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A Fuzzy Constraint-based Approach to Data Reconciliation in

Material Flow Analysis

Didier Duboisa∗, Hélène Fargiera, Mëıssa Ababoub Dominique Guyonnetb

a IRIT, CNRS & Université de Toulouse, France
b BRGM-ENAG, Orléans, France

Data reconciliation consists in modifying noisy or unreliable data in order to make
them consistent with a mathematical model (herein a material flow network). The con-
ventional approach relies on least squares minimization. Here, we use a fuzzy-set-based
approach, replacing Gaussian likelihood functions by fuzzy intervals, and a leximin
criterion. We show that the setting of fuzzy sets provides a generalized approach to
the choice of estimated values, that is more flexible and less dependent on oftentimes
debatable probabilistic justifications. It potentially encompasses interval-based formu-
lations and the least squares method, by choosing appropriate membership functions
and aggregation operations. This paper also lays bare the fact that data reconciliation
under the fuzzy set approach is viewed as an information fusion problem, as opposed
to the statistical tradition which solves an estimation problem.

Keywords: Material flow analysis, data reconciliation, least squares, fuzzy
constraints

1. Introduction

Material flow analysis (MFA) consists in calculating the quantities of a certain prod-
uct transiting within a defined system made up of a network of local entities referred
to as processes, considering input and output flows and including the presence of
material stocks. This method was developed in the sixties to study the metabolism
of urban systems, like (Wolman 1965) for water networks. A material flow system
is defined by a number of related processes. Material conservation is the basis of
material flow analysis: constraints are typically related to conservation laws such as
steady-state material, energy and component balance. In material flow analysis, the
unknowns to be determined are the values of the flows and stocks at each process.
These flows and stocks must be balanced, through a set of linear equations. The
basic principle that provides constraints on the flows is that what goes into a process
must come out, up to the variations of stock. This is translated into mass-balance
equations relative to a process with n flows in, k flows out and a stock level s is
written:
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n∑
i=1

INi =
k∑
j=1

OUTj + ∆s (1)

where ∆s is the amount of stock variation (positive if
∑k

j=1OUTj <
∑n

i=1 INi and
negative otherwise).

Such flow balancing equations in a process network define a linear system of the
form Ayt = B, y being the vector of N flows and stock variations. In order to
evaluate balanced flows and stocks, data are collected regarding the material flow
transiting the network and missing flow or stock variation values are calculated. But
this task may face two opposite kinds of difficulties:

• There may not be sufficient information to determine all the missing flows or
stock variations.
• There may be on the contrary too much information available and the system

of balance equations is incompatible with the available data. This is because
the available information is often not sufficiently reliable.

In this paper we address the second case. If the data are in conflict with the mass-
balance equations, it may be because they are erroneous and should be corrected:
this is the problem of data reconciliation, a well-known problem in science as early
as the end of the 18th century when this question was addressed using the method
of least squares. The idea was to find solutions to a system of linear equations
as close as possible to measured values according to the Euclidean distance. The
same method is still used today, but the justification is statistical and usually based
on the Central Limit Theorem, the use of Gaussian functions and the principle of
maximum likelihood.

Data reconciliation has been defined as “a technique to optimally adjust mea-
sured process data so that they are consistent with known constraints” by Kelly
(2004). According to Crowe (1996), such adjustment consists in a “constrained
minimization problem that is usually one of constrained least squares”; see also
(Narasimhan and Jordache 2000). Ayres and Kneese (1969) extended the appli-
cation of MFA to national economies while Baccini and Brunner (1991) used it to
study the metabolism of the anthroposphere, i.e., that portion of the environment
that is made or modified by humans for use in human activities and human habi-
tats. Material flow analysis has become an important tool in the field of industrial
ecology, e.g. (Frosch and Gallopoulos 1989). More recently, researchers have applied
MFA to study the global flows and stocks of metals, e.g., Graedel et al. (2004), Bon-
nin et al. (2013). Some have generalized material flow analysis to several periods
of time via a dynamic approach (Bai et al. 2006). Data reconciliation software are
now available such as STAN (Brunner and Rechberger 2004) or BILCO (Durance
et al. 2004).

In this paper, we examine the limitations of the classical approach and propose
an alternative one that takes into account data uncertainty more explicitly, using
intervals or fuzzy intervals 1. Under this view, imprecise data are considered as (flex-
ible) constraints, to the same extent as balance equations, contrary to the statistical
methodology that considers the former as random variables. Under this approach,
the problem can then be solved using crisp or fuzzy linear programming. The idea

1A short preliminary version of this paper (Dubois et al. 2013) was presented at the EUSFLAT conference

in Milano, September 2013.



of using fuzzy intervals to address data reconciliation problems can be traced back
to a paper by Kikuchi (2000) in connection with traffic modeling, and has not been
much used in MFA since then, one exception being life cycle inventory analysis (Tan
et al. 2007). The aim of this paper is:

• To better position the least square approach in a historical perspective ques-
tioning its usual justifications in the MFA context.
• To motivate the need to reconciliation methods different from the least square

approach in this context.
• To present and improve the fuzzy interval approach to data reconciliation.
• To outline a general framework based on fuzzy intervals for the derivation

of precise estimates, that encompasses the least squares estimate as a special
case.
• To show that the problems addressed by the statistical and fuzzy approaches

are fundamentally different despite the fact that the computed estimates in
each approach are special cases of a more general setting.

The paper is organized as follows: in Section 2, we recall the formulation of the
material flow problem and its least squares solution. We question the appropri-
ateness of the statistical justification of this technique in the data reconciliation
problem. Section 3 assumes imprecise data are modelled by means of intervals, and
presents the interval reconciliation problem where model constraints and imprecise
data are handled as crisp constraints. Section 4 extends the interval-based recon-
ciliation method to fuzzy intervals. Section 5 provides simple examples where the
specificity of the fuzzy data reconciliation problem can be highlighted. Section 6
describes the application of the proposed methodology to an example inspired by
a real case of copper flow analysis. Finally, in Section 7, we compare the statistical
and the fuzzy approaches both on the issue of estimating plausible flow values and
on that of computing the resulting uncertainty on the flow values. The appendix
recalls definitions pertaining to the modelling of uncertain data by fuzzy sets.

2. Data reconciliation via least squares: a discussion

As recalled above, data reconciliation in the MFA context consists in modifying
measured or estimated quantities in order to balance the mass flows in a given
network. We denote by y the vector of flows and stocks and subdivide it into two sub-
vectors x and u, i.e., k informed quantities xi and N −k totally unknown quantities
uj , to be determined. We denote by x̂ the vector of available measurements x̂i. In
this paper we focus on the case when the system A(xu)t = B has no solution such
that x = x̂. This absence of solution is assumed to be due to measurement errors or
information defects. The problem to be solved is to modify x, while remaining as
close as possible to x̂, so that the mass balance equations A(xu)t = B are satisfied.

2.1. The least squares approach

The traditional approach to data reconciliation (Narasimhan and Jordache 2000)
considers that data come from measurements, and measurement errors follow a
Gaussian distribution with zero average and a diagonal covariance matrix. The
precision of each measurement x̂i, understood as a mean value, is characterized by
its standard deviation σi. Data reconciliation is then formulated as a problem of
quadratic optimization under linear constraints. In the simplest case, assuming no



variables u (that is, some piece of information is available for all flows and stocks):

Find x minimizing
k∑
i=1

wi(xi − x̂i)2

such that Axt = b

The solution is known to be of the form (Narasimhan and Jordache 2000):

x∗ = x̂−W−1At(AW−1At)−1A(x̂− b),

where W is a diagonal matrix containing terms 1/wi. Weights are often of the form
wi = (σi)−2. It is the method of weighted least squares used to reconcile data in
several material flow analysis tools such as STAN (Brunner and Rechberger 2004)
or BILCO (Durance et al. 2004).

Such packages sometimes also reconcile variances as explained in (Narasimhan and
Jordache 2000). It assumes that the vector of estimated values x̂ has a multivariate
normal distribution characterized, by a covariance matrix C generalizing W , whose
diagonal contains the variances σ2

i . The balance flows being linear, the reconciled
values x∗ depend on the estimated values via a linear transformation, say x∗ = Bx̂
- hence, the x∗ also have a normal distribution and the covariance matrix of x∗ is
of the form C∗ = BCBt.

2.2. Limitations of the approach

The method of least squares is often justified based on the principle of maximum
likelihood, applied to normal distributions. The shape of the latter is in turn justi-
fied by the Central Limit Theorem (CLT). If pi is the probability density function
associated with error εi = xi − x̂i, the maximum likelihood is calculated on the
function L(x) =

∏k
i=1 pi(xi − x̂i). If the pi’s are normal with mean 0 and standard

deviation σi, then pi(xi − x̂i) is proportional to e
− (xi−x̂i)

2

σ2
i . As a consequence, the

maximum of L(x) coincides with the solution to the least squares method. The
Gaussian assumption seems to be made because of the popularity of Gauss’ law.
The universal character of this approach, albeit reasonable in certain situations, is
nevertheless dubious:

• It is not consistent with the history of statistics (Stigler 1990). The least
squares method, developed by Legendre (1805) and Gauss (end of 18th cen-
tury), was discovered prior to the CLT, and the normal law was found in-
dependently. Invented precisely to solve a problem of data reconciliation in
astronomy, the least squares method sounded natural since it was in accor-
dance with the Euclidean distance. Moreover, it led to solutions that could be
calculated analytically and it could justify the use of the intuitively appealing
average in the estimation of quantities based on several independent measures.
The normal law was discovered by Gauss as the only error function compatible
with the average estimator. However, the CLT is a mathematical result ob-
tained independently by Laplace, who later on made the connection between
his mathematical result and the least squares method, based on Gauss finding.
• The CLT presupposes a statistical process with a finite mean value E and

standard deviation σ. In this case, the average of n random variables vi has
standard deviation σ/

√
n and the distribution of the variable

Pn
i=1 vi−nE√

n
is

asymptotically Gaussian as n increases. The fundamental hypothesis behind

4



the normal distribution is the existence of a finite σ. In practice, this implies
that for N observations ai of v, the empirical variance msd =

2
P
i<j(ai−aj)2
N(N−1)

remains bounded as N increases. This assumption is neither always true nor
easily verifiable; but it is obviously true if the measured quantity is bounded
from below and from above due to physical constraints (but then its distribu-
tion is not Gaussian, strictly speaking - even if it is often approximated by a
Gaussian function).

• The Gaussian hypothesis is only valid in the case of an unbounded random
variable. If vi is positive or bounded, assuming that the quantity En =

Pn
i=1 vi
n

assymptotically follows a normal distribution with standard deviation σ/
√
n

is an approximation that may be useful in practice but does not constitute a
general principle.

Based on the remarks above, it is natural to look for alternative methods for rec-
onciling data that do not come from the repetitive use of a single measurement
process. Indeed, in the reconciliation problem, we rather face the case of having
single assessments of many quantities, rather than many measurements of a single
quantity. Given the fact that these assessments are not assumed to come from phys-
ical sensors (they may come from documents or experts), and that actual values are
not independent since related via balance equations, applying some kind of ergod-
icity that would justify the classical estimation method makes little sense here. In
fact, other probabilistic techniques can be envisaged when the Gaussian assump-
tion does not apply. For instance, Gottschalk et al. (2010) use a Bayesian approach
to represent uncertain data, in the form of various distributions (e.g. the uniform
one in case of total uncertainty within limits); they apply Monte-Carlo methods to
solve the reconciliation problem. Alhaj-Dibo et al. (2008) propose a mixture of two
Gaussians to account for noise and gross errors in a separate way, which enable the
latter to be coped with in the reconciliation process.

An alternative, more straightforward approach consists in representing error-
tainted data by means of intervals and checking the compatibility between these
intervals and the material flow model. This is quite different from the standard sta-
tistical approach, where the least squares solution is taken for granted and variance
reconciliation is the result of a kind of probabilistic sensitivity analysis around it.

3. Interval reconciliation

In practice, information on mass flows is seldom precise: the data-gathering process
often relies on subjective expert knowledge or on scarce measurements published in
various documents that moreover might be obsolete. Or the flow information deals
with various products grouped together. Each flow value provided by a source can
thus be more safely represented, as a gross approximation, by an interval X̂i that
can be considered as encompassing the actual flow value: of course, the less precise
the available information, the wider the interval. Missing values ui can also be taken
into account: we then select as its attached interval the domain of possible values of
the corresponding parameter (for example, the unknown grade of an ore extracted
from a mine and sent to the treatment plant can, by default, be represented by the
interval [0,100]%). In the weighted least squares approach to data reconciliation,
weights reflect the assumed variance of a Gaussian phenomenon; if such information
on variances σ2

i is available, we can set X̂i = [x̂i−3σi, x̂i+3σi] as a realistic interval
containing xi. This choice captures 99.74% of the normal distribution. Actually,



the distribution of xi is often assumed to be Gaussian for practical reasons, even
when the actual parameter is known to be positive or bounded due to physical
constraints. Thus, knowledge about each of the N variables yi of the vector y = xu
can be approximately modelled by an interval Ŷi. In this setting, there is clearly
a uniform treatment of balance equations and data pertaining to measured or non
measured flow values.

The representation of flow data by intervals leads us to consider the reconciliation
as a problem of constraint satisfaction; the mass balance equations must be satisfied
for flux and stock values that lie within the specified intervals - or, to be more
precise, we can restrain these intervals to the sole values that are compatible with
the balancing model, given the feasibility ranges of other variables in the form of
intervals. Formally, the reconciliation problem can be expressed as follows:

For each i = 1, . . . N , find the smallest and largest values for yi, such that:

Ayt = B

yi ∈ Ŷi, i = 1, . . . , N

The calculation of consistent minimum and maximum values of yi is sufficient: since
all the equations are linear, we can show that if there exist two flow vectors y and
y′, each being a solution to the above system of equations, then any vector v lying
between y and y′ componentwise is a solution of the system of equations Ayt = B.

The problem can of course be solved using linear programming. Due to the linear-
ity of the constraints, it may also be solved by methods based on interval propagation
(Benhamou et al. 2000). For each variable yi, equation j of the system Ayt = B
can be expressed as

yi =

∑
k 6=i bj − ajkyk

aji
, i = 1, . . . , N.

We can then project this constraint on yi and find the possible values of yi consistent
with it. Due to the m linear constraints, the values of yi can be restricted to lie in
the interval:

Yi = Ŷi ∩ (∩j=1...,m

∑
k 6=i bj − ajkŶk

aji
),

where
P
k 6=i bj−ajkŶk

aji
is calculated according to the laws of interval arithmetic (Jaulin

et al. 2001); if the new interval of possible values of yi has become more precise
(Yi ⊂ Ŷi), it is in turn propagated to the other variables. This procedure, known
as “arc consistency”, is iterated until intervals are stabilized; when there are no
disjunctive constraints, it converges within a finite number of steps to a unique set
of intervals (Lhomme 1993) (for additional details, see (Benhamou et al. 2000;
Granvilliers and Benhamou 2006)). This approach has actually been applied to
reconciliation problems in the area of measurement in the early 2000’s (Ragot and
Maquin 2004; Ragot et al. 2005). Again, contrary to the statistical approach, the
model constraints and the imprecise data are handled on a par, the latter being
viewed as unary constraints.



4. Fuzzy interval reconciliation

The interval approach of Section 3 does not yield the same type of answer as the
least squares method because it provides intervals rather than precise values. Such
intervals may look similar to reconciled variances provided by current software for
MFA and data reconciliation like STAN (Brunner and Rechberger 2004) (but as
we shall see later, this comparison is misleading).

A natural way to obtain both reconciled values and intervals is to enrich the
representation of the information pertaining to flow estimates using the notion of
fuzzy interval: the more-or-less possible values of each flow or stock yi will be limited
by a fuzzy interval Ỹi. For some of these quantities, these constraints will be satisfied
to a certain degree, rather than simply either satisfied or violated. In practice, it
means that for each informed quantity, not only an interval should be provided,
but also a plausible value (or a shorter interval thereof). Such information can be
modelled by means of a triangular or trapezoidal fuzzy interval. See the appendix, for
an introductory discussion of fuzzy intervals as representing incomplete information,
and the basic definitions used in this section.

The problem of searching for a possible solution then becomes an optimization
problem - we seek an optimal value within all the (fuzzy) intervals of possible ones.
If no solution provides entire satisfaction for all intervals, some of them will be
relaxed if necessary (Dubois et al. 1996).

4.1. The max-min setting

In this approach, the linear equations describing the material flow for each process
are considered as integrity constraints that must necessarily be satisfied, but the
information relative to possible values of each flow or stock quantity yi is now
represented in the form of a fuzzy interval Ỹi, understood as a possibility distribution
πi that expresses a flexible unary constraint. This fuzzy interval may coincide with
the domain of the quantity, in the case of total ignorance.

An assignment y for all yi is feasible, provided it satisfies all the constraints. In
other words, the degree of plausibility of an assignment y = xu can be obtained by
a conjunctive aggregation of the local satisfaction degrees. The simplest approach
is to use the minimum as the standard fuzzy conjunction, following the pioneering
paper of Bellman and Zadeh (1970). It has the merit of being insensitive to possible
dependencies between the involved fuzzily assessed quantities.

The corresponding optimization problem for determining a most plausible esti-
mate was already formulated some years ago by Kikuchi (2000): Find y∗ that
maximizes

πmin(y) =
N

min
i=1

πi(yi) where Ayt = B (2)

with Ayt = B. Let α∗ = minNi=1 πi(y
∗
i ) be the maximal plausibility value and y∗ an

optimal solution. The value α∗ can be interpreted as the degree of consistency of
the flexible constraint problem. This implies that we cannot hope for a plausibility
value α > α∗, since there will be no simultaneous choice of the yi in the α-cuts of Ỹi
that will form a consistent vector in the sense of the network defined by Ayt = B,
whereas there exists at least one consistent assignment of flows y∗ at level α∗. This
approach was in fact already used in an algorithm for tuning the cutting parameters
of machine-tools, based on expert preference, under crisp constraints pertaining to



the production rate (Dubois 1987).
Note that, contrary to what examples in the paper by Kikuchi (2000) may suggest,

there may exist several solutions y∗ that achieve a global level of satisfaction α∗.
Once α∗ is known, we can indeed assign to each flow an interval of optimal values
(Ỹi)α∗ = {yi : πi(yi) ≥ α∗} by solving for each yi the following interval reconciliation
problem: Find the minimum (resp. maximum) values of yi such that Ayt = B and:

πj(yj) ≥ α∗, j = 1, . . . , N.

Rather than providing the user with one amongst several optimal solutions, it is
often more informative to have reconciled flows in the form of fuzzy intervals Ỹ ∗i
obtained by projection of πmin on the domain of each yi:

∀v ∈ S(Ỹi), µỸ ∗i (v) = max
y s.t. yi=v and Ayt=B

N
min
j=1

πj(yj)

The supports of the fuzzy intervals Ỹ ∗i containing the yi’s can be obtained if we
use the supports of the Ỹi in the procedure of the previous section. This mathe-
matical program contains on the one hand the mass flow model Ayt = B which,
as seen previously, is linear; moreover we force the yi’s to belong to the supports
[si, si], i = 1, . . . N of the fuzzy intervals Ỹi’s. Finding the fuzzy reconciled flows Ỹ ∗i
provides both plausible ranges and uncertainty around them. These fuzzy domains
are subnormalized if α∗ < 1 : they all have heights hi = supyi π

∗
i (yi) = α∗ and at

least one of them contains a single value y∗i , while the α∗-cuts of others are intervals
of optimal values.

The fuzzy reconciliation method fails to deliver a solution if α∗ = 0. In that case,
we may consider that the data are inconsistent with the material flow model, and
we must either re-assess the validity of data items (deleting some of them considered
unreliable, or relaxing the tolerance distributions) or revise the material flow model.
The possibility of this occurrence contrasts with the least squares method which
always provides a solution. But this solution may yield values far away from the
original estimates in case the data is strongly conflicting with the balance equations.
It will correspond to a very low likelihood value in the Gaussian interpretation.
While the possible failure of the fuzzy constraint-based reconciliation method may
be regarded as a drawback, one may on the contrary see it as a virtue as it is capable
of warning the user when an inconsistency occurs without having to prescribe an
arbitrary likelihood global threshold on the [0, 1] scale.

4.2. Resolution methods

From a technical standpoint, the fuzzy interval reconciliation problem can be solved
using three alternative approaches:

4.2.1. Using a fuzzy interval propagation algorithm

As in the crisp case, fuzzy intervals of possible values Ỹi can be improved by pro-
jecting the fuzzy domains of other variables over the domain of yi via the balancing
equations:

Ỹ ′i = Ỹi ∩ (∩j=1...,m

∑
k 6=i bj − ajkỸk

aji
),



where
P
k 6=i bj−ajkỸk

aji
is a fuzzy interval Ãj that can be easily obtained by means

of fuzzy interval arithmetics (Dubois et al. 2000) since equations are lin-
ear. Expressions such as Ỹi ∩ (∩j=1...,mÃj) have possibility distribution π′i =
min(πi,minj=1...,m πÃj ).

The propagation algorithm iterates these updates by propagating the new fuzzy
intervals on all the neighboring yi’s, until their domains no longer evolve. This
procedure presupposes efficient fuzzy interval representation schemes must be used.
Typically we should use piecewise linear fuzzy intervals (Steyaert et al. 1995) includ-
ing subnormalized ones. Eventually, the optimal (maximally precise) fuzzy intervals
Ỹi
∗

(fuzzy domains of the reconciled flows defined in the previous subsection) are
obtained with heights not greater than α∗. Indeed, fuzzy arithmetic methods ap-
plied to fuzzy intervals of various heights only preserve the least height (Dubois et
al. 2000).

4.2.2. Using α-cuts

In order to take advantage of the calculation power of modern linear programming
packages, a simple solution is to proceed by dichotomy on the α-cuts of the fuzzy
intervals: once each Ỹi is cut at a given level α, we obtain a system of equations as in
Section 3, replacing Ŷi by the interval (Ỹi)α; this system can therefore be solved by
calling an efficient linear programming solver. If the solver finds a solution, the level
α is increased; if not, i.e., if it detects an inconsistency in the system of equations,
the value α is decreased, etc. until the maximum value α∗ is obtained with sufficient
precision, along with the corresponding intervals (Ỹi

∗
)α∗ .

4.2.3. Using fuzzy linear programming

When the fuzzy intervals are triangular or trapezoidal (or even homothetic, as in
the case of L-R fuzzy numbers), it is possible to write a (classical) linear program
in order to obtain the value of α∗, then obtain the optimal ranges (Ỹi)α∗ ’s for
the reconciled flows. It is necessary to model the fact that the global degree of
plausibility of the optimal reconciled values is the least among the local degrees
of possibility, i.e., we should maximize a value less than all the πi(yi), hence we
should write N constraints α ≤ πi(yi), i = 1, . . . , N (a trick as old as (Zimmermann
1978)). When the original fuzzy intervals are triangular with core ŷi and support
[si, si], each constraint is written in the form of two linear inequalities, one for each
side of the fuzzy intervals, as already proposed in (Kikuchi 2000; Tan et al. 2007).
All these equations being linear, we can then use a linear solver to maximize the
value α such that:

Ayt = B

si ≤ yi ≤ si, i = 1, . . . , N

α(ŷi − si) ≤ yi − si, i = 1, . . . , N

α(si − ŷi) ≤ si − yi, i = 1, . . . , N

The same type of modeling yields the inf and sup limits of the α∗-cuts for the recon-
ciled intervals Ỹ ∗i (maximizing and minimizing yi, letting α = α∗ in the constraints
above). By virtue of the linearity of the system of equations and of the membership
functions, we can reconstruct the reconciled Ỹ ∗i up to possibility level α∗ by linear
interpolation between the cores and the optimal supports obtained by deleting the



third and fourth constraints in the above program (although the reconciled fuzzy
intervals might only be piecewise linear).

Among the three approaches, the latter based on fuzzy linear programming looks
like the most convenient one.

4.3. Iterating the optimisation process

It is possible (and recommended) to iterate the method and update again some
of the fuzzy ranges Ỹi

∗
. Namely, one may refine the optimal intervals (Ỹi

∗
)α∗ not

reduced to a single value yet, and obtain more precise plausible estimates. The
idea, described in (Dubois and Fortemps 1999), is that, while some intervals (Ỹi)α∗
reduce to singletons {y∗i } that can be considered as fully determined flows, other
intervals (Ỹi)α∗ obtained after the previous optimization step can be further reduced
to precise values as well.

Namely, let V1 = {i : (Ỹi
∗
)α∗ = y∗i } be the indices of parameters whose values are

fixed by considering α∗-cuts. This set is not empty for otherwise, since the fuzzy
sets Ỹi are of triangular shape, one could still raise the level α∗ without creating an
inconsistency, which by assumption is not the case as α∗ is maximal. So, we define
a second optimization problem, where we assign their optimal values y∗i to flows
yi ∈ V1, and leave other values free in their original fuzzy ranges. We thus solve the
following partially instantiated program: maximize the value β such that

Ayt = B

si ≤ yi ≤ si, i 6∈ V1

yi = y∗i , i ∈ V1

β(ŷi − si) ≤ yi − si, i 6∈ V1

β(si − ŷi) ≤ si − yi, i 6∈ V1

β ≥ α∗

Then we get a new optimal value β∗ > α∗ that pertains to flows not in V1. Indeed,
there are several possible values yi ∈ (Ỹi

∗
)α∗ , when i 6∈ V1, and the new optimisation

problem tends to select the ones that have higher membership grades inside (Ỹi
∗
)α∗∩

Ỹi. We thus get narrower optimal ranges Y 2
i ⊆ (Ỹi

∗
)α∗ ∩ (Ỹi)β∗ , i 6∈ V1 some of which

(forming a subset V2 of flows) again reduce to singletons. So, at this second step we
have instantiated a set V2 ∪ V1 of variables. We can iterate this procedure until all
variables yi are instantiated, at various levels of optimal possibility α∗i , i = 1, . . . k,,
with α∗k > α∗k−1 > · · · > α∗2 = β∗ > α∗1 = α∗. Eventually, it delivers for each variable
yi a 4-tuple (si, si, y∗i , α

∗
j ), assuming a precise value y∗i was found at step j. It can be

approximated by a triangular fuzzy interval Ỹ ∗∗i such that [si, si] is its support as
well as the support of Ỹi

∗
(found in the first pass), y∗i is its core, and α∗i its height,

that is, precise reconciled values along with their maximal range of possible values
around them2.

The plausible estimates obtained at the end of this recursive procedure
are Pareto-optimal in the sense of the vector-maximisation of the vectors
(π1(y1), . . . πN (yN )), and leximin-optimal for the maximisation. Namely, there does
not exist another tuple of values y such that πi(yi) ≥ πi(y∗i ),∀i = 1, . . . , N ,

2In fact we also possess all cuts (Ỹi
∗
)α` , ` < j.



and (π1(y1), . . . πN (yN )) 6= (π1(y∗1), . . . πN (y∗N )), on the one hand, and
moreover, (π1(y∗1), . . . πN (y∗N )) is maximal for the leximin order defined by
(a1, . . . , aN ) ≥lmin (b1, . . . , bN ) if and only if (aσ(1), . . . , aσ(N)) is lexicographically
greater than (bτ(1), . . . , bτ(N)) 3 where (aσ(1), . . . , aσ(N)), and (bτ(1), . . . , bτ(N))
are the two vectors reshuffled in the increasing order: aσ(1) ≤ · · · ≤ aσ(N), and
bτ(1) ≤ · · · ≤ bτ(N) (see (Dubois and Fortemps 1999) for details on the leximin
order in the setting of max-min optimisation).

5. Some examples

We present simple examples in order to compare the statistical and fuzzy ap-
proaches.

5.1. One-process case

We consider the example illustrated in Figure 1, which is composed of four flows
(y1, y2, y3, y4) and one process (P1). Flows y1 and y2 enter the process, while y3

and y4 exit the process. There are no stocks. In this example we have symmetric
triangular fuzzy intervals Ỹ1 = 24± 2, Ỹ2 = 16± 3, Ỹ3 = 15± 4, Ỹ4 = 22± 5.

With the fuzzy interval approach, the calculation of α∗ using linear programming
is obtained by solving the following linear problem: Maximize α such that:

y1 + y2 = y3 + y4

22 ≤ y1 ≤ 26

α · (26− 24) ≤ 26− y1

α · (24− 22) ≤ y1 − 22

13 ≤ y2 ≤ 19

α · (19− 16) ≤ 19− y2

α · (16− 13) ≤ y2 − 13

11 ≤ y3 ≤ 19

α · (19− 15) ≤ 19− y3

α · (15− 11) ≤ y3 − 11

17 ≤ y4 ≤ 27

α · (27− 22) ≤ 27− y4

α · (22− 17) ≤ y4 − 17

The results obtained using the two methods (least squares and fuzzy interval
reconciliation) are provided in Table 1. We note that the alpha-cuts of the fuzzy
intervals at level α∗ after propagation are singletons (no need for a second pass) and
that the maximum distance between the initial and reconciled values is smaller in the

3That is, there exists an index k, such that aσ(i) = bτ(i),∀i < k, and aσ(k) > bτ(k).
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Figure 1. Example 1: one process with 4 flows

y1 y2 y3 y4
Least squares method

Original data 24± 0.67 16± 1 15± 1.33 22± 1.67
Reconciliated values and S.D’s 23.8± 0.54 15.5± 0.91 15, 9± 1.12 23.4± 1.22

Fuzzy set method
Original fuzzy intervals (22, 24, 26) (13, 16, 19) (11, 15, 19) (17, 22, 27)

α∗ : 11
14

Reconciliated values 23 + 4/7 15 + 5/14 15 + 6/7 23 + 1/14
Reconciliated supports [22, 26] [13, 19] [11, 19] [17, 27]

Table 1. Reconciliated flows for Example 1

Figure 2. Example 2: two processes with 4 flows

case of the fuzzy method than with the least squares method, which is expected since
the aim of the max-min approach is precisely to minimize the largest deviation from
initial values. Moreover, in this example the reconciled supports are left unchanged
by the reconciliation procedure.

5.2. Two-process example

We consider the example in Figure 2, composed of four flows (y1, y2, y3, y4) and two
processes (P1 and P2). Flows y1 and y2 both enter process P1; y3 exits P1 to enter
P2, two flows exit P2: y4 and y2, while the latter is recycled into P1. In this example
Ỹ1 = 20± 3, Ỹ2 = 10± 2, Ỹ3 ∈ 28± 4, Ỹ4 = 16± 3.

For the approach using fuzzy intervals, the calculation of α∗ by linear program-
ming is obtained by solving a system of equations similar to that of the previous
case. We obtain α∗ = 1/3. We can also obtain this value by calculating the height
of Ỹ1 ∩ Ỹ4. Indicated in Table 2 are the cuts at level 1/3 and the supports of the
reconciled fuzzy intervals. We note that reconciled values obtained by least squares
are at the center of the supports of the reconciled intervals obtained using the fuzzy
interval method.

However, it is possible to refine the remaining intervals. If we retain the infor-
mation y∗1 = y∗4 = 18 and run the fuzzy interval propagation procedure again, we
verify that the intersection Ỹ2∩(Ỹ3−18) has a height of unity, obtained for y2 = 10.
We can also fix y3 = 28 considering Ỹ3 ∩ (Ỹ2 + 18). We can therefore verify that
π1(18) = π4(18) = 1/3, π2(10) = π3(28) = 1 and therefore that the least squares

12
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y1 y2 y3 y4
Least squares method

Original data 20± 1 10± 0.67 28± 1.33 16± 1.67
Reconciliated values 18± 0.64 10± 0.61 28± 0.79 18± 0.64
Fuzzy set method

Original fuzzy intervals (17, 20, 23) (8, 10, 12) (24, 28, 32) (13, 16, 19)
α∗ : 1

3
Reconciliated supports [17, 19] [8, 12] [25, 31] [17, 19]

Reconciliated cores (1st round) [18, 18] [8.66, 11.44] [26.66, 29.33] [18, 18]
Reconciliated cores: 2d round [18, 18] [10, 10] [28, 28] [18, 18]

Table 2. Reconciliated flows For Example 2

solution coincides in this particular example with the Pareto-optimal solution of the
fuzzy data reconciliation problem, due to the symmetry of the network and of the
fuzzy intervals. The next example shows that this is rather seldom the case.

5.3. Comparing reconciled values: a simple generic example

Consider a single process with n inputs xi and a single output x0 =
∑n

i=1 xi.
Suppose all measured inputs are x̂i = a > 0 while x̂0 = ka > 0. One may argue
that, assuming the xi’s have the same variance, x0 has a variance n times larger.
This is what is assumed in the following.

It is easy to obtain least squares estimates, minimizing
∑n

i=1(xi − a)2 + (x0−ka)2

n
under the balancing constraint. It is easy to find that

xLS0 =
a(k + n)

2
and xLSi =

a

2
+
ak

2n
.

Note that limn→∞ x
LS
i = a/2 and in fact a

2 < xLSi ≤ a(k+1)
2 . All reconciled flows

linearly increase to infinity if k increases.
In the fuzzy interval approach we can assume general triangular membership

functions: X̃i has mode a and support [a− α, a+ β], where the magnitudes of α, β
depend on the available knowledge. Suppose that the relative error of the data is
everywhere the same so that X̂0 has mode ka and support [k(a−α), k(a+β)]. The
reconciled value for x0 is obtained as the value for which the intersection X̂0 ∩ nX̃i

has maximal positive possibility degree. There are two cases:

x∗0 =

{
nka(α+β)
nα+kβ if k ≤ n and k(a+ β) > n(a− α)

nka(α+β)
kα+nβ if k ≥ n and k(a− α) < n(a+ β).

It can be checked that the least squares solution is encompassed by the fuzzy interval
approach:

• If k ≤ n, x∗0 = xLS0 if and only if α, β are chosen such that nα = kβ > a(n−k)
2

(the latter inequality makes the fuzzy reconciliation problem feasible).
• Likewise, if n ≥ k, the condition is kα = nβ > a(n−k)

2 .

These findings are at odds with the least squares method. Indeed note that in order
to get the same estimates in the two approaches, we cannot assume the triangular
fuzzy intervals are symmetric, while the translation of normal laws into symmetric
fuzzy intervals (α = β with spreads α = 3σ) would enforce symmetry.

13
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Figure 3. Initial flows and stocks of copper in the Australian economy (van Beers et al. 2007). Numbers

in thousand metric tons.

Finally we can check when it is the case that x∗0 is closer to the estimated value
ka than xLS0 . For instance, if k ≤ n then x∗0 > ka and xLS0 > ka; then it holds that
xLS0 > x∗0 > ka provided that the condition kβ < nα holds.

6. A case study

The least squares and fuzzy reconciliation approaches were compared using data
adapted from van Beers et al. (2007) relative to flows and stocks of copper in
Australia in the mid-90s (see Figure 3 adapted from Figure 5A in that paper). The
processes considered by these authors in their analysis of the major flows of copper
over the entire copper life-cycle in Australia are: extraction from the lithosphere
(the subsurface), treatment (production) of the copper ore, manufacturing of semi-
and finished products (e.g. copper wire, tubing, etc.), use of these products in the
economy, waste management and finally landfill and the environment, overall 24
quantities to be reconciliated.

For the purpose of the application, flows and stocks in Figure 5A of van Beers et
al. (2007) were shifted arbitrarily from their initial values so that the MFA is no
longer balanced. This initial MFA, which served for the reconciliation, is depicted
in the Sankey diagram of Figure 3, which was constructed using the STAN software
(Brunner and Rechberger 2004). Sankey diagrams (Baccini and Brunner 1991) are
a specific type of flow diagram, in which the widths of the arrows are proportional to
the flow quantities. Such diagrams are typically used to visualize energy or material
transfers between processes. They are particularly useful to help identify potentials
for recycling.

For example, Figure 3 suggests that the yearly change in stock in the “Landfill

14
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Flow Rec. Rec. Rec. Optimal Cut Final
Mean σ Support First Pass Leximin

1. Extraction 491.1 18.1 [337.4, 626.6] [390.8, 573.2] 478.6
2. Cu cath to Mnf. 150.6 7.7 [112, 208] [129.7, 185.4] 154.1
3. Tailings 68.1 5.2 [49, 91] [56.8, 83.2] 68.8
4. Slag 10.0 1.0 [7, 13] [8.1, 11.9] 9.8
5. Export Cu con. 104.1 10.1 [73.5, 137] [85.1, 124.9] 105.7
6. Export of blister 10.0 1.0 [7, 13] [8.1, 11.9] 10.1
7. Exp.Cu cath. 158.0 14.7 [112, 207] [129.7, 190.3] 161.1
8. New scrap to Prod. 10.0 1.0 [7, 13] [8.1, 11.9] 10.4
9. Cu products 80.9 6.4 [56, 104] [64.8, 95.1] 80.8
10. Cu alloy products 35.2 3.4 [24.5, 45.5] [28.4, 41.6] 35.4
11. Export alloy 50.7 4.8 [35, 65] [40.5, 59.5] 52.2
12. Discards 38.7 1.8 [31, 39] 35.7 35.7
13. Old scrap to Prod. 10.6 1.1 [8.4, 15.6] 9.7 9.7
14. Old scrap to Mnf. 11.3 1.2 [9, 17] 10.5 10.5
15. Landfilled waste 3.8 0.4 [2.8, 5.2] 3.2 3.2
16. Export of old scrap 12.9 1.4 [10.5, 18.7] 12.2 12.2
17. Import Cu semis 14.9 1.5 [10.5, 19.5] [12.2, 17.8] 14.4
18. Import finished prod. 44.7 4.3 [31.5, 58.5] [36.5, 53.5] 43.5
I. Ch. In Litho. Stock 491.1 18.1 [337.4, 626.6] [390.8, 573.2] 478.6
II. Ch. In Prod. Stock 11.0 1.1 [7.7, 14.3] [8.9, 13.1] 10.9
IV. Change in Use stock 122.1 7.2 [84, 156] [97.3, 142.7] 124.1
VI. Change in Landfill Stock 81.9 5.3 [58.8, 104] [68.1, 95.1] 81.9
Total Imports (I) 59.7 4.5 [42, 78] [48.6, 71.4] 57.9
Total Exports (E) 344 19 [238, 441] [275.7, 398.6] 341.5

Table 3. Results of reconciliation using the least squares and the possibilistic methods. Flow and process

numbers refer to Fig. 3

and Environment” process is significant when compared to the copper extracted
from the subsurface. Such data and diagrams can help motivate efforts with respect
to so-called “landfill mining” operations, e.g., (Jain et al. 2013)). Figure 3 sug-
gests that in the mid-90s, approximately 500 kilotons of copper were extracted each
year as copper ore from Australian mines. This ore was processed in mills, smelters
and refineries to produce intermediate copper products (concentrate, blister, cop-
per cathode). Such processing generated discards in the form of tailings and slags
that ended up in the “Landfill & Environment” process. The intermediate copper
products were sent to manufacturing processes, located within Australia, to gener-
ate finished products that entered the economy to be used. Some finished products
were exported outside Australia, the limits of which are symbolized by the dashed
line in Figure 3. End-of-life products (discards) entered the waste management sys-
tem, which generated old scrap that was either exported or else recycled within the
domestic production and manufacturing processes. Waste containing copper also
ended up in landfills.

Figure 3 also provides the means and standard deviations of the flows and stocks
used for the least squares reconciliation. Since no information pertaining to stan-
dard deviations is provided by van Beers et al. (2007), standard deviations (before
reconciliation) were assumed to be equal to 10% of the mean. For the possibilistic
case, the original possibility distributions were assumed to be triangular. The means
provided by Figure 3 were assumed to represent the central preferred values of the
distribution; the supports were taken as plus or minus three times the standard
deviations (see Section 3).

Comparative results of the least squares and possibilistic reconciliation methods
are presented on Table 3. The results of the possibilistic reconciliation are those of
the max-min method with leximin iteration. The first pass delivers the supports of
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Figure 4. Convergence of the leximin iterative method

the fuzzy intervals, and the global consistency level (α∗) for the fuzzy constraint
reconciliation, which is close to 0.4, as shown on Figure 4.3. It reflects a moderate
conflict between original items of information. On this figure, we can see that the
flows 12 to 16 are set to this consistency levels. They are critical and have thus pre-
cise first pass reconciliated values that can be seen on the 2d column from the right
on Table 3. These flows are inputs and outputs of the waste management process on
Fig. 3, which indicates the location of the most conflicting information. The other
variables are still assigned intervals corresponding to the optimal consistency value.
The three runs needed to reach precise estimates are patent from Figure 4, each
run corresponding to a higher possibility value. The right-hand column provides
precise estimates resulting from several leximin iterations. Table 3 also illustrates
the point that with the possibilistic method, ranges around the preferred values
are not necessarily symmetrical, unlike the least squares method. Work is currently
under way to identify the most appropriate graphical representation of such results
in a Sankey diagram.

Figure 5. Comparison of Discards flow from Use, obtained using the least squares and possibilistic methods

While reconciled flows are generally close to initial flows, there are some significant
differences; as for example in the case of “Discards from Use to Waste management”,
which vary by nearly 30% compared to the initial value. The values for this flow
before and following reconciliation are depicted in Figure 5. For the purpose of the
comparison, the probability density functions were normalized to unity. As can be
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Figure 6. Relative distances of the LS and Leximin solutions to original values

seen in this figure, in the case of least squares reconciliation, the distribution is
shifted laterally and moves outside the support of the initial interval, whereas in
the case of the fuzzy reconciliation method, the reconciled flow and its possibility
distribution (always) remain within the boundaries of the initial distribution. This
suggests the fact that the distribution of least squares estimated values may overlap
a domain of values considered impossible or very unlikely, in any case inconsistent
with the original imprecise data.

Besides, Figure 6 pictures the relative differences between reconciliated values
and original values. It lays bare the fact that the method keeps many least square
estimates close to original values, at the risk of letting some be far away: especially
the critical flow 12 “Discards from Use to Waste management” is the worst result
in relative value, while the fuzzy set approach does better; the latter yields slightly
worse results for critical flows 13, 14, 15,16. This is because the least square method
clearly suggests some initial values of parameter are outliers, while the fuzzy ap-
proach tries to build a trade-off between all initial estimates, considered as valuable
so long as α∗ > 0. This view may be considered more natural if initial estimates
come from experts and not from measurement devices subject to gross errors.

7. Discussion: least squares or fuzzy set approach

Beyond comparing the results obtained by the two data reconciliation methods on
practical examples, it is interesting to see to what extent these methods differ in
their principles and the problems they address. The least squares estimation has
two possible readings: a distance-based one and a statistical one. The distance-
based one turns out to be close to the fuzzy set-based approach in the derivation
of the most plausible reconciled values, and as shown below both can be put in
the same general formal setting. However, the variance-reconciliation step requires
a statistical understanding of the least squares procedure, and it does not consider
measurement data as (unary) constraints in the same sense as balance equations.
As explained in this section, beyond the possibility of obtaining different results,
the conceptual frameworks underlying the statistical approach to the least squares
method and the fuzzy constraint approach are radically different.
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7.1. A unified framework for reconciliation

The max-min formulation (2) of Section 4.1 of the fuzzy constraint approach can be
extended, replacing the minimum by a more general fuzzy conjunction. Namely, we
may instead consider a likelihood function of the form L(y) = ?Ni=1π(yi), where the
operation ? is associative, commutative and increasing on [0, 1] - a t-norm (Klement
et al. 2000). In fact, it is well-known that a likelihood function is a special case
of a possibility distribution (Dubois et al. 1997). We may then calculate the most
plausible reconciled vectors and the associated degree of possibility by solving the
following problem: Find the values y = xu that maximize:

π?(y) = ?Ni=1πi(yi) such that Ayt = B

Restricting to continuous Archimedean t-norms, maximising π?(y) comes down to
minimizing a sum of the form

∑N
i=1 g(πi(yi)) where g is a t-norm generator (a con-

tinuous decreasing mapping from [0, 1] to [0,+∞) with g(1) = 0 (Klement et al.
2000)). It comes close to generalised forms of least squares discussed for instance in
(Alhaj-Dibo et al. 2008). Under suitable choice of functions πi and g, the composi-
tion g(π(y)) is of the form (yi−ŷiσi

)p for some value p > 1 : the problem comes down
to minimizing an lp norm.

If we select the product for operation ? in the general formulation, the recon-
ciliation problem boils down to maximizing the expression π�(y) =

∏N
i=1 πi(yi)

under constraints Ayt = B. If in addition we choose to use Gaussian shapes

πi(y) = e
− (yi−ŷi)

2

σ2
i for the fuzzy intervals, it becomes clear that this formulation

brings us precisely back to the standard maximum likelihood expression of the least
squares method. Therefore the general fuzzy interval framework captures the least
squares estimation method as a special case, minimizing the Euclidean distance to
estimated values.

With ? = min and triangular fuzzy intervals Ỹi centered around measured val-
ues ŷi, solving the max-min fuzzy constraint problem, reduces to minimizing the
maximal weighted absolute deviation:

e∞(y) = max
i=1,...,N

|yi − ŷi|
σi

,

using a Chebyshev l∞ norm (i.e., limp→∞ ep(y) = (
∑

i=1,...,N
|yi−ŷi|p
σpi

)1/p) instead of
the Euclidean l2 norm. Here σi is interpreted as half the support length of the fuzzy
interval Ỹi. The precise estimates obtained by repeating the max-min optimisation
step (Subsection 4.3) yields the strict Chebyshev norm solution already known in
numerical analysis (Descloux 1963; Rice 1962). In his paper, Rice (1962) even
describes a recursive procedure similar to the one we outline.

Similarly, choosing a ? b = max(0, a + b − 1) under the same hypotheses comes
down to minimizing a weighted sum of absolute errors, i.e., use the l1 norm:

e1(y) =
∑

i=1,...,N

|yi − ŷi|
σi

.

More generally recent works on penalty-based aggregation (Calvo and Beliakov
2010) may help us find an even more general setting for devising reconciliation
methods in terms of general penalty schemes when deviating from the measured
data flows. It is well-known that applied to the estimation of a single quantity
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for which several measurements are available, the three methods respectively yield
the average (l2 norm) the median (l1 norm) and the mid-point between extreme
measurement values (l∞ norm). So the approach using l1 norm is insensitive to
outliers while the one based on the l∞ norm is very sensitive to extreme values.
This state of facts could be viewed as a major drawback for the fuzzy maxmin
approach in some context as repeated measurements with gross errors. However,
our context is not the one of repeated measurements of a single quantity, but the
case of single imprecise expert information items about several quantities related
by linear constraints. In this context it is perfectly reasonable to provide estimates
of each quantity that respect as much as possible the opinion of each expert (which
is what the fuzzy approach does). However the fuzzy approach does detect the
presence of outlier experts, when the collected information is inconsistent with the
model equations. But then, outlier elimination is the result of a reasoned process,
not of an automatic data processing method.

7.2. The reconciliation problem : estimation vs. information fusion

Despite the above formal unification of methods computing reconciled values, the
statistical approach seems to solve a problem that is radically different from the
problem solved by the fuzzy approach, when it comes to modelling the resulting
uncertainty on estimated values:

• The statistical approach envisages data reconciliation as an estimation prob-
lem, i.e., that of finding the ideal unbiased estimate (namely, the least squares
solution) and computing its distribution as induced by the distributions of the
data.
• In the fuzzy approach, the aim is to find the widest fuzzy ranges for recon-

ciled values by projecting the result of merging model constraints and data
constraints. The reconciled values are then maximal likelihood estimates re-
sulting from these reconciled local fuzzy ranges.

So the statistical approach first computes estimates, while the fuzzy approach pri-
marily computes fuzzy ranges resulting from an information fusion process. The
choice of a paradigm (estimation or fusion) actually does not depend on the (prob-
abilistic or not) formal setting. Indeed, one could use a fusion approach in the
probabilistic setting and an uncertainty propagation approach in the possibilistic
setting.

The probabilistic counterpart of the fuzzy approach, that is a probabilistic infor-
mation fusion method, may run as follows. Let D denote the domain encompassed
by the flow and stock balance equations, and P (x) be the joint distribution of the
measured data:

(1) Condition the joint distribution P (x) of data on the balanced flow domain D;
(2) Compute the projections of P (x|D) on the parameter ranges;
(3) Extract means for all parameters, and the covariance matrix.

Clearly, if P (x) is a multidimensional Gaussian function, it may fail to be the case
for the resulting distributions (e.g. if the domain is D bounded, or for instance
the symmetry of distributions may be lost). On the contrary the usual statistical
approach to the reconciliation process preserves the Gaussian nature of the inputs
when the model equations are linear (Narasimhan and Jordache 2000). In any
case, computing the distribution of the maximum likelihood estimate is different
from projecting the conditional probability over the domain of reconciled values on
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each parameter space. We have seen in the case study that the distribution of best
least squares estimates may fail to fit inside the ranges of the input data, when they
are approximated by Gaussian functions.

Conversely, one can envisage possibilistic reconciliation in the spirit of an estima-
tion procedure followed by a sensitivity analysis step:

• Choose a preferred norm (via a t-norm and a shape of πi) and form the
corresponding error criterion
• Compute a vector of optimal reconciled values y∗ as a function, say f , of

measured values x̂.
• Compute the possibilistic uncertainty on reconciled values by sensitivity anal-

ysis using the imprecision of measured values: Ỹ ∗ = f(X̃) where X̃ is the
fuzzy set vector around the initial estimate x̂.

Just as in the statistical method, the resulting fuzzy intervals are not necessarily
upper bounded by the fuzzy sets originally assigned to input values. The study and
implementation of these alternative approaches to reconciliation is left for further
research.

8. Conclusion

In the context of the material flow reconciliation problem, we often deal with scarce
data of various origins, pertaining to different quantities, that we can hardly assume
to be generated by a standard random process. It seems more natural to treat the
problem as one of information fusion than as a pure statistical estimation based on
random measurements. As a consequence, it sounds more reasonable to practically
justify the choice of a distance (l1, l2, l∞, . . . ) for minimizing the error rather than to
invoke the Central Limit Theorem to justify the least squares method. A fuzzy-set
approach to data reconciliation has been proposed. Its advantages are:

• Its flexible setting for representing various kinds of imprecise information
items.
• Its clear conceptual framework as an information fusion problem. The recon-

ciled ranges around the reconciled values are also more easy to interpret than
the reconciled variances, as they result from the conjunctive merging of all
available information items.
• Its general framework: in a formal sense, it recovers the least squares method

by a proper choice of a shape for membership functions and of a conjunction
operation, without betraying the principle of maximum likelihood.
• The possibility of solving the problem in the max-min case using standard

linear programming methods and software.

However, this fuzzy constraint-based data reconciliation framework is conceptually
at odds with the usual probabilistic reconciliation methods where the flow measure-
ments are viewed as random variables affecting the optimal estimates, and not as
additional constraints to be merged with the flow model. Further developments are
needed in order to

• Study more examples where the max-min and the least squares approaches
provide disagreeing results, so as to refine the comparison outlined here.
• Compare the information fusion and the estimation approaches inside the

probabilistic and possibilistic paradigms respectively, so as to better under-
stand when one approach is more cogent than the other one.
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A software for fuzzy constraint-based approach has been built with a view to apply
it to the analysis of material flow of rare earth elements in the anthroposphere of
the EU-27.

Appendix: Modeling data using fuzzy intervals

Intervals have a limited expressive power. One is led to a dilemma between safe-
ness and precision. Namely, short intervals are unreliable, and large intervals are
uninformative. However a very simple and convenient, yet much more expressive,
generalisation of intervals consists of fuzzy intervals (Dubois 2006) representing
possibility distributions on the real line. A possibility distribution is a mapping
π : R → [0, 1] such that π(r∗) = 1 for some r∗ ∈ R: it is a normal fuzzy set
(Zadeh 1978). It represents the current information on a quantity x. The idea is
that π(r) = 0 if and only if x = r is impossible, while π(r) = 1 if x = r is a totally
normal, expected, unsurprizing value. One rationale for this framework is that the
set Iα = {r : π(r) ≥ α} (α-cut) contains x with level of confidence 1− α, that can
be interpreted as a lower probability bound (Dubois et al. 2004). In particular, it
is sure that x ∈ {r, π(r) > 0} = S(π), the support of the possibility distribution.

A fuzzy interval is a possibility distribution whose α-cuts Iα are closed intervals.
They form a nested family of intervals containing the core C(π) = {r, π(r) = 1}
and contained in the support. The simplest representation of a fuzzy interval is a
trapezoid defined by its core and its support. Note that this format is very convenient
to gather information from experts in the form of nested confidence intervals, or
more basically in the form of one safe interval and a plausible value.

Given a possibility distribution π, the degree of possibility of an event A is Π(A) =
supr∈A π(r). The degree of certainty of event A is N(A) = 1 − Π(Ac), where Ac is
the complement of A. A possibility distribution can be viewed as encoding a convex
probability family P(π) = {P : P (A) ≥ N(A),∀A measurable}; see (Dubois 2006)
for references. Functions Π and N can be shown to compute exact probability
bounds in the sense that:

Π(A) = sup
P∈P(π)

P (A) and N(A) = inf
P∈P(π)

P (A).

In fact, it can be shown (Dubois et al. 2004) that P(π) is characterised by the
α-cuts of π:

P(π) = {P : P ({r : π(r) ≥ α}) ≥ 1− α,∀α > 0},

thus suggesting that a possibility distribution is a kind of two-sided cumulative
probability distribution. Probabilistic inequalities yield examples of such possibility
distributions. For instance, knowing the mean value and the standard deviation
of a random quantity, Chebyshev inequality gives a possibility distribution that
encompasses all probability distributions having such characteristics (Dubois et al.
2004). Gauss inequality also provides such possibility distributions encompassing
probability distributions with fixed mode and standard deviation as pointed out
in (Mauris 2011). It yields a triangular (bounded) fuzzy interval if probability
distributions have bounded support. Hence a possibility distribution may account
for incomplete statistical data (Dubois et al. 2004).

In the framework of measurement problems, Mauris (2007) has suggested that
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in the case of competing error functions (empirical probability distributions pi, i =
1 . . . k, such as Gaussian, uniform, double exponential, etc.), one may refrain from
choosing one of them and consider a family of probabilities P instead, to represent
our knowledge about x, where pi ∈ P,∀i. In general, such a representation can
be extremely complex. For instance, in the setting of imprecise probability theory,
P should be convex, typically the convex hull of {pi, i = 1 . . . k} (Walley 1991).
Alternatively, when several error functions are possible, one may choose to represent
them by a possibility distribution that encompasses them. This is the idea developed
by Mauris (2007). This representation is much simpler, even if more imprecise. This
remark gives some foundation to the idea of using fuzzy intervals for representing
measurement-based imprecise statistical information.

Conversely, if an expert provides a probability distribution that represents sub-
jective belief, it is possible to reconstruct a possibility distribution by reversing the
Laplace principle of indifference (Dubois et al. 2008). When the available knowledge
is an interval [a, b], and the expert is forced to propose a probability distribution,
the most likely proposal is a uniform distribution over [a, b] due to symmetry. If the
available knowledge is a possibility distribution π, this symmetry argument leads
to replace π by a probability distribution constructed by (i) picking at random a
threshold α ∈ [0, 1] and (ii) a number at random in the α-cut Iα of π (Yager 1982).
One may argue that we should bet on the basis of this probability function in the ab-
sence of any other information. Conversely, a subjective probability provided by an
expert can be represented by the (unique) possibility distribution that would yield
this probability distribution using this two-stepped random Monte-Carlo process
(Dubois et al. 2008). Note that the symmetric triangular possibility distribution
over a bounded interval encompasses the uniform distribution on this interval (it is
the most precise choice that retains symmetry) (Mauris 2007).

In summary, fuzzy intervals, and specifically triangular or trapezoidal possibility
distributions, may account for uncertain information coming from various origins.
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