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CHAPTER

One

Introduction

Light is an essential element for life, and not just by reason of being the primary energy
source of Earth’s flora, and through plants and unicellular organisms of its whole fauna,
but also by serving as the most important intermediary agent between our planet’s resi-
dents and their habitat. By asking the simple question which always served as the main
driving force for science, “why?”, one can simply arrive to the answer which also enlightens
the rationale behind the usual experience that light is an indispensable tool for research
in all scientific disciplines. This answer is the fact that almost all phenomena we can ob-
serve in our universe arise from the interaction of two physical entities: electromagnetic
radiation and matter. Visible light is, of course, just a small segment of the broad set of
electromagnetic waves, and the other slices of the spectrum are at least as important as
the optical regime, but light! plays a fundamental role, as seeing is our dominant method
for observation, not only by accident. Instead, it is evident, as the physical, chemical and
biological mechanisms, which we encounter in our everyday life, are accompanied by the
emission or absorption of light. As such, observing the interaction of light and matter
gives us an evident way to study nature and its processes scientifically.

Necessarily, to carry out these investigations effectively, we have to know the partici-
pants of this interplay well enough. In the history of science, the study of light and matter
dates back to ancient Greece, which is probably safe to say also when dealing with any

of the different topics concerning the history of science. However, if we set aside from

I The term “light” in physics is ambiguous as sometimes it refers to any kind of electromagnetic
radiation, and other times it only means the radiation from the wavelength regime that is visible to
human eye. Although considerations presented in this work are primarily related to the visible range, this
uncertainty of meaning is not resolved here since — by the similar nature of the different electromagnetic
radiations — most of these findings can be applied to electromagnetic waves of other wavelengths.



the philosophical considerations of this ancient epoch, and jump to the early modernity
of the 17th century, we already arrive to an era where in the mind of some scientist,
like René Descartes, light and matter share very similar properties. Even though having
this modern idea already, several of their thoughts of light, for example, turned out not
to be long-standing. On the other hand, as an example of their incontrovertible merits,
they (as well as other similarly influential predecessors and contemporaries not mentioned
here) initiated the way of thinking that later, in the next three centuries, led Christiaan
Huygens and Augustin-Jean Fresnel on their way laying down the foundations of the wave
theory of light, or helped Ernest Rutherford and Niels Bohr to shape their model of the
atom. Innumerable colleagues and companions of Albert Einstein and Werner Heisen-
berg contributed to the physics of light and matter as we know it nowadays, and which
incorporates the similarity in behavior of these two entities, the seed of which appeared
centuries earlier in the discussions of Isaac Newton.

In 1960, just a few decades after the birth of quantum theory and a whole new bunch
of questions, a new experimental device, the laser was created. This new appliance, that
was reported to be “a solution looking for a problem” after its invention'!, became one of
the most important tools to further broaden our knowledge of light and matter, or the
field ultimately connecting them, quantum science.

The laser, the apparatus which emits light with extraordinary properties, has since
been further developed to meet the demands of curious scientists. And not just the
needs of those researchers whose interest is “limited” to the complicated quantum physics,
but also for the ones who aim to gain knowledge of subjects that are more tangible
than quantum mechanical wave-packets, like biological samples, chemical compounds or
nanometer-size artificial material structures.

One of the exceptional features of lasers, that scientists frequently utilize, is the abil-
ity to produce packets of light with extremely short duration. The importance of this
capability lies in the fact that it opened the gate to electric field strengths and time scales
which were unavailable before the laser came on scene. For this reason a few diagrams al-
most always appear in lectures dealing with the advancements of laser technology which
illustrate how the peak intensity (temporal duration) of the generated laser pulses in-
creased (decreased) in the last 50 years'!. A feature that can be deduced from the two
charts mentioned is that while the pulse duration in the optical regime is approaching its

physical limits nowadays, the strength of the obtainable electric field is still increasing

IT For a short sketch about the circumstances of the birth of the laser, see: Charles H. Townes, “The first
laser,” in A Century of Nature: Twenty-One Discoveries that Changed Science and the World, University
of Chicago Press. pp. 107-112 (2003).

1T For such diagrams see, for example, Figures 6 and 8 in: T. Brabec and F. Krausz, “Intense few-cycle
laser fields: Frontiers of nonlinear optics,” Reviews of Modern Physics 72, 545-591 (2000).



and is predicted to be considerably increased in the near future.

Even with the more and more sophisticated technology and the increasingly amplified
optical pulses one thing is inevitable to carry out the experiments performed with lasers
in our days: focusing of the laser beam. Now going back to the thought that emerged
earlier, that is, to use light as a tool for our investigations we have to know its properties
well enough for the purpose, a question of great importance arises here: how much do we
know about the “tool” we use? Even setting aside questions about the laser system itself
and the optical setup between the light source and the focusing element, both of which
are usually considered to be to a great extent under control, we still have one step short
of ability to actually use it in an efficient manner. And here we arrive to the question that
this dissertation, at least in some points, sets out to answer: “how does focusing affect
pulsed beams?”.

As a settling to this philosophical introduction and as an outline of the present work,
the contents of this thesis can be summarized in the following main points. After a short
introduction to the history and development of pulsed laser systems, a review of various
recent applications of few-cycle optical wave packets is presented, all of them being closely
related to the findings in this work. After that, a quick overview is given on the charac-
teristics of pulsed waves that are further investigated in the following pages. The chapter
dealing with the scientific background of this topic ends with the description of methods
used for modeling or measuring specific features of pulsed beams during propagation or
focusing. Finally, the motivational aspects and the scientific background are followed by

the scientific achievements to which the author has contributed.



CHAPTER

Two

Scientific background

While lasers are relatively new inventions of humanity, the properties and descriptions
of phenomena related to light have been the subject of scientific studies for centuries.
Even so, as a beginning, the present chapter deals with the device that was first built
by Theodore Maiman. More profoundly, the first sections discuss what this technology
has become since then, and how the duration of the laser pulses became shorter and
shorter during the decades. Then it is put into the bigger picture, into the discussion of
the theories dealing with light, especially its diffraction, propagation and focusing, the
effects laser itself is based on. At first sight, it could be argued that this is like starting in
medias res, as light produced by lasers is just a special example among optical phenomena.
However, this ordering serves an analysis better for which laser is mainly a motivation, and
the findings presented later are based on the description of electromagnetic waves. After
this latter, following the introduction to the theory on pulsed beams, some experimental

methods are gathered which are used to study the discussed theoretical findings.

2.1 Few-cycle pulses and their applications

The subject of this thesis is ultrashort!, few- and sub-cycle electromagnetic wave forms.

These scientific tools have been serving humanity for only a few decades. Before carrying

I The term “ultrashort” is again ambiguous. It can be easily explained by the fact that as laser pulses
got shorter and shorter, ultra got newer and newer interpretations when followed by the word short.
Still, ultrashort is most widely used for pulses with less then a picosecond duration, in some cases even
also for several picosecond-long wave packets (the expression begin to spread during the appearance of
picosecond techniques). In this work it is as a synonym for femtosecond optical pulses, mostly referring
to the sub-100-femtosecond regime.



2.1. Few-cycle pulses and their applications

out a more specific analysis on their characteristics, it is important to summarize the path
that led to their realization. In the following, a short sketch is presented on the history
and applications of lasers and technologies based on (or related to) them, with the aim

to sum up the scientific topics related to the findings presented in this work.

2.1.1 The route to phase-stable, few-cycle optical sources

The first working laser was built in 1960 by Theodore Maiman [1], based on the proposal
of the inventors of the maser [2, 3]'!. This first realization, the ruby laser, was only capable
of pulsed operation. Ironically, this led to the fact that a high priority problem to solve
was to make a continuously operational laser (the well-known helium-neon gas laser [4]),
before the advantages of a pulsed application were envisioned.

The first step towards the controlled pulsed output of the ruby laser came just two
years after the experimental demonstration of the laser principle, and this step was the
attainment of Q-switching [5]. However, by temporally separating the pumping and the
lasing process in an oscillator only the nanosecond (107%s) pulse duration and a few
hundreds of kW peak power were achievable at that time [6]. As varying the quality
factor of a resonator means a non-steady state condition of the laser, the pulse duration
in this case is limited by dynamical factors, for example by the cavity decay time [7].
Even with this restriction, the picosecond (107'?s) regime was accessible at the end of
the 1980s using dye lasers, smart ideas and the development results of decades [8-10].
Still, the limitation mentioned before did not give an opportunity to significantly further
shorten the laser pulses obtained by Q-switching.

Luckily, another technique was introduced almost concurrently with Q-switching. The
idea of mode-locking, that is exploiting the broad bandwidth of the gain medium and the
multi-mode operation of the laser oscillator, came up in 1964 [11]. Continuous advance-
ments in laser technology and the discovery of new laser materials led mode-locked lasers
to reach the few tens of femtoseconds (1071°s) duration in the last decade of the 20th
century [12, 13]. Soon, commercial solid-state lasers producing sub-100 fs pulses became
available [14, 15]. By the invention of chirped mirrors in 1994 [16], sub-6 fs pulses were ob-
tained directly from a titanium-sapphire laser oscillator [17]. This means only two cycles
of the carrier wave, approaching a boundary set by the bandwidth of the laser medium
through the Fourier theorem [18].

I An often forgotten contributor to the creation of laser, who gave this name to the device itself, is
Gordon Gould. Even if the source of the idea for the laser can be questioned, it is indisputable that
Theodore Maiman was the first to build a working laser and publish this result (first turned down by
Physical Review then appearing in Nature). However, for the inquisitive, the decades-long trial of Gould
trying to obtain legal justification of his leading role in the invention of laser is summarized in detail
in: Nick Taylor, “Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War,” Simon &
Schuster Adult Publishing Group, 2000.
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To overcome the restriction imposed by the gain material used, that is to obtain a
broader spectrum, several ideas were introduced. One of these solutions is to utilize
the non-linear response of a material, made available by the high intensities of the laser
beams thanks to the different amplification schemes developed meanwhile [19-21]. To gain
spectral broadening by self-phase modulation [18, 22, 23], for example, the core of a single
mode fiber [24], or a noble gas filled into a hollow-core fiber [25], can be used. Harnessing
the ever increasing pulse energies, it was shown later that this type of pulse shortening is
possible — even with self-compression of the produced wave packet — without the always
laborious task of coupling into a fiber [26, 27], thanks to the filamentation of the beam
[18, 22, 28]. Another option often applied is to use optical parametric amplifiers [18, 22,
29], which even gives the possibility of wavelength tuning [30]. These methods, which are
well optimized and are reaching a mature age nowadays, are still not the state-of-the-art
in short optical waveform generation, as they remain restricted by the Fourier theorem,
but this time not due to the amplification bandwidth of the material, but through the
limited effective bandwidth of the nonlinear response of the material.

A recent solution to get around this limit is to coherently combine the output of several
sources operating in different wavelength regimes. For an arbitrary waveform generation
[31], that is, to produce controlled wave packets of light, the latest realizations are the so-
called “optical waveform synthesizers” [32]. This type of apparatus has been carried out,
for example, by the split manipulation and coherent addition of supercontinuum sources
[33], discrete harmonics [34], independent mode-locked lasers [35], fiber lasers [36], or
optical parametric systems [37]. All these solutions provide the possibility to produce
sub-cycle wave forms [32], that is, to obtain wave packets that are so short in duration,
that even a single oscillation of the carrier wave can not fully take place during this time.

The optical sub-cycle sources mentioned above

B

are the current state-of-the-art in respect of the
number of cycles of the carrier wave under the enve-
lope (see Figure 2.1 for the explanation of the terms

“carrier” and “envelope”). Certainly, there are other

Electric field

wavelength regimes where single-cycle pulses be-

came available in the last decade, for example us-

ing terahertz [38] or attosecond (107'®s) [39] pulse Figure 2.1. A few-cycle pulse with its
generation, but they are less wide-spread and their en"elOP? and two possible variations of
applications are not as diversified as those of pulsed the carrier wave.

lasers. As most of the phenomena discussed in this thesis mainly affect such sub-, single-
and few-cycle electromagnetic wave forms, the optical regime is what currently mostly

related to the results presented.
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It is unavoidable to mention that, of course, if someone regards shortness as the
absolute duration of an electromagnetic wave packet, there are other type of solutions that
surpass the femtosecond-long pulses of lasers. By setting up broadband electromagnetic
sources which produce radiation with higher frequencies than in the visible domain and
its direct neighborhood, duration much less than a femtosecond is available. The first
experimental demonstration of sub-femtosecond optical wave form was published more
than decade ago [40], and several methods of high-harmonic generation yielded isolated,
attosecond-long pulses of ultraviolet radiation since then [41]. Even the zeptosecond
domain may become achievable in the near future [42]. However, as these pulses are
mainly generated with the help of lasers, they are a topic of a later section in this work.

Naturally, there are other ways of producing pulsed light than the lasers discussed in
detail. The free-electron lasers serve as an important cousin of conventional lasers, with
almost the same age, and which tools — true to their name — use free electrons instead
of bound ones for light amplification. They provide high energy short pulses with a single
amplification step, but they are far from table-top systems and their pulses are far from
few-cycle, yet. However, X-ray free-electron lasers may provide few-cycle pulses in the
X-ray regime in the future [43], even with stable phase [44].

The expression mentioned at the end of the previous sentence, the term “stable phase”,
is an important feature, as the phase of optical pulses is a main topic of this thesis. By
phase stability of laser oscillators it is usually meant that the so-called carrier-envelope
phase (CEP) of the pulses leaving the laser source change by a known, fixed value from
one pulse to another [45]. This aspect became important at the turn of the millennium,
when few-cycle pulses became more widespread and it was realized that the physical
phenomena studied with these wave packets depend on the exact temporal variation of
the electric field [17]. As such, it heavily relies on the phase stable production of the
optical wave packets whether an experiment is reproducible. What is exactly meant by
CEP, however, is ambiguous, primarily when studies related to pulse trains and single
pulses are compared to each other. When a single pulse is considered, CEP means a
relative phase of the carrier wave with respect to the envelope, on the contrary to its
already mentioned meaning for pulse trains regarding their phases relative to each other.
For a more visual representation, two pulses that have the same envelope but different
phase properties related to CEP can be seen in Figure 2.1. A more detailed discussion
on the definitions and experimental determinations of CEP is presented in later sections.
The important feature here is that the pulses originating from the laser system can be
almost exactly the same at the electric field level, thanks to the different active and passive
phase-stabilization schemes of the laser oscillators and amplifiers developed in the last two
decades [31, 45, 46].
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2.1.2 Applications of ultrashort and few-cycle wave forms

Applications of ultrashort laser pulses are numberless. For this reason, mentioning all the
various utilizations is almost impossible. Apart from their evident usage in physics, for
example in the hot topic of attophysics [47], they are important tools in other fields of nat-
ural sciences. For instance, if the considerations are restricted to basic research, ultrafast
laser technology is what made the birth of the Nobel-prize winning topic of femtochem-
istry possible [48]. Also, femtosecond lasers allow biologist to study the dynamics of the
most important light-induced biological processes in nature, like photosynthesis [49]. In
areas that are closer to everyday life or direct applications, femtosecond lasers have shown
their beneficial properties in material processing [50]. In addition, medical utilization is
manifold as well, people just have to think about the therapeutic [51], surgical [52] or
imaging methods they are used for [53].

As mentioned earlier, few-cycle pulses are quite new results of laser technology, but
it has been shown already what advantages they have in the areas mentioned in the
paragraph before. The benefit is not just the most obvious higher temporal resolution in
the studies of femtochemistry and femtobiology. They also provide a better quality of the
generated patterns in material science [50], or higher resolution in related optical imaging
techniques, for example in optical coherence tomography [54].

A highlight of the important contributions of few-cycle pulses to research and ap-
plications is that they paved the way for a new scientific field, attosecond physics and
-metrology [47, 55]. The origin of the name is simple: the short duration of the few-
and sub-cycle optical wave forms and the attosecond pulses produced using them make
it possible to directly study physical phenomena happening on the time-scale of electron
motion, which is the order of a few (tens of) attoseconds. This is also the area where
the importance of the exact temporal variation of the electric field in the electromagnetic
pulses showed up. The influencing effect of the phase (or the CEP — this is how often it
is referred to) has already showed up in high-harmonic generation [56-58], in the phase-
sensitive nature of photoemission [59-61], in surface-plasmon electron acceleration [62],
or during the generation of photocurrents [63].

It must not be forgotten — when the properties of the electromagnetic field is con-
sidered — that both the electric and magnetic fields are vector fields, so these physical
quantities do not possess only amplitudes, but they have directions as well. As a result,
these waves are characterized also by their polarization. Of course, the control given
by this additional degree of freedom is exploited not just to provide three-dimensional
experience during watching films in movie theaters, but also in the different areas of fem-
tosecond sciences. Using pulses with more complex polarization states than linear can

yield polarization-formed terahertz fields [64], or can help to reach optimal control on the
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irradiated molecules or other materials, which is often mentioned as a way of coherent
control [65-69]. On a similar basis, polarization control showed to be advantageous in
pump-probe measurements of two-dimensional spectroscopy techniques [70, 71]. A fem-
tosecond pulse with a given time-dependent polarization state is also a widely used tool
for isolated attosecond pulse generation [41], and a polarization-shaped pulse has been
proposed as a tool for CEP determination [72].

There is a common point in all the applications listed in the previous few paragraphs:
the pulses are always focused. This is necessary because the intensities that are needed
to observe the desired phenomena can only be achieved by focusing [47]. The effect of
focusing on laser pulses, that is, how the carefully shaped wave packets change while they
propagate from the focusing element to the focal point has been examined for decades,
and the focusing attosecond pulses has also been the subject of studies recently [73, 74].
The material of the lens [75], the aberrations of the focusing systems [76], or the Gouy
phase shift [77] — this latter being a general property of beams — can affect the spatio-
temporal evolution of the electric field in the focal region [78]. The result of these changes
— primarily affecting the phase properties — has been directly shown, for example, in
attosecond pulse production [79], or in optical coherence tomography [80].

Taking into account the polarization of the wave, it has been known for a long time how
the rotational symmetry of the intensity distribution in the focal region may disappear
during tight focusing, due to the vector nature of the field [81]. The change in the
polarization state and the appearance of a longitudinal components in case of non-paraxial
waves is also well-known [82]. With the appearance of polarization-shaped ultrashort
pulses [41, 67, 68], that is, with the usage of pulses with more complex or even time-
dependent polarization states, how the field vector changes or how it can be controlled
during focusing has become an important question too [83].

In the applications of ultrashort optical pulses the interaction of light and matter often
happens in a larger volume, not just in a point in space or at a thin surface. In this case
one has to take into account how the short wave packet propagates, changes its properties
during its travel through the volume, and how this affects the phenomena in question. A
general propagation issue of nonlinear optics — again a broad field enabled by ultrashort
lasers — is phase matching [22], which is decisive in effective frequency mixing [22], or in
efficient generation of high-order harmonics [84, 85]. As an other example, propagation
dynamics also play crucial role in laser wake-field acceleration [86]. If one considers
the CEP-characteristics of the few-cycle focused field, the variation of the CEP while the
pulsed light travels in space is an important concern in terahertz emission from air plasma
[87]. The changes of the electromagnetic field in these examples are, of course, not solely

determined by how the focused electromagnetic field would vary in time and space, as the
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interacting nonlinear material also influences the field as it behaves as a dipole source.
Yet, the phase changes during free-space propagation of focused beams always appear as a
separate term in the simplified equations of phase matching [84, 85]. As an implication, it
is an important question how ultrashort, few- or sub-cycle electromagnetic pulses change
their properties while they travel from the focusing element to the interaction point, or

while they propagate in the focal region.

2.2 Description of ultrashort pulse properties

A very important step when describing and explaining a physical phenomenon is to choose
the proper method to do it. Finding the right approach usually means finding the appro-
priate approximation. It is easy to understand, since most problems would be so complex
without these simplifications, that they could not be solved (in an acceptable amount
of time), or the tool used could not be called physical “model” anymore, as it would be
something as complicated as the studied system itself. A common argument for simplifica-
tions is that the phenomenon is analyzed from only a point of view. This marked feature
that is involved in this thesis is the wave nature of light. This means that in this section
models are considered where quantum physics does not play a role. This is of course the
case — in the questions studied in this work — as far as there is no interaction between
the electromagnetic field and matter, and as the number of photons is so vast, that the
quantum effects wash out. On the other hand, this gives some generality to the models
presented in this section, as any analogous phenomena that possesses wave attributes can
be described similarly. As specifically pulsed waves are the subjects of this study, it is
an important first step to describe what they are. So, to start with, the most relevant

general features of the temporally short wave packets are discussed.

2.2.1 Ultrashort wave packets

It was referred earlier that the propagation, interference and diffraction of light has been
extensively studied a way before the appearance of lasers. To study these effects in the
case of the ultrashort pulses emitted by lasers, it would be a nonsense to ignore the al-
ready available knowledge. However, one should be careful, as those studies usually only
considered (quasi-)monochromatic light. The question is then how to apply the methods
developed for monochromatic (infinitely long pulses of) light to the short wave packets.
The answer is found in a mathematical transformation named after the French mathe-
matician Jean-Baptiste Joseph Fourier. He was looking for a solution of the heat equation
when he recognized that some functions can be written as a series of trigonometric func-

tions [88] (not surprisingly the idea can be found in works of ancient Greek astronomers

10



2.2. Description of ultrashort pulse properties

as well [89]). This theory has since been developed into Fourier analysis, an important
tool for mathematics, physics or engineering, and a link between electromagnetic pulses
and harmonic waves.

While the Fourier theory is well-known and straightforward, there are some consider-
ations and conventions in the treatise of few-cycle pulses which need clarification. A first
important point is that, although the electric field depends both on spatial coordinates
and time, for this step the spatial dependence is omitted, as it is not relevant in this case.
For the sake of simplicity, the Fourier transform is applied on scalar functions here, but
it can be easily generalized to vector quantities. The magnetic part of the electromag-
netic field is not considered either (throughout this work), as it would be relevant only in
relativistic interactions of light and matter.

While the electric field is a real quantity mathematically, it is convenient to use a com-
plex representation instead [18, 90]. By applying the Fourier transform on the complex™!,

time-dependent electric field E(t), one can get the complex spectrum of the field by

Uw) =7 {E(t)} = / E(t)expluwt] dt . (2.1)
The magnitude | (w)| of the complex spectrum tells what is the amplitude of the harmonic
component with angular frequency'” w, and its argument arg [f] (w)} defines the (relative)
phase of the monochromatic wave. From the spectrum U (w), the time-dependent electric

field can be readily obtained by inverse Fourier transform" according to

~ 1 0o

BE(t)=F " {Uw)}=-- / 0 (w)exp[—wt] dw . (2.2)
21 J -0

Using the complex, analytical representation instead of the real field F(t) = Re [E (t)}

has several advantages. First of all, it allows one to use the original mathematical def-

initions (2.1) and (2.2) of the transformations regarding the integration limits [91]. As

a more physical argument, by applying the Fourier transform on the analytical signal

T The complex representation is used in this work during the mathematical treatment of electro-
magnetic fields. To distinguish complex variables from real ones, a tilde represents complex numbers
throughout these pages. The imaginary unit is symbolized by ¢.

IV Even though “frequency” and “angular frequency” are not synonyms in physics, angular frequency
w is often referred only by the word frequency as the physical quantity v = w/27 is only used a few times
in this work, and in those cases it is directly stated, for example by using the Greek letter v instead of w.

V There are deviations in the exact definitions of Fourier and its inverse transformation in the literature.
Sometimes the 1/27 factor is applied in the direct transformation instead of the inverse, or symmetrically
a 1/4/27 factor is applied both directions. The sign in the exponent can also be interchanged. These
mathematical differences, however, do not introduce any changes in the physics behind. The only thing
needs attention to get physically accurate results is if someone expresses the temporal evolution of the
monochromatic electric field with a given sign convention, the same sign should be used in the exponent
of the transform giving the field in time (inverse Fourier transform in this work).
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2.2. Description of ultrashort pulse properties

instead of the real one, the resulting does not contain nonzero values at negative frequen-
cies, which are physically not meaningful in this case [18]. It is also better in a practical
sense, which originates from the fact that until the single-cycle regime is not approached,
the spectrum of the pulse contains relevant components only in a tight frequency range.
This means that to obtain a consistent result during the numerical evaluation of (2.2) the
integration range is halved compared to the real case.

This mathematical theory named after Fourier gives a general way to decompose
pulsed waves into the superposition of harmonic ones [92], and this gives a simple and
frequently used method to solve problems of propagation and diffraction of wave packets.
First, one has to assume an initial spatial and temporal distribution of the field at a plane
or surface (or to be precise, spatio-temporal distribution, if spatio-temporal couplings
are present [93]). After transforming the problem to frequency representation, the field
in the region of interest can be calculated with laws for harmonic waves. Finally, the
temporal evolution at any point can be obtained by inverse Fourier transformation. This
approach is used, for example, in nonlinear pulse propagation models [94], or during
solving diffraction phenomena of wave packets [93], which latter is a main subject of this
thesis. While the physical consistency of such initial-value problems can be questioned in
nonlinear propagation schemes due to backward propagating waves [94], such inaccuracies
are easier to avoid when dealing with diffraction in free space.

Turning back to ultrashort pulses, there are some additional points needed to be
mentioned. A well-established representation of pulsed wave forms is to separate them into
an envelope and a carrier function (as depicted already in Figure 2.1). When considering

the complex electric field this means a decomposition that can be written as

E(t) = E(t)exp[—wwot] = A(t)exp[td(t) — wwot] (2.3)

where € (t) is the so-called complex temporal envelope, wy is the angular frequency of the
harmonic carrier wave (central frequency or carrier frequency). The second step in (2.3)
is just a separation of the complex envelope £(t) to a real envelope A(t) (modulus) and a
real temporal phase ¢(t) (argument) according to Euler’s law [91]. This decomposition is
straightforward for optical pulses that are several hundreds or tens of femtoseconds long,
because the bandwidth of the radiation is small compared to its center frequency, and wy
is well-defined (see Figure 2.2(a)). However, when the few-cycle regime is approached,
the selection of the value of wy may seem artificial (see experimental spectrum in Figure
2.2(a)). Fortunately, the exact choice for wy is arbitrary and it does not influence the
real envelope in the expression of (2.3), as it only means a linear term in the temporal
phase [90]. It has also been show that this decomposition into envelope and carrier is

unambiguous and self-consistent down to the single-cycle regime [95]. Of course, there
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2.2. Description of ultrashort pulse properties

are better choices for wy than others, it is advisable to choose wy as the intensity weighted
mean frequency of the spectrum, calculated as
- - 2
[ w ‘U(w)’ dw

(w) = ——— (2.4)
ffooo‘U(w)‘ dw

which minimizes the temporal phase variation of the complex envelope £(t) [18]. The
carrier-envelope description has a practical advantage as well, because applying integra-
tion with substitution would result in transformation integrals (2.1) and (2.2) where the
integrand varies more slowly according to the new integration variable [90]. This simpli-
fies the numerical evaluation and enhances its precision. However, as noted already, the
exact selection of wy is arbitrary, and any choice close to the weighted average (w) would
keep the practical benefits.

The decomposition of the complex spectrum is also a frequent approach, which already
appeared during the era of picosecond optical pulses in the early 1980s [96], and it is still
used for current laser technologies [18]. In this case the complex-valued function U(w) is
simply rewritten according to Euler’s formula, similarly to the right-hand side of (2.3).
This way one has a real valued amplitude spectrum p(w) and a real valued spectral phase

o(w), related to the complex spectrum by

U(w) = p(w)explep(w)] - (2.5)

Introducing real valued mathematical function again has practical benefits, as these are
the measurable physical quantities. The square of the real spectral amplitude [p(w)]Q =
‘U (w)’2, the spectral density, is that appears as the output of a spectrometer, as with
time-integrating detectors the light intensity can me measured [90]. The phase properties
¢(w) can be experimentally determined too, but this is detailed in later parts of the thesis.
It is to be noted here as well, but it is reasoned afterwards, that to access the temporal
variation of the electric field in a pulse, the most common way is the spectral approach,
that is to obtain U (w) and to apply an inverse Fourier transform to the data. Direct,
temporal measurements are either much harder to perform, or even impossible yet for
optical frequencies.

As for temporal information, usually spectral measurements are performed, a short
summary on how spectral properties reflect the temporal shape of waves is necessary.
Firstly, the amplitude spectrum p(w) puts a primary restriction on the pulse duration,
analogously to the famous inequality of Heisenberg in quantum mechanics [97]. Due to a
purely mathematical inequality theorem, the multiplication of the width of two functions

forming a Fourier transform pair can not take a value smaller then a certain number
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2.2. Description of ultrashort pulse properties

[98]. This means that the shape and width of the spectrum gives a minimal duration for
the pulse studied. The obscurity in the previous sentences about the exact value of this
specific minimum originates in its dependence on the form of the function. As an example,
if the width are defined as second-order moments, the number given by the mathematical
theorem for this lower limit of duration—bandwidth product can only be reached for a
pulse with Gaussian shape. For this reason, Gaussian wave packets have the smallest
uncertainty in physics. There are other width definitions as well, which have proven to
be more practical from the experimental point of view. One of these is the “intensity
full width at half maximum” (abbreviated as FWHM in this work). In the case of the
spectral profile the FWHM is the width in frequency where the function ‘U (w))2
the half of the highest value on either side of the maximum point (see Figure 2.2(a)).

reaches

This is a good and practical definition for well-behaving functions (as it can be seen in
the Gaussian spectra of Figure 2.2(a)), but may become unreasonable for more complex
ones [18] (see the experimental spectrum in Figure 2.2(a)). Although the width based on
second-order moment is more general, FWHM is used in this work due to its wide-spread
usage among experimentalists (also for the temporal duration).

The spectral amplitude, however, is not solely determining the pulse duration. The
pulse is as short as the minimum given by the duration—-bandwidth product — often called
Fourier limit — only if the spectral phase ¢(w) has some favorable characteristics. In this
case the wave packet is referred to as Fourier limited or transform limited. For further
considerations on ¢(w) it is advantageous to expand this function as a Taylor series [7].

Expanding ¢(w) around the central frequency wy yields

/ " "

o) = g+ P —w0) + Dl + Do) ..,
where o = @(wo), @)= de(w) o= d?p(w) (2.6)
’ 0/ ¥0 dw |, .~ 0 W |

This expansion is common since the appearance of optical communication with short
pulses [96]. This is primarily due to the well-known typical pulse shape distortions that
can be attributed to each term in the series [99] (see Figure 2.2(b)-(e)), and also because
only the first few terms are relevant in most cases, even for broadband pulses [18].

To have a transform limited pulse, for example, only the first two terms ¢y and ¢}
can have a nonzero value (see the formulas in Appendix A.1). Often this property is
attributed only to the constant factor, forgetting that the linear term in the spectral
phase only means a shift in the temporal picture (compare pulse shapes Figure 2.2(b) and
(c)). This is the reason why ¢y is called group delay (GD). If ¢} has a value different
from zero, it emerges as a symmetrical broadening of the pulse in time for the given

spectrum. This second-order factor is usually called group delay dispersion (GDD). It

14



2.2. Description of ultrashort pulse properties

Wavelength [nm] i

1200 1000 800 600 1(®) GD = 0fs1(c) GD =39 &s|
| ] ] ] ] 0 - |
1.0(a) /5 Pulse duration [~ i I
] I/',’?\———E)fs-g—l...l......I...
i T ——10fs [ & -20 0 20 40 60
'_|0‘8__ EI __ L‘; 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
5 i L B @) GDD = 40 fs?
el - - 8] [
2.0.6- — < 0 —
> ] LT -
= N1
2 . R e A B S R S
£ 0.4 - £ 40 -20 0 20 40
= ] [ 5 P P E N B BN
] L Z e TOD = 150 fs*
0.2 — i i
- L 0 - -
0.0 A+ ——TTr—
1.6 2 24 2.8 3.2 -20 0 20 40 60
Angular frequency [1/fs] Time [fs]

Figure 2.2. (a) Three Gaussian spectra centered at wy = 2.3551/fs (corresponding to Ao =
800 nm central wavelength) and an experimental spectrum making possible a transform-limited
pulses with duration Tpwy (measured as FWHM) given in the figure legend. The facing arrows
show a graphical definition of FWHM for the case of the 5fs-duration supporting spectrum.
(b)-(e) Normalized pulse shapes calculated using different spectral phases and the amplitude
spectrum for the Tpwiy = 5 fs Fourier-limited pulse duration presented in (a). The spectral
phases are expressed in the form presented in (2.6), with only one nonzero phase derivative in
each case of the subfigures. The relevant phase term is highlighted in the upper right corner at
each pulse shape.

gives a contribution also to the temporal phase ¢(t). Due to the presence of GDD, a
quadratic term in ¢(t) appears for Gaussian pulses. This second order term in time is
often called “chirp”. In a general context chirp is a modulation of frequency, because it
shows up as a frequency change of the carrier wave in time (see Figure 2.2(d)). The chirp
caused by the factor ¢y is just a linear chirp, but in the topics of ultrashort pulses usually
this is called chirp [18]. For Gaussian spectra, the relationship between the GDD and the
factor of the quadratic term in ¢(t) can be derived analytically (see Appendix A.1), just
like the pulse shape when ) is the highest term in the spectral phase [18].

The higher order terms are simply named after their order, for example ¢’ is called
third order dispersion (TOD). The TOD is often neglected in some simple propagation
problems of narrow bandwidth pulses [18]. Again, for Gaussian-shaped spectra the pulse
shape can be given analytically in the presence of TOD, leading to an asymmetric pulse
in time described by the Airy function [100-102] (see Figure 2.2(e) or the detailed calcu-

lations in Appendix A.1). The even and odd phase derivatives typically cause symmetric
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2.2. Description of ultrashort pulse properties

and asymmetric pulse distortions, respectively [99].

While describing the spectral phase with the coefficients of a polynomial-like approxi-
mation of the Taylor series is widely spread and seems practical [103, 104], it also has its
drawbacks and limits, especially when high-order terms are necessary. Due to numerical
inaccuracies during polynomial fits caused by the fact that Taylor series is not an orthog-
onal set of basis [105], or because of material properties [106], the approximations with
polynomial coefficients is questionable, and the direct use of the spectral phase function

might be desirable [107].

2.2.2 The carrier-envelope phase

The phrase in the title of this subsection, the CEP, is something that was born with
the introduction of the carrier-envelope decomposition. On the contrary to the fact that
its importance has been recognized for two decades now [108], and that the survey to
find its effects on different phenomena is heavily researched [56-63], it varies from study
to study what is exactly understood as the expression “carrier-envelope phase”. This
ambiguity originates from terminology that spread in topics of laser oscillators and pulse
trains, facing with the nomenclature of studies dealing with single short pulses. So it is an
important and necessary step to gather these different “meanings” of CEP, and to clarify
which one is used in this work.

As mode-locked lasers made few-cycle optical pulses available, it is worth starting with
the CEP interpretation that is most common in the topic of laser oscillators and in the
studies dealing with the series of short pulses generated by them. In the cavity of lasers
several longitudinal modes co-exist. The locking of them means that their phases are fixed
to each other, and as a result a short pulse is formed [18, 45]. From this point, that is
from the initialization of mode-locked operation of a laser, it is advantageous to continue
the treatise in temporal instead of the frequency picture, where the longitudinal modes
of the cavity directly manifested. The pulse formed inside the oscillator travels back and
forth, and it is outcoupled every time it reaches the semi-transparent mirror at one end.
In the ideal case (some kind of steady-state operation) this means that a series of identical
short pulses leave the laser (see Figure 2.3(a)). The pulses are repeated after each round
trip inside the cavity, so they are spaced equally in the time domain by Ti.,. Due to
the dispersion inside the oscillator (caused by the laser material and other elements), the
phase velocity of the carrier and the group velocity of the pulse (terms that are discussed
in detail later) differ from each other. This means that the wave packets in the series are
not identical on the electric-field level, because there is a slippage in phase between the
carrier and the envelope. If the oscillator is stable, this is the same pcgo phase shift after
each shot (see Figure 2.3(a)).
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Figure 2.3. (a) A pulse train leaving an ideal mode-locked laser oscillator. The pulses are
repeated after every Tiep, time. There is a phase slippage between the carrier and the envelope
from pulse to pulse due to the phase- and group velocity differences inside the cavity, which has a
constant pcgo value. (b) The Fourier transform of the pulse train in (a). The spectrum consists
of uniformly spaced Dirac delta functions (red lines) multiplied by and envelope function (blue
curve), resulting in the comb structure depicted using the black lines. The lines in the comb
are repeated at every integer multiple of 14ep = 1/T}ep, and the whole comb is offset from zero
frequency by vcro = ¢crotrep/2m. The phases of the spectral lines are equal (green dots).

As a small detour, it is worth to consider what this means in the frequency domain.
By Fourier transforming the pulse train of Figure 2.3(a) one can get an frequency comb
[109], as depicted using black, thick lines in Figure 2.3(b). This consists of equally spaced
lines (red lines in in Figure 2.3(b)), that are enveloped by a function that is the Fourier
transform of a single pulse in the train (blue curve in Figure 2.3(a)). It can be shown
analytically that this is true for an ideal pulse series of any kind of pulse shape [110].
The theory also shows that the Dirac delta functions of the comb are spaced at v, =
Nlep + VeEO, Where vy, = 1/T5, is the repetition frequency and vepo = @opoVrep/27T is
the carrier-envelope offset frequency. The phase of the comb lines are constant (see the
green dots in Figure 2.3(b)), which coincide with what is expected from mode-locking.

These combs are widely used for precise spectroscopic measurements, as mode-locked
lasers with phase stabilization provide very stable frequency standards, surpassing any
other such tool [109]. It is important to notice that the comb of mode-locked lasers is
not the longitudinal modes made available by the cavity, as those would not be equally
spaced do to the dispersion inside the oscillator [18, 111]. The phase stabilization of a laser
oscillator means the stabilization of the vcgo frequency, and in the time domain it appears
as a known pulse-to-pulse phase change of the carrier with respect to the envelope. Still,
how the phase of the carrier is related to that of the envelope in a single pulse is unknown.
Measuring vcgo serves as a method to get information on the ¢cgpo phase [112].

The reason why this short note on laser oscillators had to be included here is the ¢cgo

slippage in the carrier with respect to the envelope after each shot. This phase difference
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from pulse to pulse is often understood as CEP, but most often called as carrier-envelope
offset phase (CEO phase) for clarity [112]. If the oscillator length varies, then the path
traveled is modified, and the phase difference changes. This in the spectral picture appears
as a modification of the longitudinal modes, so the variation of vcpo and 14, (usually
this latter can not even be defined, as the lines are not uniformly spaced any more). The
instabilities of the cavity appear as an output of non-identical pulses unequally spaced
in time. If someone measures vcgo, SO Pcro, it does not give any information on how
the envelope and the carrier is related to each other in a single pulse, just how the
phase changes after each shot [45, 112]. In this work the propagation of single pulses is
considered, so the CEO phase is not significant.

The CEP that is relevant in this work is the one that is also named as “absolute phase”
[17]. The absolute phase, that is the CEP of a single pulse is the phase difference between
the carrier and the envelope. Measuring this property of an optical wave packet is a very
laborious task, and considerations on its determination are given later.

Even if the distinction between CEO phase and CEP is made, the exact (mathemat-
ical) framing of CEP is needed. It is formulated several different ways, usually leading
to the same phase values, but some discrepancies can be found between the different in-
terpretations. Sometimes it is said that the CEP is not else but the constant phase term
that is decomposed from the complex electric field E(t) — like the linear one in (2.3) —,
so that the imaginary part of the complex temporal envelope & (t) is zero at t = 0 [17,
95]. In other cases it is simply considered as the time delay between the envelope peak
and the closest maximum of the carrier converted to a phase value [45, 112].

If someone wants to be punctilious, these definitions could be picked at, especially
taking into account that CEP is usually determined with spectral measurements. For
example, when the interpretation with the temporal phase value at time zero is thought
of, care should be taken if the pulse shape of Figure 2.2(e) is considered, when the pulse
is distorted by TOD. Mostly, the spectral data is evaluated using Fourier transform, and
as a result the temporal window is centered at the value of GD, which not necessarily
coincides with the maximum of the envelope (see Figure 2.2(e)). So the phase at ¢t = 0
has no direct information on the phase at the envelope peak, taking into account that the
envelope can be “distorted” (like in Figure 2.2(e)).

For the second definition with carrier- and envelope peaks, the analogy with the prop-
erties of the damped oscillator can be referred. As is known, the maximums of the under-
damped oscillations appear earlier then expected from the periodicity of the undamped
oscillation [113]. This means that the distance between the maximums of the carrier and
envelope can lead to a CEP value that is different from the previous definition or from

what logically expected (see Figure 2.4). It is also visible, that the deviations are minimal

18



2.2. Description of ultrashort pulse properties

(in the order of 100 mrad in the examples of Figure 2.4), they are similar in magnitude to

the CEP stability of laser amplifiers [114]. Also, the second definition usually serves only

as graphical interpretation of the meaning of CEP, so it is generally not so relevant.
Still, a consistent CEP defi-

nition is needed for the present
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The CEP of a single pulse is the

phase of the wave packet at the Figure 2.4. The difference between the CEP-definition
instant of time when the envelope variants. The leift subfigure depicts a short pulse given
by the function E(t) = exp[—t?/2.67%] exp[t@tot(t)], where
Prot(t) = —2.355t+ /4. Tt can be seen in the zooms of the
gives a numerical method to eval- right subfigures that the temporal distance tya.x between
uate the CEP of any pulse shape. the envelope peak (¢t = 0) and the closest maximums of the
field do not coincide with the times when the harmonic
carrier wave reaches its extrema, that is the times when
eral advantages over the previ- Grot(t) = 0 or 7 (£2mm, m € 7).

ously mentioned ones. It can be

reaches its mazimum. This also

The above definition has sev-

used to properly describe the phase relation of the carrier and envelope even for complex
pulse shapes (like the TOD-distorted pulse of Figure 2.2(e)). Such a CEP also possesses a
practical property that its zero means the strongest electric field with the given envelope,
which is often important in light-matter interactions [17]. Additionally, this approach
gives the possibility to generalize the CEP in a physically meaningful way even for pulses
with arbitrary polarization state [115], that again can be advantageous in nonlinear optical

phenomena [116], and which leads up to the next topic of this theoretical overview.

2.2.3 Polarization

Polarization is an important property of vector waves. While in the majority of laser
applications the polarization state is not considered — because the generated pulsed light
is usually linearly polarized and can be treated theoretically as a scalar —, more and more
studies are published where pulsed waves with complex polarization states are used [41,
64-72].

Polarization-shaped short pulses are primarily produced in the visible domain, where
most of the methods are based on light manipulation by liquid crystals (spatial light

modulators) [65-68]. This technique is under continuous development to yield simpler
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setups [117-119], and has been applied to tailor the polarization state of pulses originating
from different types of sources [120]. Other solutions, such as acousto-optical pulse shapers
or plasmonic-crystal structures, have been proposed as well for polarization-state control
[121, 122]. Polarization shaping in other wavelength regimes is also possible, for example,
for pulses generated in the mid-infrared [70], terahertz [64, 123] or ultraviolet [124]. So, it
is an important issue to discuss how the polarization state of short pulses can be described,

and how they might change during the propagation or focusing of the pulsed beam.

As the polarization-shaped pulse-generation Y
methods themselves are usually based on spectral Y A As‘//,/,/"\ A
control of the polarization ellipse (see Figure 2.5), reTTTTTN L = _}\_I . .
it may seem logical to consider the characteriza- i 7 X s M
tion also in spectral picture. However, it is more _-f /// | E \\, >
important how the polarization changes in time — \\: ////’?;1 T
considering the applications —, as the additional 1
I\~ ,Z ________ JI
control — which is their advantage — is achieved \\///// A,

by properly manipulating the temporal variation

of the electric field vector. The polarization-state Figure 2.5. The polarization ellipse
that is used to characterize the polari-

) _ zation state of transverse vector waves.
topic. However, there are different ways to repre-  The ellipse is defined by its angle ¥ with

description of monochromatic waves is a textbook

sent it. In the following, those ones are gathered, the reference axis z, by its ellipticity x
and by its semi-major axis Ays (or semi-

o ) minor axis A,,). The sign of ellipticity
it is shown how these representations can be gen- | determines the round-trip direction of

which are important for the discussion later, and

eralized to short pulses having temporally varying the harmonic-wave vector, or in other
polarization state. words it gives the helicity.

In the usual discussion of the polarization of monochromatic plane waves propagat-
ing in the z direction of the Cartesian coordinate system, two harmonic oscillations
are considered along the x and y axis, as plane electromagnetic waves are transverse
waves [90]. Assuming harmonic waves of the form E,(t) = A, cos [¢, — wot] and E,(t) =
A, cos [p, — wpt], it can be easily shown that the resulting oscillations happen along an
ellipse. This is why elliptical polarization is the most general type of polarization, and
why the polarization state of monochromatic waves is usually described by the properties
of this ellipse. The ellipse is unambiguously defined by two characteristic angles and a
length: the orientation W, the ellipticityV! x and the size of the major (or minor) semi

axis Ay (or A,,) (see Figure 2.5). The sign of the ellipticity gives the left- and right

VI There is another terminology to characterize the same property of an ellipse, that is, how much it is
like a circle or a line, which are the two extremes of its shape. For example in astronomy or mathematics,
the eccentricity is used instead of ellipticity, given by a slightly different definition. Using ellipticity
instead of eccentricity has advantages in these topics, which appears later in the discussion.
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Figure 2.6. (a) Temporal evolution of the two-dimensional electric field vector in a polarization-
shaped ultrashort pulse. The red dashed ellipses depict the instantaneous polarization state
(ellipse) in two separate moments (—4fs and 2fs). (b) The temporal evolution of the orientation
U(t) (blue continuous curve) and ellipticity x(¢) (yellow dashed curve) of the instantaneous
polarization ellipse for the pulse depicted in (a).

handedness of the polarization. If y is a positive (negative) angle then the polarization is
right (left) handed, meaning that if someone faces against the direction of propagation,
then the vector field rotates clockwise (counterclockwise) as time passes (see Figure 2.5).
It can be shown that these ellipse characteristics can be generalized to instantaneous
properties, and an instantaneous polarization ellipse can be defined characterizing the
polarization of the radiation in a single moment in time (see the two red dashed ellipses
of the polarization-shaped pulse in Figure 2.6(a)). This approach is unavoidable for short
pulses where the amplitudes A,, > 0 and phases ¢, , change in time, like the temporal

shape of (2.3). This means that two pulses of the form

Epy(t) = Az y(t) cos (@ (t) — wot] (2.7)
are considered, which are linearly polarized along the two Cartesian axis x and y. In the
following, the ellipse properties are considered as time-dependent quantities (see Figure
2.6(b)), describing the instantaneous polarization state and ellipse. In the next few lines
only the expressions giving the ellipse parameters are listed. The details of the derivation
of these instantaneous properties described by the z and y linear states can be found in
Appendix A.2.1, based on [90, 115, 125, 126].

The instantaneous ellipticity of the ellipse can be calculated as

X(t) = asinfsinf2a(0)] sin[AG()] € [~m/4,m/4], (2.8)
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where the n
t
— Y
a(t) = atan[Az(t) € [0,7/2] (2.9)
auxiliary angle and the
Ap(t) = Pa(t) — Py(t) (2.10)

phase difference were introduced. The orientation is given by

U(t) € [-m/4,7/4] if a(t) < /4
U(t) =S U(t)+n/2 € (7/4,7/)2) if a(t) > m/4 and ¥(t) <0 , (2.11)
U(t) —n/2 € [—7m/2,—71/4) if a(t) > m/4 and U(¢) >0

with

(1) = ;atan[tan[Qoz(t)] cos|AG (1] (2.12)

The semi-major and semi-minor axes can be expressed as

A (t) = Az(t)\J m (2.13)
and
A () = Aps(#) [tan]x ()] . (2.14)

With the ellipse, the vector wave can be decomposed to two scalar waves oscillating

along the axes of the ellipse z); and y,, (see Figure 2.5), leading to the expressions

EM(t) = AM(t) COS [@M(t) — th] s (215)
En(t) = sgnx(t)] A (t) sin [Qar(t) — wol] - (2.16)

In the two previous formulas the quantity

cos|x(t)] cos[¥(t)]

Pur(t) = @a(t) — sgn[W(t)x(t)] acos cos|a(t)]

(2.17)

is the phase associated with the semi-major axis, and sgn(z) = {lifz > 0,—1ifz <
0, and 0 if x = 0} is the signum function. Expressing the electric field along the rotated
axes gives the possibility to generalize the meaning of CEP to pulses with arbitrary
polarization state [115].

In some cases it is advantageous to switch to another orthogonal basis and leave the
one based on the z and y linear polarization. It is less common, but at least as well-known

approach to use the left- and right circularly polarized vectors as an expansion basis for
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2.2. Description of ultrashort pulse properties

the polarization state [127]. As each circular polarization state means two perpendicular,
linearly polarized waves with given shifted phases with respect to each other (7/2 and

—7/2, respectively), in complex formalism they can be written as

E(t) = A\l/g) exp[vdi(t)] (uy + wuy) (2.18)
E,(t) = A&g)exp[Lgér(t)] (u, —uy) . (2.19)

In the previous expression the Cartesian unit vectors u,, u, (and u,) have been intro-
duced, and the electric field is now treated as a vector quantity (written in bold). There
are several approaches to determine the properties of the polarization ellipse using the
attributes of the circular basis vectors (2.18) and (2.19). For example, introducing pha-
sors can yield the relationships in question [127], or Clifford (geometric) algebra can be
used to find them [128]. Of course, simple algebraic manipulations can also lead to the
expressions giving the properties of the polarization ellipse (see them in Appendix A.2.2).
A reason behind using the circular basis instead of the linear one is that it results in
simpler expressions (compare the ellipse parameters in Appendices A.2.1 and A.2.2), and
as a consequences, in more expressive formulas later.

There is another representation of the polarization of light that is more often used in
experiments than the ellipse parameters. The Stokes parameters can be more convenient
in practical situations, as they can be directly measured [90], and a nice graphical repre-
sentation is available for them, the Poincaré sphere (or plane) [90, 129]. The number of
Stokes parameters is four (Sp, S1, Se and S3), which means one additional compared to
the three necessary parameters of the ellipse. This is because with the ellipse only fully
polarized radiation can be treated, while light can be partially polarized or fully unpo-
larized [90, 130]. For this reason a distinction must be made based on how the Stokes
parameters are used to describe the polarization state of pulsed light.

One approach is to define instantaneous Stokes parameters, just like the instantaneous
properties of the ellipse (see Figure 2.7). In this case, the Stokes parameters can be
calculated just like for infinite harmonic waves [90], but every parameter depends on

time, that is,

S1(t) = So(t) cos [2x(t)] cos [2W(1)] , (2.20)
So(t) = Sp(t) cos [2x(t)] sin [2¥(¢)] , (2.21)
S3(t) = Sp(t) sin [2x(1)] . (2.22)

The zeroth parameter is the total instantaneous intensity of the field, similarly to the case
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2.2. Description of ultrashort pulse properties

of monochromatic waves, meaning the following equality is valid:

So(t) = VISLOF + [Sa()]® + [Ss())?

(2.23)

The instantaneous intensity can also be expressed using the ellipse parameters [115], with

the formula

So(t) ~ [Ap (D)) + [Am(1)]*

[An (O] — [Am (D))

cos [2 (P (t) — wot)] - (2.24)

5 +

Using the instantaneous Stokes parame-
ters and plotting them on the Poincaré sphere
is a picturesque method to follow the varia-
tions of the instantaneous polarization state
with time (compare Figures 2.7 and 2.6(b)
It has to

be noted that the instantaneous polarization

depicting the same properties).

state and Stokes parameters are only directly
accessible theoretically. There are different
methods to reveal the time-dependent polari-
zation state, like electro-optical sampling for
terahertz radiation [131], or based on a simi-
lar idea attosecond streaking can help to get
polarization properties of femtosecond pulses
[132]. However, in several cases these mea-
surements are achieved in a pump-probe ar-
rangement, so several subsequent pulses are
sampled and a good reproducibility of studied

pulse is assumed. A less direct, but possibly

*53(15)

Figure 2.7. The instantaneous polarization
state of the pulse plotted in Figure 2.6(a) rep-
resented on the Poincaré sphere (blue curve).
The two red dots show the moment of time
where the instantaneous ellipses are draw in
Figure 2.6(a). The yellow dots show the
six representative polarization states on the
sphere which also appear in the measurement
of the Stokes parameters. The Sy(t) parame-
ter is normalized to 1 for every moment.

single shot solution is the tomographic retrieval of the two-dimensional vector field by an

interferometric technique [133], but it means a relative measurement of the phases.

As almost all light detectors are time integrating, it is necessary to consider the tra-

ditional Stokes parameters as well. The indisputable benefit of them is that they can

be measured with very simple optical tools compared to the complex setups needed to

obtain information on their time-dependent versions [131-133]. This can be seen from

their definition [90], directly giving the method to experimentally obtain them,

So = In(0°,0) + I,,(90°,0)
Sy = In(0°,0) — I,,(90°,0)
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2.2. Description of ultrashort pulse properties

Sy = Iy(45°,0) — I,,(135°,0), (2.27)
Sy = I,(45°,7/2) — I,(135°,7/2), (2.28)
where
o1 T2 - - , 2
In(0,€) = Jim — /_ o [Re {E.(t) cos(0) + B, (t)expluc] sin(9) }]” at (2.29)

is proportional to the measured, time-integrated intensity (fluence) of the light after pass-
ing through a polarizer with azimuth angle # and a retarder causing e phase shift be-
tween the y and x components. While they, of course, carry less information than time-
dependent measurements, they can provide important information even in this case. The
number of the parameters with them becomes meaningful, as mentioned earlier, because

for time-integrated Stokes parameters

So > /S + 52+ 5%, (2.30)

the Sp, S5 and S3 parameters only describing the polarized part of the detected radi-
ation. In these classical measurements the quasi-monochromatic light, or similarly the
polarization-shaped short pulses, may appear as not totally polarized [130]. The ellip-
ticity or the orientation of the polarization ellipse may also be calculated from the time-
integrated Stokes parameters. As instantaneous Stokes parameters are defined based on
the traditional Stokes parameters, by regrouping (2.22) it is easy to see that a time-

integrated ellipticity can be obtained by [90]

S3

sin[2x] = : (2.31)
\/S? + 53 + 52
while from (2.20) and (2.21) the time-integrated orientation is
tan[2¢)] = é (2.32)
Sh

The time-integrated ellipse properties are generally only equivalent to instantaneous values

for monochromatic waves.
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2.3. Theoretical treatment and properties of propagating or focused pulsed beams

2.3 Theoretical treatment and properties of propa-

gating or focused pulsed beams

Up to this point the spatial properties of waves have been omitted. This intrinsically
means that these electromagnetic oscillations were considered in a fixed point in space, or
thought of as plane waves, which latter gives, for example, the strictly transverse nature of
electric field vector in the previous section. Plane waves are pure theoretical idealizations,
as these infinite waves would mean physical entities with unbounded spatial extensions,
and as a result, measureless energies. In reality there are no waves which spread never
ending in space, instead light exists in the form of beams. Beams are waves with a
bounded spatial distributions of different shape. Fortunately, although plane waves are
not physical reality, they serve as a good starting point or model for the more “complex”
beams. This is simply because plane waves serve as an expansion basis for waves with
any spatial distribution. Analogously to the temporal picture, where any wave form in
the temporal picture can be expressed as an infinite sum of harmonic waves using Fourier
transform, the spatially limited wave form is expandable to a unlimited number of plane
waves propagating in different directions (having wave vectors k of various orientations).
Of course, other expansion bases can be found (for example spherical waves), which may
result in simpler solutions in some cases due to the symmetry of the problem, but they
can be expressed in the fundamental basis of plane waves as well.

Plane waves are also trivial solutions of the wave equation. So, the behavior of light
beams, that is, how they change during time and in space (often simply referred to as
propagation), is also controlled by the wave equation, which is directly obtainable from the
equations of Maxwell in the case of electromagnetic radiation. In the following, a specific
type of beam, some physical properties related to the spatial dependence of waves, and
some less- and more complex wave propagation and diffraction models are described, with

paying special attention to the limits of methods presented.

2.3.1 Ray tracing

An extensively used method in optics to model the propagation properties of light is ray
tracing [90]. However, when using ray tracing, the wave nature of light is partly lost.
This is because geometrical optics is based on neglecting the wavelength (A — 0 limit), in
which case the equations of Maxwell simplify to the eikonal equation, which treats light
as pencils of rays [90]. These rays propagate along straight lines until they reach a region
in space where the refractive index is different, and there they change their direction

according to the geometrical laws of refraction or reflection (see Figure 2.8).
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2.3. Theoretical treatment and properties of propagating or focused pulsed beams

Ray tracing can be thought as applying the expansion of different waves into the sum
of plane waves, mentioned in the introductory part of this section, as rays represent the

VIl and traveling

wave vectors k of plane waves, being perpendicular to the wave fronts
along the path given by the laws of geometrical optics. The optical path S(r) (physical
distance multiplied by the index of refraction) along a ray from an origin to a point given
by r is called eikonal. The basic equation of geometrical optics — the eikonal equation
— describes the behavior of the function S(r). One advantage of using this fundamental
geometrical optics quantity is that the wave nature of light is not totally hidden, since
spatial points defined by the S(r) = const equation can be thought as “geometrical wave
fronts” [90]. Assuming an initial wave front (like the one defined by the eikonal S(r) = S;
in Figure 2.8), ray tracing can be used to track the the changes of the wave front while
the wave travels through an optical system (for example a lens in Figure 2.8), and the
wave front can be given at any position (like the wave front just behind the lens given by
S(r) =&, in Figure 2.8). S,

Ray tracing is a very robust numerical tool for

So
calculating light propagation. In its most simple
form it only requires the following main steps: 1, no
an initial wave front and a bunch of rays have to n no

be defined, these rays being perpendicular to the

wave front in every point in space; 2, the rays have ...

to be propagated along straight lines until they hit k

a surface separating volumes with different refrac- Figure 2.8. An example of ray propa-
gation through a lens with n > ng index
of refraction, ng being the refractive in-
the surface have to be calculated using the laws {ex of the environment. A task of ray

of refraction and reflection [90, 134]. The last two tracing is to determine the optical path
(eikonal) of rays from surface defined by
the constant eikonal &; and to give the
boundary surfaces (see Figure 2.8). Ray tracing, geometrical wave surface given by con-

of course, has its limitations as well. Modeling the stant eikonal Sa.

tive indices; 3, the new directions of the rays at

steps have to be repeated as long as there are new

intensity distribution of beams with rays is not trivial, for example. Also, geometrical
optics can not deal with such fundamental aspects of waves like interference or diffraction.
These effects usually take place when light meets obstacles that are comparable in size to
its wavelength, or where many light rays meet, like in the surrounding of the focal point
[90, 135]. To properly treat the case of focusing — the main topic of this work — other

models have to be used, which take into account the wave nature of light more profoundly.

VI While the meaning of “wave front” is clear here when monochromatic waves are discussed, there
are ambiguities when pulsed beams are considered. In this work “wave front” is used as the synonym of
“phase front”, which gives a surface in space along which the phase of the wave is constant. The surface
which gives the position of the pulse maximum is referred as “pulse front”.
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2.3.2 Gaussian beams in ABCD formalism

One property of lasers is that they can produce light beams with uniquely small diver-
gence. It is not surprising, as only those photons can travel back and forth between the
mirrors of the oscillator, which do not get too far from the optical axis during traveling
the distance between the two reflecting elements. The domain of optics, which describes
the propagation of such low-divergence waves, is called paraxial optics. In the paraxial

approximation the solution of the scalar wave equation

10°E(r,t)

sz(r, t) — 2 T

=0, (2.33)
is pursued in a special form. Note that the above equation is only valid in a space which
is homogeneous, isotropic, and where no charges or currents are present. The Laplace
operator in (2.33) reads as V? = 9?/02% + 9%/0y* + 9%/0z*, ¢ is the speed of light and
r = (z,y, 2) is the position vector. First of all, only monochromatic waves have to be
considered, because everything else can be built from them using Fourier transform, as
pointed out in Section 2.2.1, so the wave can be expressed as E(r,t) = G(r)exp[—wt].
This simplification leads to the well-known Helmholtz equation for the function G(r)
[90]. The second assumption is that the solution can be written in the form G(r) =
[(z,y, z)exp[tkz], with the wave number k = w/c, and I'(z,y, z) is assumed to be a
slowly varying function of z, coinciding with the presumption of a low-divergence beam.

This gives the equation

o' (z,y, 2)

VAT (2,y, 2) + 2k o

=0, (2.34)

known as paraxial Helmholtz equation [136], V3 = 9?/dz* + 0?/0y? only containing
derivatives perpendicular to the axis z. It can be shown that a paraxial beam solution of

this equation is the Gaussian beam given by [137]

G(r) = wa)exp [— “’;é)ﬂ exp [L (kz + k”j; thy; _ atanmﬂ | (2.35)

Of course, (2.35) multiplied with a constant amplitude is still a solution, and for a full

spatio-temporal description the exp[—twt] term is necessary. In (2.35) s is the radius of

the beam waist (the plane where the beam has the smallest transverse extension),

w(z) =s/1+ (2)2 (2.36)
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is the radius of the beam at distance z from the plane of the beam waist,

2

R(z)=z+ — (2.37)

z

is the radius of the spherical wave front at z, and

ws?

L="- 2.38
5 (2.38)

is the Rayleigh range (or Rayleigh length). The last term in the phase of (2.35), the one
written as —atan[z/L], is the so-called Gouy phase shift. While it has been first observed
with light waves [77], it has been revealed since then that it is a general property of beams
of any physical entity [138].

Gaussian beam is of particular interest in laser physics as it is the fundamental mode
present in a laser oscillator [107]. Providing again an analog with the temporal domain,
Gaussian beam is the the spatial distribution providing the smallest beam-parameter
product [107] — a parameter giving the product of the angular spread and smallest beam
size — similarly to the bandwidth-duration product of pulses. This can be considered
as a lucky situation, since this means that lasers usually provide a beam that can be
focused to the smallest physically possible spot, important for high-intensity physics [19].
A theoretical advantage — apart from the one that using Gaussian function can lead to
analytical solutions of several problems — is that in the paraxial approximation, Gaussian
beams remain Gaussian after passing through optical elements (this is a physical reason
behind the experience that the stable modes of oscillators are Gaussian) [137]. This fact

is utilized by the introduction of the complex beam parameter ¢(z), which is given by
G(z) =2+4(0) =2z— L, (2.39)

that is, g(0) = —¢L, or expressed as

- Ty _ (2.40)

Using the complex beam parameter G(z) to describe the Gaussian beam is practical be-
cause it fully contains the propagation law of the beam in free space. This can bee seen

from the equivalence of (2.35) and the expression

G(r) = gESg exp |f (k:z + k:mzc;(_j )] : (2.41)

obtainable using several different approaches [7].
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2.3. Theoretical treatment and properties of propagating or focused pulsed beams

To simply depict how the monochromatic Gaussian beam evolves when it passes
through or reflects from optical elements, one more property of the wave described by
(2.35) is exploited: its cylindrical symmetry. Due to this simplification, the ABCD for-
malism of geometrical optics can be used to study propagation properties of Gaussian
beams [7, 137]. In this method, the optical system through which the light passes is de-
scribed by a 2 x 2 matrix, the four letters referring to the for elements of it. The formalism

gives the complex beam parameter transforms as

. Ap+B

S 9.42
2= ca+D (2.42)

when the beam passes through a system given by the elements A, B, C' and D of the

matrix. If a Gaussian beam of the form (2.41) is taken with z = 0, that is,

~ . —l—yj
['(x,y,0) = exp|th— , 2.43

and it is assumed that its further propagation is described by an ABCD matrix, then the
function I'y(r) behind the ABCD system is given by [7]

Tor) = ———
2([‘) A+B/q~1 [ 9

(2.44)

where A and B are the elements of the first row in the matrix describing the system, ¢, is
given by (2.42), and the same refractive indices are assumed before and behind the optics.
Using (2.44) with the matrix of free-space propagation (A = 1,B = z,C = 0,D = 1),
(2.41) can be regained. Similarly, assuming a focal element with focal length f and
free-space propagation of distance z after it, the focused Gaussian beam is found to be
[139]

5 _(if(—f)eX , 2+ y?
G =" plkzqm

where G¢(Z) is the complex beam parameter of the focused beam (for explicit expressions

] exp[tk(Z + f)] , (2.45)

in different approximations see Appendix B.1) and Z = z— f is the distance measured from
the geometrical focal point. Equation (2.45) being formally the same as (2.41) coincides
with the mentioned fact that Gaussian beams remain Gaussian after propagating in the

ideal paraxial system. For more details on (2.45) and its derivation see Appendix B.1.

2.3.3 Focusing using scalar diffraction theory

While using the ABCD formalism is practical, and the results obtained using it are general

— as the effects found are present even in the most idealistic cases — there are several
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limitations of this method. When the case gets farther from ideal, the results from ABCD
matrix analysis become less comparable to the real experimental situation.

Although ABCD matrices may not fulfill the requirements in some cases, there is no
need for brute force solution of the Maxwell equations to find the properties of electro-
magnetic waves in the focal region (for example by finite difference [140] or finite element
methods [141], discrete dipole approximation [142], ...etc., collectively often referred to
as Maxwell- or electromagnetic field solvers). From the point that the wave has traversed
the material of the lens or has been reflected from the mirror, focusing can be treated
as free-space propagation. An “intermediate” solution, which is more detailed than the
ABCD matrix analysis but less time consuming than Maxwell solvers, is given by the
scalar diffraction theory of waves (or light) [90].

Diffraction theory of focusing is based on the Huygens—Fresnel principle. This law
states that every point of a wave front can be considered as a secondary source of elemen-
tary spherical waves, and the disturbance in any later moment can be given as the inter-
ference of waves originating from these secondary sources. Focusing can be treated with
this theory, because it can be considered as the diffraction of a wave front from a circular
aperture (of course only if the focusing optics used is circularly symmetric). Mathemati-
cally, the Huygens—Fresnel principle can be expressed using the Huygens—Fresnel integral.
According to this integral, in the case of an ideal spherical, monochromatic, converging

wave the field in point P close to the focus is given by (omitting again exp[—wwt])

G(P) =

~ L eXp Lk;R // eXp [tkh] dH | (2.46)
where it has been assumed that the angles that characterize the problem are smallV!!!(the
paraxial approximation is used), so the so-called inclination factor can be taken constant
[90], giving the —¢/ factor. In (2.46) the amplitude A is interpreted along the surface H,
k =27 /) is the wave number, R is defined as the radius of the converging spherical wave
front, and h is the distance of an arbitrary point @) of the surface H and point P (see
Figure 2.9). The exp|—tkR] /R factor is only introduced for convenience (the amplitude
and phase can be set arbitrarily along the surface H), to have a zero geometrical phase
and a “comfortable” value for the amplitude in the focus.

Of course it can be questioned straight away how well this phenomenological principle
can describe the physics which is governed by the more fundamental laws of Maxwell.

The answer is the integral theorem of Kirchhoff, which gives the pathway from Maxwell’s

VI 1t is always a question what can be considered “small” in such statements. Here, for the diffraction
of a converging spherical wave on a circular aperture it means that the point of interest is close to the
center of the spherical wave front. Referring to Figure 2.9, it mathematically means that the cosine of
the angle between the QO and QP lines is negligible when compared to 1, which is true when a?/R? < 1
and |OP|/R < 1 [143].
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Figure 2.9. The usual coordinate system to evaluate the Huygens—Fresnel integral for the
diffraction of a monochromatic, converging spherical wave on a circular aperture. This problem
is equivalent to the focusing of waves with ideal spherical wave fronts. The integration is carried
out along the points Q) of the spherical surface H with radius of curvature R, diffracted on a
circular aperture with radius a. The point ) can be uniquely referred on the surface H by
coordinates pa and 0. The origin O of the coordinate system is placed in the center of the
spherical surface, and the point of interest in space is nominated as P (coordinates (z,y, Z) in
Cartesian and (7,1, Z) in cylindrical coordinate systems'™). The distance between @ and P is
named h. The distance of O and every @ € H (including C) is R.

equations to an expression equivalent to (2.46); simply through the equation of Helmholtz,
by applying Green’s theorem and the assumption of the spherical wave “basis” [90]. The
Kirchhoff diffraction theory has been shown to be mathematically inconsistent [144], still,
the results obtain with it agree very well with experimentally obtained data. Later,
mathematically correct formulations, based on similar assumptions, have also been given,
called Rayleigh—Sommerfeld diffraction theory. It has been shown that if the aperture is
much larger then the wavelength (a > \), then the two diffraction theories give essentially
the same result in the far field (meaning the vicinity of the focus if focusing is considered)
[145]. Also, in the general case of a plane or spherical waves, the difference between the
two theories is only a boundary wave originating from the edge of the aperture [145],
which is not relevant if Gaussian beams are studied which have almost zero intensity at
the aperture edge.

An important, here utilized addition of diffraction theory compared to the ABCD
formalism — apart from the other trivial benefits rising from using waves instead of

rays — is that the aberrations of the wave front can be taken into account. A well-

IX Note here that the the azimuth angle v is measured from the y axis in contrary to the usual definition
of the cylindrical coordinate system, where the azimuth angle is what the position vector makes with the
x axis. The difference caused by this is given later. The reason for that is the traditions of this topic,
most probably originating from the symmetries of the treated physical problems [90].
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Entrance pupil

P 4
i
' Comtered )
optical
system a H
-I- . . Image plane
Exit pupil

Figure 2.10. The definition of the aberration function for the general case of imaging an object
point Py which is Yj distance from the optical axis. The Gaussian (paraxial) image point of the
object is P} being Y}* distance away from the axis of symmetry. The real wave front deviates
from the ideal one H (Gaussian reference sphere). The aberration function ® gives the distance
between the arbitrary point @ of the wave front and Q of the reference sphere along the ray
which traverses through @Q (the line with arrow in the middle). @ is positive if the direction

of QQ coincides with the direction of the ray. In the case of focusing a spherical wave with
the source being on the optical axis, the assumption of Y* = 0 can be used, meaning that
P} = O; = O, so the origin of the coordinate system is the geometrical focal point, and the case
coincides with that of Figure 2.9. In focusing the image plane is the focal plane, and the exit
pupil is the edge of the aperture of the lens/mirror.

established approach is to introduce the aberration function ®(p,#) [90]. The aberration
function gives the spatial distance of the ideal wave front (which is spherical and called as
Gaussian reference sphere) and the distorted one (see in more detail in Figure 2.10 and
its caption). There are only two arguments of this spatially-dependent function, because
it is interpreted along the points ) of surface H given by the Gaussian reference sphere.
In general, ® also depends on the image point P} chosen, but it is fixed in all studied
cases in this work, as focusing of spherical or plane waves is discussed originating from a
source on the optical axis. For this reason the explicit dependence of ® on Y;* is omitted.

The aberration function ®(p, ) can have a very complex shape and is often expanded
in the orthogonal set of Zernike polynomials [90]. However, frequently only some simple
distortions of imaging are present in the focusing known also from textbooks on optics
[127, 130]. These are called primary (or Seidel) aberrations, and they are the well-known
primary spherical aberration, coma, astigmatism, curvature of field and distortion. For
primary aberrations, using the polynomials of Zernike is not necessary, an equivalent
representation, known also from geometrical optics, can be used [90]. In this work, the

aberration function of a single aberration is written in the form
D (p,0) = Apmp™ cos™(0) = punmAp" cos™(0) , (2.47)
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Primary (Seidel) aberration [ n m Aberration function
Spherical aberration 0 4 0 Ayp?

Coma 0 3 1 Apip®cos(d)
Astigmatism 0 2 2 Agpap*cos?(6)
Curvature of field 1 2 0 Ajp?

Distortion 1 1 1 Ajipcos(d)

Table 2.1. The indexes and explicit forms of the aberration functions of primary (Seidel)
aberrations [90].

where the indexes [, n and m are the unique indexes of the corresponding aberrations, [
being contained implicitly in the coefficient A, (I is related to the omitted Y;* dependence
of ®). The dimensionless fi,,, factor has only been introduced in (2.47) because it is often
more graphical to express the amount of aberration with its ratio to the wavelength of
the radiation. The form of the aberration functions for the above mentioned five primary
aberrations can be found in Table 2.1.

With the introduced aberration function, the Huygens—Fresnel integral (2.46) can be
extended for the treatment of non-ideal focusing. In the presence of distortions it reads

as [90]

G(P) = _;\exp[]—%LkR] //H AlQ € H)ezp[bk(h + P)]

The only difference between (2.46) and (2.48) is that the phase modification on the Gaus-

sian reference sphere, due to the distortions, is taken into account by ®. It is to be noted

dH . (2.48)

here that there is a slight discrepancy between how & has been introduced and how it
is used in (2.48). The way of use in (2.48) assumes that ® gives the distance between
the wave front and the reference sphere along the dashed line in Figure 2.10, while by
definition, ® gives the distance along the ray of Figure 2.10. However, with the already
mentioned assumptions in the text or footnotes (a*> < R?*, A < a), and presuming an
experimentally reasonable amount of aberration, the difference is negligible.

For later convenience, from this point, the arbitrary amplitude distribution A(Q € H)

is written as
A(p) = exp|—(pa)*/w?| = exp|—rp’| , (2.49)

that is, a wave with Gaussian amplitude distribution along the reference wave front is
assumed to be focused. As wave fronts of Gaussian beams are spherical, and they have
transverse amplitude distribution given by functions like (2.49) (see Section 2.3.2), this
is a proper treatment of focusing Gaussian beams. It is also supported by the fact that
evaluating (2.48) with (2.49), taking ® = 0, and assuming that the aperture does not cut
from the beam (k > 1), the resulting electric field distribution corresponds to a Gaussian

beam [135, 143], as expected [137]. In (2.49) a new parameter is introduced for brevity,
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2.3. Theoretical treatment and properties of propagating or focused pulsed beams

called truncation coefficient [143, 146], given by

CL2

(2.50)

=5
True to its name, it describes how much the aperture clips from the Gaussian beam.
The two limits, kK — 0 and kK — oo, give the case of homogeneous illumination and an
untruncated Gaussian beam, respectively.

An other notation introduced here is advantageous in the treatise of focusing of pulsed
beams, which is discussed in a later section. Consider a beam consisting of several
monochromatic components and that we are interested in the effect of their superpo-
sition in the vicinity of focus. Due to the chromatic aberration of the focusing element
[75, 76, 130, 147-149], or because the different radii of the wave fronts, the focusing
of each harmonic wave would be treated in a different coordinate system with different
positions of the origin O. This is due to the wavelength dependence of the wave front
radius R = R(w), which is measured from plane of the exit pupil, which has a fixed place.
Fortunately, in the treated cases, the position of the origin varies with wavelength only
along the optical axis, depending on where the center of the Gaussian reference sphere is,
so Z = Z(w) depends on frequency [147]. For a treatment with one frame of reference,
the origin corresponding to the case of a given angular frequency wy is chosen (it is the
carrier wave here, but could be any other), and the electric field in a point P is given in
that corresponding coordinate system, with the axial coordinate Zy = Z(wy).

With the assumptions and notations detailed in the previous paragraphs, and utilizing
the cylindrical symmetry of the problem, the physical law named after Christiaan Huygens
and Augustin-Jean Fresnel can be written in a more explicit form than (2.48). Following
the steps detailed in textbooks or journal articles [90, 143, 146, 147], it can be shown that
the field distribution in point P close to the focus can be evaluated from (2.48), assuming

the Gaussian amplitude form (2.49), giving

~ (209, CL2

GP) =35 (Zo + Ro)R

2

exp(tk(Zo + Ry — R)] exp [LkQ 4

1-
(ZO"’RO)‘| ;I(u,v,w), (2.51)

where

T(u,v,1p) = /01/027r exp[—/ipﬂ exp [L (kCI) —wvpcos(d — ) — gp2>} pdfdp, (2.52)

and

wa*Zy+ Ry — R
U=—-—

—_ 2.53
c R ZQ + RO ’ ( )

35



2.3. Theoretical treatment and properties of propagating or focused pulsed beams

W a

= ———T7. 2.54
v CZO—FROT ( )

In the previous expressions subscript 0 (zero) means evaluation of the given angular
frequency-dependent quantity at wg, and r» = /22 + 32 is the transverse coordinate.
Expression (2.51) can be further simplified. Namely, the focused field evaluated using

(2.51) contains a focal shift [146, 150], meaning that the position of highest intensity does
not coincide with the geometrical focus (the diffraction focus differs from the geometrical
optics focus). This does not appear in most experimental situations, as this is only present
if very loose focusing is applied. Similarly to the treatment with ABCD formalism, an
additional approximation can be used, which bears the name of Peter Debye® (detailed
also in Appendix B.1 for the ABCD matrix analysis of Gaussian beams). If the Fresnel
number®! of the Guassian beam defined by N,, = w?/(AR) (or N, = a?/(AR) if homoge-
neous illumination is considered) is large enough (N, IV, > 1, meaning that the focusing
is not extremely loose), the focal shift disappears and the Debye approximation can be
used [143, 151]. In this case the field in the vicinity of focus is given by

~ w a? 1~

Gp(P) = ———exp[th(Zy + Ro — R)] =Z(up,vp,?), (2.55)

2¢ R? 7

where the integral Z is the same as before (see (2.52)), but taken with different arguments

expressed by

2

w a
up = ERQ (Zo —+ RO - R) s (256)
w a

It is easy to see that the simplification in the ABCD formalism, also termed Debye ap-
proximation (see Appendix B.1), really means the same approximation for (untruncated)
Gaussian beams as in diffraction theory. It has to be expressed differently with mathe-
matical formulas, due to the differences of the two treatments, but in both cases it means
that the focusing is not highly loose.

While generally the Debye integral for focusing is satisfactorily precise, special care
has to be taken when aberrations are present. In that case one has to be aware of the fact
that there are more strict requirements for the Debye approximation to be valid, which

might become important when the high intensity spatial regions are shifted compared

X In diffraction theory Debye representation means that the waves of the secondary sources of the
Huygens—Fresnel principle are approximated by plane waves.

XI The Fresnel number is the number of the Fresnel zones that are filling the center part of the
aperture covered by the incoming beam spot (for Gaussian beam) or the whole aperture (for homogeneous
illumination) and that are constructed from the focal point [90].
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to the undistorted case [152, 153]. At the same time, the Debye approximation can be
extended to high numerical apertures, that is, it can provide results not treatable in the
paraxial approximation [154]. The primary difference is that the vectorial nature of the
electromagnetic waves can no longer be neglected, vector field quantities have to be used,
mentioned also in the introduction referring to [81, 82] (see Section 2.1.2). Aberration-
distorted focusing can also be properly treated using vector diffraction theory [155, 156],
but this is not a topic of this work. The only relevant idea regarding the vector nature
of light that the longitudinal components of the field can be neglected in the paraxial
approximation, so the the propagation of the two transverse components (the z- and

y-linear or left- and right-circular constituents) can be treated independently [157, 158].

2.3.4 Pulsed beam propagation

In the previous sections propagation properties of monochromatic beams were discussed.
However, this work deals with the focusing and free-space propagation of pulsed Gaussian
beams. As discussed earlier, this can be achieved by using Fourier transform to convert
findings applied in the case of monochromatic waves to the treatment of pulsed beam
propagation. Like for wave equations (or any differential equations), the first step is to
define “initial” (or “boundary”) conditions [94]. For pulsed beam propagation this usually
means that in an initial plane the electric field in the spectral domain is known and is
given by

P(r,w) = U(w)G(r,w), (2.58)
where é(r,w) describes the spatial distribution in a plane (for example Gaussian, like
(2.41) for z = 0) and U(w) is given by (2.5), that is, determined by the temporal shape
of the pulse through the inverse Fourier transform (see (2.2)). The (2.58) type of de-
composition of the field 75(7",w) in the spectral domain means no restriction or loss of
generality, applied usually for pulsed beam diffraction or focusing. If one wants to obtain
the temporal variation of the electric field in an other point in space, the G (r,w) has to be
evaluated in that point for every w, and the focused or propagated field can be calculated

as

EV(r,t) =7 {P(rw)} . (2.59)

The above approach is the most general way, it can be applied irrespective of the exact
method used to obtain the factor G (r,w), containing the propagation. For ultrashort pulse
focusing, it has been utilized both for precise numerical calculations and approximate
solutions performed to obtain information on the pulse properties in the focal region [76,
135, 139, 147, 149, 159-161]. Such results have even been compared with experimental

data providing very nice agreements [162, 163].
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2.3. Theoretical treatment and properties of propagating or focused pulsed beams

While numerical simulations can give results that make direct comparison with mea-
sured data possible, it is often hard to extract the exact physical origin of a given effect
from it. When the aim is not a case study, or to check if the given model reproduces
some experimental observations, but to know how exactly or for what reason the given
phenomenon occurs, analytical formulas are more appropriate tools. Of course, analytical
approaches need simplifications, and can not treat as complex cases as numerical ones,
but they directly show the physical relationships.

For pulsed beams, an analytical theory was developed, which can provide such straight-
forward information on the diffraction of these spatially confined wave packets [164]. To
use this theory, the propagation factor G(r,w) in (2.58) is rewritten using Euler’s formula

as

G(r,w) = G(r,w)explupa(r,w)] . (2.60)
The approximation here is that both the modulus G(r,w) and the complex phase ¢ (r,w)
of G (r,w) can be expanded into Taylor series in frequency around wy, and can be termi-

nated after the first few orders. So

G(r,w) = Go(r) + ggl(!r) (w—wo)+.... (2.61)
va(r,w) = pgo(r) + SO/G’lo!(r) (W—wo)+ ..., (2.62)

with prime sign denoting differentiation with respect to w, and subscript zero evaluation
at the central frequency wy (that is, Go(r) = G(r,wp), Gi(r) = (dG(r,w)/dw)|

It can be shown that with the above assumption of terminating the series at first order,

s o)

the temporal variation of the propagated electric field in point P (pointed by r) at local
time

T=1t— go/G’O(r) (2.63)

can be written as
EW(r,7) = EP)(r, 7)exp[—woT] | (2.64)

with the complex envelope approximated by

EW(r, 1) ~ Go(r)EW (1) [1 + ] exp {L (QOG@(I') - w0¢’070(r))} . (2.65)

In the expression above
5 (i) L ey
EW () = %/ U(w)exp|—t (w — wp) 7] dw (2.66)

is the complex temporal envelope of the input pulse (given by the initial conditions), with
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2.3. Theoretical treatment and properties of propagating or focused pulsed beams

carrier frequency wy, determined by the complex spectrum U(w). Using the local time 7
instead of t means only a temporal shift, and using it is practical, because this way the
relevant part of the pulse is around 7 = 0 (see considerations on the phase derivatives in
Section 2.2.1). With a further assumption (see in Appendix B.2), the relation of the real
envelope AP (r,7) = ‘g(p) (r, 7')‘ and phase ¢ (r,7) = arg {g(p) (r, T)} of the propagated
field to that of the input pulse can be expressed [115]. It can be shown that, in this
approximation, the relationships are
/ N0
Gy(x) An(A7(7)

Go(r) dr ’

AP (r,7) ~ Gy(r)exp l

()

gb(p)(r, T) >~ (2.68)

(7) + ¢co(r) — wop(r) +
with A® (1) = |ED(7)| and $? (1) = arg [c‘f(i) (7‘)} The above first-order expressions can
be used to obtain analytical formulas on the carrier frequency, the envelope form, the
CEP or the polarization state changes of pulsed beams occurring during the propagation
or focusing, happening due to diffraction [115, 139, 164]. For the exact presumptions used
in this theory, see the detailed derivations in Appendix B.2.

2.3.5 Phase and group velocity

The phase and group velocity has already been mentioned, related to laser oscillators,
where the difference between them caused the CEP slippage of mode-locked lasers shot
to shot. As several nonlinear optical phenomena depend on the CEP [17, 56-63], it
is important to know its changes during the focusing of the pulse. While in the laser
oscillator the difference between these two velocities is caused by the dispersion of the
materials inside, in the free space it is a result of the wavelength dependence of diffraction,
acting as a kind of dispersion [164].

The quantity called “phase velocity” (v,) is used to describe how fast the cophasal
surfaces of a monochromatic wave are propagating in space [90]. For plane waves, it is
easy to give this velocity in vacuum, it equals to the physical constant ¢, the speed of
light, and its direction is in the wave vector k. If the propagation happens in a material,
it is only modified by the refractive index n of the given material, giving v, = ¢/n = k/w
[18, 90]. However, when a wave having a phase with spatial dependence is considered —
like a (Gaussian) beam —, its cophasal surfaces are not planes, and the case is different.

The general definition of phase velocity, which can be spatially varying, is [90]

w

= Noeea)l (269

Up(r, w)
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2.4. Measuring the changes of the carrier-envelope phase

where V = u,0/0z +u,0/0y + u,0/0z is the gradient operator. Phase velocity is a very
important property in nonlinear optics [22], where the difference between the propagation
speeds of the fundamental laser light and the generated “secondary” radiation in the
material determines the efficiency of the process. This aspect, the “phase matching”, is
very important in high harmonic generation [84, 85|, for example, but the changes of the
phase velocity has been shown to be important in the more practical problem of high
precision distance measurement as well [165]. The phase velocity can be greater than c,
which happens for beams due to Gouy phase shift [77], but it does not contradict causality
of the theory of relativity [166], as phase velocity has no direct physical significance since
it cannot carry information [90].

The “group velocity” (v,) describes the propagation speed of a wave packet as a whole.
While the expression is again simple for plane waves (v, = dw/dk), the general formula is
more complex. The group velocity of the wave packet with carrier frequency wy (can be
calculated at any other frequency, but in this work it is always interpreted at wy) is given

by
1

vy(r) = :
! IV (9pa(r, w)/0w]w=u)|
It is to be noted that (2.70) is strictly valid only for narrow bandwidth beams, when

(2.70)

the ratio of the pulse’s bandwidth Aw and central frequency wqy are sufficiently small
(Aw/w < 1) [90]. The group velocity of short pulses got considerable attention when
it was shown that a superluminal value of the group velocity (v, > ¢) is possible in
amplifying media [167]. Later it was shown that the wave packet can travel with a
group velocity faster than the speed of light even in vacuum [168, 169]. This, however,
does not contradict special relativity either, as in the presence of dispersion — even if
it is caused by diffraction — the group velocity is not necessarily equal to the speed of
energy propagation, so it does not give how fast the information travels (which never
travels faster than ¢) [170, 171]. It has been also confirmed by mathematical means that
the superluminal group velocity of focused, pulsed beams does not violate causality [78].
Still, the group velocity is relevant, because, together with phase velocity, it determines

the CEP, as discussed in the beginning of this section.

2.4 Measuring the changes of the carrier-envelope

phase

The control and measurement of CEP is a very important task for highly nonlinear optical
sciences, for the sake of reproducible experiments [47]. In the case of mode-locked laser

oscillators, the control is achieved by phase-stabilization [45], which makes it possible to
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obtain (almost) identical pulses at the electric field level at every nth shot (n is determined
by the CEO phase set, see Section 2.2.2). When optical parametric amplifiers are used as
sources, the control is even better, the pulses are alike in every single shot [172].

Of course, for appropriate control, the measurement of the phase is inevitable. When
the measurement is considered, a distinction has to be stressed again between the CEO
phase of a pulse train and the CEP of a single pulse. While for the measurement of the
CEO phase the quite standard procedure of f-to-2f interferometry exists [112], finding
an easily and widely applicable method for determining the CEP of single pulses is still
under research. Only the pulse-to-pulse change (or drift) of the CEP can be determined
with methods measuring the CEO phase, and the “absolute” value of the CEP remains
undetermined. In the following, the most common experimental methods are gathered

which aim to give the amount of change of the CEP (or its absolute value).

2.4.1 Methods utilizing nonlinear optics or light-matter inter-

action

As highlighted in the title of the present section, the most common methods are based
on either nonlinear optical processes, or rely on data provided by light-matter interaction
related phenomena. While the most widely used and accepted solutions for CEO-phase
detection depend on theoretical assumptions in the frequency domain (think of the fre-
quency combs of mode-locked laser oscillators discussed in Section 2.2.2), there are several
new ideas that break up with this approach.

The first attempt to measure the CEP changes (or CEO phase in other words) of a
mode-locked oscillator arose when the laser technology was reaching the sub-10-fs regime
[108]. The idea was to measure the temporal cross-correlation of subsequent pulses coming
from the laser oscillator (see Figure 2.11(a)). This was achieved by sending the laser
beam into a Michelson interferometer, in which one arm (long arm) was much longer than
the other (short arm), to make a pulse coming from the short arm overlap temporally
with a previous pulse coming from the long arm. By focusing the combined beams into
a nonlinear crystal, and detecting the signal behind it, the temporal cross-correlation
function between subsequent pulses could measured by varying the time delay At (for
example, by varying the length of the short arm, see Figure 2.11(a)). The CEP can be
obtained from the position of the function peak with respect to delay zero (see red dot
in the plot of Figure 2.11(a)) [108]. While this solution is not practical due to slow data
acquisition, it was used in the first precise frequency measurements with lasers [173].

Another solution, which became quite a standard for CEO-phase measurements, is
f-to-2f interferometry [112] (see Figure 2.11(b)). The basic idea of f-to-2f interferometry

is that, through the nonlinear process of frequency doubling, the low frequency part of
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Figure 2.11. The most important aspects of two prominent methods for CEP change detection
of laser oscillators. (a) The cross-correlation technique, which is based on the measurement of
the temporal cross-correlation function of two subsequent pulses in the pulse train (plot in
the upper left corner). The figure also depicts a basic sketch of the experimental setup for
the measurement. (b) The f-to-2f interferometry which relies on the measurement of the beat
note between the frequency comb and its up-converted replica. The higlighted region in the
spectrum is where this beating can be measured. The components of the experimental setup
that are depicted with the same graphic as in (a) have the same role as in (a).

the comb structure is upconverted two higher frequencies (see blue spectrum in Figure
2.11(b)). It is then combined with high frequency part of the original spectrum (green
combs in the spectrum of Figure 2.11(b)). It can be shown that in the limited detection
range (dashed region in spectrum of Figure 2.11(b)) a beat note comes off, which is the
vogo frequency, and as a such “low” frequency, it can be detected by a fast photodiode.
From this, the CEO phase can be determined using the considerations detailed in Section
2.2.2 [112]. A simple outline of the experimental realization of this measurement can
also be seen in 2.11(b). A big drawback of this approach is that, to have an overlapping
spectral region between the fundamental and the second harmonic, a spectrum covering
at least an octave is needed. Similar methods, based on frequency conversion and beat
note detection, have been developed [174], some of them eliminating the need of the broad
bandwidth [112], although through other sacrifices (the need of even higher intensity for
the more highly nonlinear phenomena exploited).

Another limitation of the procedures above — apart from the necessity of high inten-
sities because of nonlinear processes and the limitation to at least an octave bandwidth
in some cases — is the constraint to multiple shot usage. Both the ones measuring in
the frequency domain, and the correlation signal acquisition, need the detection of several
pulses, otherwise they do not work. So some phase stability of the oscillator is preliminary
assumed (or provided). A very successful solution for precise, single-shot CEP detection
was the idea of measuring the electron spectra ionized by the laser field in a special way

[175]. This certain method is often called stereo-ATI, because the electrons ionized by

42



2.4. Measuring the changes of the carrier-envelope phase

the process of above threshold ionization (ATI) are detected in the two directions being
parallel to laser polarization. Since its first demonstration, it has been developed to a very
reliable single-shot CEP measurement method [176]. It can even can provide information
on the “absolute” phase [177, 178]. Detecting photoelectrons for phase measurement was
applied before the appearance of the current stereo-ATI setup [179, 180], and the idea
has been studied widely theoretically as well [181], which gives a stable background to
this solution. This detection method, however, needs a complicated and expensive setup
[176]. Of course, any other phenomenon that depends on CEP could be used to give such
a measurement method. A promising tool has been recently demonstrated, for example,

in which the photocurrents induced by the focused laser pulse are detected [182].

2.4.2 CEP-change measurements with spectral interferometry

Spectral interferometry and its analogs are important and widely used pulse character-
ization methods of ultrafast optical sciences [104]. Tt is not surprising that, only a few
years after the appearance of few-cycle optical pulses, a CEP-change measurement method
based on spectral interferometry (SI) was proposed [183]. However, this first method still
used nonlinear optics. Since then, it has been proven that SI with its several branches
can provide a simple, linear optical method for CEP-drift measurements [184, 185]. Us-
ing a linear method for the detection of pulse-to-pulse CEP changes is beneficial, because
it needs neither high intensities (low-energy pulses can be measured and no focusing is
needed) [186], nor the broad bandwidth is necessary (applicable for multi-cycle pulses)
[187]. The setups can be extremely simple, at least compared to detection techniques
presented in the previous section. Of course, being a relative measurement method, SI
alone can not provide information on the “absolute” phase, that is, on the value of the
CEP of a single pulse in the train. Still, the simple method of SI can be used to verify
the usability of new CEP-shifting equipment [188], or to study the spatial distribution of
the CEP in a pulsed beam [189].

Being an easily applicable method to measure the spatial variations of the phase of
pulsed beams, SI serves as an important tool for experimental investigation of the prop-
erties studied in this work. For this reason, a short description on the principles of SI
is given in the following. As its name suggests, SI is based on resolving the interference
of two temporal signals with a spectrometer (see an example signal in Figure 2.12(a)).
In the most simple cases this is achieved by using a Mach—Zehnder type interferometer
(see Figure 2.12(b)). The sample, the dispersion properties of which is to be determined,
is placed in one arm of the interferometer (sample arm), and the other arm is empty
(reference arm). The beam passing through this latter serves as a reference for the mea-

surement. The combined signal from the two arms is then resolved by a spectrometer.
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Figure 2.12. (a) The simulated, spectrally resolved interference signal it (w) of a transform-
limited pulse of Trwpm = 15 fs duration and one with the same bandwidth but having GDD =
600 fs? second order phase derivative and delayed by GD = 400 fs with respect to the transform-
limited one. (b) The sketch of a basic experimental setup for SI based on a Mach—Zehnder type
interferometer used to determine the spectral phase shift of a sample.

The signal detected by the spectrometer (called interferogram) is given by the funda-

mental equation of interference [130], and can be written in the form
Ligg (W) = Lsam(w) + Liet(w) + 24/ Lsam (W) Lref (w) cos [Ap(w)] . (2.71)

In the previous expression, Igm(w) and I(w) are the intensity spectra of the beams
from the sample and reference arms, respectively, and Ap(w) = Ysam (W) — @rer(w) is the
spectral phase difference of the light coming from each arm of the interferometer (see the
decomposition (2.5) in a previous section). If the experimental setup is like in Figure
2.12(b), then Ap(w) purely gives the spectral phase modification caused by the sample.
For the CEP-drift measurement [186, 187], for example, the Mach—Zehnder interferom-
eter is built in asymmetric form (like it was done with the Michelson interferometer for
the cross-correlation measurement in Figure 2.11(a)), so every pulse in the pulse train
interferes with the consecutive ones (the closest being the most important). This way
the phase difference corresponds to the phase difference between the subsequent pulses
(determined by the CEP difference and the delay between them, this latter adjustable by
making the length of one arm variable).

If the reference pulse is transform limited, or its spectral phase is known ¢ef(w), then
¢Ysam(w) can be calculated from Ap(w). Together with Ig,m,(w) they fully describe the
pulse of the sample arm by (2.5). The temporal pulse shape can be given by simply
using inverse Fourier transform. So, to have an experimental method to measure the
phase or shape of a pulse, the only step remaining is to get the phase difference Ap(w)

from the measured interferogram Iis(w). Several methods exists for this [190], one of the
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Figure 2.13. (a) The inverse Fourier transform of the interferogram of Figure 2.12(a), the first
step of FTSI. The next step is to filter the relevant part of the temporal data (the Iy (t) in the
dashed rectangle), which in the simplest case means replacing everything with zero in the data
series except the part in the dashed rectangle if fast-Fourier transform is used. (b) The spectral
phase difference Ap(w) retrieved as the complex argument of the I (¢) limited signal’s Fourier
transform: Ap(w) = arg[.# {leu(t)}].

most widely used ones is Fourier-transform spectral interferometry (FTSI) [191], which
was shown to be the most reliable one from the several others, in specific applications
[190]. Apart from its general usage for ultrafast measurements [104], this is the evaluation
method in all previous examples of CEP-change measurement with SI [186-189]. The most
important steps of FTSI, and the spectral phase difference Ap(w) obtained with it from
the interferogram of Figure 2.12(a), can be seen in Figure 2.13(a)-(b).

Using FTSI to evaluate an interferogram is technically very simple [104, 190, 191]. The

T on the interferogram, which yields

first step is to apply an inverse Fourier transform®™
a temporal signal (like the one in 2.13(a), obtained by transforming the interferogram of
2.12(a)). This temporal signal contains three peaks (if the interferogram is the result of
only two pulses’ interference), one at zero delay, and two symmetrically on the two sides
of zero delay, these last two corresponding to the interference of the two pulses. The next
step is to filter this temporal data, and restrict it to one of the interference peaks (only the
part in dashed rectangle is not replaced by zero in 2.13(a), named I..(t)*™). As a last
step, this filtered temporal signal I.,(t) has to be Fourier transformed. The spectral phase
difference Ap(w) is the complex argument of the Fourier transformed filtered signal (see
2.13(b)). Although not highlighted explicitly in Figure 2.13(b), the resulted Ap(w) curve
can be perfectly fit by a second-order polynomial (up to numerical precision), reproducing

the coefficients written in the caption of Figure 2.12.

XL Of course, the normal Fourier transform could also be used. In that case in a later step its inverse
should be applied. The only reason here for using the inverse transformation for this step is that this
way it is consistent with the previous discussion (inverse Fourier transform yields the temporal signal).
X The pulse at negative delay could also be used.
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CHAPTER

Three

Results

The purpose of the preceding parts of this work is to give an overview on the scientific
areas serving as motivation, to gather theoretical and experimental background that was
necessary for achieving the results presented in the following sections, and to summarize
the prior or recent accomplishments in these topics. This chapter is dedicated to review
my contributions to findings on the phase and polarization property changes of pulsed
(Gaussian) beams happening during focusing (or during propagation in free space).

This chapter first discusses our study on the phase velocity and group velocity varia-
tions of focused, pulsed Gaussian beams. The analysis covers not just cases when focusing
is undistorted, but also situations when the diffraction of the broadband beam is modified
by primary aberrations [T1].

The next topic covers a theoretical discussion on a strongly related property: the
CEP. In our associated publications, we studied the possibility of undistorted focusing of
transform-limited or chirped few-cycle pulses with lenses or more complex optical systems,
even allowing some control over the CEP [T2-T4].

An important result was the experimental verification of the CEP-affecting features
highlighted in our theoretical works. The experiments were performed using spectral
interferometry, and included also a detailed investigation on the wavelength dependence
of beam properties [T5].

Finally, the last section of this chapter deals with the polarization state of polarization-
shaped ultrashort pulses. Our findings on the polarization-state changes, occurring during
focusing or free-space propagation, highlight new effects of diffraction on pulsed beam
propagation that may influence current or future experiments carried out using pulses

with temporally varying polarization states [T6, T7].
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3.1 On-axis phase velocity and group velocity varia-

tions of focused, pulsed Gaussian beams

As it was discussed previously, the phase velocity is a very important property of propagat-
ing electromagnetic waves in nonlinear optical sciences [22], as it determines the efficiency
of phase matching [22, 84, 85]. During the experiments studying these nonlinear optical
phenomena, the focusing of the laser pulse is necessary [47]. So the question is, that was
raised already: how focusing influences phase velocity? Of course, as the change of phase
velocity on axis is a consequence of the Gouy phase shift of beams, the answer affects
linear optical studies as well [165, 192, 193] (and references therein).

A question of similar importance is the variation of the group velocity, which was
shown to behave superluminally in the focus in some cases (see Section 2.3.5). However,
not all light-diffraction properties were taken into account in previous studies analyzing
phase- and group-velocity changes. Also, while the intensity distribution in the aberration-
distorted focusing of monochromatic or pulsed beams has been widely investigated [75,
76, 147-149, 159-162, O5], the phase properties were examined directly only in a few cases
[194, 195]. As an attempt to fill in this gap, some theoretical considerations on the phase
and the group velocity are discussed in the following, which can arise during aberration-
free and aberration-distorted focusing of Gaussian beams. To fulfill this, those recipes are
used, which were given in Section 2.3.5 for the calculation of the phase velocity v, and
the group velocity v,. According to (2.69) and (2.70), the necessary quantity, to calculate
the velocities in question, is the spatially dependent phase. For a focused Gaussian beam,
the expression (2.51) (along with (2.52)) can be used, the phase of which is

w 7’2

T W .
4 =——+4+—(Zy+Ry—-R)+——— zT . 3.1

@G(Ta 071/}7(*]) 2 + C( o+ Iip )+ 02(Z0—|—R0) +arg|: (%Uﬂﬂ)} ( )

For the sake of simplicity, only on-axis points are considered in the following, that is when

r =0, and as a consequence v = 0 (see definition (2.54) of v).

3.1.1 On-axis phase and group velocity in aberration-free focus-
ing

In most experimental cases, the aperture of the optics used is chosen so large that it does

no cut from the beam. Also, the aberrations of the beam is usually avoided. So the

untruncated-beam limit (kx — oo, or less strictly x > 1 [78]) with zero aberration is the

most important to consider, and for which analytical expressions can be obtained. In the

case of an undistroted, untruncated Gaussian beam the on-axis phase (3.1) can be written
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in the simpler, more explicit form of [78§]
T w
va(r=0,Zy,w) = ) + ;(ZO + Ry — R) — atan[wT (Zp,w)] - (3.2)

The 1 dependence of ¢ has been omitted in the previous expression, because the con-
sidered situation has cylindrical symmetry without aberrations. The newly introduced

variable is

B w2 ZQ—I-RQ—R
2R Zy+ Ry

As a reminder, w = w(w) is the radius of the Gaussian beam in the exit pupil of the

T(Zp,w) (3.3)

focusing element (see (2.49)). The radius of curvature R = R(w) of the phase fronts can
also be frequency dependent (not highlighted explicitly), for example, due to chromatic
aberration. Subscript 0 means evaluation at wp. Using (2.69) on (3.2) (here equivalent
with calculating the gradient of (3.1) on axis) yields the on-axis phase velocity (see details

in Appendix C.1)
vp(Zo,w) 14 w?T?
c 14+ wWrT?2 - (0.T)c’

where 0,7 is the short form for the partial derivative of 7 with respect to its spatial

(3.4)

argument, or explicitly

o7 Tpw) w’ 1 (3.5)
07y 2¢ (Zo + Ry)?
Note here that dimensionless parameters could be introduced in (3.4), but the advantages
of such step are lost due to the nonlinear relationship between 7 and Z, (see (3.3)).
However, in the Debye approximation, where 7T is a linear function of Z;, the expression
of v, can be given in a dimensionless form. The expression obtained this way can be
applied to the particular situation by simple scaling (see Appendix C.1).

There are two important mathematical properties of the derivative 0,7, easy to
see from its form (3.5). First, 0,7 > 0 for VZ; € (—o0;00), since every factor in
(3.5) is positive. The other is that it tends to zero for the two “ends” of the Z; axis
(limz, 400 0,7 = 0). Looking at (3.4), it implies on the phase velocity that v, is never
less than the speed of light, so the phase velocity is always superluminal on axis, if an
ideal Gaussian beams is focused. The second property gives that the phase velocity tends
to ¢ far from the focus. Both features can be seen in Figure 3.1(a)-(b). This is, of course,
not surprising, as the phase velocity is determined by the Gouy phase term (—atan|w7])
in (3.2). It must not be forgotten that the diffraction integral gives realistic information
only in the vicinity of the focus. This is why the mathematical problem that could arise

from limy,,_r 0,7 = oo does not contradict the physics behind.
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Figure 3.1. The changes of phase velocity v, on axis. (a) On-axis v, variations for different
wavelengths. In the simulation the beam size w at the exit pupil was assumed to be wavelength
independent. The wave front curvature R was changed for each wavelength according to the
focal length variation of lens made of an N-BK7 (Schott) material (R(w) = f(w) = (no —
1) fo/(n(w) — 1) [135], fo = 100 mm, subscript zero again meaning values at central wavelength
Ao = 800nm). Due to both the wavelength and the focal length variation, the plot of each
wavelength corresponds to different Fresnel numbers. (A = 750, 800, 850 and 1000 nm correspond
to f =99.79,100,100.17 and 100.65 mm; so N,, = 136.8,128,120.2 and 101.7, respectively.) The
Debye approximation is valid for all wavelengths in this situation. (b) The variation of on-axis v,
with Fresnel number N,,. The calculation is for fo = 500 mm focal length at Ay = 800nm. The
Fresnel numbers N, = 25.6,12.8,6.4 and 2.56 mean beam radii w = 3.2,2.26,1.6 and 1.01 mm,
respectively. The curve for N,, = 2.56 has been scaled for better visibility.

Another feature expected from the shape of the Gouy phase shift is the single maximum
of the phase velocity on axis. It can be simply shown that the function v,(Zy,w) of (3.4)

reaches its maximum in the point (see Appendix C.1 for details)

R

ZO,max(vp) =R— Ry — m )

(3.6)
where N,, = w?/(AR) is the Fresnel number of the Gaussian beam emerging from the
exit pupil of the focusing element (see Section 2.3.3). This means that the phase velocity
of a Gaussian beam, with a given wavelength, reaches its maximum in the diffraction
focus. When N, > 1, then Zymax(v,) = R — Ro, so the diffraction focus coincides with
the geometrical focus [150] (see Figure 3.1(a)-(b)).

The curves of Figure 3.1(a) show the differences of on-axis phase velocity variations for
different wavelengths. The situation depicted can be imagined as focusing a broadband
Gaussian beam, which has a wavelength-independent beam size (it is shown later that this
might not be the case in experimental situations), and the curvatures of wave fronts after

the lens are purely defined by the lens used for focusing. This graph shows the conclusion
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of (3.6), that the maximum of v, is shifted to the corresponding focal point for each
frequency. The A = 1000 nm case is depicted to better visualize that the Fresnel number
N,, also varies by frequency (due to the dependence on both the wavelength and the focal
length), which makes the variation curve different in shape as well, not just shifted (see
the broadened and less high peak of A = 1000nm). In Figure 3.1(b), the effect of the
diffraction-focus shift is plotted. It is visible that the focal shift has an appreciable effect
only in very extreme cases (the numerical aperture in the last example of Figure 3.1(b)
is w/f =~ 1/500).

As it has been mentioned several times, the phase velocity changes during propaga-
tion is interesting for nonlinear optical studies. For example, when radiation with shorter
wavelength is generated using lasers, through nonlinear phenomena, it would be advan-
tageous to slow down the phase of the fundamental field to match the phase velocity of
the generated radiation (in the case of normal dispersion the index of refraction is higher
for higher frequency, giving lower propagation speed). It is visible from the results above
that on axis, where the intensity of the beam is highest, it is not possible. For slower
light, one has to study the transverse variation of the Gouy phase [196], which has been
shown to yield subluminal (v, < ¢) light propagation off axis [168]. Spatial points not
lying on the optical axis are not topic of this work, however, this question is considered
later due to the special property of an optical aberration.

The phase velocity of different-wavelength components are also interesting, because
they determine the velocity of the wave packet as a whole. The on-axis velocity of the
wave packet, the group velocity, can also be obtained analytically for the undistorted,
untruncated Gaussian beam. Applying definition (2.70) on (3.1) along the optical axis
gives

w(Z) _ (1+AT)’ .
c (1+wiT5’)? = 90c(0:To) (1 — Wi Tg") + Yow§To(0:To)ws/ Ro *

which is the expression for a wave packet having carrier frequency wy. The two new

dimensionless variables are .

gv = 1+ QngwO 5 (38)

expressing the wavelength dependence of the beam size at the exit pupil, and
_ 0
Yo = ——FH Wo, (39)

quantifying the frequency dependence of the wave front curvature emerging from the
aperture. Just like before, the prime sign denotes derivative with respect to angular
frequency (wj, = dw/dw|y—w, and Ry = dR/dw|y—y,). Details of the calculation can be
found in Appendix C.2.
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Figure 3.2. The on-axis group-velocity variation of a pulsed Gaussian beam with exit-pupil
beam radius wy = 2mm and wave-front curvature Ry = 100mm at central wavelength A\g =
800nm. (a) The dependence of v, variation on the parameter g, describing the wavelength
dependence of the beam size. (b) The dependence of v, variation on the parameter +, describing
the wavelength dependence of wave-front curvature at the exit pupil.

Some special cases of (3.7) had been formulated before [78, 169]. While the notation
is different in the works referred, it is easy to see that Equation (29) of [78] is the same
as (3.7) with g, = 1 and 7, = 0. Equation (35) of [169] is more general than the previous
one, and contains the possible variation of beams size with wavelength, but the wave-front
is assumed to be frequency independent, so substituting v, = 0 into (3.7) gives the same
result. The (3.7) formula of this work can be considered as a generalized expression of
the cases published before.

It can be seen from (3.7), and in Figure 3.2(a)-(b), that the variation of the group
velocity on axis is determined by the values of g, and 7, so it is given by how the beam
size and wave-front curvature of the wave changes with wavelength at the exit pupil of the
focusing system. An important thing to note is that the group velocity is only constant
in a specific condition (g, = 0 and «, = 0). The conditions for this is given later.

For a simple explanation of the group-velocity variations in Figure 3.2, the diffraction
properties of Gaussian beams have to be considered. If g, # 0 (and v, = 0, see Figure
3.2(a)), it is true for beam size in the exit pupil that wj # —wy/(2wp). It can be shown
numerically that the condition wj = —wy/(2wp) basically results in a focused Gaussian
beam that has a wavelength independent Rayleigh length!. So when g, # 0, the different
Rayleigh lengths of the focused monochromatic components mean different amounts of

phase shift in a given distance due to Gouy’s phase. These phase shift differences induce

I'TIt can also be shown analytically using the expressions in Appendix B.1 for the focused beam in
Debye approximation, utilizing that the distance of the focused beam waist is the same for all frequencies
(Z = =Ry due to 7, = 0) and that the focused Rayleigh length is less then the “focal length” (Lp < Ryp).
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a group velocity variation that is most pronounced in the vicinity of the focus, since
Gouy phase shift has the largest changes there. As the variation of the phase velocities of
components are changed in a symmetric fashion with respect to focus (see Figure 3.1(b)
as a reference), the resulted v, variation is also symmetric to the focal point. Of course
some asymmetries would appear if very loose focusing is considered, and the diffraction
focus is shifted.

When , # 0 (and g, = 0, see Figure 3.2(b)) the situation is different. The monochro-
matic components are focused at different points on axis (see Figure 3.1(a)), which gives
phase changes that are not symmetric with respect to the distance from the focal point.
So the group-velocity variation is and odd function of Z; in Figure 3.2(b). There are
other influencing properties in this case as well, since, due to R, the Fresnel number N,
also varies with wavelength. This causes similar changes to the g, # 0 case, but they are
obscured by the much larger effect of ~, # 0.

An important solution to find is the expressions of g, and ~, parameters, appearing
in (3.7), for specific experimental situations. In the previous works referred, only cases
were considered when the pulsed Gaussian beam was focused at its waist, and the plane
of the waist was the same for all wavelengths [78, 169]. In this simple situation, g, simply
refers to the wavelength variation of source beam’s waist size. Similarly, the value of ~,
is defined by the longitudinal chromatic aberration of the focusing element. However, in
general, laser beams are not focused at their waist, and the exact position of the waist
can differ for different frequencies. In the following, the formulas of g, and -, are given,
which are applicable in general situations.

Consider a Gaussian beam with a
beam waist radius s = s(w) and V25(w) w(w) w(w)
Rayleigh length L = L(w) = ws?/(2¢), s(w)

following the nomenclature given in R(w)

Section 2.3.2.  Allow the possibility L(w) X I
that the distance d = d(w) between '

the beam waist and the focal element : d(w)

Ja

is also wavelength dependent (see Fig-

. . Figure 3.3. The description of Gaussian beam prop-
ure 3.3). With the assumption that erties before and behind the focusing element. The
the beam size is the same just before focusing element is depicted as a lens, but can be a

the focusing element and djrectly be_ fOCUSng OptiCS of any kind in paraxial approxima—

hind it the simple formalism of Sec- tion.

tion 2.3.2 can be used to obtain an expression on g, changes with input beam properties

I This presumption is general for thins lenses, and is naturally valid for focusing mirrors. Care must
be taken when thick lenses are used for a very strong focusing situation.
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(see details in Appendix C.3). The resulted formula is

Fen g 25 (3.10)
v — Ys €s —0s)37 o5 :
g g g 1+ ¢
where the newly introduced dimensionless parameters are
S/ L/
s =142, =22 3.11
g + 5 Wo To Wo (3.11)
0
, =2 3.12
g do wWo ( )
and p
0
s = —. 3.13
- (3.1

The g; parameter describes the wavelength dependence of the beam waist size for the
source beam, or the same feature of the Rayleigh range, if expressed differently (see
(3.11)). As an example, g; = +1,0 and —1 correspond to a Gaussian beam of frequency-
independent waist size, Rayleigh range (isodiffracting beam) and divergence (isodiverging
beam), respectively [139]. This is why such values of g, are depicted in Figure 3.2(a).
The isodiffracting beam, for example, is the stable mode of laser oscillators [197]. The &
parameter gives how the position of the beam waist changes with wavelength, while &, is
a dimensionless measure of the waist-lens distance.

The behavior of g,, described by (3.10), can be seen in Figure 3.4(a). The most
important is that if the focusing element is at the beam waist (dy = 0), then g, = g5, only
the g, parameter of the input beam is what matters. Using lim, ., #2/(1 + 2?) = 1, it is
visible that limg, ;o gy = 265 — g5, 50 g, has an asymptotic limit when the focal element
is put far from the waist (dy > Lg). Practically, the region within a Rayleigh length
is most important, because, in usual experimental setups, the focusing is performed in
this range. As it can be seen in Figure 3.4(a), there is a strong dependence on the exact
position of the lens in the vicinity of & = 1. The difference between the g, parameters
for a Gaussian beam focused at its waist and at one Rayleigh length (§, =0 and & = 1)
is g, = gs against g, = 5. Only an isodiffracting, pulsed Gaussian beam (gs = 0), that
has the waists of all components at the same plane (¢5 = 0), has a g, parameter that is
independent of the distance between the focal element and beam waist. This is the case
for an idealistic laser oscillator [197]. If £, = 0, all monochromatic components have the
same beam size at the Rayleigh range (g, = 0 at { = 1), irrespective of the value of gs.

The ~, parameter can also be expressed using source-beam properties and focal-
element characteristics (see details in Appendix C.3). Again, using the expressions of

Section 2.3.2 for Gaussian beams and the formulas of focusing/imaging in paraxial optics,

33



3.1. On-axis phase velocity and group velocity variations of focused, pulsed. ..

I NN T S '
—(;=0.05,9,= 0,5, =0
---(;=0.5,9,=0g,=0
\ ¢;=0.01,9, = 0,5, = 0.5

\——(=001l,g,=1g=0 [
\

~.
S——

Figure 3.4. (a) A few examples of the variation of parameter g, of the focused beam with
properties g, es and & of the input beam. (b) A few examples of the variation of parameter 7,
of the focused beam with properties gs,es and & of the input beam and characteristics v; and
¢y of the focusing element.
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From the expression above, it is clearly visible that v, depends on other parameters in

(3.14)

a more complex way than g,, especially as additionally the focal element plays a role

through /
V= —JTSWO (3.15)
and
ng- (3.16)

Parameter v; quantitatively describes the chromatic aberration of the focusing element,
while (; is a dimensionless form for the focal length f, = f(wo) at the carrier frequency.
A few examples for 7, values can be seen in Figure 3.4(b).

When the focusing element is placed at the waist of the beam ({, = 0), the wave-
front curvature-change with wavelength is determined by the chromatic aberration of the
focal element (v, = 7). This can be seen in Figure 3.4(b), where ~; is set to 0.01
for all curves. The value was set so because this lies in the order of magnitude of v
values for standard bi-convex lenses. For the N-BK7 lens of Figure 3.1(a), for example,
vs = 0.031. For achromatic lenses the value is an order of magnitude smaller. In general,
all singlet and most achromatic lenses have vy > 0, since they focus blue components
closer to the focal element, introducing a group velocity increase before the focus (see
Figure 3.2(b)). These facts are the reason for the =, values of Figure 3.2(b). From
Figure 3.4(b), it can be deduced that other parameters do not change usually the order
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of magnitude of v, from the value of v,. This is because in the most common situations
fo < Lo (¢f < 1), and also since the second term of (3.14) is usually less or comparable to
the first term in magnitude. It also means that, if the focusing element has no chromatic
aberration (v = 0), the other effects described by the second term of (3.14) can still yield
a similar effect to the chromatic aberration of a lens, analogous both in characteristics
and amplitude. It is hard to deduce other direct implications from (3.14).

There are two important consequences of the findings in this section that should be
highlighted. First, the on-axis group velocity of a pulsed Gaussian beam in the focus
is only constant if an isodiffracting beam having wavelength-independent beam-waist
position is focused with a focusing element that has no chromatic aberration. Second, a
chromatic aberration-like effect can appear even in those cases when the focusing element

has no chromatic aberration.

3.1.2 Phase and group velocity in aberration-distorted focusing

While the idealistic cases of the previous subsection are generally applicable, usually
the situation is more complex, and the pulsed beam can not be considered as a pure
Gaussian beam with spherical phase fronts. When the pulsed Gaussian beam is distorted
by aberrations or truncation, analytic evaluation of the phase or the group velocity is
not possible. There are a few cases when analytical expressions for the distorted field
in the focus can be obtained. One example is the limit of very strong truncation of
the beam (k — 0), but in this case the meaning of group velocity evaluated on axis with
(2.70) is physically doubtful [78]. An other case is when the focusing suffers from spherical
aberration, but due to the appearance of special functions in the expression of the focused
field [T3, 195], the evaluation of phase and group velocity needs numerical means.

The necessity of numerical evaluation is raised by the last term arg [f (u, v, 1/1)] in (3.1).
By taking a look at the formulas (2.69) and (2.70), giving the phase and group velocity,
it is easy to see that, to get these physical quantities, the following steps are necessary.
First, to obtain pz(u,v,1) = arg [f(u,v,zb)}, a complex integral of the form (2.52) has
to be calculated. Then, it is required to evaluate the complex phase of these integrals.
Finally, the derivative of this phase is needed with respect to three variables to calculate
the gradient appearing in the formulas of v, and v,. In the case of the group velocity,
an other derivative with respect to frequency is also present. This way of solving this
problem is a direct source of numerical errors. Calculating the derivative of an integral is
especially a procedure that needs special attention, with the additional intermediary step
of evaluating a complex phase.

To avoid these numerical glitches, the following steps are taken. Firstly, it is assumed

that the order of calculating the integral and taking the derivative can be interchanged.
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This, of course, has specific mathematical conditions that are needed to be fulfilled, but
they are not examined here. The functions appearing in this work are well-behaving
expressions, and the applicability of this step was checked by numerical means for simple
cases. This way the integrand can be differentiated analytically, so numerical calculation
of the derivative can be fully avoided. A second simplification is the calculation of the
phase and its derivatives using analytical expressions instead of the numerical atan2(z)
function [91] (see Appendix D.1 for formulas). As a result, the evaluation of the phase
and group velocity in distorted focusing can be simplified to calculating integrals and
applying simple mathematical operations between them, without any additional steps
which increase the chance of numerical errors. For explicit expression see Appendix D.2.
In the results presented, several simplifying physical conditions are assumed. First of
all, only primary aberrations are considered, which have an aberration function of the

form (see Section 2.3.3)
D1 (p, 0) = porop™ cos™ () . (3.17)

This here means that all presented plots of phase and group velocity refer to the case
of central wavelength Ay = 800nm. It is to be noted here again that the value of ug
generally depends on the object and image points (Fy and P; of Figure 2.10, respectively).
However, it can be omitted, since the object is fixed [90]. It is the shape of the wave
front that is relevant in the wave optical description, which is given by the reference
sphere and the aberration function ® together. When someone changes the reference
point in imaging applications (the origin, Y}, see Figure 2.10), the reference sphere and
the aberration function have to be recalculated, for example, by ray tracing (see Section
2.3.1). Also, the amount of the aberration is wavelength dependent usually (1 = p(X))
[198-200]. This group-velocity changing property, however, is not taken into account in
the examples presented, but the fully detailed calculation given in Appendix D.2.3 gives a
way of treatment for this case as well. The wave-front distorting effect of beam truncation
and primary aberrations are also examined separately, to see the effect of each feature
independently.

For simpler graphical representation, and as for most applications this spatial region
is the most important, results and expressions only for on-axis points are presented here.
The on-axis phase velocity of the carrier wave in the presence of primary aberrations and
beam truncation is given by

cVog| r=0 |~

w=wq

vp(2o)

Cc Wo
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CV§0G| r=0 29 %!
—wmwe — 1] 4 ( a > L2 u, + ¢ Y¥1 u,, (3.18)
wo ZO + Ro ou :Z);% ZO + Ro ov Zzz%
w=wo W=wo
while the on-axis group velocity can be obtained by
-1
Z
v(Zo) _ | . [ 9%c |
c ow | r=0
o
dpa a \? Por a 01
V a = _'_ ( ) ¥4 + T
VN oo | =0 \Zo+ Ro) dudw| =g | T 2+ Ry dv0w| sy |
W=wo w=wg w=wq
(3.19)

where u,, u, (and uy) are the cylindrical unit vectors. Thanks to the symmetry proper-
ties of primary aberrations (they only contain dependence on 6 through cos(f)), the uy
component needs no evaluation to obtain the gradient in the expressions of the on-axis
phase and group velocity. This is because the optical axis is a line of singularity in the
cylindrical coordinate system considering coordinate . This means that if » = 0, then,
for all ¢ coordinates, the u, and u, components add up to the same vector, which is
equivalent to the u, component at 1) = 0 (see details in Appendix D.2). Additionally, if
an aberration with even value of index m is considered, the component u, is also zero, so
only the component u, (the one along Z;) needs evaluation in (3.18) and (3.19).

As mentioned previously, to avoid numerical errors, the derivatives of the phase 7 =
arg [f(u,v,qb)}, in expressions (3.18) and (3.19), are evaluated without calculating the
phase itself according to (see detailed derivation in Appendix D.1)

dpr Re (0, Z)"]
dx Z]2

(3.20)

and

Por  |IPRe i Z(21) +u0:1)(0,2)]  2Re[iZ(9,2)*| Im [:Z(9,1)"|
drdy Iz B |Z]* ’

(3.21)

where x and y should be replaced with the corresponding variable u, v or w, and superscript
% means complex conjugation. The necessary derivatives of the integral Z (u,v,1) for the

on-axis expressions are as follows:

L 1 r2n 3
- _7/ Ta,0<p7 9),0 d¢ dpa (322)
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27
— ~ ! cos(f p.0)p*dfdp, (3.23)
JZ_;% / /
27r -
v=0 // Aa(p,0)pdf dp, (3.24)
8212' 27r ~ 5
udw | y=4 BN / / 1+Aao(p, 9)} p>dodp, (3.25)
and -
(9 I 27
Ovdw| v=0 / / cos(f p,0) [1+A( 0)} p*dfdp. (3.26)
=0

In the previous integrals the following functions were introduced for brevity:

Too(p,0) = exp <—/f002 + tho®(p, 0) — LUQO;P) : (3.27)
. 102 wnd?
Na(p,0) = —p*(1 — g,) ko + tho®(p, 0) — % (uo + %TORO > , (3.28)

where in the (3.28) form of A,(p,8) the possible wavelength dependence of the aberration
is neglected. The subscript a of Ay(p,#) and Too(p, #) means that these function are only
for on-axis evaluation, and like before, subscript 0 of every function (or variable) means
its evaluation at carrier frequency wy. The formulas that are valid also in off-axis point
of the neighborhood of focus are given in Appendix D. As a summary of the expressions
above, after evaluating the integrals in (3.22), (3.23), (3.24), (3.25) and (3.26); they
can be substituted into (3.20) and (3.21) to acquire on-axis phase and group velocities
using (3.18) and (3.19). The phase and group velocity data presented in the plots of the
following few paragraphs were generated using the steps given above.

A detailed derivation and description of formulas for the calculation of phase and
group velocity of focused Gaussian beams in the presence of aberrations can be found in
Appendix D.2. The expressions presented there can used to obtain the properties of v,
and v, in any point in space near the focus. There is no restriction on the shape of the
aberration function, and it can even be wavelength dependent.

If cases with large Fresnel numbers are considered, the Debye approximation might be
used. In the case of phase velocity evaluation with (3.18), Debye approximation simply
means the replacement of factor a/(Zy + Ro) with a/Ry. This can also be done for
the group velocity in (3.19), if v, = 0. Care should be taken, however, since, in the
presence of aberrations, some other conditions may become important for the validity of
the Debye approximation, and they can give more constraints on when this simplification

can be used, compared to the undistorted case [152, 153]. Some signatures of these
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Figure 3.5. The on-axis change of phase and group velocity of a focused, truncated Gaussian
beam. The central wavelength is Ag = 800nm, the Gaussian beam radius just before the exit
pupil is w = 3.2mm and the radius of curvature of the Gaussian reference sphere leaving the
exit aperture is Rp = 100 mm. This would result in a Rayleigh length of approximately 250 pm
without truncation. (a) The effect of different amounts of truncation on the phase velocity. (a)
The effect of different amounts of truncation on the group velocity.

more strict conditions are presented in later plots. Further considerations on using Debye

approximation with the expressions presented can be found in Appendix D.3.

Beam truncation The effect of truncation has been investigated for several types of
beams, but these studies were mainly concentrated on the focal shift [146, 201], the beam
quality [202, 203] or the intensity distribution of truncated beams [143, 204]. The phase
and group velocities, however, are also affected by the phase changes induced by the
truncation of the pulsed Gaussian beam. Figure 3.5 shows the effect of truncation on the
on-axis phase and group velocity for different amounts of truncation. It can be seen in
both plots that the clipping of the beam primarily induces an oscillation of the velocities
around the focal region. In Figure 3.5 the beam size is chosen to be large, so the focal
shift due to the small Fresnel number is negligible. The variation of the beam spot size at
the focusing element with wavelength is characterized by g, = 1, to better visualize the
extent of this effect compared to the group-velocity variation caused by diffraction.

An important property that can be seen in the curves of Figure 3.5 is the effect
of truncation on phase velocity, which becomes comparable to the effect of beams size
variation — with the chosen parameters — for as weak truncation as x < 10 . In the
case of group velocity, these distortions already appear for k < 15. For smaller values
of g,, the requirement for comparable effect with diffraction would even be more strict.
This shows that while the intensity distribution was found to be negligibly affected by

truncation for xk = 4 [143], the underlying phase changes are much more pronounced. On

39
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the other hand, it is noted that the focused Rayleigh range of the beam plotted in Figure
3.5 is approximately 250 pm, and in this region the group velocity is almost unchanged,
even for strongly truncated beams (see Figure 3.5(b)). However, the phase velocity is
more profoundly altered, even within the focal depth (see Figure 3.5(a)). In the next few
paragraphs, which examine primary aberrations, the truncation of the beam is avoided,

to study the effects of wave-front distortions alone.

Spherical aberration Primary spherical aberration is a very common form of aber-
ration present in many cases, as often spherical lenses or spherical mirrors are used for
focusing. This distortion of the wave front is intrinsic to the shape of the focusing ele-
ment, so not related to a misalignment or error. The aberration function in this case is
indexed by [ =0, n =4 and m = 0 (see Section 2.3.3 or [90, O5]), which means that the

aberration function of primary spherical aberration is

DPoso(p, 0) = MO/\0P4 . (3.29)

As it is visible in Figures 3.6(a)-(d), primary spherical aberration has an effect on
the phase properties primarily before the focus. This is, of course, only true when the
coefficient of the aberration function is negative, which means that the rays that are
farther from axis are focused to a focal point that is closer to the focal element. This is a
well-known property of spherical aberration [90, 130], and this is why cases with negative
aberration coefficient are plotted in Figures 3.6(a)-(d).

An other expected property is the effect of spherical aberration on highly non-paraxial
rays, which appears in the (3.29) form of the aberration function by the fourth power
dependence on the radial distance from axis. This also means that a higher amount of
aberration is necessary for a visible effect on the velocity variations compared to other
aberrations (cf. the magnitude of aberration coefficients g in Figure 3.6 for spherical
aberration and Figures 3.7, 3.8, 3.9 and 3.10 for other primary aberrations). It is enough
to plot cases with negative coefficients, because it has been shown previously that the
field in the presence of primary spherical aberration in Debye approximation possesses a
mirror symmetry in the dimensionless axial coordinate up, with the change of sign of the
aberration coefficient po [195]. This means that, if the Debye approximation is valid, only
the up <> —up and 7, < —7, exchanges are necessary if the interchange py <> —pq is
done. One has to be cautious, however, because, in general, there are more conditions to
be fulfilled for the validity of Debye approximation than just the high value of the Fresnel
number N,, [152, 153]. For example, one has to take into account the Zy-dependent scaling
in the expression of (3.18) and (3.19), which is a nice example of requirement up < 27N,
(so Zy < fo) in this case [152]. So, this additional limit restricts distance of the spatial
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Figure 3.6. The on-axis change of phase and group velocity in the presence of primary spherical
aberration. The central wavelength is Ag = 800 nm, the Gaussian beam radius at the exit pupil
is w = 3.2mm and the radius of curvature of the Gaussian reference sphere leaving the exit
aperture is Rp = 100 mm. This results in a Rayleigh length of approximately 250 pm. (a) The
on-axis phase velocity for different amounts of primary spherical aberration. (b) The on-axis
group velocity for different amounts of primary spherical aberration. (c) The on-axis group
velocity variation with g,. (d) The on-axis group velocity variation with ~,.

coordinate from the focal point in Debye approximation, and can be relevant, since the
interesting region (where the intensity is highest, or where the phase variations are most
pronounced) can be shifted from the geometrical focus due to the presence of aberrations.

More visible effects of the scaling with Zj is presented in the case of other aberrations.

Astigmatism Astigmatism is again a well-known aberration of laser beams, caused,
for example, by off-axis reflection from cavity mirrors [18]. The aberration function of

primary astigmatism is indexed by [ = 0, n = 2 and m = 2, giving the form
Doz (p, 0) = porop® cos?(0) . (3.30)
Two distinct focal lines appear in the presence of primary astigmatism. These are
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Figure 3.7. The on-axis change of phase and group velocity in the presence of primary astig-
matism. The central wavelength is Ay = 800nm, the Gaussian beam radius at the exit pupil
is w = 3.2mm and the radius of curvature of the Gaussian reference sphere leaving the exit
aperture is Ryp = 100 mm. This results in a Rayleigh length of approximately 250 pm. (a) The
on-axis phase velocity for different amounts of primary astigmatism. (b) The on-axis group
velocity for different amounts of primary astigmatism. (c) The on-axis group velocity variation
with g,. (d) The on-axis group velocity variation with ~,.

called meridional and sagittal focal spots, since the meridional rays (that traverse through
the plane of symmetry, given by 6 = 0) and sagittal rays (traveling in the plane of § = 90°)
are focused at each of them.

An interesting feature of astigmatism, which has been shown both theoretically and
experimentally [194, 205], that the total 7 phase shift of Gouy happens in two steps of 7/2.
This appears as double peaks in the plots of phase and group velocity in an astigmatism-
distorted situation (see Figure 3.7(a)-(b)). When a non-isodiffracting beam is considered,
there can be a double decrease in group velocity (see Figure 3.7(c)), or a decrease and
increase can follow each other in the two focal points (see Figure 3.7(d)). With a bigger
amount of aberration, the focal points become more distinct and the magnitude of velocity

change decreases (see Figure 3.7(a)-(b)).
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Astigmatism is unique in the group of primary aberrations, because it is the only
one with a nonzero, even value of index m. As a result, the group velocity is constant
along axis if g, = 0 and 7, = 0, as it can be seen in Figure 3.7(b). Astigmatism has a
similar symmetry to spherical aberration, that is, if the Debye approximation is valid in
the studied region, up <> —up and ~, <> —7, exchanges are enough to obtain the phase
and group velocities on axis for the pg <> —po replacement. This is related to the even

value of index n.

Coma Coma is closely coupled to astigmatism. The main difference is that coma only
appears for non-paraxial rays, while astigmatism is present also for paraxial rays. Both
astigmatism and coma are related to the disappearance of cylindrical symmetry in imag-
ing. The aberration function of primary coma is indexed by [ = 0, n = 3 and m = 1,
giving the form

Do31(p, 0) = porop® cos(h) . (3.31)

An important feature of primary coma is the increased distance along which a given
amount of phase change occurs due to the Gouy phase shift. As the total amount of phase
shift is restricted (=™ from Zy = —o0 to Zy = +00), it means a depressed phase variation
along the axis. This lengthening of the characteristic range of Gouy phase shift appears
as a region where the phase changes almost linearly with distance. As a consequence, the
spatial region where phase velocity has a constant v, > ¢ value is increased (see Figure
3.8(a)).

Note that, in the v, = 0 case, the group velocity variation is symmetric with respect
to up = 0 in the Debye approximation. This symmetry is only broken by the scaling with
Zy, visible in regions where the velocity is most decreased compared to ¢ in Figures 3.8(b),
(c) and (d). The variation of v, is overall more complex than it is directly expected from
the effect of coma on the phase velocity.

It is also important that both the phase velocity and the group velocity make an
angle with the optical axis, since they have radial components. This stands for every
primary aberration where m is odd. So coma is an aberration where the component u,
can not be neglected when (3.18) or (3.19) is evaluated. In the case of coma, in the Debye
approximation, the on-axis variation of the amplitude of the phase and group velocities

are identical when |y is the same.

Curvature of field Primary curvature of field is an aberration that is more often

mentioned in the topics of photography, since this aberration causes an imaging error

T In the case of opposite sign convention, when the temporal phase changes are taken with +uwwt and
the spatial with —tkz, complex conjugate forms appear, and the Gouy phase shift is +7 from Zy = —oc0
to Zy = +o0. As described previously, this is just a sign convention having no physical consequences.
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Figure 3.8. The on-axis change of phase and group velocity in the presence of primary coma.
The central wavelength is A\g = 800nm, the Gaussian beam radius at the exit pupil is w =
3.2mm and the radius of curvature of the Gaussian reference sphere leaving the exit aperture
is Ry = 100 mm. This results in a Rayleigh length of approximately 250 pnm. (a) The on-axis
phase velocity for different amounts of primary coma. (b) The on-axis group velocity for different
amounts of primary coma. (c) The on-axis group velocity variation with g,. (d) The on-axis
group velocity variation with ~,.

that is not so fortunate, because the CCD chips or detectors are flat. Due to field of
curvature, objects (for example a flat object with perpendicular plane to the optical axis)
can not be imaged sharply in every point to a plane (image plane). The aberration
function of primary curvature of field is indexed by [ = 1, n = 2 and m = 0, so has the

form

D120(p, 0) = porop® - (3.32)

It is a known fact that, in the Debye approximation, primary curvature of field means a
spatial and temporal shift compared to the aberration-free case [O5]. This is easy to verify,
since with the substitution of (3.32) into (2.52), the change is just a shift of variable u by

Ushite = Modm. As mentioned several times, the validity of the more strict requirements of

64



3.1. On-axis phase velocity and group velocity variations of focused, pulsed. ..

9 ©
S ] | ] | ] | ] 8
S S
i —
<
S
S
<
o —
Q O
< S < a
s <2 S S
i <
i
— —
i

Figure 3.9. The on-axis change of phase and group velocity in the presence of primary curvature
of field. The central wavelength is Ag = 800nm, the Gaussian beam radius at the exit pupil
is w = 3.2mm and the radius of curvature of the Gaussian reference sphere leaving the exit
aperture is Rp = 100mm. This results in a Rayleigh length of approximately 250 pm. (a)
The on-axis phase velocity for different amounts of primary curvature of field. (b) The on-axis
group velocity for different amounts of primary curvature of field. (c) The on-axis group velocity
variation with g,. (d) The on-axis group velocity variation with ~,.

Debye approximation have to be taken into account in aberration-distorted focusing [152].
It is the easiest to see in Figures 3.9(a) and (b), among the presented plots , that the
coordinate-dependent scaling appears, and breaks this nice property of simple shifting,
valid only in Debye approximation. Here, the u < 27N, restriction is very important to

be considered, especially if the simplification — the shift by ugni — is about to be used.

Distortion Distortion is again mostly known from imaging, and it means the change
of magnification in different points of the image. Due to distortion, straight lines of the
object are bended curves in the image, making a regular net look more like a barrel or
pincushion (the names of the most well-known examples of distortion-type aberration).
The aberration function of primary distortion is indexed by [ =1, n =1 and m = 1, so
has the form

®111(p,0) = poAop cos(h) . (3.33)

An interesting property of primary distortion is visible in Figure 3.10(a). It induces
a huge decrease in phase velocity. This decrease is symmetric with respect to the focal
point, and overwhelms the changes (v,/c — 1) by an order of magnitude compared to
other types of aberrations of the same amount (same value of pg, cf. Figures 3.6, 3.7,
3.8 and 3.9). This, however, is not an applicable method for phase-velocity reduction in
the focus, as distortion means a spatial shift along axis y in Debye approximation (see

Figure 2.9) [O5]. So the axis is not the region of highest intensity anymore. It is also
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Figure 3.10. The on-axis change of phase and group velocity in the presence of primary
distortion. The central wavelength is Ag = 800 nm, the Gaussian beam radius at the exit pupil
is w = 3.2mm and the radius of curvature of the Gaussian reference sphere leaving the exit
aperture is Ryp = 100 mm. This results in a Rayleigh length of approximately 250 pm. (a) The
on-axis phase velocity for different amounts of primary distortion. (b) The on-axis group velocity
for different amounts of primary distortion. (c¢) The on-axis group velocity variation with g,.
(d) The on-axis group velocity variation with ~,.

known that off-axis the phase shift is different, and instead of phase-velocity increase it
causes a decrease [168, 196], which can be much bigger then the on-axis increment [168].
By adding primary distortion to (3.18) and (3.19), one can get phase variations along a
line in plane y — z, which is parallel to the optical axis, and its distance increases from
axis with increasing amount of primary distortion. So assuming the presence of primary
distortion is equivalent to calculating off-axis properties in Debye approximation.

Like other primary aberrations with an aberration function having an odd value of
index m, primary distortion gives the same result for velocity variations for aberration
coefficients of the same amplitude but opposite sign in the Debye approximation. The
phase and group velocity have radial components in this case, just like in the presence of

coma.
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Summary I. [ developed analytical formulas for the on-axis phase velocity and group
velocity of focused Gaussian beams which take into account the wavelength-dependent
properties of the focused beam. I specified the parameters which determine the changes
of group velocity, and I established expressions for the calculation of these focused beam
features using the characteristics of the source beam and the focusing system. Based
on the previous attainments, I gave the specific conditions only under which the group
velocity of a focused Gaussian beam is constant during propagation through the focal
region. Using these results I highlighted that a chromatic aberration-like effect can occur
not solely due to the focusing element, but also because of beam features.

I presented formulas for the calculation of the phase velocity and the group velocity of
focused Gaussian beams when focusing is affected by chromatic and primary monochro-
matic aberrations. Specific attention is paid to the analytical evaluation of expressions
to increase the precision and to widen the applicability of the numerical simulations. I
used these results to analyze the effect of beam truncation, monochromatic aberrations
and chromatic aberration on the on-axis phase-velocity and group-velocity variations of
pulsed Gaussian beams. I made a comparison between recent and previous results on

primary aberrations and their affect on phase properties in the vicinity of focus [T1].

3.2 Focusing of few-cycle optical pulses with con-

trolled electric field using lenses

Apart from the beneficial variation of the phase (and group) velocity during propagation
through the focal region, an important requirement for nonlinear optical sciences is to
maintain the shape and short duration of the laser pulses, even after focusing. To fulfill
this condition, lenses are often avoided for focusing few-cycle pulses, because of their
long-known distorting effects, especially the ones increasing pulse duration [75, 147]. The
first issue with lenses is that — as being refractive optics — the light passes through their
material, which — due to dispersion — increases their temporal duration (see Section
2.2.1). The other problem is that different parts of the beam traverse different extent
in the material, as lenses have a spatially varying thickness. One effect of the different
amounts of dispersive material is the propagation-time difference (PTD) of rays [75]. This
causes pulse broadening, especially in the focal region [147]. The resulted inhomogeneous
pulse broadening along the beam profile can not be compensated with standard pulse
compression techniques [18]. The problem can not be addressed properly by up-to-date
pulse-shaping techniques either [206, 207].

However, the effect of PTD — which is caused in fact by the chromatic aberration [147]

— was examined originally with fully illuminated lenses and using ultraviolet wavelengths,

67



3.2. Focusing of few-cycle optical pulses with controlled electric field using lenses

which enhance this unwanted phenomenon [75, 147]. Most femtosecond lasers operate in
the infrared regime, not the whole cross-section of the lens is used, and the focusing is
loose compared to that considered in the cited articles [75, 147]. Triggered by this, the
aim of the next sections is to investigate the conditions under which the pulse-distorting
effects of lenses can be avoided during focusing, and to examine the possible additional

benefits of using lenses.

3.2.1 Accurate model of focusing few-cycle pulses with lens sys-

tems

To examine how a few-cycle pulse behaves in the focal region, an accurate model is
necessary, which considers all the aspects that could have a relevant effect on the electric
field in the focus. The model, which was developed, consists of two main steps, which
are summarized by Figure 3.11. The first part is to choose the reference sphere and to
determine the field on it using ray tracing. The second is to calculate the field in point P
using scalar diffraction theory.

The ray tracing calculations — specifically developed by the author for these simula-
tions — are carried out assuming cylindrical symmetry, and uses the presumption that the
focusing system consists of optical elements with spherical surfaces. The former means
that the rays passing through a plane perpendicular to the optical axis can be uniquely
described by the radial coordinate of the point where they pass through and the angle
they form in that point with the optical axis (like in the ABCD formalism). The first
step is to determine the radius of curvature of the Gaussian reference sphere behind the
focusing element, which is necessary for second part of the calculations based on diffrac-
tion theory. This is done by taking a paraxial ray in the entrance pupil (ray very close
the the optical axis) and tracing its path while it traverses the optical system and after
that it intersects the optical axis. Assuming a plane input wavefront, the radius of the
Gaussian reference sphere for a singlet lens is equivalent to the back focal length of the

lens. So the ray racing result equals the back focal length given by the analytical formula
[208]
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(3.34)

In the previous expression, n(w) is the relative refractive index of the lens material with

respect to the surrounding material (vacuum in all the cases considered here), Ry and R,
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Figure 3.11. A summary figure with the example of a singlet lens on how the model of focusing
short pulses with lenses and lens systems is built up. Cylindrical symmetry is assumed. The
wave front in the exit pupil of the focusing system is calculated by tracing the path of the rays
from the wave front Sy at the input pupil to the reference sphere H at the exit pupil for each
wavelength (from point Qi to point @ of the example ray depicted using a red line). The real
geometrical wave front Sy differs from the ideal spherical one (reference sphere H), the real one
given by the eikonal S(r) = S» (distorted by spherical aberration in this figure). The position
F of the geometrical focal point — and the radius of the Gaussian reference sphere f(w) (a flat
input wave front S; is assumed) — is obtained from the ray-tracing result of a paraxial ray.
With the known phase properties along the reference sphere the electric field is calculated in
point P by diffraction theory (see Section 2.3.3). The distance a of the edge of the exit pupil
and the optical axis is in general different from the aperture radius a;, of the lens with central
thickness D and refractive index n.

are the radii of curvature of the two spherical surfaces of the lens'Y and D is its central
thickness (see this latter in Figure 3.11).

The second part of ray tracing deals with the calculation of the wave front distortion
along the reference sphere and the aperture size in the exit pupil. To achieve this, rays are
initiated from the input spherical wave front (plane wave front in this section, as depicted
in Figure 3.11) at different radial distances from the optical axis, and the optical path they
travel is simulated up to the point where they intersect the reference sphere. Subtracting
the on-axis optical path from the optical paths at different pa radial coordinates gives
the aberration function ®(p) (see Section 2.3.3). The refraction on spherical surfaces is
calculated using Snell’s law.

It is important to note that as broadband radiation is considered, this calculation has
to be carried out for several wavelengths. The radius of the entrance pupil a(w), the

truncation coefficient x(w) if a Gaussian beam is considered, the radius of the Gaussian

IV The sign convention of the surfaces is that the radius of curvature is positive if the surface is convex
when one looks in the direction of ray propagation, and negative if it is concave.
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reference sphere R(w) (or f(w) with plane input wavefront) and the aberration function
®(p,w) are all wavelength dependent. All these effects are taken into account using
this method. As highlighted in Figure 3.11, in general, the radius a of the exit pupil is
different from the radius of the lens aperture a; (a < ar). However, in most practical
cases, they are approximately the same (a;, =~ a), and even if they are not not, then still
K is the same in the exit and entrance pupils [200]. In the simulations presented in this
section, the aberration function ®(p,w) was fitted with a function given by the expression
up?*, corresponding to primary spherical aberration, to obtain the wavelength-dependent
aberration coefficient pi40(w), meaning the dominant aberration in these cases.

With the wavelength-dependent reference-sphere data (radius of curvature, aperture
size) and the aberration function, everything is available to calculate the focused field
using diffraction theory. Following the considerations given for the ray tracing, the field
of a monochromatic component on the surface of Gaussian reference sphere H is given by

~ a

Pr(w) = U(w)exp [_ (f;ﬂ exp {f: (I + D(p,w))] . (3.35)

In the previous expression U (w) contains the phase and spectral amplitude properties on
the input wave front (S; in Figure 3.11), similarly to (2.58). The exponential expression
exp [— (pa/ wﬂ assumes a Gaussian beam, while the phase factor exp[tkl,] gives the phase
along the reference sphere with respect to the input wave front, since the optical path
between the input wave front and reference sphere is [, for the on-axis ray. The ray
tracing implementation contains the calculation of [,. For the singlet lens of Figure 3.11,
the optical path along the axis from the entrance pupil to the exit pupil is [, = n(w)D.
Following the Huygens-Fresnel principle, the focal field can be calculated by the surface

/ / W) &P Lkh] dH (3.36)

H being the surface of the reference sphere and h is the distance of point () on H and the

integral

point of interest P, similarly to (2.46) in Section 2.3.3. It can be shown with reprouping
that, in fact, the integral (2.48) previously calculated can be exactly formed from (3.36),
and the results of Section 2.3.3 can be reused. So the complex spectrum in point P is

given by

P(P.w) = (@) Rexplik(R +1,)] — P // [ (p” Sl a,

G(w) of (2.51) or Gp(w) of (2.55)
(3.37)

forming it similarly to how it is done in [135].
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In this section the considerations are limited to cases when only spherical aberration
is present and the Debye approximation is applicable (so Gp(w) of (2.55) is used in (3.37)
from the highlighted two possibilities). Also, only on-axis points in the focal region are
studied, but expressions valid for off-axis points in spherical-aberration distorted focusing
can be found in Appendix E.1 (see expression (E.2)). For brevity, it is worth introducing
the dimensionless aberration coefficient for spherical aberration

27
ag = kAp = 7#040)\ = 2T oo , (3.38)

and the complex dimensionless axial coordinate
Up = up — 12K, (3.39)

where up is given by (2.56), and truncation coefficient x by (2.50). From (3.37), it can be
shown that, in the case of ag = 0, the on-axis electric field of a monochromatic component
can be written as [78, 135, 143, 200]

. wl (w)a?
PlZo,w) = ‘223)

exp[—tip/2] — 1 .

T (3.40)

explik(R + 1,)] exp |f (f)g uD]

Note that both the complex (up) and the real (up) valued form of the longitudinal
coordinate appears in the expression above. If ag # 0, then (see details in Appendix E.1

or the main steps in [200])

P(Zn) = = 0L ik (R +1,) exp [ (&Y uD]

~2
) w14 wsgn(ag)
X J—
eXpl L16a5] \ 2Jas 2

(3.41)
In the formula above
2 2 ) . .
erf(z) = — / exp[—t } dt is the error function with complex argument [209],
V7 Jo
—1 ifz<0
sgn(z) =<0 ifr=0 is the signum function .
+1 ifx>0
(3.42)
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Note again that @p and up are both present in (3.41), just like it is in (3.40).

A formula similar to (3.41) was formed also by Pang et al. [195] later, giving the same
result. Both (3.41) and the expression of [195] suffer from the same problem: for low
amount of aberration, or far from the geometrical focus, numerical issues arise, because a
zero-times-infinity type of multiplication is present in both formulas. For the same reason,
the ag = 0 case can not be evaluated directly, it is a limit of the function presented.
So, for non-negligible amount of aberration and close to the focus, the use of (3.41) is
preferable, because of faster evaluation. However, in general, to avoid numerical errors,
direct evaluation of integral (E.2) is suggested. This latter solution is what is used mainly
in this work.

As a summary of the main steps of the simulation, first, the ray tracing of the
monochromatic components is carried out, assuming an initial spherical wave front for
each wavelength. With the resulted radii for the Gaussian reference sphere, the exit
aperture sizes, the truncation coefficients, the on-axis optical paths, the aberrations and
with the initial spectral data U(w), the diffraction integral is calculated for all wave-
lengths in the points of interest. Finally, at each spatial coordinate in the vicinity
of focus, an inverse Fourier transform is performed to yield the temporal electric field

E(P,t) = F{P(P,w)} (see Section 2.3.4).

3.2.2 Undistorted focusing of short pulses with lenses

As it was discussed in the introduction of this section, lenses are often avoided for focusing
few-cycle pulses. Their material dispersion, which is not homogeneous along the beam
cross section, and their chromatic aberration keep scientist, working with these laser
pulses, from using them. However, it is shown in this section that, when certain conditions
are met, these unwanted effects can be escaped in the experiments where few-cycle pulses
are used. First, simplified formulas are discussed, which can be derived for the focused
electric field when no aberrations are present. Then some guidelines are given, which can
be used to estimate in which situations the effects of spherical and chromatic aberrations
can be disregarded. These approximate rules are then justified by the model described in
the previous section.

A possible basis for a condition, so to tell when the effect of spherical aberration can
be neglected, is the tolerance condition theory developed decades ago [90]. According to
this tolerance theory used in imaging, the intensity distribution of the focused field is not
appreciably changed (peak intensity deviates from undistorted case in 20% maximum),
if the condition gy < 0.94 is met [90], that is, the aberration coefficient of spherical
aberration is less then 94% of the wavelength. However, when broadband radiation, and

especially short pulses are considered, a condition appropriate for imaging might not be
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precise enough, as it was highlighted in Section 3.1.2 of the results. Until the specific
conditions are not clarified, let us assume the absence of spherical aberration for the
following few paragraphs.

When no spherical aberration is present, or its effect can be ignored, the on-axis field
is given by (3.40), which can be written also as

~ wU (w)a?

—k—up/2] — 1

exp(tkl,] exp[thz] , (3.43)

—K — tup/2
where the definitions of coordinate up (see (2.56)) and other parameters, like z = Ry +
Zy = Z + R (distance from the back vertex of the lens), are given in Section 2.3.2. When
the truncation is negligible (a; > w, that is, kK — 00)

exp[—k —wup/2] =1 _ 1
—K — 1up/2 T k4 up/2

(3.44)

For further convenience, let us assume that the Gaussian beam is focused at its waist,
and this position is the same irrespective of wavelength, so the input wave front is flat
(R = frack), and the beam size w is the waist radius s. With the previously mentioned

assumption of a; & a, one can arrive to the expression (see details in Appendix E.2)

- f back

P(Zy,w) = U(w)exp|ikl,] exp[ikz] 7
—Lp

(3.45)
which is equivalent to expression (B.13) of Appendix B.1 obtained using ABCD formalism,
if frack = f is assumed, which is natural for the ABCD matrices. In (3.45) (and similarly in
the ABCD formalism), the axial coordinate is Z = Zy+ fo— f, and according to (B.12) the
focused Rayleigh range in the Debye approximation is Lp = 2c¢f?/(ws?®). The important
conclusion of this result is that if the above conditions are met, then the focusing lens
can be thought of as a combination of a dielectric slab of thickness [, (exp[ikl,] term of
(3.45)) and an idealistic focusing element with focal length f.c =~ f having zero thickness
(= foack/(Z — tLp) term of (3.45)). So practically, standard pulse shaping techniques can
be used to compensate for the dispersion of the lens material, and otherwise it works as
an ideal focal element with chromatic aberration.

Before turning to the above simplified formula and considerations on the CEP changes
in the focal region, it is shown under what circumstances a few-cycle pulse is focused
without appreciable distortion, and when (3.45) can be used. Figure 3.12 shows the case
of focusing a Gaussian beam with s = 5mm radius at its waist using a fused silica bi-
convex lens. It was calculated using the model described in the previous section (see

Section 3.2.1). See detailed lens and pulse beam parameters in the caption of Figure 3.12.
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Figure 3.12. On-axis temporal shapes of a pulse in the focal region of a bi-convex fused silica
lens. The transform-limited duration of the Gaussian-shaped pulse is Tpwum = 8fs, and the
Gaussian waist of the beam has s = 5 mm radius. The lens was taken from a commercial catalog,
and the radii of its two spherical surfaces are Ry = 91.08 mm and Ry = —91.08 mm, the center
thickness is D = 3.78 mm, the aperture radius is a; = 12.5 and has a back focal length of
frack,0 = 99.8 mm. For refractive index values the Sellmeier equationis used. Local time means
that on the horizontal axis zero corresponds to the group delay from the entrance pupil to the
point of interest. (a) Pulse shape in the geometrical focus of the carrier wave (A9 = 800 nm) when
the the dispersion of the lens material on-axis is not compensated (dashed curves) and when
the dispersion is pre-compensated up to the third order phase derivative (continuous curves).
(b) Pulse shape at one Rayleigh length (Lp ¢ =~ 0.1 mm) before and behind the focal point with
pre-compensation of lens center material up to third order. The dotted curve represents the
transform-limited pulse shape in the entrance pupil.

In Figure 3.12(a), the on-axis pulse shape is depicted in the geometrical focal point
of the carrier frequency. The two pulse shapes correspond to the case when a transform-
limited pulse reaches the lens (uncompensated case) and when the GDD and TOD terms
of the material dispersion of a slab with equal thickness to the center thickness of the lens
is assumed to be pre-compensated (compensated case). This pre-compensation appears
as a second- and third-order term of the spectral phase in the expression of U(w) in (E.1),
describing the input spectral amplitude and phase properties, GDD and TOD coming
from the application of (2.6) on Ymat(w) = n(w)D. So the explicit form of input complex

spectrum is

TOD
6

0(w) = p(w)exp| — 22

(w—wp)?| . (3.46)

(w—wp)? —1¢

The p(w) spectrum is a Gaussian, like (A.1). The transform-limited duration of the input

pulse is also depicted with black dotted curve, for comparison. The local time means that

V The Sellmeier equation is an empirical formula for the refractive index of transparent, non-absorbing
materials, an it is often used in the visible regime [130]. Specifically, the coefficients available on http:
//refractiveindex.info/ are used for the materials in this work.
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the horizontal axis is shifted by the time necessary for an undistorted pulse to travel to
the point of interest (equal to the group delay, so 7 = t — GD(Z), which in this case
is GD(Z) = 0 [k(Dn(w) + Z + f)] JOw). Comparing the pre-compensated case with the
uncompensated one shows that the pulse broadening due to passing through lens material
can be decreased at a large degree by compensating for the dispersion of a slab, possible
with pulse shaping techniques [206, 207]. However, the transform limited duration can
not be fully retained like this in this specific example, and there is also a temporal shift
of the pulse peak due to chromatic and spherical aberrations.

For a wider picture, the pulse shapes at the edges of the depth of focus is also shown in
Figure 3.12(b). The two pulse shapes at Zy = £Lp highlight the coordinate-dependent
effect of the aberrations, and its is also visible that the pulse is a bit broadened in the
whole focal region. Still, these plots show that, even with pre-compensating for a slab
with properties defined by the lens center, the pulse broadening can be hugely decreased.
A primary reason for this is that — as it was shown previously [75] — the ratio of the
pulse lengthening-effect of chromatic aberration (that is PTD) and that of the material
dispersion is proportional to the pulse duration and beam radius (the radius of the illu-
minated part of the lens). So, few-cycle pulsed beams are not necessarily stretched more
by chromatic aberration than dispersion, and material dispersion can be the dominant
effect that causes the increased duration.

While the pulse duration is not that much increased in the pre-compensated case,
there are still visible effects of spherical and chromatic aberrations on the pulse shapes
in Figure 3.12(b), namely the temporal shift. To avoid these issues, some rule-of-thumb
expressions can be given [T2, T3|. Based on the previously mentioned rule known from

imaging, the effect of spherical aberration on the pulse shape in the focus is negligible if

4
lio10 <8> <0.94. (3.47)
ar,

Note that in one sense the condition is less strict because not a uniform illumination is
used, and at the same time a bit more strict because not monochromatic, but broad-
band radiation is considered, and for undistorted pulse shape the phase properties are
also important (see Section 3.1 of results or [T1]). For the chromatic aberration, it is
worth introducing the parameter v, = fiwo/Lp,o (note that this is different from the ~,
parameter defined in the previous section, see details later or in Appendix E.2). With ~,
a guideline can be given, according to which the chromatic aberration does not increase

pulse duration relevantly if
wolFwhm

(3.48)

This expression can be obtained using the demand that the focal-length change in the
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Figure 3.13. On-axis temporal shapes of a pulse in the focal region of a bi-convex fused silica
lens. The lens and pulsed beam properties are the same as in Figure 3.12 except that the waist
of the Gaussian beam has a radius of s = 1mm. (a) Pulse shape in the geometrical focus
of the carrier wave (A\g = 800nm) when the the dispersion of the lens material on-axis is not
compensated (dashed curves) and when the dispersion is pre-compensated up to the third order
phase derivative (continuous curves). (b) Pulse shape at one Rayleigh length (Lp o ~ 2.5 mm)
before and behind the focal point with pre-compensation of lens center material up to third
order. The dotted curve represents the transform-limited pulse shape in the entrance pupil.

pulse spectrum is less then the focal depth (2Lp ) [T3], and applying that the product of
the transform-limited duration Tpwgy and the corresponding bandwidth for a Gaussian
pulse equals 4In(2) (see Appendix A.1).

It can be seen from (3.47) and (3.48) that, to fulfill both requirements for a given
focusing lens, the decrease of the beam size is the solution. For spherical aberration, the
benefit from smaller beam is directly visible from (3.47). In the case of chromatic aberra-
tion, the focal length variation with frequency and the central wavelength is determined
by the focal element and the pulsed source, respectively, so the only option is to increase
the focal depth Lp g, so 7, can be made smaller and condition (3.48) can be met. This is
also achieved by beam-size decrease.

Figure 3.13 depicts a case when the above conditions, (3.47) and (3.48), are met for
both the chromatic and spherical aberrations with the same lens as in Figure 3.12. In
Figure 3.13(a) the on-axis pulse shapes in the focal point with the pre-compensated and
the uncompensated slab dispersion are compared, obtained using the “accurate” focusing
model. In this case it can be seen that the transform-limited duration can be fully retained
simply by the pre-compensation of lens center material. Compared to the situation of the
larger beam size (see Figure 3.12(a)), the temporal broadening is symmetrical, as neither
chromatic nor spherical aberration play an important role, and the dominant dispersion
term is GDD. There is only a slight temporal shift due to chromatic aberration, but a

transform-limited shape (black dotted curve) is achieved in the focal point.
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Figure 3.13(b) shows the on-axis pulse shapes at one Rayleigh length distance from
the focal point, both behind and before the focus. With the calculations for all points in
between Zy = —Lpo and Zy = +Lp, (not depicted here), this verifies that focusing to
transform-limited pulses with lenses is indeed possible, and the envelope shape is preserved
in the whole region of the optical axis, which is usually important in the experiments.

It is to be noted that the example presented here, in Figures 3.12 and 3.13, are chosen
to be extreme, deliberately. The spherical aberration of the bi-convex lens with aperture
size ap, = 12.5mm is very big, in the order of pgq ~ 15, which varies heavily with
wavelength. Bi-convex lenses with equal radii of curvature for both surfaces are known to
suffer from large spherical aberration, and, by choosing lens parameters appropriately, it
can be decreased [90]. In the next section, another example is shown where the spherical
aberration of the focusing element is much smaller and condition on the maximum beam
size are considerably less strict.

The two examples of this section showed that focusing of few-cycle pulses is possible
with lenses without (or with only small) distortion of the pulse shape, if the material
dispersion of the central part of the lens (or lens system) is compensated up to third order
dispersion. If the small increase in pulse duration is not an issue, not fully compensating
the chirp of the material dispersion can be a tool for controlling the temporal variation

of the electric field in the focal region, which is discussed in the next section.

3.2.3 Tailoring the propagation-induced CEP variation of fo-

cused, pulsed Gaussian beams

Since the CEP changes shot-to-shot in several laser systems, the primary issue of undis-
torted pulse generation is the shape of the envelope. This was discussed in the previous
section, so a method was described to make the focused pulse retain its envelope-shape
while it propagates through the focal region.

It was shown earlier that the temporal shape of the few-cycle pulse can be sustained
upon focusing, even on the electric field level for some segments of the focal region simply
by using dispersive material [210]. However, the solution provided there is only applicable
in cases when the desired focal depth is in the order of micrometer. So for high-field
sciences, where much bigger Rayleigh lengths are general, other approach is necessary
to achieve a same result. Fortunately, the chromatic aberration of lenses results in the
same effect as the one shown in [210]. If the requirements on the chromatic and other
aberrations discussed in the previous section are fulfilled and the pre-compensation of
the on-axis dispersion of the lens material is assumed (see main steps of the calculation
developed by M. A. Porras in Appendix E.2), the CEP change on-axis can be derived
based on the first-order propagation theory given in Section 2.3.4. According to these
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results, the on-axis CEP change of a pulsed Gaussian beam with Gaussian temporal

envelope during propagation through focus can be given by

§ £
1_’_52_'_701_’_52

Apcep(Zy) = —atan (&) + gc (3.49)

The CEP of this expression is interpreted following the definition used in this work, given
in Section 2.2.2 (on page 19). The change of the CEP in (3.49) should be understood as a
relative change with respect to the CEP value in the geometrical focus of the carrier wave.
As the “absolute” value of the phase may change shot-to-shot, it is logical to examine

relative values. In the previous expression

Lpy

§ (3.50)

is the dimensionless axial coordinate measured from the geometrical focal point of the
carrier frequency (normalized using the focused Rayleigh length Lp in the Debye ap-

proximation, see (B.12)), and

2C

gc = 9gp — T2 V> (351)
G,min
2C

Yo =Y+ 729 (3.52)
G,min

are introduced for brevity. The relevant parameters are

Lpo
9 =7 o (3.53)
Do

describing the wavelength dependence of the focused Rayleigh length, and
Y = 2w (3.54)

typifying chromatic aberration (introduced also in previous section about undistorted
focusing with lenses). The remaining, not explained quantities of (3.51) and (3.52) are the
“spectral chirp” CV! and the minimal (transform-limited) Gaussian duration of the pulse
TG min (related to the transform-limited FWHM duration by Tewav = TG miny/2I0n(2)).
The (3.49) form of CEP change is only valid for Gaussian pulses with linear chirp. This

chirp comes from, for example, the not full compensation of the lens’s dispersion, so the

VI The parameter C is a second-order phase derivative, so it is the same in dimensions as the GDD of
Section 2.2.1. It is referred to as “spectral chirp”, or shortly as chirp in the following, because it causes
a linear chirp in time domain, as discussed earlier.
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input complex spectrum in the numerical evaluation of the focused field by (E.1) is

. GDD - C

TOD
0(w) = plw)exp| 1= O

6

(w—wp)? — —1 (w—wo)?| , (3.55)
different from the spectrum (3.46) of the previous section.

If higher order phase derivatives are present than the second, analytical expression
for the CEP is not possible to obtain. Even though the pulse shape can be evaluated
analytically (see Appendix A.1), due to the appearance of complex special functions, the
pulse peak can not be determined (see (A.24) and the derivation in Appendix E.2.2).

Formula (3.49) has the advantage that it gives a simple analytical expression to analyze
the variation of the CEP on-axis. Furthermore, if the chirp of the pulse is taken to be
zero (C' = 0fs?), then the resulted expression is valid for every pulse shape and every
beam profile as long as the on-axis spatial phase of the beam is determined by the Gouy
phase shift and the pulse envelope is not changing during propagation (see details in
Appendix E.2.1). The former, the generality of the Gouy anomaly for every beam, has
been established by several means (as mentioned in the theoretical overview of this work)
[138, 211, 212]. This gives a general applicability to the expression derived, irrespective
of the shape of the pulse envelope and regardless of pulse duration as long as the pulse
envelope does not change during propagation.

Note that similar quantities to that of g, and =, ((3.53) and (3.54), respectively) have
been introduced previously in Section 3.1.1, while discussing results on phase and group
velocity changes (see g, of (3.8) and , of (3.9)). Two parameters of the present section,
gp and 7,, can only be interpreted if an ideal Gaussian beam is focused and the Debye
approximation is valid, so no monochromatic aberration or truncation of the beam is
present. If these conditions are met and the pulsed beam is focused at its waist — as
assumed in this section —, the correspondence between the dimensionless parameters of

this and the previous section are

9p = 2% + 9o = Gu, (3.56)
2
WS

=y, 27 3.57

T = WG (3.57)

In Figure 3.14 on-axis CEP variations of various pulsed beams are plotted focused
by two different focusing system (in Figure 3.14(a) an idealistic focusing element and in
Figure 3.14(b) a mirror-lens system).

Figure 3.14(a) depicts CEP variations of an unchirped pulse (C' = 0fs?), and shows
how the two parameters — g, giving the beam size variation with wavelength and -,

characterizing the chromatic aberration — modify the on-axis phase changes. According
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Figure 3.14. (a) On-axis CEP variation of a transform-limited pulse (C' = 0fs?) propagating
through focus. The curves correspond to different amount of chromatic aberration (v,) and
different wavelength dependence of beam-waist size (g,). The curves show the result of the
analytical expression (3.49) and the points are the results obtained using the findings of Section
3.1 on the group delay. In the simulations a beam with sy = 3.2 mm waist radius is assumed to be
focused with a lens of fo = 100 mm focal length and ay, = 15 mm aperture radius. The resulted
Rayleigh length of the focused beam is Lp o = 250 pm. (b) On-axis CEP variation of a chirped
Gaussian pulse focused by a mirror-lens system for different amounts of chirp C. The curves
represent the results of (3.49) while the points show the result of the precise model described
in a previous subsection (see Section 3.2.1). The input beam with s = 10 mm waist radius is
focused with the mirror-lens system having a total back focal length of fo = 990 mm, resulting
in a focused Rayleigh length of Lp g = 2.5 mm. The system is formed by an fy; = 877 mm focal
length mirror and a CaFy lens with f;, = —7632 mm both with aperture radii a;, = 40 mm [T4].

to (3.49), in the g, = 0,7, = 0 case the CEP changes following the Gouy phase shift. This
is easy understand from the results of Section 3.1.1, which highlighted that in this case
the group velocity is constant on-axis, while the phase itself changes according to Gouy’s
phase, so the CEP has to follow the same course. Form the other curves a particularly
interesting case is the one obtained using (3.49) with g, = 0 and 7, = —1, because it
shows that the CEP has a constant value along a big part of the half focal depth before
the focal point. This means that in this region the pulse retains its shape on the electric-
field level during propagation with an unchanging pulse envelope. As the g, = 0 value
means an isodiffracting beam —being a natural mode of laser oscillators [197] —, this can
be obtained by proper choose of the focusing element giving a small chromatic aberration
yielding v, = —1.

The symbols of 3.14(a) are the results of CEP simulation using the results of Section
3.1, according to the followings. In agreement with the definition of CEP, its value can
be given by calculating the phase of the carrier wave at the given spatial coordinate, then
taking into account that the peak of the wave packet is possibly delayed with respect to
the carrier. If the peak is only shifted due to group delay, so there is no reshaping of the
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envelope, then

B Jpg(r,w)
SOCEP(I'> = SOG(I',WO) — Wo T -
f wwo 9 (3.58)
_ T Jo 7 N 21
- 9 YvWo c + arg {I(U, v, ¢)} Wwo &u o ’

where (D.14) and (D.30) have been used for the phase and its derivative, respectively, and
it has been applied that R = f and w = s. When no aberrations are present and only
on-axis points are in question, (3.2) can be used for the phase and (C.15) for its derivative
to give the analytical expression

& fi To + woTy

7o) = —= — ywo2 — at forrolo
wcep(Zo) 70000 &an[wo%]+w01+wg762

5 (3.59)

where (3.3) and (C.17) are taken at wy to yield To = s3Zy/ [2¢fo(Zo + fo)] and T =
(90 — 1)To/wo + YwSo/ (wo2cfy), respectively. Note that the results of the CEP expressions
(3.58) and (3.59) differ from the that of (3.49) by a constant, because they are relative
phases with respect to an other reference point (this is the reason for the different notation,
Apcgp against pcgp). For the relative changes it is enough to evaluate the last two terms
of (3.58) and (3.59), as the first two ones are only constants.

In Figure 3.14(b) the effect of pulse chirp can be seen for an isodiffracting beam focused
by a mirror-lens system with a total chromatic aberration yielding v, = 1. This value
of 7, gives a constant CEP in the second half of the focus (see C' = 0 case in Figure
3.14(b)). By assuming that the on-axis dispersion of the lens of the focusing system is
not fully compensated, and there is a small residual chirp C', the CEP variation can be
further tailored, and it can be reached that the region with constant CEP extends to the
focal point. For this the 2C/Tg ;, = 0.55 condition is necessary, as it can be seen in
the corresponding curve of Figure 3.14(b). The additional symbols of Figure 3.14(b) are
simulation results of the accurate focusing model described in Section 3.2.1, and the CEP
extracted following the definition of Section 2.2.2 (phase of the carrier at envelope peak).
The numerical model was necessary because (3.58) and (3.59) can not predict properly
the CEP change in this case. This is caused by the fact that the phase-, group velocity
and group delay calculations of Section 3.1 are based purely on the wavelength-dependent
phase of the pulsed beam. However, there is also a spectral amplitude reshaping during
focusing [164, 213], which can modify the temporal envelope (this spectral reshaping is
relevant also in the explanation of an other effect detailed in this work, see later Section
3.4). In the case of a Gaussian pulse with chirp, for example, the reshaping is a temporal
shift of the peak (see Appendix E.2.2). This causes a change in the CEP. So the chirp of
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the pulse gives an additional degree of freedom in the control of on-axis CEP changes.

Figure 3.15 depicts the pulse shapes

in the focal region of the mirror-lens sys-
tem described in the caption of Figure
3.14(b). The pulse shapes are a result
of the numerical simulation described

in Section 3.2.1. It can be seen that

the small residual chirp resulting from

Normalized electric field

the not full compensation of the lens- o
initial

material GDD causes only a very small

broadening of the pulse compared to the Local t?me [£s]

transform limit (see black dotted curve). Figure 3.15. Pulse shapes in the focal point and

This broadened duration subsists in the one Rayleigh length behind the focal point for the
whole focal region. Together with the focusing system described in Figure 3.14(b) for the
2C/ Té,min = 0.55 case. The dotted black curve
shows the transform-limited shape of the input
ond half of the focal region, this means pulse. The Zy = Lp, case has been shifted in

identical temporal variation of the elec- time by —0.38fs to better highlight the identity of
the temporal variation of the electric field.

negligible change of the CEP in the sec-

tric field on axis in every point from
Zy = 0to Zy = Lpy. The two pulse shapes of Figure 3.15 verifies the possibility of
undistorted focusing of pulses with controlled CEP variation during propagation through

the focal region, which can even yield unchanged temporal shape at the electric field level.

Summary II. [ developed an accurate model of focusing with lenses and lens systems
based on ray tracing calculations and scalar diffraction theory. I used this model to verify
numerically that it is possible to focus few-cycle pulses with refractive optics without rel-
evant distortion of the pulse envelope by simply compensating for the material dispersion
of a dielectric slab corresponding to the phase-modifying properties of the focusing system
on axis. I also confirmed the validity of an analytical model describing the on-axis CEP
variation of focused, pulsed Gaussian beams. Based on the above two findings, I showed
that focused, few-cycle pulses can propagate in the focal region of lenses with unmodified

temporal shape at the electric field level [T2-T4].

3.3 Measuring the carrier-envelope phase variations

of focused pulses

While the theoretical considerations of the previous section suggest a good possibility for

using lenses (or lens systems) to focus few-cycle pulses, the experimental verification of the
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simulation results is an important step in justifying its applicability. In the following, the
outcome of an experimental campaign is summarized, which aimed to measure both the
pulse shape and the CEP-changes of a focused pulses in the focal region of an achromatic
lens using spectrally-resolved interferometry.

The key factor of both the undistorted pulse shape and the control of the CEP variation
is the v, parameter. As it was shown previously (see (3.54)), its value is defined by the
chromatic aberration of the lens and the Rayleigh length of the focused beam. Both are
affected by the material and the geometrical parameters of the lens. So a predefined CEP-
variation curve can be reached with a lens designed for a specific application [T3]. As the
aim of this measurement series was to experimentally verify the theoretical findings, so
there was no planned utilization of the measured setup, the chosen focusing element is a
commercially available one. Using an achromatic lens was needed to have small chromatic
aberration that does not lengthen the duration of the pulse.

In the following, firstly, the measurement of the CEP changes on axis is presented.
The second part of this section deals with the simulation of the experimental case and
the necessary auxiliary measurements of wavelength-dependent beam properties serving

as an input for the calculations.

3.3.1 Carrier-envelope phase-shift measurement using spectral

interferometry

The basic idea of the CEP-change measurement comes from the usage of spectral in-
terferometry for CEP-drift determination [186, 187]. The CEP drift means here the
shot-to-shot changes of the CEP in a series of pulses, and not called CEO phase because
it might contain additional phase slippages not traditionally called CEO phase (for exam-
ple originating from an amplifier [214]). In that case the Mach—Zehnder interferometer
is built in a way that the pulse entering the setup interferes with the subsequent pulses
from the pulse train, because the length of one arm introduces a delay that matches the
delay between the pulses in the train. So the reference for the phase measurement is the
preceding pulse, giving the relative, shot-to-shot phase changes.

As SI alone is only capable to measure “relative” phases. To obtain information on
variations induced by a specific physical phenomena, a stable reference is needed. In
order to measure the propagation-induced phase changes a wave is needed that serves
as a spatially constant reference. This spatially-stable reference can be, for example, a
collimated beam when the CEP changes of a focused beam is the question. The schematic
drawing of experimental setup that was implemented for the CEP-variation measurement
of focused pulses, and that uses a collimated beam as a reference can be seen in Figure
3.16.
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Figure 3.16. The experimental setup used for measuring the on-axis CEP-change in the the
focal region of an achromatic doublet lens. The parts surrounded with black dashed rectangles
are placed on translation stages (one- or three-dimensional). The additional spectrometer and
other optical elements in the blue dotted rectangle were used only for preliminary measurements.

The laser light source providing the short pulses (or huge-bandwidth radiation) was a
commercial femtosecond laser oscillator (Femtolasers Rainbow). The output of this laser
was spatially filtered to provide a high-quality Gaussian beam. This filtering was carried
out by a 5-meter long single-mode fiber (Thorlabs-Nufern 780-HP). An achromatic, 30-
mm focal-length lens (Thorlabs AC254-030-B-ML) was used to couple the laser light into
the single-mode fiber. The single-mode property of the fiber was necessary to have single
pulses exiting it. The out-coupling was performed by a (reflective) mirror collimator
(Thorlabs RC08). According to the data sheet of the collimator appliance, the resulted
beam is a high quality Gaussian beam. This was confirmed by the simulations carried out
and which are detailed in the next section. With this a broadband, collimated Gaussian
beam was available as a source. To be able to make comparisons with the simulations
this was a necessary step, as those are developed for Gaussian beams (see Section 3.2.1).
Due to the dispersion of the fiber, the pulse was definitely not few-cycle any more, but
this does not invalidate conclusions drawn, as explained later.

The interferometric setup was built as follows. The beam exiting from the reflective
collimator was sent through a broadband beam splitting cube, guiding the two beams
into the two arms of the interferometer. In the reference arm of the interferometer no
manipulation of the beam happened, just like in the most cases when Mach—Zehnder-type
interferometers are used. The only setting that could be changed was the length of this
arm, implemented by mirrors placed on a one-dimensional translation stage, so the delay
between the sample and reference pulses could be varied. The sample arm contained a

neutral filter series and the achromatic lens, the focal volume of which was the region of
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interest. The neutral filters were necessary because without them the focused beam of the
sample arm would have had an intensity that is orders of magnitude larger then that of the
collimated beam of the reference arm, and in that case the interference of the two beams
would not have had enough visibility to make the evaluation possible. The two beams of
the interferometer arms were combined with a broadband beam-splitter plate. The setup
was built in a way that the focused beam was reflected from the beam-splitter plate and
the reference beam passed through it, so distortions due to focusing through a dispersive
material could be avoided. Finally, the interference of the beams was spectrally resolved
by a spectrometer (Ocean Optics HR-4000) coupled with a single-mode fiber (same type
as the one used for spatial filtering, but with 1-meter length). The small size of the
fiber core (core radius of 2 pm) made a much higher spatial resolution available than the
entrance slit of the spectrometer (10 pm x 200 pm slit size). The end of the fiber was
placed on a three-dimensional delay stage making spatial scanning available. The photo
of the interferometric setup (the spatial filtering and out-coupling from the fiber is not
visible), can be seen in Figure 3.17.

A crucial property of interferometric
setups is their stability. When the arm
length is long, active stabilization is neces-

<

sary (like for the CEP-drift measurement

. _ " = 2 . s a
of [186, 187]). However, when the inter F— % AT W
ferometric setup is compact, its stability e S ’ ' j SURY I W
could be good enough to provide reliable ! 7'
¥ adaald N 1<1er( 1CE arm. |
data within the error range of other effects. : -&_126;!

To test the stability of the interferometric

setup an additional, fixed-position inter-

ferometer was placed at the other output

- - - - .\'. - L3 . - .

of interferometer (see the spectrometer in
Figure 3.17. The photo of the interferometric

) setup when off-line with the direction of beam
3.17). This spectrometer was able to pro- propagation highlighted. The spectrometer in

vide interferometric data, the recording of the blue dotted rectangle was used only for pre-
liminary measurements.

blue dotted rectangle on Figures 3.16 and

which was synchronized to the acquisition
of the spectrometer combined with the fiber of movable end. So while the fiber end was
moved and interferograms were recorded to provide data on how spatial phase changes,
the fixed-position spectrometer could give information on possible phase changes caused
by the temporal and mechanical instability of interferometer arms. The measurement
software — implemented by the author in LabView — was able to give synchronized data

(up to the precision of software and electronics, so in the order of milliseconds), giving
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the possibility to make corrections to the measured data. However, all measurements
carried out this way confirmed that the interferometer is stable enough in order to avoid
the errors caused by the temporal variations, or at least they were not above the error
range of the measurement given by other factors. So the synchronized measurement with
the fixed spectrometer was abandoned later.

It must be highlighted also that the recording of the interferograms were carried out
with an integration time that included several laser shots (between 100 and 300 ms in-
tegration time with the 75.14 MHz repetition rate of the laser oscillator). This does not
cause a misinterpretation of the results either, as the spectral interference is a result of the
phase difference between the two arms (this is also why it is not relevant that the pulse
is broadened during the spatial filtering). If the arm lengths are temporally stable —
which was confirmed by the fixed-position spectrometer — integration of multiple shots
together does not alter measurement data. If there were some effects that blurred the
phase stability from shot to shot, then it would have appeared as a decrease of fringe
visibility in the interferogram as well (this idea, the change of interference visibility, was
proposed as a method to measure CEP-drift earlier [185]).

An important thing needing clarification is the phase which is exactly measured in
this case and the method to extract the CEP from the data by using FTSI (detailed in
Section 2.4.2). The main steps of the CEP evaluation is summarized in the following, and
depicted also in Figure 3.18. A question that can immediately rise, when one looks at
the experimental setup of Figure 3.16, is the way FTSI can give information on few-cycle
pulses if there are dispersive materials in the sample arm (the neutral filters and the lens)
while the reference arm is empty. The solution of this is the assumption of dispersion
pre-compensation, similarly to the theory in Section 3.2.2. For a more detailed study,
let us summarize the phase modifications happening while the beams propagate from the
beam splitter cube at the entrance of the interferometer to the point of measurement
(see Figure 3.16). Let ls be the length of the reference arm, I distance of the plate
combining the two beams at the output of the interferometer and the focal point, and 7,
is the axial coordinate of the point of interest measured from the focal point (just like in
the theoretical discussion). The phase change happening in the reference arm in this case
is

w
Pret(w, Zp) = - (et + Uy + npsp(w)lpsp + Zo) (3.60)

with npsp(w) and Igsp being the refractive index and thickness of the beam-splitting plate
that combines the two beams, respectively. In the previous expression it has been assumed
that the volume in which the measurement point lie can be described by a cylinder that
has a much smaller radius and height than the beam radius and the Rayleigh length of
the collimated beam, respectively. This way both the phase shift due to Gouy’s phase
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and the radial dependence of the phase of a Gaussian beam can be neglected, and the
phase change can be described by the kz term of (2.35). Similarly, the phase delay of the

sample arm is

w
Psam (W, Zo,T) = B [lree + nnp(W)INF 4 Mict (W) liet] + Proc (W, Zo,T) | (3.61)

where [ is all the propagation distance in free-space from the beam-splitter cube to the
lens entrance pupil, nyg(w)InrF is the optical path traveled in the neutral filters, njeq(w)les
is the same for the lens central material, and g.(w, Zy, ) is the phase change due to
focusing (from the reference sphere in the exit pupil of the lens to the point of interest).
It is assumed again that the collimated beam up to the lens suffers a phase shift that
can be described with the plane-wave phase-term kz, since its Rayleigh length is much
bigger than lge. V', As it was described in Section 2.4.2, the measured phase is the phase
difference of the above two, so one can obtain Ap(w, Zy, ) = @sam (W, Zo,7) — Pret (W, Zo)
using FTSI (see Figure 3.18(a) for an example interferogram and Figure 3.18(b) for a phase
difference extracted from it). The question is: how the terms describing focusing-induced
phase changes can be extracted from it?

In usual experiments the neutral filters or the beam-splitting plate would not be
present. Fortunately, their phase delay knyg(w)lng and knpgp(w)lpsp along with that
of the lens’s central material (knet(w)let) can be omitted. The reason for the possibility

of suppressing these terms will be given later. So the relevant phase difference is
w
Ap(w, Zo,7) = = (livee — (lret + L + Z0)] + $roc(w, Zo, 7). (3.62)

The first term in the previous expression can be made zero by setting properly l..f, so
by adjusting the length of the reference arm, and with this adjusting the delay between
the sample- and reference pulses. In that case the phase difference is purely the phase
difference caused by focusing. Of course, this can not be done experimentally, because the
interference fringes would disappear, and the interferogram could not be evaluated. The
reference-arm length are usually set in a way that the linear term of the phase difference
in w causes such a modulation of the spectrum that can make precise evaluation possible.

In order to eliminate the linear term (caused by the delay) along with the higher-
order terms (introduced by the dispersive material) from Ap(w, Zy, ) during evaluation,
and get the information on the focusing-induced phase changes, the following was done.

A reference measurement point was chosen (for example, the focal point), in which the

VIT There is, of course, a change in phase with the radial coordinate. However, at given r coordinate the
phase change along propagation direction is described by a plane-wave phase, since the Rayleigh length
is large. How the radial dependence of phase contributes is only important from the point of focusing,
and contained in the term g, (w, Zo, 7).
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Ap(w,0,0) function, obtained using FTSI, was fitted with a third-order polynomial, giv-
ing a reference phase Agpo(w). This step is the reason while the effect of the neutral
filter, the beam splitter and the lens central material could be omitted previously, as these
are independent of Zj, so subtracting the reference phase removes their impact on the
measured phase. The usage of polynomial-phase instead of Ap(w,0,0) validated that the
effect of the lens material could be experimentally compensated, and nearly transform-
limited pulse shape can be retrieved. This subtraction is equivalent to the experimental
case of applying the methods for phase manipulation given also in Section 3.2.2 to reach
the shortest possible pulse duration [206, 207]. When the interferograms where mea-
sured in different points, all measured Ap(w, Zy, r) phases where corrected with the same

Ay (w), giving the corrected phase (see an example in Figure 3.18(c))
Aeorr(W, Zo, 1) = Ap(w, Zy, 1) — Appa(w) . (3.63)

By measuring the spectrum from the sample arm Iy, (w, Zo, 7) (by blocking the reference
beam in the interferometer, see an example spectrum in Figure 3.18(d)), the amplitude
spectrum is also available, and the pulse shape that would correspond to the theoretical

consideration of the previous section is obtained by
Eeop(t, Zo,7) = F 1 { Lsam(w, Zo, 7)exp[tAeor (W, Zo,r)]} : (3.64)

A pulse shape calculated as explained above can be seen in Figure 3.18(e). The CEP
of the pulse in a given point is then simply acquired by looking for the moment of the
maximum of |Ee(t, Zo, )| and taking the phase arg {Eexp(t, Zy, r)} at that instant.

So during the measurements the interferograms were recorded along with the spec-
trums of the sample arm at different spatial coordinates in the vicinity of focus. These
different spatial points mean measurement series along lines that are parallel to the opti-
cal axis, but that lie different distance from it. The CEP change is interpreted as relative
change with respect to the measured value in the focal plane. So the resulted plots (see
Figure 3.19(a)) are shifted to zero at Zy = 0, as the interferometric measurement does
not provide absolute values, the acquisition was multiple shot and the laser was not CEP
stabilized.

An important thing to note is that the spectrometer — used to measure both the
sample-arm spectra and the interferograms — did not cover the whole spectral range
(approximately 300 nm bandwidth) of the light source. This means that the pulse shape
could not be fully retained. However, if the phase changes measured show that there is
no relevant modification in the spectral phase that would significantly alter the temporal

shape of the pulse, this does not contradict the conclusions. When the envelope is non-
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Figure 3.18. The main steps of the method used to obtain CEP from interferometric measure-
ments using the setup of Figure 3.16. (a) A measured interferogram. (b) The phase difference
Ap(w) extracted from the interferogram using Fourier-transform spectral interferometry (see
Section 2.4.2) and the polynomial Appei(w) fitted to it. (c) The corrected phase obtained by
(3.63) using the result of (b). (d) The measured spectrum of the sample arm. (e) The pulse
shape calculated by (3.64) using the spectrum of (d) and the phase of (c).

reshaping in the focal region, the spectral phase fully contains the necessary information
on the CEP (see the theoretical discussion of Appendix E.2.1). Also, the last step of
the evaluation detailed above (and described also in Figure 3.18) can be skipped, and

the CEP can be obtained from the measured phase difference. Just like in CEP-drift
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Figure 3.19. (a) CEP-variation measurement results in the vicinity of focus of an achromatic
dublet lens (Thorlabs AC254-200-B-ML). The different symbols correspond to the measurement
series carried out along lines that are parallel to the optical axis and lie at different distances
from the axis. The black continuous curve is the Gouy phase shift for reference. The CEP
change is interpreted as change with respect to its value in the focal plane. (b) Pulse shapes on-
axis at different distances from the focal point. The shapes correspond to the CEP-results with
blue circles in (a). The transform-limited shape corresponds to the inverse Fourier transform of
the amplitude spectrum.

measurements [186, 187, 214], by fitting the measured Ap(w) with a polynomial, the
CEP change can be obtained from the zeroth- () and first-order (GD) coefficient as
Apcep = wo — GDwy (see the case with linear spectral phase in Appendix A.1). However,
this only gives correct results if the higher order terms of the polynomial and the amplitude
spectra are “identical” in every measurement point, so there are no pulse shape changes
from one recording to another, just absolute-phase modifications and temporal shifts of
the envelope. When there are known changes of the envelope, then the full evaluation
method described above is necessary.

Figure 3.19(a) depicts measurement results carried out in the vicinity of focus of a
commercial achromatic doublet lens. As mentioned in the introduction of this section,
the achromatic property of the lens was necessary to avoid pulse broadening or distortion
due to chromatic aberration. The evaluation method of Figure 3.18 confirmed that the
pulse envelope in fact does not change relevantly in the focal region (see Figure 3.19(b)).
Although it was not necessary, the full evaluation method of Figure 3.18 was used to obtain
the data presented in 3.19(a). The simplified evaluation with the first two coefficients
of the polynomial fit was also carried out and gave almost identical result to the ones
presented. The small differences can originate from the very small envelope reshaping.
The full evaluation is considered more precise, as it would given correct CEP values
even with a reshaping envelope. The error barsV!!l of Figure 3.19(a) originate from the

repetition of measurement series on different days, and even with full resetting of the

VIIL Al error estimates in this work correspond to 90% confidence interval.
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experimental setup. Several of the measurements were done by Déaniel Nemes.

The envelope shapes of Figure 3.19(b) justify the applicability of the non-reshaping
pulse approximation in real experimental situations (see in Section 3.2.3 and in Appendix
E.2.1). The transform-limited pulse shape of Figure 3.19(b) is obtained by inverse Fourier
transformation of the measured I, (w) spectrum using (3.64) with A@cor(w) = 0. The
broadening of the pulse is related to the non-constant phases measured, and those phases
are used for pulse shape evaluation (see Figure 3.18(c)).

The above results show that the simple, linear optical method of SI can provide infor-
mation on the spatial variation of the CEP in the focus. Similar measurement previously
has only been carried out using nonlinear optical phenomena, and they did not make
such high spatial resolution available [180, 215]. For this reason, they could not provide
information on how the wavelength dependence of beam features could modify the varia-
tion of the CEP during the propagation of the pulse through focus, as they integrate the
information from a bigger volume that could smear out the exact changes. They could
not report on phase variations along the cross section of the beam. The measurement

method presented here, however, can give this additional information.

3.3.2 Simulations of the experimentally studied carrier-envelope

phase

An important question is the relation of these measured CEP variations to the ones
predicted by simulations. Since, according to the theory, these phase changes are affected
by the wavelength dependence of beam size and wave-front curvature, these are needed
for the simulation, so they have to be measured. This can also lighten how much these
aspects alter the phase in real situations, and it is relevant in verifying the theory of
Section 3.2.3.

A frequency-resolved measurement of beam size and wave-front curvature can be car-
ried out with different methods [216, 217], some even allowing single-shot characterization
of all spatio-spectral (or spatio-temporal) properties [218]. The method used here is a very
simple realization with a single spectrometer. The idea is to make wavelength-resolved
measurements of beam cross-section at different points along the propagation direction.
This is executed by recording spectra in points along lines perpendicular to the optical
axis and plotting the radial dependence of intensity for all wavelengths (see example in
Figure 3.20(a)). The resulted data points were fitted with Gaussian functions. Then the
beam radius could be extracted from the fitting parameters. It can be seen in Figure
3.20(a) that the data measured as such can be fitted very well with Gaussian functions
(symbols are the measured data series and the curves are the fitted functions). This ver-

ifies the statement of the the manufacturer of the reflective collimator that the appliance
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provides a high-quality Gaussian beam.

The initial idea was to repeat these beam cross-section measurements at different
distances from the reflective collimator, then — like in an M?-measurement [107]— the
properties of the Gaussian beam (Rayleigh length, beam-waist size and position) can be
extracted by fitting the beam-size data as a function of distance from the collimator with
a function similar to (2.36). However, it turned out that the beam is so well collimated
that, even with meters-long propagation, the beam size does not increase enough that the
results become reliable within the error range of the measurement. When the z-dependent
beam sizes of different frequencies were fit with the beam-size expression (2.36) of Gaussian
beams, and the fit-resulted wave-front curvatures and beam radii were introduced in the
simulation of Section 3.2.1 as an input, the CEP-variations were basically different from
the measurement results of Figure 3.19(a). So, to have the necessary beam-properties
for the simulation (the beam radius and phase-front curvature at the entrance pupil of
the lens, as from that point ray tracing and diffraction theory deals with the further
propagation of light, see Section 3.2.1), an other approach was needed.

The solution that provided reliable data was more based on simulation. As there was
no possibility to directly measure the wavelength-dependent wave fronts (see the com-
plexity of approaches in [216-218]), calculations were carried out based on the beam size
measurements. Like in the previous approach, the beam-sizes were determined in various
distances from the collimator output. This time these data were compared with simula-
tion results carried out with Zemax OpticsStudio Demo, a commercial beam propagation
software. This software gave a simple tool for describing diffraction-based propagation
of the beam, since the manufacturer of the collimator provides compatible files with this
software for their products. The information from the software is available for both the
beam size and the phase-front curvature.

To have proper data using this approach, the following had to be considered. The
single-mode fiber used for spatial filtering of the beam, and the output of which is coupled
to the reflective collimator, does not guide light with same mode radii for all wavelengths
[107, 219]. The mode field radius (the radius of the Gaussian mode propagating in the
fiber) can heavily depend on the wavelength. This had to be taken into account in
the simulations. The following procedure was followed. The experimentally-deduced
beam sizes at different positions were compared with beam radii obtained from beam-
propagation software at the same distance from the collimator output, assuming different
mode field radii for different wavelengths. This way the frequency dependence of the fiber
mode sizes could be determined. The measurements were repeated at several distances
from the collimator with two different spectrometers (Ocean Optics HR-4000 and Avantes
Avaspec-3648).

92



3.3. Measuring the carrier-envelope phase variations of focused pulses

| 11 1 1 11 1 1 | 11 1 1 | 11 1 1 | 3'5 11 1 | 11 1 | 11 1 | 11 1
J(a) Wavelength [ — 4(®) == From measurement |
— 37 % ¢ 720 nm [~ g 3.3 — --- Petermann II fit _4
- 4N s800mm |y i
5 Sy a—-880nm [ = _ |
=9 4 AAA . - T 3.1
> 7 ! A A N B H B
= - I ) A\ =
g - J AAA";,’-‘ %% A \“ - % 2.0 — -
8 1 - /l;,A ® \‘“\A“\ | = |
A= ,;» *;‘ [ S 2.7 —
: e 2 \\\\\ s : 2 B
0—t llllllllllllllll"— 2.5 LI B B B Y BB
-5 -2.5 0 2.5 5 720 760 800 840 880
Position [mm] Wavelength [nm]

Figure 3.20. (a) Beam cross-section measurements for three different wavelength carried out
with a spectrometer. The curves are the fitted Gaussian functions. The data has been vertically
scaled for better visibility. The beam radius is obtained by finding the radial distance from
center were intensity drops to its 1/e? from its maximum. (b) The wavelength dependence of
the mode field radius in the single-mode fiber used for spatial filtering of the beam. The black
curve with yellow faded region is the result deduced from beam-size measurement, the faded part
showing error estimate. The red dashed curve is obtained by fitting the Petermann II formula
(3.65) to the data.

The resulted frequency dependence of the mode field radius in the single-mode fiber
can be seen in Figure 3.20(b). The continuous, thick black curve is the result of the above
defined method, while the yellow faded region shows the error range.

A question needing answer before stepping forward is whether these values for the
size of the propagating modes in the fiber can be correct. There are several analytical
formulas for the mode field radius of step-index fibers. One of the reliable ones is the
so-called Petermann IT formula [107]. According to this, the ratio of the mode field radius

wyrr and the radius of the core acqe 0Of the step-index fiber can be approximated by

o ~ 0.634 + VA + e T Ty

(3.65)

where V' = (27 /A)acore NA is the V-number of the fiber for the given wavelength, NA =

\/ngore — ngladding being the numerical aperture of the fiber [107]. Using the core radius

aeore and the numerical aperture NA as the fitting parameters, the obtained frequency
variation of mode field radius can be perfectly fit with (3.65), as it can be seen in Figure
3.20(b). The result of the fit for the core radius and numerical aperture are acoe = 2.07 pm
and NA = 0.11, respectively, which are very close to the values of 2.2 pm and 0.13 given
by the manufacturer. In the wavelength range used, the V-number is in the region where
the Petermann II formula is accurate within 1% [107] (V-number is between 1.5 and 2.5,
as it is 2.496 for 720nm and 2.042 for 880nm). So it can be concluded that the above
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Figure 3.21. (a) The measurement results of wavelength dependence of the beam size at the
position of the focusing lens being under study. The continuous black curve is the mean value of
the measurements, while the yellow-faded region is the error range. The red dashed curve is the
simulation result based on the mode-field radius data obtained previously. (b) The simulated
phase-front radius attained on the same basis as the beam size of (a).

method serves as a reliable source for the mode size in the fiber, and the results obtained
from the Zemax OpticsStudio Demo should provide information on the beam size and the
wave front that correspond to the experimental situation.

Figure 3.21 depicts the wavelength dependence of beam size (Figure 3.21(a)) and wave-
front radius (Figure 3.21(b)) retrieved from the Zemax simulation. The beam size was
measured at the position of the lens (70 cm from the collimator) with the two spectro-
meters used also for the previous study. The resulted data can be seen in Figure 3.21(a),
with the faded yellow region being the error estimation based on the several measurements
carried out with the two spectrometers. The red dashed curve is the one from the Zemax
simulation assuming the mode field radius of Figure 3.20(b). While the simulation result
does not overlap with the mean values of the measurement, it lies within the error range of
the measurement. For wave-front data only simulation data is available in Figure 3.21(b).

With the above data everything is available to use the theoretical considerations of
Section 3.2.1 to simulate the CEP of the focused pulse. For the off-axis cases, expression
(E.2) can be used instead of the on-axis (E.3). An important thing to consider in the
simulations is that while the calculated values correspond to phase values obtainable in
a single point in space, the measurement integrates a small surface together, specifically
the cross section of the fiber used for probing. If the CEP varies fast spatially in the plane
perpendicular to the optical axis, there is a bigger uncertainty in what is the measured
value. The simulated CEP variation corresponding to the measurement of Section 3.3.1
can be seen in Figure 3.22. The faded regions around each curve shows the uncertainty

originating from the above reason of recording data with the ~ 4.4 pm-diameter single-
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Figure 3.22. The simulation results of the CEP variation along lines parallel to the optical axis
but lying at different distances from it. The faded regions show the uncertainty due to the finite
size of the fiber. For comparison the measurement results of Figure 3.19(a) are also depicted.
The waist radius and Rayleigh length of the beam were ~ 1mm and ~ 16 pm, respectively,
based on both the measurement and simulations data of the focused pulsed beam.

mode fiber (as mentioned before in the description of the experimental setup, the same
type of fiber was used with the spectrometer as for spatially filtering the beam). For a
direct comparison, the measurement results are also highlighted with the same symbols
as in Figure 3.19(a).

There are clear differences between the simulation and experimental results, even with
the error and uncertainty estimates. The tendencies overall are, however, similar. This
qualitative agreement supports that the wavelength-dependent beam properties (beam
size and wave-front curvature) in fact have an effect on the phase variations in the focus.

To investigate what causes the difference between calculation and measurement, the
following study was performed. One possibility could be that the method describe previ-
ously does not give the proper values for the wave fronts (and the beam sizes). To check
this, the focusing simulation was modified to serve as a fitting algorithm. The fitting
parameters were the wavelength dependence of the beam size and that of the wave-front
curvature. The initial values were the ones obtained from Zemax simulation described
previously. The algorithm developed tried to minimize the difference between the mea-
sured and simulated CEP variations in parallel for all three values of radial distance in
Figure 3.22. This fitting simulation, however, could not provide better correspondence
between the calculated and measured data then it can be seen in Figure 3.22.

The above suggests that it is not the inaccuracy of the beam-size and wave-front
curvature data in which the deviation originates. The most probable possibility is that
the simulation itself can not describe the case fully properly. The property known with

least certainty in this beam description is the real shape of the phase fronts, as those are
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not measured directly. The wave fronts are obtained indirectly from beam-size measure-
ment combined with simulation, and it contains the highest possibility of errors. In the
simulation, the wave fronts reaching the lens are assumed to be spherical. Even if the
collimator provides a high quality beam, it is very probable that the wave fronts emerging
from it are not perfectly spherical. Also, aberrations that are not cylindrically symmetric
might be present in the beam due to the misalignment of the lens or other optics. With
a method that can measure wave fronts in a frequency-resolved manner [216-218], and
with a simulation that can provide focused field features even without the assumption of
cylindrical symmetry, more cases could be described with better correspondence to ex-
perimental results. The first could help in the presented simulations results of this work
as well to better match experimental data, which already supports the theory it is aimed

to verify.

Summary III. [designed and built an experimental setup which is capable of measuring
the spatial phase changes of pulsed beams with high spatial resolution. This setup was
used to deduce experimental information on the carrier-envelope phase variations of few-
cycle pulses in the focal region of an achromatic lens. I carried out wavelength-resolved
measurement of properties of the source beam that was focused, and the phase changes
of which were examined. With the measured beam properties I performed numerical
simulations on the focused phase variations that correspond to the analyzed experimental
case. With the comparison of the simulation and experimental results, I verified the
main aspect of the theory, that is, I showed the effect of the wavelength dependence of
the focused beam on the carrier-envelope phase changes, and that it results in variations
which are different from Gouy phase shift [T5].

3.4 Modifications in the polarization state of few-

cycle pulses during propagation or focusing

As it was detailed in the introduction, tailoring the temporal variation of the polarization
state of few-cycle pulses has been introduced recently as a new way of coherent control
[64—72]. In the experiments, these polarization-shaped pulses are also focused. However,
it was shown that during free-space propagation of beams the instantaneous polarization
state can change [115]. These variations are not a consequence of strong focusing [81], of
the spatial inhomogeneity of the polarization state across the beam cross section [220],
nor of partial coherence or partial polarization of the beam [221, 222]. The changes shown
in [115], using the first-order theory of Section 2.3.4, are — as a consequence of the theory

used — related to beam diffraction, being more fundamental than the previously listed
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reasons for polarization-state modifications.

What is not clarified in [115] is, firstly, the exact physical origin of this effect, and,
secondly, if there are some simple rules that can — at least approximately — describe
these phenomena. The aim of this section is to answer these questions, give examples
that are related to polarization-shaped pulses used in nowadays experiments, and to give

simple methods that can bring experimental evidence to these effects.

3.4.1 Propagation of polarization-shaped pulses with particular

examples

The polarization state of wave packets can be described by the instantaneous polarization
ellipse introduced in Section 2.2.3. One has to be careful, however, as beams generally
do not have purely transverse polarization (see introduction of Section 2.3). Still, as
it was mentioned in Section 2.3.3 (or in [157, 158]), using paraxial approximation has
the advantage that Gaussian beams can still be considered as transverse waves without
causing flaws in the conclusions drawn. So, using the same theory as in Section 2.2.3,
the vector electric field can be described by two components, either the linearly polarized
scalar components x and y, or the left- and right circularly polarized ones. Using this
latter two, it can be shown by applying the first-order propagation theory of Section
2.3.4 (see details of the calculation developed by M. A. Porras in Appendix F.1) that the
instantaneous orientation of the propagated/focused field relate to that of the initial one

in point P (with position vector r) by

b Galm) 1 dtan|x? ()]
@) ~ y) 0 : . 3.66
(r7 7—) <T> + QO(I‘) 1 _ tanQ[X(fL) (7_)] dT ( )
At the same time, the instantaneous ellipticity can be expressed by
! (i)
®) ~ @] 90) (o ar ) AYT(T)
tan {X P (r,T)} ~ tan[x (7')} Go(r) (1 tan [X (T)D r— (3.67)

where G(r) is again the term describing the beam propagation, like (2.41) or (2.45) in the
case of Gaussian beams. The method to obtain the orientation W(7) and the ellipticity
Xx(7) from the pulse envelopes and phases for the source and propagated beams can be

found in Section 2.2.3. Specifically, if the focal point or the far field™ on axis is considered,

XFar field strictly means infinite propagation distance, but for Gaussian beams in practical cases
it is enough to consider a propagation distance that is approximately five times the Rayleigh length.
Fraunhofer diffraction is the theory dealing with the diffraction in the far field, also providing information
of the field distribution in the focal plane [90]. Due to this, the focal plane and the far field can be treated
the same way in several aspects.
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it can be shown that the change of orientation and ellipticity modifies to [T6]

, dtan |y (7
\I’(p) (T) - ‘I’(l) (T) = (jol _ tanzl[x(i)(T)] E:_ ( )] ) (368)
and®
. . @ (r
tan [X(p)(r)} — tan [X(Z) (7-)} ~ —:0 (1 — tan® [X(Z) (7')D d\IJdT() : (3.69)

The above expressions are general for all waves, as the Gj/Gol;,, g = 1/wo identity is
a general consequence of the wave equation. This can be seen either by using Green
functions to solve the focusing problem [223], or it can be obtained from the fact that
in the (2.46) mathematical expression of the Huygens—Fresnel principle a 1/X term [213]
appears. Whatever approach is used, for a general spherical wave G(w) ~ w, giving the
above result. It is to be noted that unique beam properties can modify this behavior
obtained for spherical waves, but it is always present. Considerations on this are given in
the next few paragraphs.

An important conclusion that can be drawn from (3.66) and (3.67) that a time-varying
ellipticity induces a change in the instantaneous orientation during propagation, and vice
versa, a time-varying orientation causes a modification of the instantaneous ellipticity.
Waves with time-independent polarization state, for example, monochromatic waves do
not change their polarization state during propagation or focusing. The question is then,
why is there a change in the polarization state of pulsed beams with time-varying polari-
zation?

The answer lies in the effects that can modify the spectral amplitude upon propagation,
for example the one shown already for the far field or focal plane. These different diffrac-
tion properties of the monochromatic components cause a frequency-dependent scaling of
the amplitude spectrum, which causes the modification of the temporal variation of the
polarization state (see an example later). This spectrum scaling can be a red shift of the
Wolf effect caused by source correlation [224]. It can also be the previously mentioned
amplitude scaling, which is simply due to the wave nature, and which causes a blue shift
on axis and which turns into red shift far enough from axis. This can also be thought as
a kind of Wolf effect [213].

If the pulsed beam have some special properties, it can modify the G(r,w) ~ w correla~
tion. For example, for Gaussian beams it can be shown both for propagation to the far field
(see (2.35)) and for focusing into the focal plane (see (B.7)) that Go/Golg,, feid/socal plane =
gs/wo. As (B.7) also corresponds to focusing at waist, g, is given by (3.11) both for prop-

agation and focusing. This means that in the case of an isodiffracting Gaussian beam

XNote that in [T6] and in [T7] the equivalent expressions to (3.69) have a wrong sign.
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Figure 3.23. (a) The temporal variation of the electric field in an idealistic polarization gating
pulse given by (3.70) and (3.71) with Eyuse(t) = exp{—tQ/Té?min} exp|—wwot]. The source pulse
is four cycle (T min = 9.07fs) and the delay is At = 12.68fs. (b) The time variation of the
instantaneous ellipticity and orientation of the pulse in (a) (the properties with superscript (7))
and the same properties when the pulse has propagated to the far field on axis (the properties
with superscript (p)).

(9s = 0) the effect of size variation cancels out the effect of the Green propagator, and as
a results the polarization state is not modified while propagating to the far field or to the
focal plane. The case of a Gaussian beam with constant waist size (gs = 1) gives the same
result obtained with the more general approaches of Green propagator or Huygens—Fresnel
principle [213, 223], not surprisingly.

In the following, two examples are presented which nicely show the properties of the
polarization-state variation rules given by (3.66) and (3.67), and also they can highlight
the physical reason behind the effect. The first one is the so-called “polarization-gating”
pulse used for isolated attosecond pulse generation [39, 41]. This pulse is a particularly
good example, because this polarization-shaped pulse has a time-constant orientation
and a time-varying ellipticity. If the time variation of the polarization is examined, it is
initially circularly polarized, then it gradually turns into a linearly polarized in its middle,
most intense part, and finally shifts to circularly polarized in the opposite direction than
in the beginning (see Figure 3.23(a) and (b)).

It can be shown, based on a picturesque model of the experimental generation of
polarization-gating pulses (sending a source pulse through two quarter-wave plates [39,
41]), that the x and y components of the electric field can be written as (see details in
Appendix F.2)

~ 1= At ~ At
Ea(jl) (t) - 5 lEpulse (t + 2) + Epulse (t — 2>‘| , (370)
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~ L]~ At . At
E?S)(t) = 5 [Epulse <t + 2) - Epulse <t — 2)] , (371)

where Epulse(t) is giving the pulse shape of the source (for example, in this case Epulse(t) =

exp[—t2 / T(%Jnin] exp|—wwot]), and At is a time delay introduced by the wave plates used
for generation. In the circular-components representation this is equivalent to two left-
and right circularly polarized components of identical pulse shapes but delayed by At with
respect to each other [T6]. The small pulse chirp and broadening caused by propagating
through the birefringent material is neglected in this case. Using expressions (3.66) and
(3.67) on the left- and right circularly polarized components, it can be shown that during
propagation the instantaneous ellipticity of the polarization-gating Gaussian pulse does
not change, while the orientation is subject to a shift that results in W@ (7) = W@ (7) 4
(G6/Go)(At/TE 1min) (see Appendix F.2). This shift is time independent, and in the far

field it is equal to
At

AT = ¢ _ gl —
oné

(3.72)

if a Gaussian pulsed beam with Gaussian temporal envelope and wavelength-independent
waist size is assumed. The above means that the polarization-gating pulse with the above
beam properties rotates as a whole while it propagates up to the far field or to the focal
plane, the latter being the place where it usually interacts with the target.

To check the above predictions and to see the precision of the expressions based on
the first-order theory of pulsed-beam propagation can give the propagated field, numer-
ical simulation were also performed. The simulations took the Fourier transform of
(3.70) and (3.71) as the spectrum of two independent source electric fields ﬁél;(w) =
U,y(w) = 9{&%(25)}, then the usual expression of ﬁé@(r,w) = G(r,w)U,,(w) (see
(2.58)) was applied to obtain the propagated spectra. Finally, the inverse Fourier trans-
form Eg(cf’;(r, t)y=9"1 {ﬁépy)(r, w)} (see (2.59)) gave the temporal variation of the electric
field for each component. From complex electric fields Eglf) (r,t) the properties of the in-
stantaneous polarization ellipse was deduced using the expressions of Section 2.2.3. The
propagation was calculated using G (r,w) given by the ABCD formalism ((2.35) for propa-
gation and (2.45) without Debye approximation for focusing). ABCD formalism was used
because the aim was to show the generality of this effect, and not to study the additional
polarization-state changes caused by aberrations or further distortions. For this purose,
the diffraction theory of focusing can be used ((2.51) or (2.55)).

Figure 3.23(b) compares the on-axis temporal variation of the ellipse properties of
the polarization-gating pulse at the source and in the far field. It can be seen that the
temporal variation of the instantaneous ellipticity does not change during propagation to

the far field, while the orientations is altered. This verifies the proposal of the first-order
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theory that the time-variation of ellipticity induces the change of the orientation during
propagation. The analytical theory suggests a time-independent shift for the orientation
of the polarization-gating pulse (black continuous curve of ¥ (7)), while the numerical
results shows that it is not totally true (blue dashed curve of W) (7)). The analytical
orientation shift on axis for the initially transform-limited Gaussian pulse in the specific
case of Figure 3.23 gives AW ~ 0.065 Rad = 3.75° (see Appendix F.2 for the derivation
of the expression). This value is in agreement with the numerical simulation (see Figure
3.23(b)).

An interesting question is the possible modification of the effect when more realistic
pulses are considered. The more realistic means here that the pulse chirp is taken into

account by assuming a simplified, initial chirped pulse shape given by

. 2 O
Epulse(t) = exp [_W‘| exp [_L (u)ot + jét2>] (373)
G

in (3.70) and (3.71). The C, term is a dimensionless temporal chirp. It can bee seen
easily that this temporal shape is equal to (A.14) with C; = GDD¢? and T2 = 2I12/0?
if the amplitude and the constant phase terms (even the one caused by the GDD) are
disregarded. The Gaussian pulse duration nomenclature (7¢) is the same as the one used
in the analytical CEP-change calculations (see Appendix E.2.2).

Figure 3.24(a) shows the time evolution of the polarization state of the polarization-
gating pulse on the Poincaré sphere when a transform-limited source pulse shape is con-
sidered and when the source pulse is chirped. The Stokes parameters were calculated
using (2.20), (2.21) and (2.22) with Sp(t) = 1. The delay At has been modified for
the chirped pulse so the curves do not overlap on the surface of the sphere®!. The two
curves for each case show changes in temporal variation of the polarization state when
the polarization-gating pulse propagates from the near field to the far field. It can be seen
that the temporal chirp causes a linear temporal variation of the orientation (see (F.21) in
Appendix F.2). However, this variation is so small that it does not modify the ellipticity
relevantly during propagation, which is suggested by the analytical theory. See that the
curve of the propagated chirped pulse (black dashed) has the same shape as the initial one
(green continuous). The analytical (and numerical) results show that the chirped pulse is
subject to the same constant orientation shift as the transform-limited one (see (F.26) in
Appendix F.2). In the example of 3.24(a) the amount of rotation is decreased compared
to the transform-limited case (3.45° against 3.75°) because of its increased duration due

to pulse chirp.

XI' The modification of At is an orientation shift of the initial unchirped pulse as it can be given by
T = Atwy/2 (see (F.21) in Appendix F.2).
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Figure 3.24. (a) The time variation of the instantaneous polarization ellipse of polarization-
gating pulse that is generated using a transform-limited Gaussian pulse (TL) and a chirped
Gaussian pulse (chirped) depicted on the Poincaré sphere. The two curves for each pulse show
how the polarization changes while propagating from the source (in.) to the focal plane (foc.).
The arrows on the curves show the direction of time evolution. The TL pulse is the same as in
Figure 3.23, while in the chirped case GDD = 10fs? chirp is assumed for the same amplitude
spectrum as in the unchirped case (the resulting dimensionless temporal chirp is C; = 0.243).
(b) The dependence of the rotation of the polarization-gating pulse on the pulse duration. The
time delay is kept constant, the carrier wavelength is Ag = 800 nm (optical cycle is Ty = 2.67 fs)
and the pulse duration should be understood as Tpwnm = TG +/2In(2).

Figure 3.24(b) shows changes of the rotation of the orientation with pulse duration.
While the plot is based on the analytical expression (3.72), the above results for the
chirped pulse are the same. The plot of Figure 3.24(b) corresponds to a fixed central
frequency and a given At delay. This corresponds to a case when the same source and
the same experimental setup is used used. So the curve of Figure 3.24(b) can be obtained
experimentally with a single source and a simple generation setup, because the pulse
duration can be simply tuned by adding chirp to the pulse reaching the system producing
the polarization-gating pulse. The chirp of the pulse should not alter the results. More
on the possible experimental measurement of the orientation or quantities related to it is
given in the next section.

As it is shown by the plot of Figure 3.24(b), or by expression (3.72), and as it was
mentioned earlier, monochromatic beams do not change their polarization state (if fully
coherent and fully polarized) on free-space propagation [221]. The question that has been
raised and needs an answer is the reason behind the changes of the polarization state of
a short pulse. To answer this, the spectral polarization state has to be studied. This can
be done by Fourier transforming the temporal shapes (3.70) and (3.71), giving

P (w) = F {ES, (1)} = pay(w)expleps,y ()] - (3.74)

)
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Figure 3.25. The (a) orientation, ellipticity and (b) semi-major axis of the monochromatic
components of the polarization-gating pulse of Figure 3.23 in the initial plane and when the
pulse is propagated to the far field on axis.

Then the expressions of Section 2.2.3 are to be used with the resulted spectral amplitudes
Pay(w) (in the propagated case p,,(w)G(w), see (2.58)) and spectral phases ¢, ,(w) (in
the propagated case ¢, (W) 4+ @, (2,y) (W), see (2.58)) substituted into the formulas instead
of temporal envelopes A, ,(t) and temporal phases ¢, ,(t), respectively. This way the
polarization state of each monochromatic component in a polarization shaped pulse can
be examined. The results of such a calculation can be seen in Figure 3.25(a) and (b),
which correspond to the polarization-gating pulse of Figure 3.23.

It can be deduced from Figure 3.25(a) that, in fact, the polarization of the monochro-
matic components do not change upon propagation, as they can be represented with a
polarization ellipse of the same shape and orientation. In the case of the polarization-
gating pulse, the spectral components are linearly polarized with an orientation that
depends on wavelength. The reason for the change of instantaneous polarization state is
given in Figure 3.25(b), where it can be seen that the size of the semi-major axis bears a
spectral modification. As the components are linearly polarized, this is simply the on-axis
blue shift of the spectral amplitude. Since the beam-waist size is wavelength independent,
the Rayleigh length of bluer components are bigger (see (2.38)), they are less diffracted,
meaning that on axis their amplitude is less reduced than the amplitudes of redder com-
ponents during propagation. This is something not relevant for monochromatic beams,
as it is naturally expected that they change their amplitude upon propagation, so it is
not considered as a polarization-state change [221]. However, when these infinite waves
with modified semi-major axis sizes add up to a short wave packet in the far field, they
result in a different time varying polarization state compared to the near-field.

Of course, strictly speaking, the above results are for a Gaussian beam with frequency-
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independent waist size and for on-axis propagation. When off-axis points are considered,
the spectral shift is different. The caustic defined by the equation r(z) = w(2)/v/2 (the
w(z) beam radius given by (2.36)) are the spatial points where the spectrum is not subject
to a shift caused by diffraction [164]. In all points closer to the axis are blue shifted, farther
are red shifted [164]. So, experimentally the spectral shift may not be visible in several
cases, either because the pulsed beam does not have a wavelength-independent beam
size (for example, it is instead isodiffracting, in which case there is no frequency shift in
any point), or because the measurement integrates results spatially containing blue- and
red-shifted parts at the same time (this point is addressed later). The rotation of the
polarization-gating pulse has been checked for other (experimental) pulse shapes, and the
non-Gaussian shape of the envelope does not modify relevantly the result, according to
simulation.

After the long discussion of the first example verifying (3.66) of the orientation change,
a second is given to exemplify (3.67) defining the ellipticity change, separately. The
polarization-gating pulse of the previous case was a good example, because, by having a
time-independent orientation, it showed that the instantaneous ellipticity is not changed
upon propagation. To have a pulse that has a constant ellipticity and a time-varying
orientation, the following artificial example is taken. The rotating pulse (similar to that
of [72] proposed for CEP measurement) consist of left- and right-circularly polarized com-
ponents which have a slightly different amplitudes and carrier frequencies (see Appendix

F.2), and its linearly polarized components can be written as

E,(t) = Ep\lﬁ(t) [arexp|—wat] + a,] (3.75)

ad o LEpulse (t>
V2

In (3.75) and (3.76), Eyuse(t) = E(t)exp[—wwot] is again an arbitrary pulse shape (like

for the polarization-gating pulse), @; and a, are amplitudes, while w; < wy is the slight

[ajexp|—twqt] — a,] . (3.76)

angular frequency difference between the two circular components. It can be shown that
the instantaneous ellipse of the above pulse has a linearly time-varying orientation de-
fined by the frequency deviation according to W (¢) = wyt/2, while the ellipticity is the
tan(xY) = (a, — a;)/(a, + ;) time-independent value (see details of calculation in Ap-
pendix F.2). The pulse shape and the temporal variation of the instantaneous ellipse
properties can be seen in Figure 3.26(a) and (b).

While this rotating pulse of Figure 3.26(a) is hard to achieve experimentally (if even
possible), it gives a perfect way, with its time-independent ellipticity, to check the validity
of the first order theory and (3.67). Figure 3.26(b) shows the time variation of ellipticity
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Figure 3.26. (a) The temporal variation of the electric field of a polarization-shaped pulse given
by (3.75) and (3.76). The envelope is Gaussian (A(t) = exp[—t?/TE]) with 5-cycle duration
Trwnm = Tg/2In(2) = 13.34fs. The carrier wavelength is \g = 800 nm. The amplitudes are
a; = 0.95arb.u. and a, = 1.0arb.u., while the frequency difference is wg = 0.1wp. (b) The time
variation of the instantaneous ellipticity and orientation of the pulse in (a) (the properties with
superscript (7)) and the same properties when the pulse has propagated to the far field on axis
(the properties with superscript (p)).

and orientation at the source and at the far field. It can be seen from the numerical
results that the orientation does not change upon propagation on axis, as expected from
(3.66), while the ellipticity changes due to the rotation of the polarization direction.
It is also visible that both the analytical expression (3.67) and the numerical calculation
suggests that the pulse changes its instantaneous helicity from right-handed to left-handed.
However, the analytical theory can predict the amount of change less precisely than it can
do it for the orientation change (see Figure 3.23(b)). This is a consequence of the higher
number of approximations used to obtain (3.67) compared to the method used to achieve
(3.66) (see Appendix F.1). The numerical results of Figure 3.26 were obtained the same
way as for the polarization-gating pulse. In Figure 3.27 the polarization-state variation
of this rotating pulse can be seen depicted on the Poincaré sphere.

The Poincaré representations of the polarization-gating and rotating pulses (Figures
3.24(a) and 3.27) show that they serve as two complementary examples to verify the
prediction of the first theory given by (3.66) and (3.67). The time evolution of the polari-
zation ellipse of the polarization-gating pulse goes along a line of longitude of the Poincaré
sphere, while the same property of the rotating pulse is a line of latitude. The orientation
of the polarization-gating pulse and the ellipticity of the rotating pulse determine which
line of longitude and which line of latitude of the Poincaré sphere they can be represented
by, respectively, and the positions of these grid lines on the surface are those properties,
which are changed during propagation.

The numerical results presented in this section confirm the possible polarization-state
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changes upon propagation or focusing predicted earlier [115]. Steered by the analytical
theory, the simulations also show the pulsed-beam features which are responsible for
these phenomena. The numerical simulations are capable of verifying the validity of the

analytical expressions and, at the same time, picture the limitations of them [T6].

3.4.2 Measurement of the polarization-state changes by classical

methods
The measurement of the instantaneous pola- * So(t) — initial
rization state is a very laborious task in the -==focused

optical regime [132, 133]. It would be much
favorable if the reported polarization state
changes would appear when classical, time-
integrating methods for polarization measure-
ments are carried out, for example those that

has been discussed in the end of Section 2.2.3.

In the case of the polarization-gating pulse

the question is the time-integrated measure-

ment method which can detect the orientation

of the instantaneous polarization ellipse.
Figure 3.27. The time evolution of the in-

stantaneous polarization state of the initial
tion-gating pulse, the following simple experi- and propagated rotating pulse of Figure 3.26

ment was simulated. The important quantity represented on the Poincaré sphere.

To examine the orientation of polariza-

in these calculations is the angle of the polarizer — that the beam tarverses — at which
the energy or fluence behind the polarizer is maximal. This angle for a linearly polarized
beam is the angle of polarization, and the signal has very high contrast. This can be
simulated by substituting the x and y electric-field components into the (2.29) expression
of time-integrated intensity (fluence) measurement. By choosing € = 0 in (2.29) and eval-
uating it at different 6 values the results is the same as the experiment with the polarizer
explained above.

Figure 3.28(a) depicts the result of such a simulation carried out for the polarization-
gating pulse at the source (initial, blue dashed curve) and infinitely far from the source
(far field, red dotted curve), in both case on axis. The simulation corresponds to the
same pulse as in Figure 3.23, so (3.70) and (3.71) fields were substituted into (2.29) with
At = 12.68 fs delay and a Gaussian pulse of T i, = 9.07fs duration. By comparing the
orientation angles in Figure 3.23 (or the transform-limited pulse of Figure 3.24(a)) with
Figure 3.28(a), it can be seen that the direction of polarizer with maximal transmitted

fluence coincides with the orientation of the polarization-gating pulse. This is also true
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Figure 3.28. (a) Simulated fluence measurement of a polarization-gating pulse behind a po-
larizer in the near- and the far field on axis as a function of polarizer angle. Zero angle means
a polarizer that is parallel to the x axis. The pulse is the same as in Figure 3.23. The ver-
tical dashed lines show the angle of maximum fluence. (b) The polarizer angle that gives the
maximum transmitted fluence on axis as a function of distance from the source. The distance
is measured in the units of Rayleigh length Ly = 9.8 m (see (2.38)) of the pulsed beam with
wavelength-independent beam waist radius s = 5 mm.

for the chirped polarization-gating pulse (see that case in Figure 3.29(a)).

So, with this fluence (or energy, see later) measurement behind a polarizer, the rotation
of the polarization direction of the polarization-gating pulse during propagation can be
detected. Figure 3.28(b) shows the polarizer angle which gives the maximum transmitted
fluence as function of propagation distance on axis. The results show that, if the source
Gaussian beam had a wavelength independent waist size (g, = 1), the polarization-gating
pulse generated from a 7T min = 9.07 fs long pulse would rotate approximately 3.75° when
propagating 5 Rayleigh length distance. If the pulse was shorter, the rotation would be
much bigger (see Figure 3.24(b)).

The example of Figure 3.28 corresponds to a measurement in a single point on axis,
which is, of course, practically not realizable. That case only shows that for the polari-
zation-gating pulse the rotation of the instantaneous ellipse can be visualized without a
temporally resolved measurement of the electric field or related quantities. This is related
to the fact that the whole pulse rotates its orientation during propagation.

To investigate a more realistic case, simulations must take into account that fluence
or energy detectors have a finite size, and they integrate data not just temporally, but
also spatially. This is important because — as it was mentioned previously — diffraction
properties change along the cross section of the beam, and the on-axis blue shift turns into
a red shift when the studied point lies farther from axis than w(z)/v/2. This turns into

an orientation change of opposite direction, so spatial integration of detectors might blur
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the studied phenomenon. So calculations were carried out where the spatial integration is
included. Since the Gaussian beam has a cylindrical symmetry, this means the calculation

of integral
E = 27T/ - In(r,0,¢)rdr, (3.77)
0

where I, (r, 0, €) should be understood as in (2.29), but an additional parameter is added,
since it depends on the radial coordinate r through the radial dependence of the electric
field. Equation (3.77) gives the energy & measured by a circular detector that has an
active surface with radius r4e. The input pulse was assumed to be chirped, and focusing
is simulated instead of free space propagation. Both the chirp and the focusing is aimed to
provide data that are closer to experimental feasibility, as free space propagation would
need huge laboratory space, and pulses are usually not truly transform limited. The
results of such simulations can be seen in Figure 3.29(a).

The curves of Figure 3.29(a) show that the spatial integration washes out the rotation
of polarization direction of the polarization-gating pulse. In the simulation, the focused
beam has a waist size of s5¢o = 25 um and a focused Rayleigh length of Lo = 2.55 mm.
The source has a frequency-independent beam size (¢g; = 1). The pulse features are the
same as in Figure 3.24, except delay At, so it can be seen that a chirped polarization-
gating pulse has the same initial and propagated orientation as the unchirped one, and the
amount of rotation is determined purely by the pulse duration (compare Figure 3.29(a)
with Figure 3.28(b)). It is visible that the relevant change in orientation happens in a two
focal depth distance. If the probing of the field happens in a sufficiently small region, for
example with a single-mode fiber in this case (like in the experiment of Section 3.3.1), so
that the probing is much smaller then the focused spot size, then the effect can be resolved
(see green dashed curve of Figure 3.29, which runs really close to the on-axis variation
depicted with blue continuous curve). When the measurement happens with a detector
that has the same radius as the focused beam, the visibility drops already to the half
(yellow dotted curve of Figure 3.29(a)). Bigger surface of sampling results in the almost
total disappearance of the signal of this effect (red dashed curve of Figure 3.29(a)). Such
experiments are planned to be carried out with few-cycle terahertz pulses in cooperation
with colleagues from the University of Pécs.

It is also worth to examine whether the ellipticity reversal of the rotating pulse can
also be measured with time-integrating detectors. The simulation of a time-integrated
measurement could be carried out following the same recipe as for the polarization-gating
pulse, so the x and y components of the electric field of the rotating pulse is substituted
into (2.29). The recipe for the polarizer angles 6 and the phase shifts of the retarder € are
defined by (2.25), (2.26), (2.27) and (2.28), giving the time-integrated Stokes parameters.
Then information on the ellipticity can be obtained by (2.31).
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Figure 3.29. (a) The direction of polarizer at maximum energy with different detector radii
(rqet) for a focused, chirped polarization-gating pulse. The pulse properties are the same as in
Figure 3.24 except that At = 12.68fs. An s = 5mm size beam is focused with an f = 0.5 m focal
length optics, both properties being wavelength independent. The black, dashed horizontal line
shows the polarization direction at the source. (b) The on-axis ellipticity of the rotating pulse
evaluated with the time-integrated Stokes parameters as a function of propagation distance. The
properties of the pulse are the same as in Figure 3.26, while the beam properties are equivalent
to that of Figure 3.28(Db).

The result of a calculation is depicted in Figure 3.29(b). It can be seen that, even with
the time-integrated measurement, the helicity reversal of the rotating pulse appears, and
the ellipticity change increases with propagation distance, as expected. By comparing the
instantaneous ellipticity of Figure 3.26(b) with the time-integrated one in Figure 3.29(b),
it can be seen that the latter ones gives bigger values. So, unlike for the orientation
of the polarization-gating pulse, the instantaneous ellipticity of the rotating pulse is not
regained with classical measurement. This is because of the rotation of the pulse, which
appears as a non-zero ellipticity during the time-integrated measurement. The effect of
spatial integration is not studied here, since the pulse itself is already something that
is experimentally hard to obtain. Still, a similar blurring effect is expected as for the

polarization-gating pulse.

Summary IV. [ verified with numerical calculations the instantaneous polarization
state changes of pulsed beams predicted by an analytical propagation theory. By choosing
proper examples I also proved the simple polarization-change rule that the temporal
variation of one polarization ellipse property (orientation or ellipticity) induces the change
in the other property during propagation. With the help of the numerical study it was
also highlighted that these propagation-induced changes are the consequences of beam
diffraction, and as a result, they are general for all polarization-shaped pulsed beams.

I also showed that the signatures of these local changes of instantaneous polarization
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state could be detected with simple experimental setups using spatially and temporally

integrating detectors [T6, T7].
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CHAPTER

Four

Summary

In this thesis a study has been presented on the phase and polarization properties of
focused, pulsed Gaussian light beams. After a brief motivational introduction, a summary
was given on the topics and methods related to, or necessary for, the theoretical and
experimental investigations of the above mentioned characteristics of pulsed beams. In
the chapter detailing the new scientific achievements of this work, specific attention was
drawn to the carrier-envelope phase of few-cycle pulses, but closely related features were
also examined. While the discussion of the polarization state takes only a small fraction
of this text, the findings related to it might affect an explosively developing field of optical
sciences. In short, the most important scientific results can be summarized in the following

points:

I. I developed analytical formulas for the on-axis phase velocity and group velocity of
focused Gaussian beams which take into account the wavelength-dependent properties
of the focused beam. I specified the parameters which determine the changes of group
velocity, and I established expressions for the calculation of these focused beam features
using the characteristics of the source beam and the focusing system. Based on the pre-
vious attainments, I gave the specific conditions only under which the group velocity of
a focused Gaussian beam is constant during propagation through the focal region. Using
these results I highlighted that a chromatic aberration-like effect can occur not solely due
to the focusing element, but also because of beam features.

I presented formulas for the calculation of the phase velocity and the group velocity of
focused Gaussian beams when focusing is affected by chromatic and primary monochro-

matic aberrations. Specific attention is paid to the analytical evaluation of expressions
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to increase the precision and to widen the applicability of the numerical simulations. I
used these results to analyze the effect of beam truncation, monochromatic aberrations
and chromatic aberration on the on-axis phase-velocity and group-velocity variations of
pulsed Gaussian beams. I made a comparison between recent and previous results on

primary aberrations and their affect on phase properties in the vicinity of focus [T1].

II. T developed an accurate model of focusing with lenses and lens systems based on
ray tracing calculations and scalar diffraction theory. I used this model to verify numer-
ically that it is possible to focus few-cycle pulses with refractive optics without relevant
distortion of the pulse envelope by simply compensating for the material dispersion of
a dielectric slab corresponding to the phase-modifying properties of the focusing system
on axis. I also confirmed the validity of an analytical model describing the on-axis CEP
variation of focused, pulsed Gaussian beams. Based on the above two findings, I showed
that focused, few-cycle pulses can propagate in the focal region of lenses with unmodified
temporal shape at the electric field level [T2-T4].

ITI. Idesigned and built an experimental setup which is capable of measuring the spatial
phase changes of pulsed beams with high spatial resolution. This setup was used to deduce
experimental information on the carrier-envelope phase variations of few-cycle pulses in
the focal region of an achromatic lens. I carried out wavelength-resolved measurement
of properties of the source beam that was focused, and the phase changes of which were
examined. With the measured beam properties I performed numerical simulations on the
focused phase variations that correspond to the analyzed experimental case. With the
comparison of the simulation and experimental results, I verified the main aspect of the
theory, that is, I showed the effect of the wavelength dependence of the focused beam on
the carrier-envelope phase changes, and that it results in variations which are different
from Gouy phase shift [T5].

IV. 1 verified with numerical calculations the instantaneous polarization state changes
of pulsed beams predicted by an analytical propagation theory. By choosing proper
examples I also proved the simple polarization-change rule that the temporal variation of
one polarization ellipse property (orientation or ellipticity) induces the change in the other
property during propagation. With the help of the numerical study it was also highlighted
that these propagation-induced changes are the consequences of beam diffraction, and as
a result, they are general for all polarization-shaped pulsed beams. I also showed that
the signatures of these local changes of instantaneous polarization state could be detected
with simple experimental setups using spatially and temporally integrating detectors [T6,

T7).
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CHAPTER

Five

Magyar nyelvi osszefoglald

5.1. Bevezetés

A Fo6ld minden lakéjanak 1ételeme a napfény, hiszen ez a névények és szamos egysejtii
— valamint rajtuk keresztil a tobbi életforma — elsédleges energiaforrasa, meghatarozza
bolygénk klimajat, de emellett szintén a fény az, amely a legtobb informéacioval szolgél
az ember szaméra kornyezetérdl. Jol mutatja az emberi latas, mint informéciéforras je-
lentoségét példaul, hogy a tizenkét par agyidegbdl négy szolgal a szemmel kapcsolatos
funkciok elldtdsira, mig a tobbi érzéket egy, maximum kettd irdnyitjal. Feltehetéen en-
nek egyik egyszerii oka, hogy szamtalan fizikai, kémiai vagy biolégiai folyamat, amely
a kornyezetiinkben torténik, és mindennapjainkat meghatarozza, fénykibocsatassal vagy
éppen fényelnyeléssel jar. Igy az evolticid soran is nagy hangsily keriilt az ilyen folyamato-
kon alapulé érzékelésre. Igy lehet az is, hogy a tudoményos kutatdsok egyik legfontosabb
seszkoze” a fény, akar direkt, akar indirekt médon. Ahhoz azonban, hogy ezt a , kisérleti
eszkozt” megfelelden tudjuk hasznalni, kutatédsi eredményeinket a tudoméany altal megko-
vetelt megalapozottsaggal tudjuk interpretalni, kell6 mértékben ismerniink kell azt.

Egy ilyen ,megfeleléen ismert” fényforras kertilt a kutatok kezébe a [ézer 1960-as
megjelenésével. Ez a felfedezés a fény jol kontrollalhaté moédon vald felhasznélhatosaga-
nak lehetdségét nyujtja, és ami igy azéta szamos tudomanyag kutatasaiban kapott igen
jelentGs szerepet. A lézer altal el6allitott fény egyedi tulajdonsagai kozé tartozik példaul,

hogy megfelel6 technologiaval és beallitasokkal rendkiviil rovid elektromagneses hullam-

I Lasd példaul angolul a https://faculty.washington.edu/chudler/cranial.html, vagy akir ma-
gyar nyelven a http://tudasbazis.sulinet.hu/hu/termeszettudomanyok/biologia/emberi-test/
az-idegrendszer/a-periferias-idegrendszer weboldalakon.
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5.2. Tudomanyos el6zmények

csomagok hozhatok létre. Ez két szempontbdl is fontos. Egyrészt, a masodperc tortrészéig
tarté (napjaink lézereivel a 107! s nagysigrendbe esd) felvillanas lehetévé teszi nagyon
gyors folyamatok vizsgalatat, olyanokét, amelyeket mas médon (példaul elektronikaval)
nem tudnank kell6 idofelbontéassal elemezni. Masrészt, mivel az energia révid idointer-
vallumra korlatozodik, igy a fellépd elektromos térerdsség az egyéb modon eléallithatd
terekhez képest nagysdgrendekkel nagyobb lehet. Amennyiben a révidimpulzusu 1ézer-
nyalabot le is fokuszaljuk, ez a térerdsség mar vetekszik az elektronok altal az atomban
érzékelt térerosségekkel, illetve sok esetben meg is haladhatja azt. Ez az, amit ugyan kii-
16nbo6z6 fizikai folyamatokon keresztiil, de sok révidimpulzusi 1ézerrendszereket alkalmazo
orvosi, anyagtudomanyi vagy éppen kémiai kisérletben kihasznalnak.

A fokuszalas sziikségessége és hasznédlata azonban egy tjabb kérdést felvet. Mi torténik
az impulzusokkal a fékuszalds soran? Megtartja-e a gondosan kialakitott tulajdonségait
a lézerrel vagy egyéb (legtobbszor a lézerhez szorosan kapcsol6d6) modon eldéllitott ult-
rarovid impulzus, ha a felhasznalashoz fokuszaljuk azt? Ezek azok a kérdések, amikre ez
a dolgozat részben megprobal vilaszt adni.

A dolgozat rovid Osszefoglaldjaként ismertetem az egyes fejezetek cimét és rovid tar-
talmat. Egy rovid bevezet6 fejezet (Chapter One - Introduction) utdn a tudoméanyos
el6zmények targyaldsa kovetkezik (Chapter Two - Scientific background). Ez utébbinak
nem csak az a célja, hogy bemutassa a késobb részletezett tudomanyos eredmények eléré-
séhez sziikséges tudast és eszkozoket, valamint az azokat megalapozé kutatasokat, hanem
az is, hogy roviden szemléltesse a munka motivacidjat. Az ezutdn kovetkez6 — a dolgozat
nagy részét kitevé — fejezet a szerz6 j tudomanyos eredményeinek bemutatasat szolgal-
ja (Chapter Three - Results). Végil a dolgozat egy tézisszerti Osszefoglalassal végz6dik
(Chapter Four - Summary).

5.2. Tudomanyos el6zmények

Az elsé kisérleti demonstralas 6ta eltelt tobb mint 60 évben a lézertechnolégia renge-
teget fejlodott. A szamos alkalmazasi lehet6ség arra sarkallta a kutatdokat és mérnokoket,
hogy minél nagyobb teljesitményi, minél révidebb elektromégneses impulzusokat el6allito
lézerrendszereket fejlesszenek ki. Ennek eredményeképp ma mar néhany femtoszekundu-
mos (1071%s) impulzusok hozhatok 1étre 1ézeroszcilldtorok vagy lézererdsiték segitségével.
Ez azt jeleneti, hogy legtobbszor a lézerbdl kilépd hullamcsomagok olyan rovidek, hogy
az elektromos (és mégneses) térnek mindossze néhény oszcillacigja kovetkezhet be ennyi
id6 alatt. Ezért nevezik ezeket néhany ciklustt impulzusoknak. Ezen impulzusok teszik
lehetové a napjainkban igen nagy érdeklodésre szamot tartéd nemlinearis optikai folyama-

tok, vagy az 1j tudomanytertilet, az ,attofizika” kérdéskoreinek vizsgalatat. Emellett leg-
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tobbszor ilyen ultrarévid impulzusokat eloallitéd 1ézerek segitségével hozhatok 1étre a mas
hulldamhossztartomanyban miikodd, sokszor szintén rovidimpulzusokat eldallitéd, sugarza-
si forrasok, elég csak a lézeres terahertz- vagy tavoliultraibolya-fényforrasokra gondolni.
Természetesen meg kell emliteni, hogy szamos anyagtudomanyi, orvosi, biologiai vagy ép-
pen kémiai felhasznalasa is van a legijabb megoldasoknak, amelyeknek kivalo példaja a
Nobel-dijat jelent6 ,,femtokémia”.

Az, hogy az ultrarévid lézerimpulzusok ilyen sokrétiien hasznalhatéak, tobbek kozott
annak koszonheto, hogy jellemzoiket jol kontrollalhaté modon, az adott feladat igényei-
nek megfeleléen lehet beallitani. Ezek kozé tartozik példaul a polarizacios allapot vagy
az ugynevezett ,vivé-burkolé fazis” (angolul ,carrier-envelope phase”, CEP). Ez utébbi a
kordbban emlitett néhany ciklusi impulzusoknal 1ényeges, hiszen az elektromos tér idébeli
lefutdsat jelentésen befolyasolja azaltal, hogy értéke megadja a vivéhullam és a burkold
relativ fazisat (lasd. Figure 2.1.). Ennek jelentésége mar tobb kisérlet soran, nem sokkal a
néhany ciklusu lézerimpulzusok megjelenése utan megmutatkozott. Az elséként emlitett
jellemz0, a polarizacios allapot esetén pedig elmondhatd, hogy bar az impulzusok polariza-
cidja a legtobbszor linearis, egyre gyakrabban alkalmaznak ettdl eltéro, vagy akar idében
valtozé polarizaciés allapott elektromagneses hullamcsomagokat. Mivel szinte minden al-
kalmazéaskor fokuszaljdk a lézernyaldbot, igy a kérdés az, hogy ez a 1épés befolyasolja-e,
és ha igen, hogyan moédositja ezen jellemzoket. Ennek elméleti és kisérleti vizsgalatahoz
eloszor at kell tekinteni, hogy hogyan irhaték le az ultrarévid impulzusok és jellemzoik
matematikai modszerekkel, miképpen teheté meg ugyanez a fokuszalas folyamataval, és

milyen kisérleti eszkozok allnak rendelkezésre ezek elemzésére.

5.2.1. Az ultrarovid lézerimpulzusok jellemz6i és matematikai le-
irasa

Az ultrarévid lézerimpulzusok matematikai lefrasanak egyik legfontosabb 1épése a
Fourier-transzformacié, amely Fourier tétele értelmében azt teszi lehetové, hogy a ro-
vid hullamcsomagot végtelen hosszii, monokromatikus, kiilonboz6 frekvenciajiu hullamok
szuperpoziciéjaként allitsuk el6. A Fourier-transzformaci6 igy kapcsolatot teremt a hulla-
mok idébeli alakja és spektralis reprezentacidja kozott. Ez az eljaras azért széles korben
alkalmazott, mert a szinuszhullamok kénnyebben kezelhetdék, sokkal nagyobb ismeret all
rendelkezésre leirasukhoz, valamint a hullamegyenlet megoldasat is szamos esetben ez a
felbontas teszi lehetové. Tgy a vizsgalni kivant hullamterjedési probléma megoldhaté tgy,
hogy a kezdeti impulzust komponenseire bontjuk, ezen komponensek valtozasait hata-
rozzuk meg, majd beldlik ujra eléallitjuk az idébeli alakot a vizsgdlni kivant helyen. A
megoldand6 tudoményos probléma igy a méasodik 1épés, az egyes komponensek valtoza-

sainak meghatérozasa, amelyre szamos megkozelités létezik attol fiiggden, hogy milyen
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aspektusbol és milyen kortlmények kozott vizsgaljuk a fény terjedését. Ezen megoldasok
néhany példajat egy késobbi fejezet taglalja. A kévetkezokben harom olyan, a néhany cik-
lust elektromagneses hullamokat jellemzo, paraméter bemutatasara kertil sor, amelynek

dolgozatomban kiemelt szerepe van.

A vive-burkold fazis A térerdsség idébeli valtozasat leird valds vagy komplex kife-

I azaz az impulzus id6beli alakja egy-egy szintén valés vagy komplex fiiggvénnyel

jezés
jellemzett, gyorsan valtozo vivohullam és egy lassabban valtozé burkold szorzataként irha-
t6 fel. A CEP — bar a pontos definicié egy adott témakorben jellemzé szokasoktol fiigg —
minden esetben a vivéhullam és impulzusburkolé relativ idébeli helyzetét (amely fazisként
is értelmezhetd) adja meg. Ebben a munkdban a CEP egy olyan definicigja hasznalatos,
amely az izolalt impulzusok jellemzésére szolgal (nem impulzus-sorozatokéra). Eszerint
eqy impulzus vivo-burkolo fdazisa a hullimcsomag fdazisa abban az iddpillanatban, ami-
kor az idébeli burkold (abszolit értéke) mazimdlis™. Ez a definicié lehetévé teszi a CEP
értelmezésének kiterjesztését valtozo-polarizaciés allapotd impulzusokra, valamint a meg-
hatarozasbol adéddéan a CEP zérus volta biztositja a legnagyobb térerosség elérését adott
id6beli burkol6 esetén. Olyan kisérleteknél, ahol a céltarggyal valo kolecsonhatas nagyobb
térfogatban torténik, vagy nem pont a fokuszsikban, fontos kérdés, hogy a fokuszpont
kornyezetében hogyan valtozik meg a CEP, hiszen a fény-anyag kolcsonhatas eredményét

a térerdsség pontos idobeli lefutasa hatarozza meg szamos esetben.

Polarizacié Az elektroméagneses hullamok egy masik nagyon fontos jellemzdje polari-
zaciojuk. Rovidimpulzusok esetén is a monokromatikus hulldimoknal hasznalt eszkozok
szolgalhatnak alapul ennek leirasara. Kiilonos figyelmet igényel azonban az, a vizsgalt fo-
lyamat — a fokuszalas — miatt, hogy a valésdgban csak a sikhullamok lennének tisztan
transzverzalis elektromagneses hullamok. Szerencsére azonban a legtobb esetben, a pa-
raxialis kozelités érvényességekor, az esetlegesen megjelené longitudinalis térkomponens
elhanyagolhatd, és a (fékuszalt) Gauss-nyaldbok is kezelhet6k transzverzalis hullimként.
Ez azért elonyos, mert igy hasznalhatok a monokromatikus sikhulldimok polarizaciojat
jellemz6 mennyiségek, hiszen a nyaldb is kezelheté gy, mint két skalaris, oszcillald tér-
mennyiség Osszege. Az egyik, a polarizaciés allapotot megadd leirasmodd, a polarizacios
ellipszissel valé leiras (lasd. Figure 2.5.). Mivel két egymésra meréleges rezgés Osszege
altalanos esetben egy ellipszispalyat ir le, igy ennek az ellipszisnek a jellemzéivel (a
orientdcidval, y ellipticitdssal és Ay, félnagytengely hosszal) irhaté le a polarizacios alla-

pot. Egy masik, a kisérletekben nagyon elterjedt, megoldas a Stokes-paraméterekkel valo

ITA két leiras fizikailag ekvivalens. A komplex irdsméd sok esetben az egyszeriibb matematikai kezelést
szolgélja.
A7 abszoldt értéknek a komplex frasméd esetén van jelentSsége.
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jellemzés. Ennek elonye, hogyaz egyes paraméterek mar definici6jukban megadjék a mérés
modjat. Természetesen a két lefrasmod kozott kozvetlen kapcesolat all fent.

Az (ultra)révid lézerimpulzusokndl a monokromatikus esethez képest véaltozast jelent,
hogy azok polarizacios allapota idoben valtozhat. Egyre tobb olyan kutatas van, ahol ezt
a lehetdséget ki is hasznaljak, példaul az ugynevezett koherens kontroll egyik eszkozeként.
Megmutathatd, hogy mind a polarizacios ellipszissel, mind a Stokes-paraméterekkel valo
leirés kiterjesztheto idoben valtozo polarizacios allapot leirasara. Ez esetben azonban oda
kell figyelni, hogy a polarizaciés ellipszis mar kevesebb jelentést hordoz, mint a monokro-
matikus hullamokndl. A térerdsség idobeli valtozdsa mar nem koveti az ellipszissel leirt
palyat, az idofiiggo ellipszis csak azt adja meg, hogy a mindkét meréleges komponenst éro
idofiiggetlen fazistolas eredményeképp hogyan valtozna a tér. A Stokes-paraméterek ese-
tében az elsd, Sy paraméter elvesziti jelentoségét a pillanatnyi allapot jellemzéskor, hiszen
a polarizalatlansag ilyenkor nem értelmezheté. Mindkét leirasmod azonban jol szemlélteti,
ha valamilyen okbdl (példdul szabad terjedéskor vagy fékuszéldskor) valtozas torténik a

polarizacids allapotban, hiszen annak egyértelmi jellemzési modjat adjak.

Fazis- és csoportsebesség A fazissebesség a nemlinearis optikdban fontos paramé-
ter, hiszen meghatarozza szamos folyamat hatasfokat. Megadja, hogy a hullaim azonos
fazist pontjai milyen sebességgel haladnak a térben. Sikhullaimokra ez esetben is nagyon
egyszerl Osszefiiggések adodnak, nyalabok esetén azonban figyelembe kell venni, hogy a
fazisfrontok gorbiiltek. Ennek eredménye, hogy a hullamok fazissebessége nem csak ter-
jedési iranyban, de arra merdlegesen is valtozhat, a sikhulldm-esettel ellentétben. Egy
érdekesség a fokuszalas soran bekovetkez6 fazissebesség-valtozassal kapcsolatban, hogy a
fazisfrontok a fokuszpont kozelében akéar a fénysebességnél is gyorsabban haladhatnak a
Gouy-féle fazistolas kovetkeztében. Ez azonban nem sérti a kauzalitas elvét, mert a fazis-
sal informaci6 nem terjed. A problémat inkabb az jelenti, hogy ez a valtozas a nemlinearis
folyamatokhoz jo hatasfoku kihasznalasahoz sziikséges fazisillesztést gatolja.

A csoportsebesség egy hullamcsomag, mint egész terjedési sebességét irja le. Erre is
igaz, akarcsak a fazissebességre, hogy a nyalabok esetén kiszamitasa bonyolultabb, mint
sikhullamokra, és a fokuszpont kézelében ennek értéke is szuperluminédlis (fénysebességnél
nagyobb) lehet. Ez sem sérti azonban a relativitaselmélet elveit, mivel a csoportsebesség
sincs kapcsolatban az informécidterjedés sebességével, ugyanis az energia ettdl eltérd se-
bességgel terjedhet. A csoportsebesség jelentOsége ebben a munkaban az, hogy a fazisse-

bességgel egytitt befolyasoljak, hogy a CEP a terjedés soran hogyan valtozik.
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5.2.2. Nyaladbterejedési és fokuszalasi modellek

A 1ézerekkel eloallitott hullamcsomagok nem csak idében, de térben is korlatozott ki-
terjedéstiek. fgy, hogy az elektromagneses hullamok nyaldbok, és nem végtelen sikhullamok
formajaban terjednek, lefrasuk is komplikaltabb. Az optikai tartomanyban nagy elényt
jelent, hogy a kicsiny hulldimhosszaknak koszonhetéen egyszertisitések teheték, amelyek
példaul a szabad terjedés egyszeriibb modellezését teszik lehetévé. A fokuszalas azonban
egy olyan eset, aminek kelloen pontos leirdasdhoz ezek az egyszertisito feltételezések nem
hasznalhatok ki. Az aldbbiakban néhany olyan modell révid leirasa kovetkezik, amely a
korabban emlitett harom fobb 1épésbdl allé impulzusterjedési szimulaciok masodik, a két

Fourier-transzformécié kozti lépéseként hasznalhatok.

Sugarkovetés A fényterjedés modellezésére hasznalt egyik legegyszeriibb és legrobosz-
tusabb megoldast a sugarkovetés jelenti, amely a geometriai optika egyik eszkoze. Ez
esetben a hulldimokat a terjedési irdnyban haladé fénysugarak segitségével irhatjuk le.
A hullamterjedési problémat a kilénbo6zo toré- és visszavero feliilleteken vald iranyvalto-
zasok kiszamitasaval oldhatjuk meg, a fénytorés és fényvisszaverédés egyszerl torvényei
alapjan. Az eljaras elonye, hogy a kevés paraméternek koszonheten a fény terjedése igen
bonyolult optikai rendszerek esetén is viszonylag kis szamitasigénnyel kezelheto. Hatra-
nya azonban, hogy a fény hullamtermészete tobb tekintetben a kozelitések miatt elveszik,
ezaltal olyan esetekben, ahol a fény diffrakcidja vagy interferencidaja relevans mértéki,
(példéul a fokuszalasnal) ott nem ad teljesen helytédllo eredményeket. Ilyen, a hulldmter-
mészetbol adodo effektusok tobbségében olyan pontokban 1épnek fel, ahol tobb fénysugar
taldlkozik. Igy ameddig a szimuldcidkban azok tévol haladnak egymdastol, a sugarkovetés
jol hasznalhato. Ilyen esetben a sugarkovetés, részben a hullamtermészetet is megtartva,

hullamfrontok meghatarozasara is alkalmas lehet.

Matrixoptika Amennyiben a geometriai optika kozelitései mellett még a hengerszim-
metriat is feltételezhetjiik, akkor a sugarkovetés egy analitikus modelljét, a matrixoptikat
is hasznalhatjuk. A métrixoptika jol alkalmazhat6 példaul a paraxialis hullamegyenlet egy
megoldasanak, a Gauss-nyalabok terjedésének leirasara. Bar a diffrakcio és interferencia je-
lenségeinek leirasara ez a modell sem alkalmas, a Gauss-nyaldbok fokuszalasnak szamos as-
pektusat helyesen jellemzi (megjelenik példdul a nyalabnyak fékuszal6 elem felé torténd el-
tolédasa laza fokuszalaskor). Igy a monokromatikus Gauss-nyaldbok métrixoptikaval valé
jellemzése az ultrarovid impulzusok leirdsanal nagy segitséget jelent, amennyiben a mono-
kromatikus komponensek és a hullimcsomagok koézti dtmenet (a Fourier-transzformécid)

is analitikusan kezelheto.

118



5.2. Tudomanyos el6zmények

A féokuszalas skalardiffrakciéos modellje  Ahogy ez korabban szerepelt, a geometriai
daul kozismerten a kisérleti tapasztalatoktol eltérd eredményt adnak a geometriai fény
és arnyék hataran. Ez a tartomany fokuszalas esetén magaban foglalja a fokuszaldsi tar-
tomény legrelevansabb részeit. Igy a fokuszalds helyes lefrasdhoz hulldmoptikai modellt
kell alkalmaznunk. Ennek egyik megoldasa lehet a Huygens—Fresnel-elven alapuléd ska-
lardiffrakcios elmélet hasznalata, aminek eszkozei Maxwell-egyenletekbol kozvetleniil is
levezethetok. A Kirchhoff-féle diffrakcids integral, példaul, mar a XIX. szazad végén ki-
dolgozasra kertilt, és azdta szamos esetben bizonyitotta, hogy a kisérleti megfigyelésekkel
nagyon jol egyez6 eredményt ad. Ez az integral a Maxwell-egyenletek kozvetlen numerikus
megoldasanal kisebb szamitasigényt, de a hullamtermészet kovetkezményeit nagy pontos-
séggal leir6 formuldt jelent. fgy attél a ponttél, hogy a lézernyaldb a fokuszald elembél
kilépett (vagy azon visszaver6dott), a fokuszalt hullam fazis- és amplitidojellemzéi ezen

leirds segitségével kivaldan modellezhetok.

5.2.3. A vivOo-burkold fazis valtozasainak mérési mdodszerei

A vivéhulldm és a burkold relativ fazisanak mérése nagyon nehéz feladat az optikai
tartomanyban. A legtébb megoldas, amelyik a CEP-re vonatkozoéan kivan informaciéval
szolgélni, nem is képes annak értékét, csak impulzusrdl impulzusra torténd valtozasanak
mértékét megadni. A lézerimpulzusok CEP-jét, amit sokszor ,abszolut” fazisnak is ne-
veznek, jelenleg kozvetleniil csak egyetlen modszerrel lehet megbizhatéan mérni. Ez a
sstereo-ATT” ami a kiiszob feletti ionizacié erGs térerdsség fliggését hasznalja ki, és két
egymassal szemben elhelyezett detektor jelének viszonyabdl kovetkeztet a CEP értékére.
Ez azonban nagyon koltséges kisérleti eszkdzparkot, valamint bonyolult mérési és kiérté-
kelési eljarast jelent. Igy napjainkban is aktiv kutatdsi téma olyan fizikai folyamatokat
keresni, és igy egy olyan egyszerii kisérleti eszkozt épiteni, amivel a CEP értéke egyszertien,
barmely laboratériumban megmérheto.

Azonban nincs ezen bonyolult eljarasra sziikség, amennyiben csak a CEP valtozasait
akarjuk mérni. Ez esetben linearis optikai eszkozok, példaul a spektralis interferometria,
megfelel6 eszkozt jelentenek a CEP véltozasanak detektalasidra. Bar az eljaras elso ilyen
céllal torténo alkalmazasa eredetileg egymast koveto impulzusok ,,CEP-cstszasdanak” mé-
résére lett tervezve, az alapelv lehetové teszi, hogy térbeli valtozasok is mérhetok legye-
nek, megfeleld kisérleti osszeallitassal. A spektralis interferometria nevéhez hiien hullamok
interferencidjanak, pontosabban annak spektrélis felbontasanak segitségével (az interfe-
rogram felvételével) ad informéciét a vizsgalni kivant széles spektrumi fényforras (példaul
egy oszcillatorbdl kilépé lézerimpulzus) spektralis fazisarél. Ennek a fazisnak a mért in-

terferogrambol valé kinyerésére szamos kiilonbozé eljaras létezik, kilonbozo elonyokkel
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és hatranyokkal. Az, hogy a spektralis fazisbol a CEP értékének meghatarozasa hogyan
torténik, a korilményektdl fliggden eltéré bonyolultsagu lehet, ahogy azt jelen dolgozat
eredményei is mutatjak. Fontos azonban itt is kiemelni, hogy a mért fazis relativ fazist
jelent a referenciaként szolgaldé masik fényforrashoz képest, amivel a vizsgalt impulzus

interferal. Igy a spektralis interferometria nem alkalmas az ,abszolut” fazis mérésére.

5.3. Eredmények

A felvazolt tudomanyos elézmények ismeretében célul tiiztem ki fokuszalt, révidimpul-
zusu Gauss-nyalabok szabad terjedése és fokuszalasa sordn bekovetkezo fazis- és polarizé-
ciésallapot-valtozasainak elméleti és kisérleti vizsgalatat. A kutatas egyik kiemelt témaja
a fokuszalt nyalabok fazis- és csoportsebességének elemzése, amely a térbeli fazisviszonyok
két fontos jellemzoje. Ehhez kapcsolddéan munkam soran kiemelt figyelmet forditottam
a fokuszalasi tartomanyon athaladé impulzus vivé-burkold fazisanak elméleti és kisérleti
tanulmanyozasara, kiilonos tekintettel arra, hogy annak értéke a térbeli terjedés soran
hogyan valtozik. A kituzott célok kozott szerepelt az is, hogy a fokuszdlas, mint elhaj-
lasi jelenség, hatasait 6nmagédban, illetve tobb kiillonbozo fékuszalast befolyasold tényezo
jelenlétében is megvizsgaljam. Ezen tényezok a Gauss-nyalab csonkolasa, a nyalab jellem-
z6inek hullamhosszfiiggése, illetve a fokuszald elem kromatikus valamint monokromatikus
leképezési hibai (gombi hiba, asztigmatizmus, koma, képmez6 gorbiilet és torzitas). Végiil
megvizsgaltam, hogy idében valtozd polarizacios allapottal rendelkezd impulzusok a sza-
bad terjedés soran megvaltoztatjak-e polarizaciéjukat, és ha igen, milyen médon. Fontos
volt tisztazni azt is, hogy ezen mdédosulasokat milyen torvényszertiségek irjak le. A munka

fobb eredményei az alabbi pontokban foglalhatok Gssze.

I. Olyan analitikus kifejezéseket vezettem le, amelyek megadjak fékuszalt Gauss-nyala-
bok fazis- és csoportsebességét az optikai tengelyen, figyelembe véve a hullaimhosszfliggd
nyalabparaméterek hatasat. A levezetéskor konkrétan meghatdroztam, hogy melyek ezen
csoportsebességet befolyasold nyalabjellemzék. Analitikus kifejezéseket adtam arra, hogy
ezek hogyan hatarozhatok meg a bejové nyaldb valamint a fokuszalé optika paraméte-
reibol. Az el6z6 eredmények alapjan pontosan megadtam azon kizardlagos feltételeket,
amelyek teljesiilése esetén a fokuszalt Gauss-nyalab csoportsebessége nem valtozik a f6-
kuszalasi tartomanyon valé athaladas soran. A kidolgozott képletek azt is megmutattak,
hogy egy, a kromatikus aberraciohoz hasonlé effektus felléphet fokuszalaskor abban az
esetben is, amikor a fokuszalo elem ilyen tipusi képalkotasi hibaval nem rendelkezik. Ez
esetben a jelenség okaul a nyalab hullamhosszfiiggé paraméterei szolgalnak.

Olyan 6sszefiiggéseket dolgoztam ki, amelyekkel kiszamithato a fokuszalt Gauss-nyalab
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fazis- és csoportsebessége az optikai tengelyen abban az esetben is, amikor a fokuszalas
az optikai elem kromatikus- vagy elsédleges monokromatikus hibai altal terhelt. Ezen
kifejezések kidolgozasa soran kiilon figyelmet szenteltem annak, hogy, a lehetéségekhez
mérten, a szamitasok minél nagyobb részét analitikusan végezzem el, ezaltal névelve azok
alkalmazhatdésagi korét és pontossagat a numerikus szamitasok sordn. Emellett, az igy
kapott eredményeimet arra hasznaltam, hogy megvizsgaljam, hogy a nyalab csonkolésa,
a kromatikus hiba vagy az elsddleges monokromatikus leképezési hibak hogyan befolya-
soljak egy fokuszalt, rovidimpulzust Gauss-nyaldb fazis- és csoportsebességét az optikai
tengelyen. Eredményeimet Osszevetettem mas kutatok elsédleges aberraciok fazismodosi-
t6 hatésaira vonatkozo konklizidival, és azokkal nagyon jo egyezésben 1é6vé eredményeket
kaptam [T1].

II. Kifejlesztettem egy sugarkovetésen és a fokuszalas skalardiffrakciés modelljén ala-
pulé numerikus szamitast, ami alkalmas az elektromos tér lencsék vagy lencserendszerek
fokuszpontjanak kornyezetében torténo meghatarozasara. Ezt a modellt arra hasznaltam,
hogy numerikus szimulaciok segitségével igazoljam azt, hogy transzmisszios optikai ele-
mek segitségével is lehetséges néhany ciklusi optikai impulzusokat tgy lefékuszalni, hogy
az ne jarjon a fokuszalt impulzus relevans torzulasaval. Megmutattam, hogy ennek el-
éréséhez elegendd a fokuszald elemet az optikai tengelyen jellemzo6 diszperzids effektu-
sok kompenzaldsa. A szimulaciok segitségével igazoltam egy, a fékuszalt, rovidimpulzusa
Gauss-nyaldbok vivé-burkolé fazis valtozasat az optikai tengelyen leird analitikus kifejezés
helyességét is. Az el6z0 két eredmény segitségével megmutattam azt, hogy lencsékkel tor-
téno fokuszalas esetén elérheto az, hogy néhany ciklusu optikai impulzusok a fékuszalasi
tartomanyban az optikai tengelyen mentén gy haladjanak, hogy a hullamterjedés soran

az elektromos tér idébeli lefutdsa ne véltozzon [T2-T4].

III. Megterveztem és megépitettem egy kisérleti elrendezést, amely alkalmas révidim-
pulzust optikai nyalabok fazisanak térbeli valtozasainak mérésére nagy térbeli feloldassal.
Ezt az elrendezést arra hasznaltam, hogy kisérleti iton megvizsgaljam egy néhany cik-
lust impulzus vivo-burkold fazisanak valtozasait egy akromatikus lencse fékuszpontjanak
kornyezetében. Elvégeztem a fokuszalas elotti 1ézernyaldb paramétereinek hullamhossz-
felbontott mérését. A mérési eredményeket felhasznalva, a kisérleti vizsgalatokkal meg-
egyez6 koriilményekre, szimulacidkat végeztem a tanulmanyozott vivo-burkold fazis val-
tozasokra vonatkozoan. Az 6sszehasonlitas eredménye igazolta az elemezni kivant elmélet
legfontosabb aspektusait, azaz, hogy a fokuszalt nyalab paramétereinek hullamhosszfiig-
gése befolyasolja az impulzus vivo-burkold fazisanak térbeli valtozasat a fokuszalasi tar-

toményban, és azt, hogy ez a térbeli viltozas a Gouy-fazistdl eltérhet [T5].
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IV. Numerikus szimulaciok segitségével igazoltam egy olyan analitikus nyalabterjedési
elméletet, amely leirja a rovidimpulzusok pillanatnyi polarizaciés allapotanak valtozasat
szabad terjedés vagy fokuszalas soran. Megfelel6 példak segitségével szintén alatamasztot-
tam azt a torvényszertiséget, hogy a pillanatnyi polarizaciot jellemz6 polarizacios ellipszis
egyik paraméterének (orientdcié vagy ellipticitas) id6beli valtozasa a terjedés soran a
masik jellemz6 megvaltozasat eredményezi. A numerikus szimulaciéim ramutattak arra,
hogy ezek a hullamterjedés okozta polarizacidsallapot-valtozasok a nyalabok szabad tér-
ben torténo , diffrakcidjanak” kovetkezményei, igy a médosuldsok minden révidimpulzusa
nyalabra jellemzoek. Szimuldcioim segitségével megmutattam, hogy a pillanatnyi pola-
rizaciés allapotban bekovetkezo ezen valtozasok jelei kisérleti médon, térben és idében

integral6 detektorok segitségével, is megfigyelheték [T6, T7].
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APPENDIX

A

Description of pulse properties

A.1 Analytical pulse shapes in the presence of higher

order phase derivatives

The temporal variation of the electric field of linearly polarized pulses with Gaussian
spectral amplitude p(w) can be calculated analytically if the spectral phase p(w) can be
described by a third order polynomial. This is the reason why in most cases of theoretical
studies the temporal envelope is assumed to be Gaussian, since analytical solutions have
several advantages. Following the notation of Section 2.2.1, the amplitude spectrum is

plw) = F \/ﬂexp [— Ol wO)Q] . (A1)

o 202

written as

The factor before the exponential in the previous expression, with the arbitrary amplitude
Fy, has been chosen as such to yield simpler formulas later. The reason behind the
variation of ¢(w) is usually the dispersion during propagation, so it can be written as
¢(w) = k(w)z in most cases when the propagation direction is along axis z, k(w) being
the wave number of the radiation. The temporal shape of a pulse with given complex
spectrum U(w) = p(w)exp[ip(w)] can be calculated using the inverse Fourier transform
(see (2.2)). In the following, the calculation of the analytical pulse shapes will be detailed,
assuming a spectral phase given by zeroth, first, second and third order polynomials,

detailing the discussion of [101] in a consistent manner.

Constant spectral phase The constant spectral phase means that only the zeroth

order term in (2.6) is assumed to be present, that is ¢(w) = ¢(wp). Applying integration
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A.1. Analytical pulse shapes in the presence of higher order phase derivatives

by substitution using the variable y = w — wy (w = p + wp, du = dw) during calculating

the integral of the inverse Fourier transform .Z ~! {p(w)exp[tp(w)]} in this case yields

E(t) = \/j_ﬂFoexp[Lgo(wo)] exp|—twot] 217r /O:O exp [_a] exp|—upt] dp . (A.2)

Knowing that

Sl )] w

E(t) = Fyexp [—t;] explrp(wy) — twot] - (A.4)

the electric field is

The above result shows that a non-zero constant spectral phase only means a phase shift
in the temporal domain compared to the ¢(w) = 0 case. In this example, this appears
as a Gaussian pulse with y/4In(2)/o transform-limited FWHM duration and with a CEP
equal to ¢(wp), like the two pulses in Figure 2.1 or the one in Figure 2.2(a) (p(wo) = 0
case). Since the phase p(wp) is only a constant factor not influencing the integral in (A.2),
it is easy to see that the constant spectral phase only means a CEP change for any pulse

shape with arbitrary p(w).

Linear spectral phase As a next step, the assumption is that the spectral phase is
given by a first order polynomial according to ¢(w) = ¢(wy) + GD (w — wy), following the
nomenclature of Section 2.2.1. Substituting the amplitude (A.1) with this linear phase

into the formula (2.2) of the inverse Fourier transform yields

E(t) = JJZ_WFOeXp[Lgo(wO)] exp|—twot] 1 /OO exp [—Mz] exp|—u(t — GD)] dp, (A.5)

271 J - 202

which is obtained by using the same p = w — wy variable substitution as in (A.2). It can
be easily seen that the integral in (A.5) has the same form as the integral in (A.2), but
with the variable 7 = ¢ — GD instead of ¢. This means that the temporal variation of the

field can be expressed as

7_20_2

E(t) = Fyexp [— ] exp[tp(wo) — twpt] . (A.6)

So the linear term of the spectral phase results in a temporal shift in time by GD, as

discussed in Section 2.2.1. Note, however, that only the envelope function is moved in

time, while the phase of the exponential function describing the carrier wave in (A.6) is
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A.1. Analytical pulse shapes in the presence of higher order phase derivatives

unaltered. So, the value of GD also changes the CEP of the pulse, as it can be seen in
the example of Figure 2.2(c). Since only the shift theorem of Fourier transform has been
utilized [98], these findings are valid for any p(w) shape, just like it was in the case of

constant spectral phase.

Quadratic spectral phase Let us assume that ¢(w) is given by a second-order poly-
nomial, that is, the spectral phase is given by

GDD ,

plw) = i) + GD (w = w) + ~o—(w — wn)*. (A7)

Expressing the inverse Fourier transform of p(w)exp[tp(w)] with the substitutions p =

w —wp and 7 =t — GD used in the previous two cases yields

_ Vor 1 o 1 GDD)\ ,
E(t) = . Fyexp[up(wo)] exp[—twot] %/ﬂo exp| = | 55—ty | K exp[—uut] du .
(A.8)
If the expression
1 GDD) 1 , (1 -1
(202 — 1= >_ o = = (UQ—LGDD> (A.9)

is introduced, the integral in (A.8) is again formally exactly the same as in the previous

two cases. So the electric field is given by

- Q 202
E(t) = Fy—exp l—T
o

] exp(up(wo) — twot] . (A.10)

While the above expression is short, it is worth to expand it to a more expressive form.
To achieve this the
1 =1+ GDD%** (A.11)

parameter is introduced and the following replacements can be made:

o? GDDo*
QQ = ﬁ + LT y (A12)
Q2 V1+.:GDDg? 1 L 9
—= T = \/ﬁexp[2atan{GDDa H . (A.13)

So the expression for the temporal variation can be rewritten as

72GDDo*

- Ey 202
E
l 2112

(t) = TP _21121 exp lL (;atan[GDDaﬂ - + o(wo) — wotﬂ . (A.14)

147



A.1. Analytical pulse shapes in the presence of higher order phase derivatives

The above expression (A.14) shows that the pulse still has a Gaussian envelope, but it
is IT times longer then the possible minimum (the transform-limited) duration, and its
amplitude is decreased by the multiplication factor 1/ VIL. The temporal phase is also
altered. On one hand, a constant phase given by the first factor in the exponential of
(A.14) is added, shifting the CEP. It is also visible that wyt is not the only time-dependent
part of the phase, but a quadratic expression is also present. Usually the first derivative of
the temporal phase with respect to time is considered as the frequency of the carrier wave.
For (A.14) this means that w(7) = wy + (GDDo*/I1?)7, so the angular frequency of the
wave changes linearly in time, and it equals to wg only at the envelope peak. So quadratic
spectral phase causes the linear chirp of the wave packet, mentioned in Section 2.2.1.
An example pulse shape given by (A.14) can be seen in Figure 2.2(d) with normalized

amplitude.

Cubic spectral phase Finally, consider the spectral phase described by the third order

polynomial

o(w) = (wy) + GD (w — wp) + G?)(w —wp)? + TO6D(w —wp)?. (A.15)

To calculate the temporal shape, the first step is again the variable substitution yp = w—wy

and 7 =t — GD during the evaluation of the inverse Fourier transform, and the results is

« L /OO exp [— (1 — LGDD> /f] exp [LT(;D/P] exp[—wur] du.  (A.16)

With the new variable

TOD 2 \™3 du 2 \/3

3 _ 3 mo__ m D

TET e Tk <TOD> T g <TOD) ' (A.17)
and the simplified naming
1 GDD 2 \%3
= — - Al
¢ <L202 2 ) <TOD> ! (A.18)
9 1/3
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(A.16) becomes

\/j_ﬂFoeXP[b (¢(wo) — wot)] ( 2 >1/3 1 /OO exp [eanﬂ exp [Lf] explebn] dn.

B(t) = T0D0) 7).
(A.20)

The expression in the integral can be rewritten as
3 L 3

exp [Lmﬂ exp [Lg] explubn] = exp[?)(a + 7})3} exp [—L%] exp [L(b - a2)n] . (A.21)

and with the variable ¢ = a + 7 (n = ¢ — a) and a little algebra the wave form becomes

. po 1/3 I
E(t) :\/j_FoeXP[L(SO(WO) — wot)] (T(QDD) exp [—L3‘| exp|—tab] exp [LCL3]
X 217T /_O:O exp [Lf] eXp[L(b — a2)q] dg . (A.22)

Ai(b—a?)

The introduced special function Ai(z) above is the Airy function [102], the integral rep-

resentation of which is

Ai(z) = ;ﬁ / ~ exp [L (”;3 n zxﬂ dz. (A.23)

—0o0

So, in a short form, the pulse shape in the presence of third-order spectral phase is given
by

E(t) = F,

\/%<2

TOD> v exp[t (p(wy) — wot)] exp [L(l (§a2 - b)] Ai(b—a®). (A24)

g

As it can be seen from (A.24), the analytical expression is very complex, not much direct
implications can be made on how the third-order term modifies the pulse shape. However,
a typical wave form can be seen in Figure 2.2(d), which shows that TOD causes an
asymmetric distortion in time and additional side-wings appear. Note that (A.24) can
not be interpreted when TOD < 0, and does not reproduce directly (A.14) in an analytical
form, like (A.14) reproduces (A.6) when GDD = 0. In the case TOD = 0 (A.24) gives
(A.14) as an asymptotic limit. For this reason, when the cubic phase term is small, using
(A.24) is not necessarily the most reliable source for temporal shape determination, as

the “zero times infinity” type limit is a general source of numerical error.
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A.2. Instantaneous polarization state and -ellipse

A.2 Instantaneous polarization state and -ellipse

A.2.1 Derivation of the instantaneous polarization properties in
Cartesian coordinates

The description of time-dependent polarization state of polarization-shaped ultrashort

pulses is based on discussion of the same property of transverse monochromatic waves

[90]. The only difference is that while for infinite harmonic waves the amplitudes and

relative phases of the perpendicular components are constant, for non-monochromatic

waves they are time dependent [115, 125, 126], they have the same form as (2.3), that is,

E,(t)
E,(t)

Ap(B)explt (2a(t) — wit)] (A.25)
A, (Oexple (3,(t) — wot)] (A.26)

Note that References [90, 125, 126] and [115], on which the following considerations are
based, use an opposite sign convention, +wyt and —wyt, respectively. Here, consistent
with other parts of this work, the latter is used, and as a result sign differences may
appear from the expressions in the references.

As discussed in textbooks, the sum of the real part of the (A.25) and (A.26) perpen-
dicular waves — the electric field vectors — draws an ellipse in the = — y plane if A, ,(¢)
and @, , () are time-independent [90, 127, 130]. This allow us to similarly define a polari-
zation ellipse for every instant of time for (A.25) and (A.26), which can be thought as the
trajectory along which the electric field would traverse if we would freeze the amplitudes
A, ,(t) and phases ¢, ,(t) at that moment. This ellipse describes how the instantaneous
electric field would change due to phase transformations, meaning what would happen
by adding a time independent phase to both components (A.25) and (A.26) [115]. By
rotating the frame of reference by W(¢), the oscillations happening along the major- and
minor axes of the instantaneous ellipse can be given, so in the complex formalism they

are written as

En(t) = E,(t) cos[U(t)] + E, () sin[T(t)] (A.27)

Bonlt) = —E,(t) sin[T(t)] + B, (¢) cos[(t)] , (A.28)

or they can be expressed in a different form resembling the equation of ellipse (given again

in complex form)

Ey(t) = Ap(t)exple (Par(t) — wot)] | (A.29)
En(t) = A, (t)exple (@ar(t) — wot — 7/2)] . (A.30)
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A.2. Instantaneous polarization state and -ellipse

In the last expression the + sign distinguishes the rotation direction of the field vector
(can be described by another parameter introduced later, see Figure 2.5), and Ay (t) >
Apn(t) >0 (Vt). By introducing the two angles

tan[a(t)] = jzg;, a(t) € [0,7/2], (A.31)
tan[x(t)] = ii]:;[((z)), x(t) € [-m/4,7/4], (A.32)

and the phase difference A$ between the two components given by (2.10) one can get
the following equations for the ellipse properties with some algebra from (A.27), (A.28),
(A.29) and (A.30) [90, 127]:

sin[2x(t)] = sin[2a(t)] sin[AH(E)] (A.33)
tan[2W(¢)] = tan[2a(t)] cos[AH(L)] (A.34)
[As () + [Ay (O = [Au ()] + [An(t)]*. (A.35)

The instantaneous ellipticity —m/4 < x(t) < 7/4 can be obtained by rearranging (A.33),
giving

x(t) = ;asin[sin[Qa(t)] sin[A@(t)]] . (A.36)

As it was noted already, the sign of x(¢) puts distinction between left- (negative) and
right (positive) helicity, that is the electric field rotates counterclockwise or clockwise as
time passes, respectively, if someone looks towards the source of the wave. This means
that the & sign can be replaced in this case by sgn [x(t)], just like it was written in (2.15).
The equation for W(t), (A.34), can be similarly rearranged, and it yields

U(t) = ;atan[tan[Zoz(t)] cos[Ap(t)]] - (A.37)

Note, however, that ¥(¢) can only have a value between —7/4 and 7 /4, while the possible
range for the orientation of an ellipse is the [—m /2, 7/2) interval. Exploiting the 7 period-
icity of the tangent function it is easy to see that if W is a solution of (A.34), then ¥ 47 /2
is solution as well. This way it can be shown that orientation —m/2 < W(t) < /2 is given
by (2.11). Using simple algebraic manipulations applied on (A.35) using the definitions
of a(t) and x(t) ((A.31) and (A.32)) it can be seen that

A3 (1) [1+ tan’[x(8)]] = A2(¢) [1 + tan®[a(t)] (A.38)

from which the size of the semi-major axis can be found to be (2.13). The (2.14) size of
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A.2. Instantaneous polarization state and -ellipse

the minor axis is simply obtained by rearranging (A.32).

To describe the wave using the ellipse equations (A.29) and (A.30) (or (2.15) and
(2.16)), one quantity is still missing, the phase ¢)/(t) associated with the major axis
of the ellipse. One method to find the expression is a graphical solution [125], or it
can be done in a pure mathematical way [90]. Here a different algebraic approach is
presented. Consider a moment t,; when the electric field is parallel to the major axis,
so Our(tar) — wotyr = 0 = —wotyr = —Par(tar). The substitution of this expression into

(A.25) and (A.29) yields

E.(ty) = Ax(tar) cos[@a(tar) — Pu(tu)] (A.39)
En(tar) = A (tar) - (A.40)

It is easy to see geometrically (look at Figure 2.5) that also

By substituting (A.39), (A.40) and (A.41) into the real part of (A.27), utilizing some
trigonometric identities and the easily obtainable A/ (t)/A.(t) = cos|x(t)] / cos[a(t)] ex-
pression, one can get

_cos[x(tar)] cos[W(ty)]

cos[Pz(tar) — Pu(tum)] = cosor(tar)] : (A.42)

Of course, the equation above is valid for arbitrary ¢, introducing ¢;; was only necessary

to simply obtain the formula. Due to the even nature of the cosine function, this means

cos|x(t)] cos[W(?)]
cos|a(t)]

Ou(t) — Gur(t) = tacos (A.43)
With a similar logic to that of the graphical solution of [125] one can replace + with a

direct expression, and have (2.17).

A.2.2 Instantaneous polarization properties in circular basis

To express the characteristics of the polarization ellipse using the amplitudes and phases
of the left- and right circularly polarized components, first let us write down how the total
electric field can be expressed using them. By looking at (2.18) and (2.19) it is easy to
see that the total field is given by

E(t) = {A\l/(;) exp[vi(t)] (uy + cuy) + A:/g) exp[t@r(t)] (uy — Luy)} exp[—wwot] . (A.44)
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A.2. Instantaneous polarization state and -ellipse

In the following expressions, for the sake of brevity, all temporal dependence will be
neglected as only algebraic manipulations will be made. Let us introduce new variables,

which are named as (not by accident, as it will be seen later),

y=7 > Ly (A.45)
R

By applying the substitutions of (A.45) and (A.46) (¢, = ¢m + VU, ¢ = o — ¥) in
(A.44) it can be shown that the ampltiude and phase of the x and y components read as

Azexplip,] = \}5 (Ajexp|—u¥] + Aexp[tV]) exp[t@a] (A.47)
Ayexplip,] = \/L§ (Ajexp[—1V] — Arexp[eV]) exp[t@n] - (A.48)

The inverse relations can also be simply obtained from (A.47) and (A.48), that is,

1
Avexplignr] = —= (Asexpligs] + 1A, explid,]) expl—o0] (A.49)

-9

Avexplipu] = 7 (Asexple@a] — tAyexpley]) exp[eV] . (A.50)

Using (A.49), (A.50) and the well known relations cos(V) = (exp[¢W] + exp[—t¥])/2,
sin(¥) = (exp[tW¥] — exp[—t¥])/2¢, one can get that
1
7 (A, + A)) exptgum] = Agexplig,] cos(V) + Ayexplip,] sin(¥) . (A.51)
Notice that if the exp[—twyt] term is not considered then the right-hand side of (A.51) is
equivalent to the right-hand side of (A.27), which means that the equivalence of (A.51)
and (A.29) yields

A+ A

Au ==

(A.52)

Express similarly

S

V2

Comparing (A.53), (A.28) and (A.30) gives, like for the amplitude of the semi-major axis,

(A, — A)) exp[e(@m — 7/2)] = —Azexp[tp,] sin(V) + Ayexpled,| cos(¥).  (A.53)

_ |Ar _Al|

Anm .
V2

(A.54)
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A.2. Instantaneous polarization state and -ellipse

Taking the modulus is necessary in the previous expression, because A,, > 0. This does
not contradict the derivation before, because using (A.32) with (A.52) and (A.54) yields

A — A

=45 A (A.55)

tan(x)

having a consistent sign convention with the previous definition of x.
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APPENDIX

B

Pulsed beam propagation

B.1 Gaussian beam focusing using ABCD formalism

In the following, simple formulas describing the focused complex field of a Gaussian beam
is given using the ABCD formalism to treat the propagation through the focusing system
and free space. An important limiting assumption of the expressions below is that the
focusing element is placed directly at the beam waist. Analytical formula for a case when
the position of the focal element does not coincide with the plane of the beam waist is
also obtainable, but will not be given here.

The quantity of interest here is the field in the vicinity of the focal region, so in the
ABCD analysis the matrix describing the focal element of focal length f and the matrix

giving the free-space propagation of distance z behind it has to be used, which is

(1 z)( 1 0)_(1—2/]‘ z>' (B.1)
01 ~1/f 1 ~1/f 1

The presumption of focusing at waist means that the field in the plane just before the

focusing element is given by

G(r) = exp [Lk’;(j] : (B.2)

similarly to (2.43), with the ¥ = w/c wave number, the r = (22 + 3?)"/2 transverse
radial coordinate, and the complex beam parameter at the beam waist (that is, z = 0 in
(2.39)) is ¢ = —tL. The Rayleigh length L is given by its definition (2.38). Using the

transformation law of the complex beam parameter (2.42) [137], it can be easily obtained
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B.1. Gaussian beam focusing using ABCD formalism

that the beam parameter of the focused field is [139]

f

11(Z)=7+ ——— B.3
i2) =2+ (B.3)
with Z = z — f being the distance measured from the geometrical focal point. From this,

the Rayleigh length of the focused beam can be expressed as

L

Ly=—"" .
oy e

(B.4)

To get the full field, the “amplitude” transformation of (2.44) also has to be used, which
with (B.1) results in

A+Bli () 1+.L)f — §(2)

1 1 —L N{(—f) . (B5)

From the formula above, it can be easily seen (of course not forgetting about the exp[tkz] =
exp(tk(Z + [)] factor) that the focused Gaussian beam is given by (2.45).

For later convenience, it is advantageous to expand the G #(r) function describing the
focused Gaussian beam using the Euler’s formula as (similarly to how it is done for several

functions in this work)
Gy(r) = Gy(r)explupy(r)] . (B.6)
By using simple algebra it can bee shown that

L 2

Gstr) = V(Z+ )2+ (LZ/f)2eXp [_waZP] - wfiZ)eXp l_wsz)Q] ’ (B

where s = \/m is the beam waist radius of the input beam and

wp(Z) = \l jz

is the beam radius of the focused beam, which can be obtained by using definition (2.40)

(Z+f)?+ (;Z> (B.8)

on (B.3). Using the phase calculation method when the real and imaginary parts of the

complex number are known [91], the phase can be found to be

wr?

o ) L
pilr) =5 —a a“l(z T f)f] " 2Ry (Z)

+2(Z+ 1), (B.9)
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B.1. Gaussian beam focusing using ABCD formalism

with the phase-front radius of the the focus field’s spherical wave front

(Z+ ) +(LZ/f)?
Z+f+(L/f)?*Z

Ry(Z) = (B.10)

This expression for the phase-front radius can be obtained by applying (2.40) on (B.3).

Debye approximation The above expressions for Gaussian beams can often be sim-
plified. For example, the above formulas contain the well-known focal shift of Gaussian
beams when a focusing element with long focal length is used [146]. However, for stronger
focusing when L > f (that is, L/f > 1), the shift of the diffraction focus disappears, it
coincides with the geometrical focus, and the above expressions are simplified. It is easy
to see from (B.3) that if L/f > 1 (called Debye approximation) then the complex beam

parameter is [139]

f2
in(2) =2 — 17, (B.11)
resulting in the focused Rayleigh range
2
Lp = fL : (B.12)
The amplitude transformation of (B.5) gives
b)) _ _—f (B.13)

in(Z) — p(2)’
So the electric field of the focused Gaussian beam in the Debye approximation is given by

e TN D A S I
GD(I‘)—LD L+ (Z/Lp)? p[ wD(Z)zl

x eXp[L (—;T —atan{lij + QC;;(Z) + C;)(ZJrf)ﬂ .

(B.14)

The beam radius and the phase-front radius in the Debye approximation are

[2¢f? A / A

f4 L2
Rp(Z) :Z+ﬁ:Z+7D, (B.16)

consistent with the definitions (2.36) and (2.37), respectively.

and
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B.2. First-order theory of pulsed beam diffraction

B.2 First-order theory of pulsed beam diffraction

The aim is to provide an analytical approximate formula for the electric field E(p)(r, t) of
a propagated pulsed beam [164]. First, the temporal variation will be expressed in the
form of (2.3) leading to

E@(r,t) = EP(r, t)exp[—wwot] . (B.17)

Since E®(r,t) is the inverse Fourier transform of P(r,w) (see (2.59)), it is easy to see

from (B.17) that the complex temporal envelope of the propagated field is
EP(r —/ (r,w)exp|—t(w — wp)t] dw. (B.18)

Utilizing the decomposition (2.58) of P(r,w) into U(w) and G(r,w); and applying the
Taylor expansions (2.61) and (2.62) of the amplitude and phase of G(r,w) up to the first

order, the complex envelope is rewritten as

c(0) (y gi Oo~w o(r (1) (w — wo
EW(r,t) 27T/_OOU( ) [Go(r) + G (x)( )] (B.19)

X exp {L {@G,O(r) + g o(r) (W — wO)H exp|—t(w — wp)t] dw .

By the substitution of 7 = ¢ —¢f; ;(r), utilizing that the expansion coefficients are indepen-
dent of w and that from (2.66) (assuming that the order of integration and differentiation

is commutable)

50) (- . i
deT( ) = —L217T [m(w — wo)U(w)exp[—t(w — wp) 7] dw, (B.20)

one can arrive to

. y 50) (7
5(p)(r,t) ~ [Qu(r)f(’)(ﬂ +1Gy(r) dng( )] expltpao(r)] - (B.21)

By the substitution ¢t = 7 4 ¢ o(r) in (B.17) it is easy to see that

. 50) (-
EO(r,7) = [%() 9(r) + 1) 2 >]exp[L(soG,o@)—woso'c,0<r>)}, (B.22)

being the same as (2.65), yielding the field at 7 by E® (r, 1) = E®)(r, T)exp[—wuvo].
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B.2. First-order theory of pulsed beam diffraction

Relationship between initial an propagated real envelopes and phases To ob-

tain the expression (2.67) and (2.68) one further assumption is needed [115]. If

Gi(r)dED(7)/dr
Go(r)  E6)(7)

<1, (B.23)

then (B.22) can be expressed in an other form using the Taylor series of the exponential

function (exp(z) =1+2+...), giving

G(r) dEW (r)/dr
Go(r)  EO)(T)

EP)(r, 1) ~ Go(r)ED (T)exp lb ] expt (peo(r) — wogo(r))] . (B.24)

The derivative in the first exponential is evaluated using £ (1) = A (1)exp {L@(i)(T)] as

AEO(r)jdr  dIn(AD()) ,,499() B.25)
Ed(r) dr dr '
Substituting the above into (B.24) yields
~ ~ Gir) 4p(r)
(p) ~ (@) _ 70
EWN(r,7) >~ Gy(r)A (T)exp[ Go(r) dr
(B.26)

, /(p) dIn(A®D (7
X exp [L (95(1) (1) + gzgri <d7' ( )) + ¢ao(r) — WOSOIG,U(I'))] ’

the amplitude and phase of which is exactly (2.67) and (2.68), respectively.
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APPENDIX

C

Phase and group velocity of focused

Gaussian beams — undistorted case

C.1 On-axis phase velocity of an untruncated, undis-

torted beam

It was detailed in Section 2.3.5 how the phase velocity of waves can be calculated generally.
According to expression (2.69) for the phase velocity, it requires the calculation of the
gradient of the spatio-spectral phase. The explicit expression of the phase (3.1) for an
untruncated Gaussian beam is given by Equation (21) of [143], which rewritten with the

notation of this work is

o (r, Zo,w) = — g n %(Zo + Ry — R) — atan[wT (Zo, w)]

w r? w0, T)  r? (C.1)
+ — wT,
c2(Zy+ Ry) 2c 14 (wT)?

where T and 0,7 are given by (3.3) and (3.5), respectively. Expression (C.1) is indepen-
dent of v, also the derivative with respect to r still depends on r. So if one calculates the
gradient of (C.1) and takes the value on axis, its magnitude is equivalent to calculating
the derivative of the on-axis expression (3.2) with respect to Zy. The physical reason

behind this is the cylindrical symmetry of the phase, due to which the gradient points
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C.1. On-axis phase velocity of an untruncated, undistorted beam

towards the propagation axis. So the gradient of (3.1) taken on axis is simply

0
Veoa(r, Zo,w)|,—g = W (—W + %(Zo + Ry — R) — atan[wT(Zo,w)]>

0Zy \ 2
- (w R , 7—) (C.2)
"\ T Tgwi ) v
Substituting this into (2.69) yields
w c(1+ w?T?
Vp(Zo, w) ( ) (C.3)

- w/c—wd,T/(1+wT?) T 14w — 0, T

which when divided by c¢ is equivalent to (3.4).

It is worth examining in which Z; coordinate the on-axis phase velocity reaches its
maximum. Following the elementary mathematical considerations, the first step to obtain
the position of maximum is to calculate the derivative of the phase velocity with respect

to the axial coordinate, giving

(C.4)

5, <vp(Z0,w)> (14 w?T?)ed?T — w?2¢T (0.T)?
0Zy B (1+w?T2 —cd.T) 7

C

where 02T = 0*T (Zy,w)/0Z2. Finding the zero of (C.4) means obtaining the Z, value
for which the numerator of (C.4) is zero, so the question is the solution Zo,max(v,) Of the
equation

(1+ W TP = 22T (0.T)2. (C.5)

To have the explicit dependence on Z, and to solve (C.5) it is worth introducing

B Zo+ Ry— R
wT = 7N, iR (C.6)
wo. T TNy,
R (Zy+ Ry)?’ (€.7)
wd*T 27Ny,
R (Zo+ Ry’ (C-8)

Substituting the above expressions into (C.5) multiplied by w/R? yields the equation

_ (1 + 72N? (Zomax(v,) + Fo — R)2> 27N,
Y (Zo,max(vp) + RO)2 R<ZO,maX(vp) + R0)3 (C 9)
297N, ZO,max(vp) + RO — R 7T2N3} ’
= T w

ZO,max(vp) + RO (ZO,max(vp) + R0)4 .
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C.2. On-axis group velocity of an untruncated, undistorted beam

With simple algebraic steps, the solution is

1
ZO,maX(Up) - —R() + R (1 — 1—}—77‘2]\72) 5 (ClO)

which is equivalent to (3.6).

Debye approximation It is easy to see from [78, 135] that in the Debye approximation
the spatial phase ¢g(r = 0, Zy,w) and its gradient are formally exactly the same as (C.2),
only the variable 7 has to be replaced with its form Ty valid in the Deybe approximation.

So the expressions

TD(me) - Yrw (Cll)
NAZ
0.To = (C.12)

have to be used instead of 7 and 0.7, where up and k are given by (2.56) and (2.50),
respectively, and

NA, = — (C.13)

is the numerical aperture associated with the Gaussian beam of frequency w emerging
from the exit pupil. This way the phase velocity expression in Debye approximation can

be expressed with dimensionless parameters according to

vlP) (up, w) 1+ u3/(45%)
= - (C.14)
c 1+ u?/(4k?) — NAZ /2
Note here that with a coordinate scaling up,, = up/x the number of dimensionless

parameters can be reduced to two from three.

C.2 On-axis group velocity of an untruncated, undis-

torted beam

To calculate the group velocity from (3.1) using (2.70), the derivative with respect to
angular frequency has to be calculated first. For the same reason as in the case of the

phase velocity, the on-axis phase (3.2) can be used, giving

T AT
14 w272

6 Zo + RO —R w
Oe(r=0,Zy,w) = a—wwg(r =0, Zy,w) = — ;R/(w)

(C.15)
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C.2. On-axis group velocity of an untruncated, undistorted beam

Component u, of the gradient along the axis at wy is

o .,
8720 [QOG(T =0, Zo, w)|w=WO]
[0:T0 + wod:(T)] (1 + Wi Tg") — (To + woTg)w5270(9:To)

) (C.16)
(1 +wgT7)? ’

1
c

all other components are zero along the axis, because of the symmetry (this is also why
the order of operations can be and are interchanged). The derivatives of T that appear

in the previous expression are 0,7, given in (3.5),

. R w?
and /
0.(T") = 2%az’r . (C.18)

Substituting the above derivatives into (C.16) and performing some algebraic manipula-

tions give

[SOIG(T =0, Zo, w)|w:w0]

92y
114 2(wp/woJwo] (9:To) (1 — wi'Tg*) — [ (Lo / Bo)wolws To(9:To)wi / (cLo)
c (1+ wdT3)? '
(C.19)
The variables appearing in square brackets in the previous expression are g, = 1 +

2(wj/wo)we and v, = —(R}/Ro)wo (see also (3.8) and (3.9)). By introducing them the

gradient is given by

o .,
a7 [QOG(T = O? ZO7W>|w=wo]

0Z,
(1+wiT5)? = 9uc(0:To) (1 — wiTg") + 7w To(0-To)wi / Ro
c(1+ wdT3)? ’

(C.20)

the reciprocal of which divided by ¢ is (3.7), giving the ratio of the group velocity at wy
and the speed of light c.
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C.3 Dependence of group-velocity parameters on the

properties of the source Gaussian beam

Parameter g, According to the description of Section 3.1.1 on Page 50 the g, parameter
of the focused, pulsed beam describes the wavelength dependence of the Gaussian beam
radius in the exit pupil of the focusing element. With the assumption that the beam size
just before the focusing element is identical to the size right behind it, g, can be described
by the parameters of the source Gaussian beam. In order to obtain parameter g, one has
to calculate the derivative of the beam size w with respect to the angular frequency w
(see (3.8)). Using expression (2.36) to calculate the beam radius at distance d from the

beam waist, the required derivative is

) d\? d\> d/L  dL-L'd
w = —|[s\|1+ () =s'\|1+ () + s ; (C.21)
O L L 1+(d/L)2 L?
and as a result , , Jz 2 I/ £2
Wy S0 0 s 0 S
“o, . _ 20 it} =0 C.22
UJQwO 80w0+ d0w01+£§ L0w01+552 ( )

with & = dy/Ly, beam waist radius s and Rayleigh length L. By introducing g, =
(Ly/Lo)wo (see (3.11)) it is easy to see that
00 = S(go— 1) (C.23)
P 0 — 9 Js ) .
and derivatives in (C.22) can be substituted with dimensionless parameters g; and &, of
the source (see expressions (3.11) and (3.12)). So
wp 263 263

’U:l 2— = Us s — Us )
ST A B A R

(C.24)

which is equivalent to (3.10).

Parameter v, The other parameter appearing in expression (3.7) of the group velocity
is v, expressing how the wave-front curvature changes with wavelength according to (3.9).
This case is more complex compared to calculating g,, as the wave-front curvature is
changed not just during propagation, but also modified by the focusing element. Using the
well-known expression from paraxial optics that a spherical wave with radius of curvature

R, is transformed into a spherical wave with radius of curvature R by an optical element
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C.3. Dependence of group-velocity parameters on the properties of the source. ..

of focal length f according to [130]

1 1 1

== C.25
R f Ry’ ( )
v, can be expressed with characteristics of the source beam and the focusing element.
Following definition (3.9) of 7, the derivative of R with respect to angular frequency is

necessary, which from (C.25) is

,_ O ( fRs \ _ f'R:-fR,
This gives (717 10) (B IReo)
Ry (fo/Jo)Rso — (R o/ Rs0) fo
Yo = _EOWO - = Rs,o — fo wo - (027)

As the first factor in the numerator of the previous expression is v given by (3.15), only
the second term needs evaluation, which describes the wave front curvature of the source
beam at the entrance pupil of the focusing element. Using expression (2.37) for the wave-

front curvature at distance d = d(w) from the source beam’s waist, the derivative can be

obtained to be
.0 L\? , LN\*] . L'L
Rs—aw@”(d)b—d[“(M”d ' (C.28)

With the expression above

R;,O _ d6 [1 — (LO/dO)g] 2L{)L0/d0
Wy = D) Wo 2 wo ,
Ry do [1 + (Lo/do)?] do [1+ (Lo/do)?]

(C.29)

which with some algebra and with the introduction of g, and e, (see their definitions in
(3.11) and (3.12), respectively) gives
Ry [(do/Lo)* — 1] &5 + 29,

RS’O(A}O = 1 T (dO/LO)2 . (C30)

Substituting (C.30) into (C.27) results in

1 Reo = fo([(do/Lo)* — 1] 5 + 2g5) / (1 4 (do/Lo)?)
= R0 — fo .

(C.31)
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It is worth multiplying the previous expression with Lo/ Lo because this way all parameters

become dimensionless. The new parameters are (; = fo/Lo (see also (3.16)) and

R.o dp [ (LO)Q] 1
0 _ 20y (20 =&+ —, C.32
Ly Lo do . &s ( )

with & = dy/ Lo (see also (3.13)). With these modifications (C.31) becomes

_ &+ 1/6) = G (16 — U es +29,) /(L + &)
h Et1/6 = ¢ | (e

which with different grouping of terms can be written as (3.14).
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APPENDIX

D

Phase and group velocity of focused

Gaussian beams — distorted case

D.1 Evaluation of derivatives of complex phases

Calculating the numerical derivative of the phase of a complex-valued function, especially
if the function is an integral, can lead to numerical errors. So it is worth simplifying by
analytical evaluations. Assume a complex-valued function written as the sum of its real

and imaginary parts

Clz,y) = X(z,y) +Y(z,y). (D.1)

The complex phase of this function can be calculated as

Y(z,y)
X(z,y)

polw,y) = arg|[C(x,y)| = atan[ ] + Peonst. - (D.2)
where @eonst. = 0, =7, depending on the sign of Y (z,y) and X (z,y) [91]. By calculating

the first derivative of ¢ (z,y) with respect to x using its form (D.2) one can get

doc(z,y)  X0Y —Y0, X

ox - X24+Y2 ’ (D-3)

containing partial derivatives of X (x,y) and Y (z,y) with respect to x. This expression
can be further shortened to only contain C' instead of its real and imaginary parts. First
thing needed for that is

IO = X2+ Y2, (D.4)
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D.1. Evaluation of derivatives of complex phases

Second, knowing that

w:M+ijb<w>*:LM+W, (D.5)
ox ox ox ox or O
superscript * meaning complex conjugation, it is easy to see that

e, (gfz)* = (X?; — Y%f) +1 (Y‘?; + X%f) : (D.6)
or N

é (‘23) _ (X%i( + Yg) +e <Y%f _ X?ﬂj) | (D.7)

Picking the appropriate terms from the right-hand side of (D.6) or (D.7) for the numerator
of (D.3), and using (D.4) as its denominator, the result is
dpc(z,y) Re[1C(@:C)| —Im|[C(0.C)"|

ox  |CP cp (D)

For the second derivative a mixed derivative is calculated first for general result, then
it is specialized to a double derivative with respect to the same variable. Using simple

algebra

82300(1'7 ?/) {Xazwy + (&,BY) (ayX) - (ayY> (%X) — Y@;mX} (X2 + YQ)
ayax o (X2 + Y2)2
(X0,Y —Y0,X)2 (XayX + YayY)

(X2 +72)?

(D.9)

9

with 92, f(x,y) = 0° f(x,y)/0ydz. With a similar logic to the substitution into the first
derivative the above expression can be rewritten to contain C, giving
Poc(r,y)  Re[1C(02,C) +1(9,C)(9:C)*] |C? = 2Re [+C(9,C)*| Im [1C(9,C)"]
oyox |CJ4 '

(D.10)
If the second derivative is with respect to the same variable as the first, the expression
can be simplified using that for every complex number C' it is true that Re {Léé*} =0,

SO

a%gg,y) _ Re 1C(@2,C)] [CP? — 2f|{g|[:é(awé)*] Im [1.C(0,C)*] | o

The main advantage of these transformation is that if C' (x,y) is given by an integral,

and it is assumed that the order of differentiation and integration can be varied, then the
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D.2. Calculation of phase and group velocity in the presence of aberrations

numerical effort needed is reduced. Only integrals have to be calculated, and the complex
conjugate, real or imaginary parts of them have to be added or multiplied, leading to less
chance for numerical errors. See examples in the next section of the Appendix and in
Section 3.1.2.

D.2 Calculation of phase and group velocity in the

presence of aberrations

This section aims to provide a short summary on how to evaluate the phase and group
velocity of focused Gaussian beams in the vicinity of focus when aberrations are present.
The formulation is shaped to reduce computation time and decrease the chance of numer-
ical errors.

The task is to calculate the phase velocity using (2.69) in cylindrical coordinate system,
giving

(W)Q T <3~W>2 + (Wﬂ o : (D.12)

and the group velocity applying (2.70), yielding

vyt wp) :C{'a<a¢a(w ) )] +E%<W

Up(r,w) = w

L

| Or Ow
i oy —1/2 (D.13)
n 0 [ Opa(r,w)
_820 &u w=wo
The spatial phase to be used here following (3.1) is
2
T w w .
=——+ —(4 — - z D.14
palrw) = =5 + (2o + Ro— B) + Lo ps +arg[Z(uw o)) . (D14)

with r = (r,1, Zy) and Z(u,v,1)) defined by (2.52). For the sake of brevity the function

Y(p,0) = exp <—/<p2 + 1k®(p,0) — wopcos(0 — ) — LgpQ) (D.15)

is introduced, so Z can be be written shortly as

T(u,v,7) = /01 /O%T(p, @)pdodp. (D.16)
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D.2. Calculation of phase and group velocity in the presence of aberrations

The derivatives of pz(u,v,9) = arg [f(u,v, ¢)} are calculated using the expressions
in the previous section (see Appendix D.1), so only the derivatives of Z(u, v, ) itself are
given, then the results can be substituted into (D.8) and (D.10). It is also noted that the
azimuthal angle ¢ of r is different from the usual ¢ of the cylindrical coordinate system,
so also from the one present in the formulas of gradient in (D.12) and (D.14). But as

Y =7m/2 — ¢ (see Figure 2.9), the derivative with respect to ¢ is simply 05 = —0,.

D.2.1 Phase velocity in the presence of aberrations

To obtain the gradient present in (D.12) the following derivatives are needed for vector

components u,, us and u,:

doa 8@I(u v, 1) —I— r

or or cZy+ Ry’ (D.17)
1 ang 1 8@I(u,v,1/))
- — _ T\ 7 D.1
r ¢ r o ’ (D-18)
2
8906' _ g + aSOI(U,U,W _ f r ) (Dlg)

07, ¢ 07, ¢ 2(Zy + Ry)?

In the case of on-axis evaluation (r = 0) the last term disappears in (D.17) and (D.19).
Expression (D.18) does not have a singularity with » = 0, which can be seen if the

derivative with respect to v is evaluated (see later).

Component u, of the phase velocity Looking at (D.17) and taking into account
(D.8) the necessary derivative is 9,Z. The integral Z depends on 7 through coordinate v,
so by looking at definition (2.54) of the dimensionless coordinate v the necessary derivative
is . . .

0L 0I0v w a 0L

G cZ i Ridv (D-20)

So taking the derivative of Z with respect to v, assuming the interchangeability of deriva-

tion and integration, results finally in

oL w a L p2m <
=,z - 6 — \ 0902d9dp D.21
or ‘ C Z() + RO /0 /0 COS( ¢) ( 7 ) ’ ( )

or its on-axis value for a chosen (for example, the carrier frequency) wy is

0z //ZW wolp,0)pdod (D.22)
o = —|— COS .
or | r=o e Zo—l—RO puIp P

w=wo
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D.2. Calculation of phase and group velocity in the presence of aberrations

where T, (p, ) is the on-axis ( = 0) version of T(p,6) taken at w = wy (see explicitly in
(3.27)). So component u, can be obtained by evaluating (D.21), substituting it into (D.8)

to obtain 0,7, which then can be used to calculate the whole component using (D.17).

Component u, of the phase velocity For (D.18) one has to consider the 1/r factor

expressible as (see (2.54))

1 w a 1
- = — —. D.23
r c Zo+ Royv ( )

It is easy to see from (D.8) that to calculate (1/7)dy¢7 the (1/7)94Z derivative is necessary,
and the 1/r factor makes no difference in the applicability of (D.8). As a result

19 w o« Lop2m = 9
796 LCZ()—FR()/D /0 sin(6 — )Y (p,0)p~dodp. (D.24)

On axis, for frequency wy, the expression simplifies a bit to

181- 2
r0p| —0 cZ0+R0// sin(0 — ) Ta0(p, 0)p* A0 dp, (D.25)

w=wq

This means component u,, is simply evaluated using (D.24) substituted into (D.8), which

is the expression appearing in (D.18).

Component u, of the phase velocity The longitudinal component of the phase
velocity is harder to calculate compared to the other two, because coordinate Z, appears
in two arguments of Z, both in u and v (see (2.53) and (2.54)). As there is no uv cross
term in the integral of Z, its derivative with respect to Z, can be given as

0L 0L Oou 0L v w a? oL w ar oL

0% " uddy ovody (Gt Ffou <t Rpon (02

Calculating the derivative of 7 with respect to u and v and taking into account the

previous expression the necessary derivative is

0T Lw / /27T <
- S , dod
87, 2c (ZO n RO (0, 0)p” 9 dp (D.27)
(,d 2 ’
(60— dod
G R [ costo — o) T(p.0)0 a0 dp.
In the on-axis case it simplifies to
0T L wo / /27r -
— = 3d6d D.28
AR Zot Ro? Ro 0)p>dodp. (D.28)

w=wp
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D.2. Calculation of phase and group velocity in the presence of aberrations

Finally component u, is calculated using (D.27), which is applied to get the phase deriva-
tive (D.8) for this component, then this latter is substituted into (D.19).

Symmetries of the phase velocity on axis By comparing the on-axis result for com-
ponents u, and u, (expression (D.22) and (D.25)) one can notice that the only differences
between the integrands are a sign and the cos(f — ¢) <> sin(6 — 1) exchange. Knowing
that Ta0(p,0) depends on @ only through the aberration function ®(p,6) (see (3.27)),
which for primary aberrations is an even function of 6 because it only contains cos”(6)
(see (2.47) and Table 2.1), it can be seen that for every

RN L
or —0 r 0o —0 | or -

This simplifies evaluation for on-axis points if the aberration functions is an even function

(D.29)

of 6 (like primary aberrations), because it is enough to calculate the components u, and
uy at ¢ = 0. Also note for on-axis points that if ®(p, #) is a m-periodic function of 6 (like
primary aberrations with even value of m) on the [0,27] domain, then both the u, and

u, components are zero, as the integrals of both cos(#) and sin(#) on [0, 27| are zero.

D.2.2 Group delay in the presence of aberrations

While group delay is not a direct aim of the present section, as it means the derivative
of the spectral phase with respect to angular frequency [107], the calculation of it is an
intermediary step for group velocity (see that in (2.70) and (D.14) first the derivative of
g with respect to frequency has to be evaluated). Group delay is also closely related
to the CEP, as it gives the time for the wave packet to traverse a given distance, which
compared to the time necessary for the carrier wave can give the value of CEP [47, 107].

So the group delay of a focused, pulsed Gaussian beam can be calculated as

dpa(r,w) Zy Ry 1 r? dor

PR e T e Y O Z T Ry o

w=wo

(D.30)
w=wo
The first term in the previous expression simply gives the time that is needed for a plane
wave to travel distance Z;. The second term is a factor related to group velocity changes
caused by the chromatic aberration-like effect of having different components focused to
different points. The third term is the off-axis contribution known for Gaussian beams
and their spherical wave fronts. The last term is again what needs numerical evaluation,
and following the same logic as previously the partial derivative of 7 with respect to w

is what necessary to obtain this term using (D.8). Looking at the integrand of Z (see
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D.2. Calculation of phase and group velocity in the presence of aberrations

(D.16)), which mainly is T, it can be seen that there are several quantities in the integral
that depend on w (see (D.16)): truncation coefficient x through the beam size (see (2.50)),
the wave number k, the aberration function ®(p,w) (see (2.47)), the dimensionless radial
coordinate v (see (2.54)) and the dimensionless longitudinal coordinate u (see (2.53)). By
calculating their derivatives with respect to the angular frequency, and taking them at

w = wy, one arrives at

oK Ko

i = 2(1—g,), D.31
B = e (D.31)
ov Vo

— = — D.32
Ow| .. —wo ( )
ou U a?

Quj  _¥, @ D.33
Ow oy WO 7 cRy ( )

An other auxiliary function can be defined as

- 0o
A(p, 9) = —p2/€0(1 — gv) + Lkoq)o + Lkobdo aiw

L Woa?
— LU cos(@ — w)_§p2 <u0+%CORO) .

(D.34)

All variables in the previous expression with subscript 0 are evaluated at wg, and the

w=wo

definitions of g, and 7, are given by (3.8) and (3.9), respectively. So, according to (D.8),

the derivative that is necessary to obtain group delay is given by

of
Oow

1 1 2 -
= — [ [ Moo To(p. 00t dp. (D.35)

w=wq

Whit this everything is available to evaluate the group delay by substituting (D.35) into
(D.8), then putting this result into (D.30).

D.2.3 Group velocity in the presence of aberrations

Using the results of the previous subsection (see (D.30)) and following definition (D.14)

of the group velocity the three terms that are necessary for the calculation of v, are

9 (9a) ) _ 9 (Opr(uwv.9) 1o

or ( Ow w=w0> - or ( Ow — + <70+ Ry’ (D.36)
190 (9pc _ 19 (9pz(u,v,9)
r 0¢ ( Ow w=w0> oy ( Ow o ’ (D.37)
0 (9 1,9 (dpz(u,v,9) R
aZO ( Ow ww()) N c - aZO ( Ow = 02(20 + R0)2 . (DSS)
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D.2. Calculation of phase and group velocity in the presence of aberrations

which are the three vector components of the gradient present in (2.70). The last term in
(D.36) and (D.38) are zero on axis.

Component u, of the group velocity For the double derivative of ¢z present in
(D.36) the only unknown is the double derivative of Z, as all the single derivatives of 7
have already been calculated for either the phase velocity or the group delay which are
necessary to calculate the double derivative of a complex phase according to (D.10). The

complex integral T (u,v,1) depends on r through the dimensionless coordinate v, so

0 (oI] N\ _ 0 (0I|] \Ow _wo_a 0 (0T (D.39)
or \Ow|,_, O \Ow| __ ) Or ¢ Zy+ Rodup \ Ow . ' ‘
Knowing that R
OA
o —pcos(f — ) (D.40)
and -
oY -
W{? = —pcos(f0 — )Ty, (D.41)
with some algebra it can be shown that
o (0L 2 % - 2
E (aa} w:wo) B C ZO + RO / / COS 1 + A(p’ 9>] TO(p’ 0)p de dp ‘ (D42)

For on-axis expressions one should use the on-axis versions Aa and Ta,O of A and TO,
respectively, which can be obtained by substituting vy = 0 into the original formulas of
A and Ty. So one can get component u, by using (D.42), (D.21) and (D.35) to get the
double derivative of complex phase ¢z through (D.10), and applying this in (D.36).

Component ug of the group velocity The derivative necessary for component uy
according to (D.37) is

rdo \ ow|,_. oY\ Ow oo T ¢ Zy+ Rovo 00 . . ,
With 3
OA .
o —wopsin(0 — ) (D.44)
and ~
oY ' .
a—wo = —wgpsin(0 — ) Tq (D.45)
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one can get

1o (o1
rog \ ow|,_,

) = ZZO i Re /01 /027r sin(0 — ) [1+ A(p,0)] Tolp,0)p*dodp. (D.46)

For on-axis values again /~\a and Ta,g should be used. As a summary, component uy is a
result of substituting (D.46), (D.24) and (D.35) into (D.10), which gives the sought result
with (D.37).

Component u, of the group velocity Just like in the case of the phase velocity,
the most computation-demanding component is the longitudinal one, as Z depends on Z

through both dimensionless coordinates v and v, giving

o (90T ~ OJug 0 0T dvy 0 (0T
o 5|, ) ~ T (3o, ) PR (oa,) - O
Using
oug  wp a?
= — D-4
07, ¢ (Zo+ Ro)?’ (D-48)
vy Wo ar
O _ _wo ar D.4
dZy ¢ (Zo+ Ro)?’ (0-49)
oA Loy
ot D.
8u0 2,0 7 ( 50)
8?0 . L 9%
=50 (D.51)
results in
9 (oI L a? Lo " ~ 3
o (aw :) s o [ M) Tue o) a0y

T nr / 1 / " cos(0 — ) [1 + Alp, 8)] Tolp, 0)p* a0 dp,
(D.52)

For on-axis points (r = 0) the expression simplifies to

o (0T L a? 1 rom N -
o - = 1 3 . .
07, ((9&) wwo) (7‘:0 %2 (ZO + R0)2 /0 /0 [ + Aa(p7 ‘9)} Ta,O(p; 6’)0 dodp (D 53)

Finally, the way to obtain component u, is to use (D.52), (D.27) and (D.35) to get 0% o7
through (D.10), and to substitute this into (D.38).
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D.3. Aberration-distorted phase and group velocity in Debye approximation

Symmetries of the group velocity on axis and additional notes Similarly to the

phase velocity, the points on axis (r = 0) have favorable properties. It is easy to see from

the on-axis version of (D.42) and (D.46) that
2 -
RIENE:
B Cor \ dw| =0
w=wq r=0 w=wq -0

(o L) ([ (2
(D.54)

so the same conclusions can be drawn regarding the on-axis points as for the phase velocity.

Y

Also note that in Section 3.1.2 a different grouping of terms is presented, where the
derivatives of Z with respect to its explicit arguments u, v and 1 are given, and they are
multiplied by given factors in summarizing expressions. This way of calculating is only

possible for on-axis points, due to the sum term in component u,.

D.3 Aberration-distorted phase and group velocity

in Debye approximation

Debye approximation means a simplified calculation of the focused field in the vicinity of
focus. For undistorted cases the usual assumption for the validity of Debye approximation
is the high value of Fresnel number N,, > 1 [143, 151]. This because the regions of interest,
where the light intensity is highest, is close to the focal point. However, in general, the
Debye approximation has more strict limits, and it is limited how far from focus one
can study the field distribution (Zy < Ry) [152]. This is important when aberrations
are present, because the region of interest might lie outside this limited spatial volume.
However, Debye approximation might still serve as good and simplified tool for calculation
of the focused field. So a short summary is given for its applicability for phase and group
velocity calculations in the vicinity of focus.
In the Debye approximation the focused field is given by (see Section 2.3.3)

N w a? 1~

Gp(P) = _?CﬁeXp[Lk(Zo + Ry — R)] ;ID(UD, vp, V), (D.55)
where Zp(up, vp, 1)) is given by (2.52), and the D subscript has only been added because
for brevity sometimes the arguments of fD(uD, vp, 1) will omitted, but it should not be
forgotten, that the dimensionless coordinated up and vp are of the Debye type, given by

(2.56) and (2.57), respectively. The complex phase of this expression is

QOD(I',(A)) = —g + %(Z(] + Ro — R(M)) + arg[fD(uD,vD, 'Lb)} . (D56)
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D.3. Aberration-distorted phase and group velocity in Debye approximation

The phase and group velocity is evaluated the same way from this expressions as in the

case when the Debye approximation is not applied.

D.3.1 Phase velocity in Debye approximation

Following the same logic as in the previous section dealing with the more general case, to
obtain phase velocity using (D.12) with the replacement of pg with ¢p given by (D.56),

the following three derivatives are needed

590%(;“,@ = aararg {fD(UD,vDﬂﬁ)] : (D.57)
i%zg)(;,w = —ia(?/]arg[fp(m,vp,w} , (D.58)
agpg(ZI;; W) = % + (,fzoarg {:Z.D(UD7 Up, dj)} . (D59)

As Ip is formally the same as 7 , the definition of up and vp compared to u and v being
the only difference, the same expressions are needed to be evaluated as is Appendix D.2.1.
With

ov wa
o "R (D.60)
?
(,;g?) ~0, (D.61)
oup w a?
97 " R (D-62)

the three derivatives of the complex phase arg [ip(u D,y UD, 2/1)] can be calculated using the

derivatives
oZp wa [1 2 S
- = 0— )Y 0)p* do d D.
e LcR/o /0 cos(0 — )Y p(p,0)p~dodp, (D.63)
19Zp wa [L 2 S
-=b_/z= in(0 — )Y p(p,0)p*dod D.64
Taqb LCR/D/O Sln( ¢) D(p7 )IO p? ( 6)
oZp Lwa? o2
=D _ _-*rZ To(p,0)p*dod D.65
97, sy, Yol dods. (D-65)

with (D.8). The function Yp(p,6) only differs from definition (D.15) that the Debye

dimensionless coordinates are used in it, so

Tp(p,0) =exp (—Fép2 + tk®(p,0) — toppcos(0 — ) — Lu2Dp2) : (D.66)
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D.3. Aberration-distorted phase and group velocity in Debye approximation

By comparing the above expressions with the corresponding ones of Appendix D.2.1 it
can be seen that if the phase velocity of the carrier wave is the question, then the De-
bye approximation simply means the replacement of factor a/(Zy + Ry) with a/Ry in all
occurrences, and the second term of (D.19) can be omitted even for on-axis points. So
special care must be taken for off-axis points in the applicability of the Debye approx-
imation. When the phase velocity of an other frequency w # wq is the question, the
factor a/(Zy + Ry) should be replaced with a/R(w) (second term of (D.19) can again be
disregarded), which means that in this case the two approaches are strictly the same only

if v, = 0. These give new restrictions for the validity of Debye approximation.

D.3.2 Group delay in Debye approximation

The group delay in Debye approximation is given by

Z[) RO 0 T
— ? + /yv? —+ %arg[ID(UDvaa @Z))}

Oep(r,w)

o (D.67)

wW=wo W=wo

Also because the formal identity of Zp and Z, only the changes related to up and vp are

needed to be taken into account. Since

Ovp UD,0
ol _TDOo 4y D.68
ool IR (D.68)
8UD 1 w0a2 2(Z0 + Ro)
. . 1)/, D.69
Ow w=uwo Wo |le,0 + b CR() R() ( )

the necessary derivative to apply (D.8) on the last term of (D.67) is

< 0P
Ap(p,0) = —p*ro(1 — g,) + tho®o + tkowo o — wpo(1 4+ v)pcos(d — )

woa? (2(20 + Ro;)wi 1)} | (D.70)

Lo
—_ + v
20 [UD,O Y Ry R

Equivalence with formulas in D.2.2 for cases with v, = 0 and when Zy < Ry (meaning

up ~ u and vp &= v) is easy to see.
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D.3. Aberration-distorted phase and group velocity in Debye approximation

D.3.3 Group velocity in Debye approximation

Following the same logic as in D.2.3 and calculating the derivative of T p,o and Ap with

respect to up o, vpo and ¥ gives

o (9Ip o i ) 2

8 < &u waO) - _CR()/ / COS 1+’7v+AD(p, 0)} TD,O(p, Q)p dedp7
(D.71)

1 8 8fD o 2T ~ ~ )

r o (W ww0> = cRo/ / sin(6 1 +% + Ap(p, 9)} Tpolp,0)p=dodp,
(D.72)

0 (?iD 2m
92y <8w w:w) B _27:?/ / 14270+ Ap(p,0)| Toolp,0)p° d6dp.  (D.73)

The comparison of the above results with the ones in Appendix D.2.3 shows — like in
the case of phase velocity — that Debye approximation is strictly valid only for on-axis
points and when ~, = 0. If these conditions are met, Debye approximation means the

replacement of factor a/(Zy + Ro) with a/Ry in every occurrence.

179



APPENDIX

E

Calculation of the pulse shape in the

focus

E.1 Focused electric field in the presence of primary

spherical aberration in Debye approximation

Following what is described in Section 3.2.1, the expression that needs evaluation for the
focused field in the presence of primary aberration using Debye approximation is (see
(3.37))

wlU (w) 1

Pla) == O enplih(+ )] exp [ (o) “Dl ™ (B.1)

1 27 u
2 4 D 2
X /0/0 exp[—ﬁp } exp{L (agp —vppcos(f — ) — o P )} pdfdp.

Since the aberration function ®(p,w) = agp* does not depend on 6, the integration with
respect to the azimuthal angle can be analytically calculated. The same way as described
in [90] it gives 2w Jy(vpp), Jo being the zeroth-order Bessel function of the first kind,
resulting in
~ U 2 R 2
Plw)=-— M(};u)aexp[Lk(R +1,)] exp [L () UD]
a

C

! 4 Up
X/o Jo(vpp)exp|t | asp -5 P pdp.
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E.1. Focused electric field in the presence of primary spherical aberration in. ..

If only on-axis points are relevant, with vp = 0 the integral simplifies to

. .
uD] 2/0 exp{b (Oésp4 — UZDpQH pdp .

Is

Plo) =~ gk 4 1) exp l @)

(E.3)
The main steps of the calculation from this point can be found in [200], but a more
detailed summary is presented here. If ag # 0, the exponent in integral Zg can be

rewritten using the completing the square method, giving

2

T =2e D /le ( 2_ Up )2 d (E.4)
= 2exp|—t Xp | L - — : :
s P~ gaa| Jy XP|ras (77— g ) | pde

It is easy to see that these modifications are only applicable if ag # 0, as if a, = 0 then
the exponents in (E.4) diverge. With the 7 = p? — iip/(4ag) substitution (dr = 2pdp) Zg

can be rewritten as the sum of two integrals

~2

- 1-tp/(4as)
Tg = exp l—L o 1 / 7 eXp[LOéSTQ} dr
16as | J—iip/(das)

~2 1—ip/(das) 1-ap/(4as)
= expl—L “D ] </ P s (aSTQ)d7'+L/ T sin (Ostz)dT> .
16ag —ip/(das) —ip/(4as)

(E.5)

By changing the argument of cos and sin functions according to

If ag>0: ag=|ag] = cos(asT?) = cos(|ag|T?)
(

= Cos(—|oz5|7'2) = Cos(|a5|72)

)
a57'2) = sin(|a5|7'2)
If ag<0: ag=—|ag] = COS(OstQ)

)

= sin(—|ag|7'2) = — sin(|a5|72) ,

one can get

~2

~ l—tp/(4as) 1—tp/(das)
Ig = exp [—L D ] (/ ’ cos (|ag|7?) dT + 28 ) sin(|a5|7'2)d7'> .
16ag | \J-ap/(as) las| J—ap/(4as)
(E.6)

With an other exchange of variables

2 ? 2
T = \/WT = ’CMS’TQ = K, dr = MdT; (E7)
s 2 m
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E.1. Focused electric field in the presence of primary spherical aberration in. ..

the first factor of Zg is written as

T2 2 7"'
cos(|lag|m?)dr =

[ costlastr)ydr =[50

B T

2|as]

/T2\/2(XS/7F <7T 2) q
COS | —x T
T4/ 2|ag|/m

C’( 2|aS|T2) —C( 2|is|ﬁ)] (E.8)

S

up up
where 71=—-——, H=1-—,
Qg 40(5
C(z) = / cos (gt2> dt is the Fresnel Cosine integral [209].
0

Similarly, the second factor of Zg can be rewritten using the Fresnel Sine integral, and

together Zg can be interpreted as the sum of four Fresnel integrals
- 12 2 2
Ts =exp|—t ~D ™ _|c ME _C |O‘S|T1 4
16as |\ 2|as| T T
2 2
+L7a5 S |aS|TQ - S |aS|7_1 5
|OéS’ T T

where S(z) = /Sin (gt2> dt is the Fresnel Sine integral [209].
0

(E.9)

As a last step further simplification of special functions is possible if one uses the com-
plex error function (see (3.42)) and expresses the Fresnel integrals using them according
to [209]

C(z) = 14_L [erf <1 +Lﬁz) + - erf (1 ; Lﬁz)] ,

2 2 Lﬁz)] | (E.10)

1+

S(z) = n {erf( 5 ﬁz)—werf(
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E.2. On-axis CEP variation of focused, pulsed beams

Substituting (E.10) into (E.9) gives
~ 2 s
7, —1—2 =
S/<exp[ LlGCMs] 2|Oés|>
1—1 g 1+ |Oés| INLD
fl(1 sl (y D
[ + ] erf |(1+¢) 5 ( 4045)

1 ag| 4
(1—2) |O‘25| (1—553)] (E.11)

(1 —1 as 1+

— f
t1 L—l—L’aS| 1 ( L)] er
_1—L g 14+ |045] fLD
_ 11 1251 2D
1 +L|Oés\ 1 ]er (1+2) 2 das

—1—L+ as 1+
L+t
4 ‘OCS’ 4

—(1—1) ms’ﬂ”] .

(0] et ol o

The multiplication factors of the error functions give a way to further simply as

1— 1 0 if ag >0
+ [ LS H] - T (E.12)
4 as| 4 +(1—1)/2 ifag<0
and
1— 1 £(1+:)/2 iftag>0
+ [ P +L(—L)1 = ( )/ ° . (E.13)
4 jas| 4 0 if ag < 0

It can be seen with simple algebra and by utilizing the odd nature of the error function
(erf(—z) = —erf(2)) that the simplified form is

- a2 I 1+ wsgn(ag)
7 _, U _
s/ (0|5 ) 2
1 — wsgn(ag) Up 1 — wsgn(ag) Up
X [erf( 5 vV 2]as| (1 - 4063) + erf 5 2|a5\4a5 :

where ag/|ag| has been replaced by sgn(ag) (see definition (3.42)). Substituting this

(E.14)

result into (E.3) gives (3.41) which also results in the same values as the formula of [195].

E.2 On-axis CEP variation of focused, pulsed beams

In the following main steps of the derivation of the on-axis CEP-variation formula (see
(3.49)) developed by M. A Porras is summarized [T3, T4]. The expressions are originally
based on the expression obtained for focused Gaussian beams using ABCD formalism, but

can derived from scalar diffraction theory, as it is mentioned in Section 3.2.2. The equiv-
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E.2. On-axis CEP variation of focused, pulsed beams

alence can be shown easy as follows. The electric field spectrum of a focused, truncated

pulsed Gaussian beam in the absence of aberration can be given by

wlU (w)a?

exp[—k —wup/2] — 1
2cf '

P (Zy,w) = — exp[tkly] explik(Zo + fo)] (E.15)

—K — tup/2
The above equation has been modified compared to (3.43) by the R = f replacement
(also in up), because it is assumed that the beam is focused at its waist. If negligible

truncation is assumed (kK — 00)

exp[—k —wup/2] -1 _ 1 s Lp

~ == E.16
—K —tup/2 k+wp/2 a*Lp+.Z’ ( )

where Z = Zy + fo — f and the modified definition of up = kZa?/f? (see (2.56)) and
Lp = 2cf?/(ws?) (see (B.12)) is used. Substituting (E.16) into (E.15) gives

—f

PU(Zy,w) = Uw)explekla] explih(Zo + fo)l 17—

= U(w)exp(tkly) Gp(Zy,w) ,

(E.17)
where the introduced G'p(Zy,w) is equivalent to Gp(r) of (B.14) with 7 = 0. The ampli-
tude and phase of G'p(Zy,w) = Gp(Zo, w)expliop(Zy,w)] are

f 1

gD(Z07w) = Em (E18)
and 7
po(Zu.) = =5 —atan| 7| + Z(Zo+ ). (E.19)

where it has been used that Z + f = Zy + fo. With the above expression, the analytical
theory of pulsed beam propagation — described in Section 2.3.4 can be used to obtain
information on the CEP changes induced by focusing. In the following it is assumed that
the exp|tkly] term caused by the dispersion on axis is either fully or partially compensated

in (E.17) (I, = 0 can be taken), so the temporal variation of the electric field is given by
ED(Zy,t) = F PV (Zo,w)} = Z 7 {U(w)Cp(Zo,w)} | (E.20)

with o
U(w) = p(w)exp {L2(w - wo)ﬂ : (E.21)
The C' = 0 case corresponds to the fully compensated case, and when C' # 0 there is some

residual second order dispersion remaining from the not full compensation of lens center

material.
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E.2. On-axis CEP variation of focused, pulsed beams

E.2.1 On-axis CEP changes of pulses with non-reshaping enve-
lope

Following the description of Section 2.3.4 we expand the temporal variation of the focused,

on-axis electric field B )(Zy,t) to a complex envelope and a carrier wave, so
E(f)(Zo,t) = EN(f)(Zo,t)eXp[—Lwot} ) (E.22)

Let us assume that the analytical theory of pulsed beam propagation of Section 2.3.4
properly describes the focusing using only the zeroth order term in the amplitude expan-
sion of (2.65) (see explicit expression in time ¢ instead of local time 7 in (B.21), which
should be taken with G, 4(Z) = 0 here), so

é(f)(Zo,t) ~ gD)O(Z())g(l)(T)GXp[LgOD’O(Z())] , (E.23)

where £0)(7) = F 1 {U (w— wo)} is the complex temporal envelope of the pulse right
behind the focusing element, Gp o(Z) and ppo(Z) are given by (E.18) and (E.19), respec-
tively, taken at w = wy. Let us assume that the complex envelope reaches its maximum
in coordinate Zy in time ¢, = 7, + 5 o(Zo) (still, prime is differentiation with respect to
w). The phase ¢crp(Zy) = arg {E(f)(Zo,tp)} of the electric field (or the carrier wave in

other sense) in this moment is

wcep(Zo) = —wo(Tp + ¥po(Zo)) + ©p.0(Zo) + s - (E.24)

where pg = arg [gD,O(ZO)é@ (7')] is the phase of the not separated part of the complex
envelope. As the complex temporal envelope does not change in this zeroth order', the
value of ¢, and ¢¢ is the same for every Z, coordinate. This means the CEP change with

respect to the phase value in the focal point is

Apcrp(Zy) = wcrr(Zy) — pcrp(0)

, , (E.25)
= —wop0(Z0) + ¢po(Zo) — |~wop0(0) + o (0)] -
Calculating the derivative ¢, 4(Zo) using (E.19) gives
d¢p(Zo) 1 Z; Zy Zy + fo
g _ 0 _ r) . (B.26
SOD,O( 0) 80.} _— 1 + (ZO/LD70)2 LD70 L%}O D0 ( )

I Please note that if the complex envelope is unchanging for any other reason the followings are still
valid. Using the zeroth-order approximation just an example of this case. If it is enough to describe the
studied case, the findings are valid for any pulse shape. Envelope reshaping connected to pulse chirp, for
exmaple, is described in the next subsection.
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E.2. On-axis CEP variation of focused, pulsed beams

where Zj = 07/0w|,,_, = —fo. By introducing g, = — L gwo/Lpo and 7, = fowo/Lp,o
(see (3.53) and (3.54)) one can get

1 ZO wWo
— Wt o(Zy) = — 20 2y . .
wop.o(Zo) H(ZO/LD’O)Q( fyp+gpLD70> C( o+ fo) (E.27)

Substitution of the above expression and (E.19) into (E.25) with the appropriate argument

gives

2
Bpere(Z0) = —atan () + g5 + W (529

which is equivalent to (3.49) with C' = 0, so go = ¢, and 7o = 7, (see (3.51) and
(3.52)). The dimensionless coordinate is gain £ = Zy/Lp. The above results show that
the validity of this CEP-change expression only requires that the phase of the beam is
determined by the Gouy phase shift and that the envelope does not change it shape upon
propagation.

When the focusing element is a singlet thin lens, f(w) = (n(wg) — 1) f(wo)/(n(w) — 1)

approximation can be used [135], and g, and =, are

= — 2 E.2
9p L0w0+ no—lwo’ (E.29)
and -
= — — E.30

where L is the Rayleigh length of the input beam at carrier wavelength [T3].

E.2.2 On-axis CEP changes of a focused, chirped (Gaussian pulse
with first-order approximation of envelope reshaping

For Gaussian pulses it is possible to obtain analytical expressions for the focal CEP change

[T4]. The key is to use the analytical theory of pulsed beam propagation described in

Section 2.3.4 up to the first order in envelope, so the envelope of the focused pulse on axis

is given by (see (2.65), or more explicitly (B.21))

dE® (1)

g(f)(Zo,t) ~ gD’O(Zo)g(i)(T) + Lngp(Zo) GXP[LQDDp(Zo)] . (E31)

The necessary quantity Gj,(Zy), for focused Gaussian beams the derivative of (E.18) with

respect to frequency, can be obtained to be

Gp(Zo) = H(Z)Gp(Zo) (E.32)
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E.2. On-axis CEP variation of focused, pulsed beams

with

FLF oz, | Lyl (Z/Lo)
H(Zo) = f[HLDH(Z/LD)Q]_LD[1_1+(Z/LD)2]’ (E.33)

The simple expression of (E.32) mean that (E.31) can be expressed as

dé(i)(r)

ED(Zy,t lE(Z + H(Zy) ] Gp.o(Zo)explippo(Zo)]

(E.34)
(T + H(Z0))Gp,0(Zo)explipp,o(Zo)] ,

where in the second step the f(z + th) ~ f(z) + (df(z)/dz)ch + ... expansion for the
expression in square brackets is used. The meaning of the above is that for focused
Gaussian beams in the first-order approximation of envelope reshaping means that the
complex envelope has to be taken at a time shifted by tH(Zy). The complex time shift
means that the pulse is chirped. Let us assume that the complex envelope £ (1) of the

input pulse is a chirped Gaussian pulse written as
&(i T min
ED(r) = G’Texp [-T} , (E.35)

where

b = TG in — 2.C, (E.36)

TG min being the transform-limited Gaussian duration and C' is a second order phase
derivative giving a temporal chirp of the pulse, originating from, for example, not full
compensation of lens material (see (E.21)). The envelope has been given in the form
of (E.35) for later convenience, but it can be easily seen that it equals to the complex
envelope of a chirped Gaussian pulse written in Appendix A.1 (without the carrier term
exp|up(wo) — wot] of (A.10) it equals to (E.35) with T ,;, = 2/0® and C' = GDD). Using
that
1 2C/TE i

1
= 4,/ min E.
T L T3 7 (B:37)

1+ 20
Tg},min

is the square of the Gaussian duration of the chirped Gaussian pulse, it can be shown
that the substitution of (E.35) into (E.34) gives

where

T(z} = T(_%,min (E38)

5 TG mi HQ(Z ) 1 2C 2
() ~ Zomin 0 —
’5 (Zo,t)’ = expl (2; N ] exp 3 ( 3 mH(ZO)> Gpo(Zo). (E.39)

187



E.2. On-axis CEP variation of focused, pulsed beams

The above means that the distortion of the real envelope of a chirped, pulsed Gaussian
beam on axis due to focusing — which is relevant regarding the CEP — is a Zj-dependent

temporal shift of the envelope given by

2C
T2

G,min

AT(Zy) = H(Zy) . (E.40)

The phase of the complex envelope (E.34) similarly can be shown to be

20 H2(Z,)
Tg},min Tg},min

arg[EV)(Zy,1)] ~ po(Zy) ~ vpo(Zo) . (E.41)
The second term of the previous expression is second order in H(Zy), so can be disregarded
in this first-order theory, meaning that the phase change of the complex envelope due to
the time shift (E.40) is negligible.

The above findings on the complex envelope means that the results of the zeroth-order
approximation of the previous section only have to be extended by taking into account the
temporal shift of the envelope peak, giving a CEP shift of Ay = —woA7 (compare (E.23)
with (E.39) and (E.41)). So the on-axis CEP change during propagation of a focused,

pulsed Gaussian beam with chirped Gaussian envelope is given by

ApcEp tot(Zo) = Apcrr(Zo) + Ape(Zy) , (E.42)

where Apcgp is given by (E.28),
Apc = —wo (AT(Zo) — AT(0)) , (E.43)

and the change of the CEP is again the change from its value in the geometrical focus.
Substituting (E.40) into (E.43) gives

ASOC(ZO) =

20 ([ Zo/Lpyo (Zo/Lpy)? (E.44)
TG min P14 (Zo/Lpo)> “"1+(Zy/Lpp)?) "’ .

with g, and 7, given by (3.53)and (3.54), respectively. Substitution of (E.44) and (E.28)
into (E.42) gives (3.49).

It is to be noted that while the shape of a pulse with Gaussian spectrum and third
order phase derivative can be derived analytically (see Appendix A.1), the above theory
can not be extended to that case. The reason is simply the following. For the Airy
function with complex argument in (A.24) the maximum of the envelope is not possible
to be obtained analytically, like it can be done for a chirped Gaussian pulse given by

(E.39). Analytical expressions for other types of beams than Gaussian might be possible
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E.2. On-axis CEP variation of focused, pulsed beams

to obtain, depending on the shape of Gp o(Zy), whether it gives the possibility of a similar

simplification like (E.34) for focused Gaussian beams or not.
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APPENDIX

F

Changes of the instantaneous polari-

zation state during propagation

F.1 Polarization-state changes with first-order the-

ory of beam propagation

In the following the calculations of M. A. Porras are summarized which show what simple
rules govern the instantaneous polarization-state changes in the first order theory of beam
propagation /focusing [T6]. The aim is to obtain simple formulas on how the orientation
W) (7) and ellipticity x®)(7) of the instantaneous polarization ellipse of the propagated
pulse relate to the same properties of the source pulse (V¥ (7) and xV(7)). When the
left- and right circularly polarized components are the expansion basis for the polarization
state, according to (A.45) the instantaneous orientation of the propagated field can be

expressed as
20 (x,m) — ¢ (. 7)
2 )

U (p,7) = (F.1)

where g&fﬁ) (r, 7) are the temporal phases of the right- and left components. If one expresses

the temporal phases of each component with the first-order theory of Section 2.3.4 (see
(2.68)) and substitutes into (F.1), the result is

2 Go(r) dr dr ’
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F.1. Polarization-state changes with first-order theory of beam propagation

where, following Section 2.3.4, A;.(7) are real temporal envelopes and G(r) describes the
beam amplitude. Using that the first term in (F.2) equals to W@ (7) and applying the
linearity of derivation and the identities of logarithm on the second term one can arrive
to

| 1G)(r) 1 dAD(T) o dAP(7)
(p) ~ ) - 70 r @y _ A0 !
U (r,7) > W (1) + 2 Go(r) Al(i)(T)Ay(j)(T) dr Ay (1) = A0(7) dr , (F.3)
Based on the definition (A.55)
d tan|x® (1 (i) , . (4)
dr [Al(z)(T) —f—AQ)(T)} dr dr

. 2 . . 2
Substituting (F.4) into (F.3) and using that {A%}(T)} = 0.5 {Al(z)(T) +A1(f)(7')} (see
(A.52)) the instantaneous orientation of the propagated pulse’s polarization ellipse is
% 2 i
1g)(r) |[AM(T)] dtan [xO(7)]

o) ~ p ) S ' '
(r,7) (1) + 2 Gy(r) Al(’)(T)AS}) (1) dr

(F.5)

It can be shown that (AE\?(T))2 / (2Al(i)(T)A7(f) (T)) =1/ (1 — tan? {X(i)(T)D, so (F.5) is
equal to (3.66).
To similarly evaluate the ellipticity of the propagated pulse one needs the following

identities which can be obtained with simple algebra from expressions of Appendix A.2.2:

Pr(1) = Qu(7) £ 9(7), A7) = Puu(7) — ¥(7), (F.6)
) = MO EEOM) ) M) = OMatr)
Following the definition of x(7) one can get from (A.55), (A.52) and (A.54) that
AP (p, 7
tan[x(p)(r, 7')} = sgn[x(p)(r, 7)} AS\]/O[)EI‘,T; : (F.8)

so the size of the semi-major and semi-minor axes has to be determined to get the ellipticity

of the propagated pulse. According to (A.52) the semi-major axis is

AP (r, ) + AP (r, 7)

V2

AL e, 7) = (F.9)

Expressing the real envelopes A%)(I',T) with the first-order theory (see (2.67)) in the

191



F.1. Polarization-state changes with first-order theory of beam propagation

previous expression and utilizing (F.6) and (F.7) results in

A0 (e. ) 25T [ Gy (r) d@ﬁ&’(ﬂ]

2 “PITGr)  dr
1) AU (1 . , ,
9 {exp [_ AR )] (AD () +san[xO(] AQ () (F10)
Gi(r) AU (7 i ; :
v [+ L (ahr) - sy (o) |

The above expression can be simplified with the Taylor-series expansion exp[z] = 1+z+. ..

of the exponential terms in the curly brackets, giving

' (r) Ao (7 , ! (r @ (r ‘ ,
Ag’})(r,T) ~ Qo(r)exp[ Go(r) dpp( )] {AS\?(T) _ Go(r) dW( )sgn[x(z)(T)} A(’)(T)} .

CGo(r)  dr Go(r) dr m
(F.11)
The same way the semi-minor axis can also be evaluated, resulting in
/ A (9)
sgn [X(p)(r7 7-)] Agﬁ)(r, T) == Go(r)exp [— gogg dSOS/IT(T)}
’ o (F.12)
i i Go(r) AV () (4)
«{snxOn)] ag ) - 2E DA}
Substituting (F.12) and (F.11) into (F.8) gives
. . ! (@) .
tan x5, )] s 1] 4) - S i |
O(I') dr (F 13)
) )

| (r) AU (r | |
S - PO Do) an)}

Extracting A%?(T) from the denominator, applying 1/(1—z) = 14+z+. .. on the remaining

terms of the denominator gives the result

‘ !y (@) (1 ! (p @) (r )
tan{x(”)(rm)] ~ (tan[x(z)(T)] _ Golr) AW )> <1+ Gy (r) AW )tan{x(l)(T)D .

go(l') dr Qg(r) dr
(F.14)
This, by neglecting the quadratic term in G|(r)/Go(r), gives
i Go(r) AW (7) i
tan [X(p)(rﬂ')} ~ tan {X( )(7)} — Qg(r) T (1 — tan? {X( )(T)D : (F.15)

which is equivalent to (3.67). Note that to obtain the approximate formula (F.15) for

the ellipticity of the propagated pulse much more approximations were used than for the
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F.2. Instantaneous polarization attributes of the polarization-gating and the. ..

orientation (F.5). So it is expected that the ellipticity expression is less accurate than the

one for the orientation of the instantaneous polarization ellipse.

F.2 Instantaneous polarization attributes of the po-

larization-gating and the rotating pulse

There are two pulses ideal for visualizing the polarization-state change rules of the first-
order propagation theory (see (3.66) and (3.67)). These state that a polarization-shaped
pulse with time-varying instantaneous orientation is subject to a change in the instanta-
neous ellipticity upon propagation, and vice versa, a pulse with time-varying instantaneous
ellipticity will suffer a modification of the instantaneous orienation while propagating. So
a pulse that has a time-varying orientation but time-independent ellipticity, and one of
which the ellipticity changes with time and the orientation is constant can picture expres-
sion (3.66) and (3.67) nicely. The polarization-gating pulse and the rotating pulse, which

are good examples for this, can be both examined analytically.

The polarization-gating pulse As discussed in Section 3.4.1, the polarization-gating
pulse consists of two circularly polarized components with opposite helicity that are de-
layed in time with respect to each other. So it can be given as

- 1.

At
E(t) = 5Epulse (t + 2) (uy + tuy) +

N | —

- At
pulse (t — 2) (uy — wuy), (F.16)

where Eyuse(t) = E(t)exp[—wwpt] is a pulse shape, At is the mentioned delay. In the
simple empirical picture of how the polarization-gating pulse is generated experimentally,
the above formula can be verified to give a pulse shape that is equivalent to the one used
for isolated attosecond pulse generation [39]. In the experiments, a linearly polarized
short pulse with normal incidence passes through a higher-order quarter-wave plate. The
polarization of the pulse makes an angle of 45° with the optical axis of the birefringent
plate. This produces two pulses with perpendicular polarization and which are delayed
with respect to each other. The delay is caused by the different dispersion properties of
the principal refractive indexes which result in different group delays. Simultaneously,
the quarter-wave plate introduces a phase shift of 7/4 between the two carrier waves. In
the temporally overlapping region the polarization is circular behind this first quarter-
wave plate. Then a second, zeroth-order quarter-wave plate is used. The angle of the
optical axes of the two waveplates is 45°. Passing through this second plate the two
delayed, linearly polarized pulses are converted to circularly polarized, as they are both

in 45° with the optical axis of the second waveplate. Since they make an angle with
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the optical axis in an opposite direction, they are circularly polarized with the opposite
helicity. It is easy to see, and is verified by the expressions below, that the first plate does
not have to be a quarter-wave plate, its role is to produce two delayed, perpendicular,
linearly polarized components. In reality, of course, the two components are not perfectly
circularly polarized, but elliptically, and they do not have the same Epulse(t) pulse shape.

By comparing (A.44) with (F.16) it can be seen that the complex envelopes of the

left- and right circular components are

() = \}§A<t + A;) exp [a@ (t + A;ﬂ exp [—MOA;] , (F.17)

E(t) = \}§A<t — A;) exp [Lgﬁ (t — A;)] exp [—Hwoét] , (F.18)

where the complex envelopes have been decomposed to real envelopes and phases, like in
(2.3). Let us choose the pulse shape E’pulse(t) as a linearly chirped Gaussian pulse, so the

real envelope is

t2
G
while the real temporal phase is
C
B(t) = — 5t (F.20)
G

obtained from (3.73). With the above ¢(t) substituted into (F.17) and (F.18) one can get

the orientation of the chirped, Gaussian, polarization-gating pulse using (A.45), giving

. At CyAt
V() = “wo + ot (F.21)
2 T2

The above is a time-independent quantity if C, = 0, as it is mentioned in Section 3.4.1.
Similarly, using (A.55) on the amplitudes of the complex envelopes (F.17) and (F.18) one
can get the ellipticity as

At — At/2) — At + At/2)
At — At/2) + A(t + At/2)

At 2 A tAt
Alt+ =] = - F = F.2
( 2) expl Te aTg "t Té] ’ (F.23)

tan [x ()] = (F.22)

Since

the ellipticity of the polarization-gating pulse is

tAt

tan [x7 ()] = tanh [Té] . (F.24)
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The derivative of tan [X(i)(r)} with respect to local time 7 (for the initial pulse t = 7,
since the group delay is zero, see definition (2.63) of the local time), which is necessary for

the orientation of the propagated pulse according to (3.66), is (using hyperbolic identities)

dtan {X(i) (7')} TAt]\ At
S a2 | T2 ) 2 F)
i - ) w2

Substitution of (F.25) and (F.24) into (3.66) gives

Gi(r) At

®) (7} ~ g —
W) = W) + S

(F.26)

which is a constant shift, and in the far field with G{(r)/Go(r) = 1/wp results in (3.72).
With the time derivative of (F.21) the propagated ellipticity using (3.67) is

TAt]  Gi(r) TAt]\ CiAt
tan[x(i)(T)]

In practical cases the second term is much smaller than the first in (F.27) which means
that there is almost no change in the instantaneous ellipticity of a chirped, Gaussian,
polarization-gating pulse upon propagation (see Figure 3.24). This is without doubt true
for the transform-limited pulse (CA’t = 0). While it is only done for Gaussian here, other

real envelope shapes A(t) can be treated analytically as well.

The rotating pulse Similarly to the case of the polarization-gating pulse it can be
shown that in the left- and right circularly polarized representation the rotating pulse of
Section 3.4.1 is

Ei(t) = aiEpuse(t)exp|—twat] | (F.28)
+(t) = ar Fpuse(t) (F.29)

which verifies the description given previously that this pulse consists of circularly po-
larized components of opposite helicity with different amplitudes (¢; and a,) and carrier
frequencies (wy + wy and wy, where wy < wp). Substituting the real envelopes and phases
of (F.28) and (F.29) into (A.45) and (A.55) gives

w) () = £ (F.30)
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and

@) = &~ @
tan{x } =T a (F.31)

irrespective of the exact shape of Epue(t) = £(t)exp[—wwpt]. Using (3.67) the ellipticity
of the propagated pulse is given by

tan [X(p)] ~ tan [X(i)} — Go(r) d (1 — tan? [X(i)D : (F.32)
go(r) 2

In the far field with an other approach an approximate analytical expression can be given.

Using that Gyl guq ~ 1/wo the propagated amplitudes of the components are a?) ~ wya,

and a” ~ (wo + wy)a;. Substituting this into (A.55) definition of the ellipticity gives

ton [X(p)} . Wolr — (wo + wa)ay = ajexplwa/wo] 7 (F.33)
woty + (Wo +wa)a;  ar + aexplwg/wo)
where in the second step the exp[z] = 1+ = + ... approximation was used from right

to left, as wy < wp. This analytical formula nicely reproduces the ellipticity obtained
with numerical calculations. The instantaneous orientation of the rotating pulse does not

change during propagation according to (3.66), as (F.31) does not depend on time.
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