N 
p̄ k (0) ˙ u k (0 

+ ) = 2H(t) 
p̄ 2 

ρa 
≡ P r [ f , u ](t) , 

for t ∈ ω 

−1 
∗ R . (32)

Release test. Here a release test from initial displacements is cho-

sen to identify some complementary time-dependent properties

which cannot fully be identified with the impulse responses of the

impact test. To observe these other relevant temporal properties,

one can consider the responses due to the simple initial displace-

ments u 

o = { u o 
k 
} k ∈N where 

u 

o 
k = ū [ δk,N − δk, 0 ] (33)

while the constant real parameter ū prescribes the initial displace-

ments at initial time t = 0 ; besides the following initial velocity

v o = 0 and external load f (t) = 0 are imposed. Fig. (4 ) illustrates

the resulting free displacement ratios u (t) / ̄u of the chain particles,

which component-wisely read like 

u (t) = ū D t [ ̂  G (ka, L, t) − ̂ G (ka, 0 , t)] . (34)
k 
ollowing ( Charlotte and Truskinovsky, 2012 ), the expression of in-

tantaneous work in (13) combined with Eq. (29) attribute the fol-

owing initial energy to the system 

 init [ ρD 

2 
t u , u ](t) = −H(t) ρa 

∑ 

k ∈N 
u 

o 
k ̈u k (0 

+ ) 

= 2H(t) 
ρc 2 ū 

2 

a 
, for t ∈ ω 

−1 
∗ R . 

The salient features exhibited by the two previous rheological

ests deserve further comments. Indeed, a specific consequence of

he wave dispersion and attenuation is that the free oscillations of

his chain of (N + 1) material points in Figs. 3 and 4 are gener-

lly not exactly periodic in time, but exhibit small fluctuations. As

lready mentioned by Lagrange (1853) (see also Myshkis and Fil-

monov, 2003 ), this arises because the angular frequencies { ω p } p∈N 
f the eigenmodes of vibration { (ω p , {F p (ka ) } k ∈N ) } p∈N of the sys-

em (that are specified in Appendix A ) are pairwise incommen-

urable; in fact, an exact periodicity can occur only if both the

nitial and loading conditions are constituted by one same and

nique monochromatic (one-wavelength) basis function F p (s ) of

eformation. Nevertheless, the (free) vibrational displacements u ( t )

ike those generated by the previous tests are almost periodic and

ave their pseudo-period 

 

∗ def = 2(L + a ) /c ≡ 4(N + 1) /ω ∗. (35)

he small aperiodic fluctuations produce intriguing micro-

tructural overshoot effects (that may possibly be important no-

ably for the safety of the structure if preliminarily extended near

o certain critical values) for sudden unloadings ( Petrov et al.,

008 ), as for impacts ( Charlotte and Truskinovsky, 2012; Slepyan,

972 ). 

Another specific (but hardly noticeable) feature that is caused

y the massless elastic interaction between the particles is that

his strain-able finite discrete model reacts instantaneously in a

ontrivial pseudo-rigid fashion that differs from both the classical

igid solid and the classical continuum bar model ( Charlotte and

ruskinovsky, 2012; Wolf, 1979 ). This statement can be substanti-

ted here again by considering nonzero initial data and the impact

oading only at one single given atom p ∈ N , like for instance 

 k (0) = u 

o 
k = ū δk,p , ˙ u k (0 

−) = v o k = v̄ δk,p , a f k (t) = p̄ δ+ (t) δk,p 

for k ∈ N 

here again ( ̄u , ̄v , p̄ ) are constant parameters. The general solution

26) can be written so as 



Fig. 4. Release test responses with N = L/a = 10 : the normalized displacements u ( t )/ u ref (with u ref = ū ) of the (N + 1) -atoms over two intervals of time. The displacements 

u ( t ) are analytically given by Eq. (34) . 
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I  
 k (t) = ū D t ̂
 G (ka, pa, t) + 

(
p̄ 

ρa 
H(t) + ̄v 

)̂ G (ka, pa, t) 

for (k, t) ∈ N × ω 

−1 
∗ R 

nd, by using notably (11) and (29) , provides then 

˙ 
 k (0 

+ ) = 

(
p̄ 

ρa 
+ ̄v 

)
δk,p , ü k (0 

+ ) 

= 

ω 

2 
∗

4 

ū 

{[
δk +1 ,p − δk,p 

]
(1 − δk,N ) 

+ 

[
δk −1 ,p − δk,p 

]
(1 − δk, 0 ) 

}
, etc. 

ne can infer then that the higher the order of the time-derivative

f the non-rigid deformation vector { u k (t) − u p (t) } k ∈N at t = 0 + ,
he larger is the number of particles affected by these perturba-

ions. This nontrivial nonlocal feature expresses the fact that the

oncept of a sharp deformation front or a finite deformation cone,

hich is common in continuum models, can be viewed only as a

oarse approximation. 

. The temporally nonlocal pseudocontinuum model 

Let us develop now the TN PC model that is capable of cap-

uring the thermal vibration effects that are observed at the mi-

roscopic time and space scales | ω 

−1 | ∼ ω 

−1 ∗ and | λ−1 | ∼ a . The

daptation of the TN viewpoint developed in Charlotte and Truski-

ovsky (2012) to the case of a bounded domain loaded by soft

oading devices requires to identify some natural boundary con-

itions, which are the purpose of this section and one of the two

ew main results of this communication. As the model is here spa-

ially local , what is notably expressed by the fact that the disper-

ion curves of the discrete and TN PC models are given only by

 unique function λo ( ω), bulk and boundary contributions are ini-

ially distinguished as for the (local) CC theory. 

.1. Derivation of the model 

Formally, the TN PC model of interest can be related to a

auchy’s IBVP involving a bounded continuum domain like S =
0 , L ] and a bulk equation like 

I 1 [ u ](s, t) − D s I ε [ u ](s, t) = f (s, t) + ρD 

2 
t u (s, t) , 

for (s, t) ∈ ]0 , L [ ×ω 

−1 
∗ R . (36a) 

The functionals I 1 [ u ]( s, t ), D s I ε [ u ]( s, t ) and I ε [ u ]( s, t ) represent

espectively the linear momentum forces, the bulk linear elastic

orces and the bulk (normal) stress linked to the displacement
elds u ( s, t ) of the TN PC model. The main argument of the cur-

ent contribution is that, for the proposed TN model, the natural

oundary conditions at the extremities s ∈ {0, L } of the domain

 = [0 , L ] can be a priori found as specific generalized Neumann-

obin’s impedance boundary conditions 

 

surf 
p [ u ](0 , t) − I ε [ u ](0 

+ , t) = a f 0 (t) + ρa D 

2 
t u 0 (t) ; (36b) 

 

surf 
p [ u ](L, t) + I ε [ u ](L −, t) = a f N (t) + ρa D 

2 
t u N (t) . (36c) 

Here, an additional functional −I surf 
p [ u ](s, t) representing “inter-

al” generalized inertial forces acting at the continuum domain

oundary with (s, t) ∈ { 0 , L } × ω 

−1 ∗ ( R 

+ \ { 0 } ) must also be iden-

ified. Besides, again as in Charlotte and Truskinovsky (2012) the

oad density f ( s, t ) and the following initial inertial force density

per unit of length) 

D 

2 
t u (s, t) 

def = ρ
[ 
v o (s ) δ+ (t) + u 

o (s ) D t δ+ (t) 
] 

(37)

re related to their discrete analogous sequences f ( t ) and ρD 

2 
t u (t)

hrough the general formulas of interpolation 

u 

o (s ) 
def = 

∑ 

k ∈N 
κk, 0 (s/a ) u 

o 
k , v o (s ) 

def = 

∑ 

k ∈N 
κk, 1 (s/a ) v o k and f (s, t) 

def = 

∑ 

k ∈N 
κk, 2 (s/a ) f k (t) . (38) 

 particular interest will be for the case where the interpolation

ernels { κk,p } (k,p) ∈N×{ 0 , 1 , 2 } for these external loads and pre-inertial

nes are proportional to the spatial Dirac’s delta function 

(s ) 
def = D 

2 
s 

| s | 
2 

≡ D s 
sgn (s ) 

2 

, (39)

hile denoting D s the spatial differential operator in the sense of

chwartz’ distribution theory and sgn( ·) the signum function. 

The appropriate expressions for I 1 [ · ]( s, t ), I ε [ · ]( s, t ) and

 

surf 
p [ ·](s, t) come from analyzing the IBVP solved by the interpolat-

ng kernel G (s, ̂  s , t) in (28) , but now from the distribution theory

f continuous media. This dynamical mechanical analysis is per-

ormed in Appendix B . By including some computational details

rom Charlotte and Truskinovsky (2012) , this provides the ensu-

ng bulk integro-differential field operators for (s, t) ∈ (S \ { 0 , L } ) ×
 

−1 ∗ R 

 1 [ u ](s, t) 
def = 

[ 
1 + 

1 

ω 

2 ∗
D 

2 
t 

] ∫ t 

0 

u (s, t − ˆ t ) D 

3 
ˆ t 
ϒ1 ( ̂ t ) d ̂ t (40a)

 ε [ u ](s, t) 
def = 

[ 
1 + 

1 

ω 

2 ∗
D 

2 
t 

] ∫ t 

0 

D s u (s, t − ˆ t ) D ˆ t ϒ2 ( ̂ t ) d ̂ t , (40b)



Fig. 5. The mass and elastic density kernels ϒp ( p = 1 , 2 ). Their synchronous tran- 

sient behaviors start with ϒ1 (t) = 0 , ϒ2 (t) = 0 , D t ϒ1 (t) = 0 , D 2 t ϒ1 (t) = 0 for t 

≤ 0; then they approach the long-time asymptotes (for times such as ω ∗t � 1) 

ϒ1 (+ ∞ ) = ρ and ϒ2 (+ ∞ ) = α. The deviations ϒp (t) − ϒp (+ ∞ ) from these static 

equilibrium values induce “pseudo-forces of dissipation”. 
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and, for comparison, the ensuing surface integro-differential field

one 

I surf 
p [ u ](s, t) 

def = a 

∫ t 

0 

D 

2 
t 

[
H(t − ˆ t ) u (s, t − ˆ t ) 

]
D ˆ t ϒ

surf ( ̂ t ) d ̂ t , 

for (s, t) ∈ { 0 , L } × ω 

−1 
∗ R . (40c)

It raises that the linear momentum force functional I 1 [ u ]( s, t )

and (normal) stress functional I ε [ u ]( s, t ) of the PC model are ex-

actly those described in Charlotte and Truskinovsky (2012) ; they

are built with the following time varying functions representing

respectively a nontrivial mass density and a nontrivial elastic mod-

ulus 

ϒ1 (t) 
def = H(t) ρ

{ 
1 −

∫ ∞ 

ω ∗

ω ∗ cos (ω r t) 

ω 

2 
r 

√ 

ω 2 r 

ω 2 ∗
− 1 

dω r 

} 
, (41a)

ϒ2 (t) 
def = H(t) α

{
1 −

∫ ∞ 

ω ∗

4 cos (ω r t) dω r 

ω ∗
[ 

a 2 


 2 + 
+ π2 

] √ 

ω 2 r 

ω 2 ∗
− 1 

}
, (41b)

which are depicted again on Fig. 5 for convenience. One notewor-

thy point is that these nontrivial kernels tend towards the classical

coarse-scale equilibrium estimates, 

(ϒ1 (+ ∞ ) , ϒ2 (+ ∞ )) = (ρ, α) , 

with vanishing fluctuations { ϒp (t) − ϒp (+ ∞ ) } p=1 , 2 that are re-

lated to the structurally attenuated wave high-frequencies. How-

ever, the LT of Y 1 ( t ) and Y 2 ( t ) have simple expressions that can

also be formulated in terms of the phase and group velocities in-

troduced in Eq. (25) like 

ϒ1 (ω) = 

ρλo a 

iω sin (λo a ) 
= 

ρc 2 

iω c ph (ω ) c gr (ω ) 
and 

ϒ2 (ω) = 

4 αω 

iω 

2 ∗λo a sin (λo a ) 
= 

α c ph (ω) 

iω c gr (ω) 
, 

where notably ω ≡ −ω ∗ sin 

(
λo (ω) a/ 2 

)
and α ≡ ρc 2 . It is worth

emphasizing similarly that the LTs of the nontrivial linear momen-

tum force and stress functionals also read like 

I 1 [ u ](s, ω) = ρ ω 

2 
∗λo a 

sin (λo a ) 

4 ω 

2 
(iω) 2 u (s, ω) 

≡ c gr (ω) 

c ph (ω) 
ρ (iω) 2 u (s, ω) (42)
nd 

 ε [ u ](s, ω) = 

sin (λo a ) 

λo a 
α D s u (s, ω) ≡ c ph (ω) c gr (ω) 

c 2 
αD s u (s, ω) , 

for s ∈ S \ { 0 , L } . (43)

esides, the new contribution for this TN model is the following

ime-varying apparent mass density as a kernel for the functional

 

surf 
p [ u ](s, t) representing the inertial forces of surface 

surf (t) 
def = 

ρ

2 

H(t) with ϒ surf (ω) = 

ρa 

2 iω 

. (44)

s a result, the surface functional in (40c) can merely be read as

he following distribution 

 

surf 
p [ u ](s, t) = 

ρa 

2 

D 

2 
t 

[
H(t) u (s, t) 

]
, for (s, t) ∈ { 0 , L } × ω 

−1 
∗ R 

(45)

nd its LT can be obtained by replacing G by u in Eq. (B.2c) . 

Interestingly, these results and those of the forthcoming

ection 4 (see Eq. (65) ) tend to emphasize the following kind of

urface inertial pressures (or again generalized surface mechanical

mpedance contributions from the first and last, half-mass, particles

f this chain if we adopt Brillouin and Parodi’s viewpoint ( Brillouin

nd Parodi, 1956 , chap. 5, sec. 22, page 86)) 

 (0 , t) 
def = I surf 

p [ u ](0 , t) − ρa 

2 

D 

2 
t u 0 (t) ≡ I ε [ u ](0 

−, t) − ρa 

2 

D 

2 
t u 0 (t) ;

(46a)

−q (L, t) 
def = I surf 

p [ u ](L, t) − ρa 

2 

D 

2 
t u N (t) ≡ −I ε [ u ](L + , t) 

− ρa 

2 

D 

2 
t u N (t) , (46b)

hich also read as follows when the velocities at s ∈ {0, L } are

nitially continuous 

q (0 , t) ≡ ρa 

2 

H(t) D 

2 
t u (0 , t) ≡ ρa 

2 

H(t) D 

2 
t u 0 (t) 

q (L, t) ≡ ρa 

2 

H(t) D 

2 
t u (L, t) ≡ ρa 

2 

H(t) D 

2 
t u N (t) . 

he Neumann-Robin’s equations in (36b) and (36c) involve such

urface inertial pressures like 

 (0 , t) − I ε [ u ](0 

+ , t) − ρa 

2 

D 

2 
t u 0 (t) = a f 0 (t) , for t ∈ ω 

−1 
∗ R ; (47a)

q (L, t) + I ε [ u ](L −, t) − ρa 

2 

D 

2 
t u N (t) = a f N (t) , for t ∈ ω 

−1 
∗ R . 

(47b)

As one last relevant feature of this TN PC model, one can also

ention how the “fluctuations” of the material constants Y p ( t )

bout their observable values Y p ( ∞ ) can also be exploited to ex-

ibit the “pseudo-forces of dissipation” embedded within the non-

rivial inertial force I 1 [ u ]( s, t ) and the stress I ε [ u ]( s, t ) in Eq. (40) ,

ince according to the convolution algebra of the causal distribu-

ions 

 1 [ u ](s, t) ≡ I c 1 [ ̂  u 0 ](s, t) + D t 

∫ t 

0 

[
ϒ1 (t − ˆ t ) − ρ

]
D 

2 
ˆ t 

[
H( ̂ t ) ̂  u o (s, ̂  t ) 

]
d ̂t 

(48a)

 ε [ u ](s, t) ≡ I c ε [ ̂  u 0 ](s, t) + D s 

∫ t 

0 

[
ϒ2 (t − ˆ t ) − α

]
D ˆ t 

[
H( ̂ t ) ̂  u 0 (s, ̂  t ) 

]
d ̂ t .

(48b)
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These reformulations involve contributions of different intuitive

atures. Indeed, there arises on one hand the following conserva-

ive (non-dissipative) force and stress 

 

c 
1 [ ̂  u 0 ](s, t) 

def = ρD 

2 
t 

[
H(t ) ̂  u 0 (s, t ) 

]
; I c ε [ ̂  u 0 ](s, t ) 

def = αD s 

[
H(t ) ̂  u 0 (s, t ) 

]
for (s, t) ∈ S × ω 

−1 
∗ R (49

ith respect to the displacement field 

ˆ 
 0 (s, t) 

def = 

[
1 + 

1 

ω 

2 ∗
D 

2 
t 

]
u (s, t) for (s, t) ∈ S × ω 

−1 
∗ R 

+ , (50a)

hich, with the initial conditions 

ˆ 
 0 (s, 0) ≡ u (s, 0) and 

˙ ˆ u 0 (s, 0 

−) ≡ ˙ ˆ u (s, 0 

−) for s ∈ S, (50b)

rovide conversely 

 (s, t) ≡ cos (ω ∗t) ̂  u 0 (s, 0) + 

sin (ω ∗t) 

ω ∗
˙ ˆ u 0 (s, 0 

−) 

+ H(t) 

∫ t 

0 

sin (ω ∗(t − ˆ t )) 

ω ∗
ˆ u 0 (s, ̂  t ) d ̂ t . (50c) 

On the other hand, the integral terms in Eq. (48) provide non-

onservative (or dissipative) contributions that are associated with

he mass and stiffness deviations { ϒp (t) − ϒp (+ ∞ ) } p=1 , 2 resulting

rom the structural attenuation (evanescence) of the wave high-

requencies. Obviously, in terms of the new field ˆ u 0 (s, t) that al-

ows a more standard formulation of the momentum and stress

elations with generalized constitutive laws 5 (see Eqs. (146), (147)

nd (148) in Charlotte and Truskinovsky (2012) ), this filtering

ntails some dissipation of high-frequency vibration energies by

heat’ and ‘thermal stress’. Accordingly, while taking into account

qs. (48) and (49) , an energy of dissipation can be “measured”

ith respect to the field ˆ u 0 (s, t) for sufficiently smooth loads,

y the standard variational process multiplying the Eq. (36) by

 t ̂  u 0 (s, t) and integrations on space and time variables to arrive

hen at an energy conservation/balance law. 

Naturally, from a coarse scale viewpoint of observation that

asts over sufficiently long time t � ω 

−1 ∗ = 

√ 

ρ/αa/ 2 with respect

o the reference times ω 

−1 ∗ (or for slow process, sufficiently large

 ∗ as described by Coleman (1964a,b) ) and sufficiently large num-

er N = L/a of particles, the previous fading memory becomes neg-

igible. The chain model behaves macroscopically then like the

ell-known D’Alembert’s perfectly elastic rod model whose the gov-

rning equation of motion in Schwartz’s causal distribution sense 

 

c 
1 [ u ](s, t) − D s I 

c 
ε [ u ](s, t) = f (s, t) + ρD 

2 
t u (s, t) 

for sufficiently smooth initial and loading conditions) involves

hen 

 (s, t) ∼ ˆ u 0 (s, t) ; I c 1 [ u ](s, t) ∼ I c 1 [ ̂  u 0 ](s, t) ; I c ε [ u ](s, t) ∼ I c ε [ ̂  u 0 ](s, t)

.2. Analytical solution of the TN PC model 

In order to prove the perfect matching of the TN PC with the

eneric discrete model at the microscopic time and space scales

 ω 

−1 | ∼ ω 

−1 ∗ and | λ−1 | ∼ a, one can analytically solve the IBVP in

36) with (40) and compare their main features. For this, the IBVP

s again first projected into the LT variable space. Consecutively,
5 It was notably pinpointed in Charlotte and Truskinovsky (2012) for an un- 

ounded monatomic chain and a step loading f ( s, t ), that the new displacement 

eld ˆ u 0 (s, t) allows to capture the main ‘macroscopic’ phenomenon, while the orig- 

nal displacement field u ( s, t ) brings additional lattice scale oscillations generated 

y the ‘memory’ kernel in (50c) . One may say in other words that the displace- 

ent deviation ˆ u 0 (s, t) − u (s, t) = ω 

−2 
∗ D 2 t u (s, t) measures some kind of thermal vi- 

ration property. That latter one calls for an adequate thermodynamic interpreta- 

ion – what goes however beyond the author’s goal and current understanding –

ut that may possibly be like the mean displacement magnitude-temperature one 

uggested by Green and Naghdi (1991, 1993) . 
olving the LT of the elastodynamic operator of the equation model

n (36) for u ( s, ω) with the Green function method, provides then 

 (s, ω) = 

∫ 
S\{ 0 ,L } 

G (s, ̂  s , ω) 

[
f ( ̂  s , ω) 

ρ
+ D 

2 
t u ( ̂  s , ω) 

]
d ̂  s 

a 

+ 

∑ 

p∈{ 0 ,N} 
G (s, pa, ω) 

[ 
f p (ω) 

ρ
+ D 

2 
t u (pa, ω) 

] 
. (51) 

hus the general solution of the TN problem in (36) reads as fol-

ows 

 (s, t) = 

∫ 
S\{ 0 ,L } 

[ ∫ t 

0 

G (s, ̂  s , t − ˆ t ) 
f ( ̂  s , ̂  t ) 

ρ
d ̂ t 

+ D t ̂
 G (s, ̂  s , t) u 

o ( ̂  s ) + ̂

 G (s, ̂  s , t) v o ( ̂  s ) 
] 

d ̂  s 

a 

×
∑ 

p∈{ 0 ,N} 

[ ∫ t 

0 

G (s, pa, t − ˆ t ) 
f p ( ̂ t ) 

ρ
d ̂ t 

+ D t ̂
 G (s, pa, t) u 

o (pa ) + ̂

 G (s, pa, t) v o (pa ) 
] 

(52) 

ith the interpolating Green’s functions ̂ G (s, ̂  s , t) and G (s, ̂  s , t) in-

roduced in (27) and (28) . 

One can immediately infer then that the dynamic solution u ( s,

 ) in (52) corresponds to the following continuous interpolation of

he discrete solution u (t) = { u k (t) } k ∈N in (26) , with u ( ka, t ) ≡ u k ( t )

or k ∈ N , 

 (s, t) = 

∑ 

j∈N 

[ ∫ t 

0 

G (s, ja, t − ˆ t ) 
f j ( ̂ t ) 

ρ
d ̂ t 

+ D t ̂
 G (s, ja, t) u 

o 
j + ̂

 G (s, ja, t) v o j 
] 

(53) 

f the data are interpolated as in Eq. (38) with the singular weight

unctions (while taking into account the properties of the spatial

irac’s generalized function δ( s ) in (39) 

k,q (η) = (1 − δk, 0 − δk,N ) δ(η − k ) , 

for (q, k, η) ∈ { 0 , 1 , 2 } × N × [0 , N] . (54) 

ctually that choice of weight functions even ensures the following

quivalences for the total forces for t ∈ ω 

−1 ∗ R 

 

S\{ 0 ,L } 
f (s, t) ds + a 

∑ 

p∈{ 0 ,N} 
f p (t) ≡ a 

∑ 

k ∈N 
f k (t) , (55a)

 

S\{ 0 ,L } 
ρD 

2 
t u (s, t) ds + a 

∑ 

p∈{ 0 ,N} 
ρD 

2 
t u p (t) ≡ a 

∑ 

k ∈N 
ρD 

2 
t u k (t) . (55b)

Moreover, the following classical continuum expressions of gen-

ralized and regular works 

 

c 
g [ f, u ](t) 

def = lim 

ε↘ 0 
P 

c 
r ( f ε , u 

ε , t) , for lim 

ε↘ 0 
( f ε , u 

ε ) = ( f, u ) (56a) 

 

c 
r [ f, u ](t) 

def = 

∫ t 

0 

[ ∫ 
S\{ 0 ,L } 

f (s, ̌t ) ˙ u (s, ̌t ) ds 

+ 

∑ 

p∈{ 0 ,N} 
a f p ( ̌t ) ˙ u (pa, ̌t ) 

] 
d ̌t (56b) 

P 

c 
init [ ρD 

2 
t u, u ](t) 

def = H(t) ρ
{ ∫ 

S\{ 0 ,L } 
[
v o (s ) ˙ u (s, 0 

+ ) 

− u 

o (s ) ü (s, 0 

+ ) 
]

ds 

+ a 
∑ 

s ∈{ 0 ,L } 

[
v o (s ) ˙ u (s, 0 

+ ) − u 

o (s ) ü (s, 0 

+ ) 
]} 

(56c) 



Fig. 6. The normalized responses u / u ref of the TN PC model for t ∈ [0, T ∗] and N = L/a = 4 , for impact in (b) ( with u ref = p̄ / 2 ρc) and for initial displacements in (a) ( with 

u ref = ū ). The white lines superposed on the TN interpolating field u ( s, t ) represent the displacements u ( t ) of the chain of particles . 
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also become equivalent to their discrete counterparts P[ f , u ](t)

and P init [ ρD 

2 
t u , u ](t) expressed in (C.9) and (13) . Notably, we have

P 

c 
g [ f, u ](t) ≡ P 

c 
r [ f, u ](t) , while P 

c 
init 

[ ρD 

2 
t u, u ](t) ≡ P 

c 
r [ ρD 

2 
t u, u ](t)

in absence of impact at the initial time. It is worth mentioning that

this perfect interpolating fit for a chain with an arbitrary number

of atoms (see Charlotte and Truskinovsky, 2012 for the unbounded

case) can also be proven for IBVP cases involving Dirichlet’s bound-

ary conditions as well. 

Finally, the dynamic motions described by the continuous dis-

placement field u ( s, t ) in (53) can be illustrated with the same rhe-

ologic tests of impact and release used for the discrete model in

Section 2.2 , what yields for the impact case 

u (s, t) = [ G (s, L, t) − G (s, 0 , t)] 
p̄ 

ρa 
(57)

while for the release case 

u (s, t) = ū D t [ ̂  G (s, L, t) − ̂ G (s, 0 , t)] ≡ ū [ ̇ ̂ G (s, L, t) − ˙ ̂ G (s, 0 , t)] . (58)

Fig. 6 shows the displacement field ratio 2 ρcu/ ̄p (for the impact

case) and u/ ̄u (for the release case) over the pseudo-period of

time T ∗ of the atomic displacements u ( t ) that was introduced in

(35) . The displacements u ( t ) of the particles are also superposed

as white lines on the displacement field u ( s, t ). 

4. Relations between the normal stress and the discrete 

interaction loads 

As already mentioned in the introduction, giving a definition

of the local stress in a molecular material is a hot topic in mul-

tiscale or hybrid (particle-continuum) modeling where a key issue

involves the smooth transfer of information between the discrete

model and the continuum one. It is therefore of practical inter-

est to investigate if the stress field I ε [ u ]( s, t ) in (40b) has a simple

atomistic normal stress interpretation in terms of the material inter-

nal forces . This section shows that Newtonian inertial terms (in the

sense of D’Alembert) play a relevant role into this interpretation. 

Indeed, this interpretation can be obtained by relating the com-

plex stress field I ε [ u ]( s, ω) in (43) to the LT of the interpolating

solution field u ( s, t ) in (53) 

u (s, ω) = 

∑ 

j∈N 

[ 
G (s, ja, ω ) 

f j (ω ) 

ρ
+ 

˙ G (s, ja, ω) u 

o 
j + G (s, ja, ω) v o j 

] 
. 

(59)

Standard trigonometric relations provide then for any s ∈ ]0, L [ and

s p 
def = pa ∈ a N 
 ε [ u ](s −, ω) − α
u (s, ω) − u (s − a, ω) 

a 
+ 

ρa 

2 

ω 

2 u (s, ω) 

= ω ∗a 

N−1 ∑ 

p=1 

[
f p (ω) + ρ D 

2 
t u p (ω ) 

]
iω θ (s p+1 − s, ω ) ;

 ε [ u ](s + , ω) − α
u (s + a, ω) − u (s, ω) 

a 
− ρa 

2 

ω 

2 u (s, ω) 

= ω ∗a 

N−1 ∑ 

p=1 

[
f p (ω) + ρ D 

2 
t u p (ω ) 

]
iω θ (s p−1 − s, ω ) . 

he foregoing relations involve notably the spectral kernel 

(s, ω) 
def = −1 

[0 ,a [ 
(s ) 

sin (λo s ) 

iωω ∗ sin (λo a ) 
(60)

here 1 
�
(s ) denotes the indicator function of the set �. The in-

erse LT of θ ( s, ω) corresponds to the ensuing weight function

ith support in [0 , a ] × ω 

−1 ∗ R 

+ 

(s, t) = −1 
[ 0 ,a [ 

(s ) 
s H(t) 

ω ∗a 

×

⎡ ⎣ 1 − sinc 

(
πs 

a 

)∫ ∞ 

ω ∗

ω ∗ cosh ( s 

 + 

) cos (ωt) 

ω 

2 

√ 

ω 2 

ω 2 ∗
− 1 

dω 

⎤ ⎦ (61a)

≡ 1 
[ 0 ,a [ 

(s ) 
H(t) 

π

⎡ ⎣ cos 

(
πs 

a 

)∫ ∞ 

ω ∗

sinh ( s 

 + 

) sin (ω r t) 

ω 

2 
r 

√ 

ω 2 r 

ω 2 ∗
− 1 

dω r 

−
∫ ω ∗

0 

sin ( s 

 −

) sin (ω r t) 

ω 

2 
r 

√ 

1 − ω 2 r 

ω 2 ∗

dω r 

⎤ ⎦ , (61b)

otably by virtue of the Cauchy-Goursat’s theorem on a closed con-
our integral paths for ω ∈ ω ∗C \ C with  m ( ω) > 0, the Jordan’s
emma on an infinite upper semicircle with | ω / ω ∗| � 1, and the
ollowing path integral identity for s ∈ [0, a [ and t > 0 

 = 

∫ i 0 + + ∞ 

i 0 + −∞ 

−θ (s, λ) e 
iωt 

dω, for s ∈ [0 , a [ and t > 0 

≡
∫ ∞ 

ω ∗

sin (πs/a ) cosh (s/
 + ) cos (ω r t) − cos (πs/a ) sinh (s/
 + ) sin (ω r t) 

ω 

2 
r 

√ 

ω 2 r 

ω 2 ∗
− 1 

dω r 

+ 

∫ ω ∗
0 

sin (s/
 −) sin (ω r t) 

ω 

2 
r 

√ 

1 − ω 2 r 

ω 2 ∗

dω r − πs 

ω ∗a 
. 

The transient allures of the dimensionless causal function ω ∗θ ( s,

 ) is depicted on Fig. 7 on its space-time support [0 , a ] × ω 

−1 ∗ R 

+ .



Fig. 7. The dimensionless weight function ω ∗θ ( s, t ) for (s, t) ∈ [0 , a ] × ω 

−1 
∗ R 
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t appears that θ ( s, t ) is continuous and continuously differentiable

ith respect to the time variable t; θ ( s, t ) is although discontinu-

us with respect to the space variable at s = a so that both ω ∗θ ( s,

 ) and D t θ (s, t) ≡ ˙ θ (s, t) vanish at any lattice site s ∈ a N for all

 ∈ ω 

−1 ∗ R . One can also observe that these dimensionless causal

unctions tend towards the following long time limits as ω ∗t be-

omes large 

 ∗θ (s, + ∞ ) = −1 
[ 0 ,a [ 

(s ) 
s 

a 
and 

˙ θ (s, + ∞ ) = 0 , (62)

o that ω ∗| θ (s, + ∞ ) | measures the fraction of the segment [0,

 ] over the reference lattice distance a , similarly to Hardy’s bond

unction ( Hardy, 1982 ). 

Now, in time space, the normal stress values I ε [ u ]( s 
±, t ) at

(s, t) ∈ ]0 , L [ ×ω 

−1 ∗ R 

+ are given by 

 ε [ u ](s −, t) = αH(t) 
u (s, t) − u (s − a, t) 

a 
+ 

ρa 

2 

D 

2 
t [H( t) u ( s, t)] 

+ ω ∗a 

N−1 ∑ 

p=1 

{ ∫ t 

0 

f p (t − ˆ t ) D ˆ t θ (s p+1 − s, ̂  t ) d ̂ t 

+ ρ
[
u 

o 
p D 

2 
t θ (s p+1 − s, t) + v o p D t θ (s p+1 − s, t) 

]} 
;

(63a) 

 ε [ u ](s + , t) = αH(t) 
u (s + a, t) − u (s, t) 

a 
− ρa 

2 

D 

2 
t [H( t) u ( s, t)] 

+ ω ∗a 

N−1 ∑ 

p=1 

{ ∫ t 

0 

f p (t − ˆ t ) D ˆ t θ (s p−1 − s, ̂  t ) d ̂ t 

+ ρ
[
u 

o 
p D 

2 
t θ (s p−1 − s, t) + v o p D t θ (s p−1 − s, t) 

]} 
. 

(63b) 

Alternatively, in order to see how each atom contributes to

hat continuum stress at a fixed spatial-time position at (s, t) ∈
0 , L [ ×ω 

−1 ∗ R 

+ one can also combine the Newton’s dynamical

quations in (11a) with the equivalence u ( s k , t ) ≡ u k ( t ) for (k, t) ∈
 × ω 

−1 ∗ R and fully express then I ε [ u ]( s 
±, t ) in terms of the inter-

olating displacement field u ( s, t ) like 
I ε [ u ](s −, t) = αH(t ) 
u (s, t ) − u (s − a, t) 

a 
+ 

ρa 

2 

D 

2 
t [H(t ) u (s, t)] 

+ ρω ∗a 

N−1 ∑ 

p=1 

D 

2 
t 

∫ t 

0 

u (s p , t − ˆ t ) D ˆ t θ (s p+1 − s, ̂  t ) d ̂ t 

− αω ∗
a 

N−1 ∑ 

p=1 

∫ t 

0 

[
u (s p+1 , t − ˆ t ) + u (s p−1 , t − ˆ t ) − 2 u (s p , t − ˆ t ) 

]
× D ˆ t θ (s p+1 − s, ̂  t ) d ̂ t ; (64a) 

I ε [ u ](s + , t) = αH(t ) 
u (s + a, t) − u (s, t) 

a 
− ρa 

2 

D 

2 
t [H(t ) u (s, t)] 

+ ρω ∗a 

N−1 ∑ 

p=1 

D 

2 
t 

∫ t 

0 

u (s p , t − ˆ t ) D ˆ t θ (s p−1 − s, ̂  t ) d ̂ t 

− αω ∗
a 

N−1 ∑ 

p=1 

∫ t 

0 

[
u (s p+1 , t − ˆ t ) + u (s p−1 , t − ˆ t ) − 2 u (s p , t − ˆ t ) 

]
× D ˆ t θ (s p−1 − s, ̂  t ) d ̂ t . (64b) 

One observes here then that the time integrals involve a specific

verage of both the inertial and elastic interaction forces when the

tress I ε [ u ]( s, t ) is evaluated at non-material continuum points s ∈
 \ (a N ) . These integrals vanish with D t θ at the lattice sites s ∈ a N 

o that the prior relations are simpler at the inner lattice sites 

I ε [ u ](s −
k 
, t) = −αH(t) 

u (s k , t) − u (s k −1 , t) 

a 

− ρa 

2 

D 

2 
t [H(t) u (s k , t)] , for k ∈ N \ { 0 } (65a) 

 ε [ u ](s + 
k 
, t) = αH(t) 

u (s k +1 , t) − u (s k , t) 

a 

− ρa 

2 

D 

2 
t [H(t) u (s k , t)] , for k ∈ N \ { N} (65b) 

r again by using notably the Newton’s equations in (10) while

 ( s k , t ) ≡ u k ( t ) for k ∈ N 

I ε [ u ](s −
k 
, t) = −α H(t) 

[
u (s k +1 , t) − u (s k , t) 

2 a 

+ 

u (s k , t) − u (s k −1 , t) 

2 a 

]
− a 

2 

[
f k (t) + ρ D 

2 
t u k (t) 

]
, for k ∈ N \ { 0 }; (66a) 

 ε [ u ](s + 
k 
, t) = α H(t) 

[
u (s k +1 , t) − u (s k , t) 

2 a 
+ 

u ( s k , t) − u (s k −1 , t) 

2 a 

]
− a 

2 

[
f k (t) + ρ D 

2 
t u k (t) 

]
, for k ∈ N \ { N} . (66b)

All these equivalent (material law) expressions have in fact

ne meaningful interpretation, which extends the Cauchy’s classi-

al mechanics concept of internal traction force resultant (or vec-

or) that acts on any material interface in a way that somewhat

iffers from Cheung and Yip (1991) and Tsai’s atomic-level me-

hanical stress ones ( Tsai, 1979 ) but agrees with other deductions

egarding the traction forces in a cell of two half-particles con-

ected by a massless bond (see Slepyan 2002 , page 88). Indeed,

I ε [ u ](s −
k 
, t) (respectively I ε [ u ](s + 

k 
, t) ) can be interpreted from Eqs.

65) as a generalisation of the internal traction force resultant (vec- 

or) that is exerted by the material points with labels p ≤ k (resp. p

k ) onto the (Euler-Bernoulli’s) cut plane that permanently splits

he k th moving atom into two equal masses ρa /2 (as illustrated in

ig. 8 ), unlike the fixed spatial/geometric dividing surface used by



Fig. 8. Interpretation of the inertial contribution ∓ ρa 
2 

D 2 t u (s k , t) into the normal stress σ (s ±
k 
, t) 

def = I ε [ u ](s ±
k 
, t) at the atomic level. This schemas also suggests with dashed 

lines next-nearest neighbor elastic interactions ( NNNI ) ( with two types of spring constants α1 ≡ α and α2 ), which were treated in quasistatics in Charlotte (2001) ; Charlotte 

and Truskinovsky (20 02, 20 08) . For the NNNI monatomic case, the cut section at s k undergoes the loads of one spring constant α1 and two spring constants α2 , which 

must balanced with the appropriate normal cohesive force ∓σ (s ±
k 
, t) and inertial loads ∓ ρa 

2 
D 2 t u (s k , t) accordingly with D’Alembert’s principle. That stress notion agrees with 

Cauchy’s and Saint-Venant’s original definition for stress vector (or traction) if formulated as in Ref. ( Timoshenko, 1983 ). 
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Gibbs (1928) , Tsai (1979) , Cheung and Yip (1991) . Here while the

splitting plane moves with the particle displacement u k ( t ) in la-

grangian description, each equation in (65) merely expresses in ab-

sence of spatially concentrated external forces af k the dynamic bal-

ance for one of the two neighboring solids with mass ρa /2, while

more generally the ensuing standard jump relations for the trac-

tion forces on the internal interfaces arise 

I ε [ u ](s + 
k 
, t) − I ε [ u ](s −

k 
, t) ≡ −a 

[
f k (t) + ρ D 

2 
t u k (t) 

]
(67)

for (s k , t) = (ka, t) ∈ a (N \ { 0 , N} ) × ω 

−1 ∗ R . Actually, the jump re-

lation in (67) can also be extended to the particles at the chain

ends s 0 = 0 and s N = Na = L as suggested by Eqs. (46) and (47) .

This interpretation and the boundary conditions with surface in-

ertial pressures in (47) suggest a slight analogy with Zwanzig’s

mechanical modeling of atom/solid-surface inelastic scattering

( Zwanzig, 1960 ), as well as ( Adelman and Doll, 1974, 1976 ), and

Mori’s works ( Mori, 1965 ) on the generalized Langevin equations

(see also ( Tadmor and E., 20 07, 20 08; Español, 1996 )). In his work,

Zwanzig assumes that only the outer atom of the chain inter-

acts directly with the impinging particle of gasand then derives

an equation of motion for the scattering process which does not

explicitly include the coordinates of the remaining atoms of the

chain. In the TC PC description, such interactions are considered to

occur with the outer half-masses of the chain. 

It is lately worth emphasizing before concluding that all the re-

lations that were previously given for the particle in the chain bulk

domain also hold for the infinite domain case N = Z analyzed in

Charlotte and Truskinovsky (2012) (as well as at the free moving

atoms of a finite chain submitted to Dirichlet boundary conditions).

Ratios like 

−I ε [ ̂  u ](s −
k 
, ω) 

iω ̂

 u (s k , ω) 
and 

I ε [ ̂  u ](s + 
k −1 

, ω) 

iω ̂

 u (s k −1 , ω) 

that are computed with Eq. (65) and traveling monochromatic

waves like ˆ u (s k , t) ∼ e 
±i [ ω t±λ0 (ω ) s k ] are analogs of the characteris-

tic (mechanical) impedances used by Brillouin and Parodi’s one

( Brillouin and Parodi, 1956 , chap. 5, sec. 22, page 86) in their re-

flectionless interfacial conditions. Eqs. (46) , (47) and (65) outline

however a more comprehensive way for linking continuum local

stress field notions with interaction forces in the lattice models. 
. Concluding remarks and perspectives 

The construction of enriched continuum models from molecu-

ar dynamics models, possibly for a coupling or a substitution, re-

uires dealing with the terms of inertia and stiffness, length scales

nd time intrinsic structures and finally adopting the most rel-

vant ingredients. At the same time, it seems of practical inter-

st that these continuum models exhibit some relationships with

he molecular forces and the concept of stress at the atomic level.

he twofold objective of this study (as an extension to the work

n Charlotte and Truskinovsky (2012) ) was therefore to construct

uch an enriched continuum model whose solutions provide an

xact interpolation of a finite lattice model dynamics, with an in-

erpretation of the discrete atomistic forces and deformation into

ontinuum (normal) stress and (normal) strain fields maintaining

he physical effects of the atomistic system. This pseudocontin-

um achievement was obtained by focusing on a simple nonlocal-

ty and a dispersion relation, while excluding the effects of nonlin-

arity and inter-particle collision but by allowing however concen-

rate and impact loads. The geometric and structural complexity

f the problem was also minimized by focusing on the simplest

D chain with nearest neighbor interactions. A dynamic mechan-

cal analysis was used then to exhibit a pseudocontinuum model

ith a bounded domain, nontrivial inertia and hereditary elasticity

temporally nonlocal or TN PC model), which accomplishes an ex-

ct interpolation of the prototypical discrete model. This extends so

he framework of continuum mechanics to the spatial and tempo-

al scales where the behavior of a crystal lattice is highly discrete

nd those describing the geometry and loading are comparable to

heir internal counterparts and dictated by the lattice/granular sys-

em itself. 

Interestingly, the unusual non-Newtonian inertia of the TN PC

odel (see Section 3 ) can also be understood in the framework of

 meta-material paradigm ( Milton and Willis, 2007; Willis, 1981;

illis and Suquet, 1997 ) which presumes that a “visible” contin-

um particle carries a variety of internal degrees of freedom rep-

esenting locally non-affine (non Cauchy-Born) dynamic responses.

he hereditary/memory structure of the TN PC elasticity can be

inked to the “structural attenuation” ( Brillouin and Parodi, 1956 )

nvolving energy redistributions between macroscopic to micro-

copic degrees of freedom. In this sense, the non-classical inertia

nd the hereditary/memory structure of elasticity are the means

f adequate continuum representation of high frequency vibrations
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f the lattice without introducing temperature (see also Adelman

nd Doll, 1974, 1976; Karpov et al., 2007; Mauricio and Velasco,

984; Park et al., 2005; Park and Liu, 2004; Tadmor and Miller,

011; Tadmor and E., 2007, 2008; Tang et al., 2006 ). This allows the

resence of a classical inertial contribution (in the sense of

’Alembert, in a lagrangian description) into the simple atom-

stic definition of the TN PC normal stress component like

n (65) . This inertial contribution appears to be in agreement

ith the continuum definition of stress that is stated solely in

erms of the forces acting between different parts of the body

 Timoshenko, 1983 ). This interpretation differs from the kinetic

irial stress model ( Admal and Tadmor, 2010 ) inspired by Clausius’

ork ( Clausius, 1870 ), which has led to controversy in the past

 Zhou, 2003 ). However, as suggested by the more complex formu-

as in (64) outside of the lattice sites a N , the continuum govern-

ng equations of motion involving such a stress field must be asso-

iated with non-trivial inertial forces instead of the usual Newto-

ian one −ρD 

2 
t u as shown in Section 3 . It should not be overlooked

hat the involved time derivative corresponds to the material one.

lthough this interpretation seems to be new, similar discrete for-

ulas as the one in (65) had already been conjectured by Cheung

nd Yip (1991) for the Cauchy’s stress term as a correction of Tsai’s

riginal ideas ( Tsai, 1979 ). Nevertheless, in spite of their numerical

roof for a model system of bcc iron, Cheung and Yip’s heuristic

ormulation appeared with an analytical derivation and embedded

 number of oddities according to ( Zimmerman et al., 2002 , Chap.

,Sec.4.2 ), like in fact the misleading use of a momentum trans-

ort across a spatial/geometric description of Gibbs’ dividing surface

 i.e. the Euler-Bernoulli’s cut-plane) instead of a material one that is

ied to a half-mass moving particle. 

Extensions of this atomistic definition may be useful for the

ultiscale modeling of material behavior which combines both

attice system with simple microstructures and continuum de-

criptions in the development of constitutive relations at differ-

nt scales to link the MD and continuum descriptions. Albeit

he atomistic definition may be easily adapted, the unquestion-

ble complexity of the derivation techniques of the TN equa-

ions makes it hardly practicable outside some particularly sim-

le one-dimensional dynamic situations. The extension of the pro-

osed model towards including interactions beyond nearest neigh-

ors seems to be straightforward in view of the results obtained

n Charlotte (2001) ; Charlotte and Truskinovsky (20 02, 20 08) and

ill require adding appropriate internal variables equipped with

heir own temporal and spatial non-locality. Similar derivations

or non-simple lattices and periodic material systems, represent-

ng Cosserat’s media ( Suiker and de Borst, 2005; Suiker et al.,

001 ) or granular metamaterials, and for which the use nonlo-

al spatial, multifield theories ( Il’iushina, 1969 ; see also the vari-

us contributions in Kroner, 1968 ) become necessary to describe

he fine micro-structural behaviors, are currently under investiga-

ion. Nevertheless, the present derivation techniques are obviously

ess straightforward to implement in higher dimensions and for

nisotropic structures. So it should be addressed in a phenomeno-

ogical way, by considering the main singular spectral features of

he discrete models. As a simple solution, the enrichment may be

imited to the domain boundary. The benefits of such a localized

nrichment will be illustrated in a forthcoming communication for

he D’Alembert’s string/rod model. 

ppendix A. The model Green function 

This section provides the explicit expressions of the continu-

us kernel G (s, ̂  s , t) introduced in (28) with some of its proper-

ies. The formulas notably involve two length scales 
 −(ω) (for ω ∈
 −ω ∗, ω ∗] ) and 
 + (ω) (for ω ∈ ω ∗R \ [ −ω ∗, ω ∗] ) introduced in Eqs.

24a) and (24b) to describe respectively the properties of wave-
ispersion and wave-attenuation ( Brillouin and Parodi, 1956; Char-

otte and Truskinovsky, 2012 ) with respect to the wave frequencies.

A simple application of the Cauchy’s theorem of residues over

he reduced complex domain ω ∗C \ C provides 

 (s, ̂  s , t) − G 

K 
(s, ̂  s , t) ≡ 4 H(t) 

πω 

2 ∗

∫ ∞ 

ω ∗
sin (ω r t) 

×
[ 

sin ( π | s − ˆ s | 
a 

) sinh ( L −| s − ˆ s | + a 

 + 

) 

sinh ( a 

 + 

) sinh ( L + a 

 + 

) 

−
sin ( π(s + ̂ s ) 

a 
) sinh ( L −s − ˆ s 


 + 
) 

sinh ( a 

 + 

) sinh ( L + a 

 + 

) 

] 

dω r . (A.1) 

his result involves the following kernel 

 

K 
(s, ̂  s , t) 

def = 

H(t) 

N + 1 

{ 
t + 

N ∑ 

p=1 

sin (ω p t) 

ω p 

[ 
cos (λo,p (L − | s − ˆ s | + a )) 

cos ((L + a ) λo,p ) 

+ 

cos (λo,p (L − s − ˆ s )) 

cos ((L + a ) λo,p ) 

] } 
, (A.2a) 

hich can also be read as the following trigonometric polynomials

 

K 
(s, ̂  s , t) ≡ H(t) 

N + 1 

∑ 

p∈N 
(2 − δp, 0 ) F p (s ) F p ( ̂  s ) t sinc (ω p t/π ) 

(A.2b) 

ith 

inc (η) 
def = 

sin (πη) 

πη
, for η ∈ R (A.3) 

hile 

o,p 
def = 

pπ

L + a 
, ω p 

def = ω ∗ sin (λo,p a/ 2) and F p (s ) 

def = cos 
(
λo,p (s + a/ 2) 

)
, for p ∈ N . (A.4) 

ere F p (s ) represents spatially-periodic “monochromatic wave”

unction of deformation whose the wavelength λ−1 
o,p can also be

elated to the angular modal frequency ω p in (A.4) like λ−1 
o,p ≡

 λo (−ω p )] −1 ≡ 
 −(ω p ) . Each couple (ω p , F p 
def = {F p (ka ) } k ∈N ) (for

p ∈ N ) notably represents a normal mode of vibration satisfying the

omogeneous self-adjoint Eigen-value problem of the lattice dy-

amic problem considered in Section 2 

ρ ω 

2 
p F p (ka ) = 

α

a 2 

{[
F p (ka + a ) − F p (ka ) 

]
(1 − δk,N ) 

+ 

[
F p (ka − a ) − F p (ka ) 

]
(1 − δk, 0 ) 

}
, for k ∈ N . 

he equivalence in (A.2b) , that more specifically requires 

cos ((L − | s − ˆ s | + a ) λo,p ) + cos ((L − s − ˆ s ) λo,p ) 

cos ((L + a ) λo,p ) 

≡ 2 cos ((s + a/ 2) λo,p ) cos (( ̂  s + a/ 2) λo,p ) 

or any couple (s, ̂  s ) ∈ a R 

2 , holds because for any λ ∈ a −1 C 

 cos ((s + a/ 2) λ) cos (( ̂  s + a/ 2) λ) ≡ cos ((s − ˆ s ) λ) + cos ((s + 

ˆ s + 

nd then for any (L + a ) λ ∈ πZ 

sin ((L + a ) λ) = 0 

cos ((s − ˆ s ) λ) + cos ((s + 

ˆ s + a ) λ) 

≡ cos ((L − | s − ˆ s | + a ) λ) + cos ((L − s − ˆ s ) λ) 

cos ((L + a ) λ) 
. 

t is worth mentioning that mathematically, for the state space

ormed by the discrete displacements u (t) = { u (t) } k ∈N and mo-

enta ρD t u (t) ≡ ρ ˙ u (t) = { ρ ˙ u (t) } k ∈N of our discrete system of N



Fig. A-9. Decompositions of the impact (top) and release (bottom) test responses for t ∈ [0, T ∗] and N = L/a = 4 : interpolations of the (N + 1) -atomic displacements u ( t ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

1  

D

×

D

D

D

T  

−  

T

 

atoms, the set { F p } p∈N forms a complete set of orthonormal basis

states with respect to some scalar products so that all “physical

observables” such like the discrete displacements u (t) = { u (t) } k ∈N 
and momenta ρD t u (t) ≡ ρ ˙ u (t) = { ρ ˙ u (t) } k ∈N , and the total me-

chanical Hamiltonian energy of the chain can be expressed. These

eigenstates can also be associated with pseudocontinuum Hamil-

tonian representations (with specific field restrictions), what will

be expanded in subsequent articles. Here their contributions in

G 

K 
and D t G 

K 
as well as the damping fluctuations G − G 

K 
and

Dt[ G − G 

K 
] are illustrated in Fig. A-9 for the impact and release re-

sponses u ( s, t ) presented in Fig. 6 and also again for convenience

in Figs. A-9 (b) and A-9 (e). The additional effects that TN PC tries

to account for, introduce the non-conservative contributions in the

physical observables such like the displacements (and measurable

quantities such like) stress and works. Without the attenuation

part in the expression of the impulse response (or Greens func-

tion) of the TN PC, the part associated to propagating waves can

be related to a spatially-nonlocal Hamiltonian model, with how-

ever some modifications for the definition of the material domain

(topology and elasticity). 

Appendix B. Derivation of the TN equations 

That section derives the IBVP that satisfies the symmetric inter-

polating kernel G (s, ̂  s , t) ≡ G ( ̂ s , s, t) and that lead to the appropri-

ate expressions for I 1 [ · ]( s, t ), I ε [ · ]( s, t ) and I surf 
p [ ·](s, t) . Indeed

it raises that, in addition to Eqs. (19a) and (20) , the expression of

G (s, ̂  s , ω) ≡ G ( ̂ s , s, ω) in Eq. (21) also satisfies 

−α
sin 

(
λo (ω) a 

)
λo (ω) a 

[
D 

2 
s G (s, ̂  s , ω) + λ2 

o (ω) G (s, ̂  s , ω) 
]

= ρaδ(s − ˆ s ) , for (s, ̂  s ) ∈ (a R ) 2 (B.1a)

with at the extremities of the domain S subjected to Robin’s

boundary conditions 
sin 

(
λo (ω) a 

)
λo (ω) a 

D s G (s, ̂  s , ω) = 

ρaω 

2 

2 

G (s, ̂  s , ω) , for s = 0 

− < 

ˆ s ∈ S 

(B.1b)

α
sin 

(
λo (ω) a 

)
λo (ω) a 

D s G (s, ̂  s , ω) = −ρaω 

2 

2 

G (s, ̂  s , ω) , 

for s = L + > 

ˆ s ∈ S. (B.1c)

These relations are notably obtained by using cos 
(
λo (ω) a 

)
=

 − 2 
ω 

2 

ω 

2 ∗
and ρω 

2 ∗ a 2 = 4 α and the following formulas for (s, ̂  s ) ∈
(a R ) × (a R \ { s } ) 

 s G (s, ̂  s , ω) = −ρa 2 λo (ω) 

2 α

sgn (s − ˆ s ) sin 

(
λo (ω)(L − | s − ˆ s | + a ) 

)
+ sin 

(
λo (ω)(L − s − ˆ s ) 

)
sin 

(
λo (ω) a 

)
sin 

(
λo (ω)(L + a ) 

)
 s G (s, s + , ω) = D s G (s, s −, ω ) + 

ρa 2 λo (ω ) 

α sin 

(
λo (ω ) a 

)
 s G ( ̂  s + , ̂  s , ω) = D s G ( ̂  s −, ̂  s , ω ) − ρa 2 λo (ω ) 

α sin 

(
λo (ω ) a 

)
 

2 
s G (s, ̂  s , ω) = −ρa 2 

α

λo (ω) 

sin 

(
λo (ω) a 

)δ(s − ˆ s ) − λ2 
o (ω ) G (s, ̂  s , ω ) . 

he properties in (B.1) for G (s, ̂  s , ω) (while ω ∈ ω ∗C with  m (ω) <

ω̌ b ≤ 0 ) specify in LT spectral analysis terms that the BVP for the

N PC must be settled with 

I 1 [ G ](s, ̂  s , ω) 
def = −α

sin 

(
λo (ω) a 

)
λo (ω) a 

λ2 
o (ω) G (s, ̂  s , ω) , 

for (s, ̂  s ) ∈ ]0 , L [ ×S (B.2a)
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 ε [ G ](s, ̂  s , ω) 
def = α

sin 

(
λo (ω) a 

)
λo (ω) a 

D s G (s, ̂  s , ω) , for (s, ̂  s ) ∈ ]0 , L [ ×S 

(B.2b) 

 

surf 
p [ G ](s, ̂  s , ω ) 

def = −ρaω 

2 

2 

G (s, ̂  s , ω ) , for (s, ̂  s ) ∈ { 0 , L } × S. 

(B.2c) 

Hence, according to that dynamical mechanical analysis, the

nsatz formulated in Eq. (36) must involve a bulk integro-

ifferential governing equation like 

I 1 [ G ](s, ̂  s , t) − D s I ε [ G ](s, ̂  s , t) = ρ a δ(s − ˆ s ) δ+ (t) , 

for (s, ̂  s , t) ∈ (a R ) 2 × ω 

−1 
∗ R , (B.3a) 

pre-initial conditions like 

 (s, ̂  s , t) = 0 , for (s, ̂  s , t) ∈ (a R ) 2 × ω 

−1 
∗ R 

− (B.3b)

nd naturally, but nontrivially, Robin-like boundary conditions 

 

surf 
p [ G ](0 , 0 , t) − I ε [ G ](0 

+ , 0 , t) = ρ a δ+ (t) , (B.3c) 

 

surf 
p [ G ](L, L, t) + I ε [ G ](L −, L, t) = ρ a δ+ (t) , (B.3d) 

hile for ( ̂ s , t) ∈ (S \ { 0 , L } ) × ω 

−1 ∗ R 

 

surf 
p [ G ](0 , ̂  s , t) ≡ I ε [ G ](0 

−, ̂  s , t) ≡ I ε [ G ](0 , ̂  s , t) (B.3e) 

 

surf 
p [ G ](L, ̂  s , t) ≡ −I ε [ G ](L + , ̂  s , t) ≡ −I ε [ G ](L, ̂  s , t) . (B.3f) 

Finally, the identifications in (B.2) can now be expressed explic-

tly in time-variable for u , based notably on the linearity of the

roblem model in (36) . 

ppendix C. Energy of the atomic chain under impacts 

This section provides the expression for the work done by the

elated generalized load in (4) 

f (t) = f r (t) + f i (t ) with f r (t ) = 

{
˜ f k (t) 

}
k ∈N , 

f i (t) = 

{ ∑ 

t p ∈T I [ f k ](t) 

p̄ k (t) δ+ (t − t p ) 
} 

k ∈N 
(C.1) 

n the continuous displacements u in (26) . Using the regularizing

imit process described in (8) with 

f εk (t) = a ̃  f k (t) + 

∑ 

t p ∈T I [ f k ](t) 

p̄ k (t p ) 
H(t − t p ) − H(t − t p − ε) 

ε
(C.2)

o that 

im 

↘ 0 
a f εk (t) ≡ a f k (t) = a ̃  f k (t) + 

∑ 

t p ∈T I [ f k ](t) 

p̄ k (t p ) δ+ (t − t p ) , (C.3)

e get indeed then for the displacements as given by the generic

xpression in (26) 

 

ε
k (t) = 

∑ 

j∈N 

[ ∫ t 

0 

G (ka, ja, t − ˆ t ) 
f ε

j 
( ̂ t ) 

ρ
d ̂ t + D t ̂

 G (ka, ja, t) u 

o 
j 

+ 

̂ G (ka, ja, t) v o j 
] 

(C.4) 

or (k, t) ∈ N × ω 

−1 ∗ R . This expression can be simplified succes-

ively as follows 
 

ε
k (t) = 

∑ 

j∈N 

[ ∫ t 

0 

G (ka, ja, t − ˆ t ) 
a ̃  f j ( ̂ t ) 

ρ
d ̂ t + 

˙ ̂ G (ka, ja, t) u 

o 
j 

+ 

̂ G (ka, ja, t) v o j 
] 

+ 

∑ 

j∈N 

∫ t 

0 

G (ka, ja, t − ˆ t ) 

×
[ ∑ 

t p ∈T I [ f k ]( ̂ t ) 

p̄ j (t p ) 

ρ

H( ̂ t − t p ) − H( ̂ t − t p − ε) 

ε

] 
d ̂ t 

= 

∑ 

j∈N 

[ ∫ t 

0 

G (ka, ja, t − ˆ t ) 
a ̃  f j ( ̂ t ) 

ρ
d ̂ t + 

˙ ̂ G (ka, ja, t) u 

o 
j 

+ 

̂ G (ka, ja, t) v o j 
] 

+ 

∑ 

( j,t p ) ∈N×T I [ f k ](t) 

p̄ j (t p ) 

ρ

[ 
H(t − t p ) 

ε

∫ t 

t p 

G (ka, ja, t − ˆ t ) d ̂ t 

−H(t − t p − ε) 

ε

∫ t 

t p + ε
G (ka, ja, t − ˆ t ) d ̂ t 

] 
= 

∑ 

j∈N 

[ ∫ t 

0 

G (ka, ja, t − ˆ t ) 
a ̃  f j ( ̂ t ) 

ρ
d ̂ t + 

˙ ̂ G (ka, ja, t) u 

o 
j 

+ 

̂ G (ka, ja, t) v o j 
] 

+ 

∑ 

( j,t p ) ∈N×T I [ f k ](t) 

p̄ j (t p ) 

ρ

[ 
H(t − t p ) − H(t − t p − ε) 

ε

×
∫ t 

t p 

G (ka, ja, t − ˆ t ) d ̂ t 

+ 

H(t − t p − ε) 

ε

∫ t p + ε

t p 

G (ka, ja, t − ˆ t ) d ̂ t 

] 
(C.5) 

hat last formulas giving consecutively the velocity for t > 0 

˙ 
 

ε
k (t) = 

∑ 

j∈N 

[ ∫ t 

0 

˙ G (ka, ja, t − ˆ t ) 
a ̃  f j ( ̂ t ) 

ρ
d ̂ t 

+ 

¨̂
 G (ka, ja, t) u 

o 
j + 

˙ ̂ G (ka, ja, t) v o j 
] 

+ 

∑ 

( j,t p ) ∈N×T I [ f k ](t) 

p̄ j (t p ) 

ρ

[ 
H(t − t p ) − H(t − t p − ε) 

ε

×
∫ t 

t p 

˙ G (ka, ja, t − ˆ t ) d ̂ t 

+ 

H(t − t p − ε) 

ε

∫ t p + ε

t p 

˙ G (ka, ja, t − ˆ t ) d ̂ t 

] 
(C.6) 

wing to the properties of the kernels G ( ·, ·, t ) and 

̂ G (·, ·, t) for

 ∈ ω ∗R and their derivatives. As important features, both the dis-

lacement u 

ε ( t ) for t ≥ 0 and the related velocity ˙ u 

ε (t) for t > 0

re continuous. Moreover, as ε ↘ 0 + , their components converge

niformly respectively towards the following continuous displace-

ent function for t ≥ 0 

 k (t) = 

∑ 

j∈N 

[ ∫ t 

0 

G (ka, ja, t − ˆ t ) 
a ̃  f j ( ̂ t ) 

ρ
d ̂ t 

+ 

∑ 

t p ∈T I [ f k ](t) 

p̄ j (t p ) 

ρ
G (ka, ja, t − t p ) 

+ 

˙ ̂ G (ka, ja, t) u 

o 
j + ̂

 G (ka, ja, t) v o j 
] 

(C.7) 
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L  
and the related continuous velocity for t > 0 

˙ u k (t) = 

∑ 

j∈N 

[ ∫ t 

0 

˙ G (ka, ja, t − ˆ t ) 
a ̃  f j ( ̂ t ) 

ρ
d ̂ t 

+ 

∑ 

t p ∈T I [ f k ](t) 

p̄ j (t p ) 

ρ
˙ G (ka, ja, t − t p ) 

+ 

¨̂
 G (ka, ja, t) u 

o 
j + 

˙ ̂ G (ka, ja, t) v o j 
] 
. (C.8)

Performing the regularized computational limit process for the ex-

ternal work 

P g [ f , u ](t) 
def = lim 

ε↘ 0 
P r [ f 

ε , u 

ε](t) with P r [ f 
ε , u 

ε](t) 

def = 

∫ t 

0 

∑ 

k ∈N 
a f εk ( ̌t ) ˙ u 

ε
k ( ̌t ) d ̌t 

gives successively 

P g [ f , u ](t) ≡ lim 

ε↘ 0 

∫ t 

0 

∑ 

k ∈N 

[ 
a ̃  f k ( ̌t ) 

+ 

∑ 

t p ∈T I [ f k ]( ̌t ) 
p̄ k (t p ) 

H( ̌t − t p ) − H( ̌t − t p − ε) 

ε

] 
˙ u 

ε
k ( ̌t ) d ̌t 

≡ P g [ f 
r , u ](t) + P g [ f 

i , u ](t) (C.9)

where obviously 

P g [ f 
r , u ](t) = lim 

ε↘ 0 
P r [ ̃  f , u 

ε](t) ≡ lim 

ε↘ 0 

∫ t 

0 

∑ 

k ∈N 
a ̃  f k ( ̌t ) ˙ u 

ε
k ( ̌t ) d ̌t 

while 

P g [ f 
i , u ](t) = lim 

ε↘ 0 

∑ 

(k,t p ) ∈N×T I [ f k ](t) 

p̄ k (t p ) 
[ 

H(t − t p ) 

ε

∫ t 

t p 

˙ u 

ε
k ( ̌t ) d ̌t 

− H(t − t p − ε) 

ε

∫ t 

t p + ε
˙ u 

ε
k ( ̌t ) d ̌t 

] 
≡ lim 

ε↘ 0 

∑ 

(k,t p ) ∈N×T I [ f k ](t) 

p̄ k (t p ) 
[ 

H(t − t p ) − H(t − t p − ε) 

ε

∫ t 

t p 

˙ u 

ε
k ( ̌t ) d ̌t

+ 

H(t − t p − ε) 

ε

∫ t p + ε

t p 

˙ u 

ε
k ( ̌t ) d ̌t 

] 
≡

∑ 

(k,t p ) ∈N×T I [ f k ](t) 

p̄ k (t p ) lim 

ε↘ 0 

{ 
H(t − t p ) − H(t − t p − ε) 

ε

×
[
u 

ε
k (t) − u 

ε
k (t p ) 

]
+ H(t − t p − ε) 

[u 

ε
k 
(t p + ε) − u 

ε
k 
(t p ) 

ε

]} 
. 

According to Schwartz’ distribution theory ( Schwartz, 1966, 1983 ),

both the convergence of the continuous functions u ε
k 
(t) and ˙ u ε

k 
(t)

towards their respective continuous limit u k ( t ) and piecewise-

continuous limit ˙ u k (t) justifies then the simplified final (and regu-

lar distribution) expressions for the work P g [ f , u ](t) in (C.9) with

P g [ f 
i , u ](t) = 

∑ 

(k,t p ) ∈N×T I [ f k ](t) 

p̄ k (t p )H(t − t p ) ˙ u k (t + p ) (C.10a)

P g [ f 
r , u ](t) ≡

∫ t 

0 

∑ 

k ∈N 
a ̃  f k ( ̌t ) ˙ u k ( ̌t ) d ̌t ≡ P r [ f 

r , u ](t) . (C.10b)

To conclude let us also mentioned that one can obtain the

same result with the interpolating TN PC solution proposed in

Subsection 3.2 with Dirac’s interpolation kernels. 
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