EDITORIAL BOARD

ESTEEM ACADEMIC JOURNAL
VOLUME 12, NUMBER 1, JUNE 2016
Universiti Teknologi MARA Cawangan Pulau Pinang

ENGINEERING, SCIENCE & TECHNOLOGY

ADVISORS
Tan Sri Prof. Ir. Dr. Sahol Hamid Bin Abu Bakar, FASc
Assoc. Prof. Dr. Mohd Fozi Ali

PANEL OF EDITORS
Dr. Maryam Farooqui (Managing Editor)
Dr. Chang Siu Hua (Chief Editor)
Dr. Ong Jiunn Chit (Technical Editor)
Muriatul Khusmah Musa (Language Editor)
Rasaya A/L Marimuthu (Language Editor)

PANEL OF REVIEWERS
Prof. Dr. Low Heng Chin (Universiti Sains Malaysia)
Assoc. Prof. Dr. Aidah Jumahat (Universiti Teknologi MARA Shah Alam)
Assoc. Prof. Dr. Solehuddin Shuib (Universiti Teknologi MARA Shah Alam)
Dr. Maryam Farooqui (Universiti Teknologi MARA Cawangan Pulau Pinang)
Dr. Mohd Hisbany Mohd Hashim (Universiti Teknologi MARA Shah Alam)
Dr. Nor Aziyah Bakhari (Universiti Teknologi MARA Cawangan Pulau Pinang)
Dr. Nor Bahiah Ahmad (Universiti Teknologi Malaysia)
FOREWORD

It is with great pleasure that we unveil the twelfth (12th) volume and issue number one (1) of ESTEEM Academic Journal (EAJ) – an online peer-refereed academic journal which publishes scientific and professional research articles and reviews in the fields of engineering, science and technology. We have included five (5) articles in this issue, four (4) of which were contributed by authors from UiTM Cawangan Pulau Pinang and one (1) from USM. The articles cover a wide range of topics in the fields of civil engineering, applied sciences, computer and math science, as well as pharmacy, all of them being interesting and innovative. We are enthusiastic about the articles published in this issue and hope you would enjoy reading it as much as we did.

EAJ would not exist without the continued support of the top management of UiTM Cawangan Pulau Pinang. Therefore, we would like to grab this opportunity to extend our sincere appreciation and utmost gratitude to Assoc. Prof. Dr. Mohd Fozi Ali, Rector of UiTM Cawangan Pulau Pinang, Dr. Mohd Mahadzir Mohammud @ Mahmood, Deputy Rector of Academic Affairs and Dr. Nor Aziyah Bakhari, Deputy Rector of Research, Industry, Community & Alumni Network for their generous support towards the successful publication of this issue. Not to be forgotten also are the constructive and invaluable comments given by the eminent panels of reviewers and language editors who have worked assiduously towards ensuring that all the articles published in this issue are of the highest quality. In addition, we would like to thank the authors who have submitted articles to EAJ, trusting Editors and Editorial Board and thus encouraging many more authors to submit their articles to us. Last but not least, a special acknowledgement is dedicated to those members of the Editorial Board who have contributed to the making of this issue and whose work has increased the quality of articles published in this issue.

Dr. Chang Siu Hua
Chief Editor
ESTEEM Academic Journal
Vol. 12, No. 1 (2016)
(Engineering, Science & Technology)
CONTENTS OF JOURNAL

1. Prediction of PM$_{10}$ extreme concentrations in selected industrial monitoring stations in Malaysia using Extreme Value Distribution (EVD): Classical and Bayesian approaches
   Hasfazilah Ahmat, Ahmad Shukri Yahaya and Nor Azam Ramli
   1

2. Adhesion properties of Styrene-Butadiene rubber-based adhesive crosslinked by Benzoyl Peroxide
   B. T. Poh and F. N. Hasim
   11

3. Interactive assistance for teaching C++ array topic to novice learners
   Naemah Abdul Wahab, Jamal Othman and Saiful Nizam Warris
   22

4. Role of Hydrogen Sulfide (H$_2$S) in cell signaling and atherosclerosis: A review
   Mohd Izani Othman
   30

5. Ductility performance of Thin-Walled Composite-Filled (TWFC) beam at internal support
   Mohd Asha’ari Masrom
   38
INTERACTIVE ASSISTANCE FOR TEACHING C++ ARRAY TOPIC TO NOVICE LEARNERS

Naemah Abdul Wahab¹, Jamal Othman² and Saiful Nizam Warris³

¹,²,³ Department of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, MALAYSIA.
¹naema586@ppinang.uitm.edu.my; ²jamalothman@ppinang.uitm.edu.my; ³saifulwar@ppinang.uitm.edu.my

ABSTRACT

Previous research has suggested that teaching and learning computer programming to novice learners; particularly engineering students is a very challenging task. The complex nature of programming subject, lack of problem solving skills and misunderstanding of programming syntax and semantics are a few of the possible reasons of learner’s negative stereotypes and difficulties with programming subject. Many researchers found that engineering students can be categorized under the “visual learner” side of the Felder-Silverman Learning Styles Model. However, the mismatches that exist between the learner’s learning styles and traditional text-based programming language and auditory teaching approach contribute to misunderstanding, strong dislike and poor performance of students in programming subject. As programming novices prefer to comprehend visually, this study investigates the effectiveness of using interactive teaching aid as a tool in improving programming understanding specifically designed for novice learners, focused only in array topic in C++ introductory course. Initial results show that the learning performance and program comprehension on array C++ topic improved after using the teaching aid.

Keywords: teaching aid in C++; C++ array topic; programming in C++ for novice learners.

1. INTRODUCTION

At present, computer science has been applied in various fields of study, including engineering area. Realizing its importance, many branches of engineering studies require their students to take introductory programming as one of the compulsory courses in their study plan. One of the fundamental programming languages that act as basis in learning advanced computer program is C++.

Basic programming languages are taught using text-based language that requires student to write programming statements in an editor. The completed program will be compiled and interpreted using programming software. However, learning programming language, specifically for novice learners is not an easy task. Rist (1996) as stated by Abid (2011) identified that novice learners are lack in professional and expert skills in programming language.
Traditional auditory lecturing and text-based teaching materials are the main reasons of learner’s lack of ability to comprehend computer programming. Many previous research studies including Bucks and Oakes (2008) ruled out that engineering students fall on the “visual learners” category of Felder-Silverman Learning Styles Model. In addition, Myers (1988) pointed out that some difficult programming concepts are better explained visually through pictures, diagrams and etc. Chang (2011) mentioned that the application of animation, multimedia and visualization for the development of learning tools are used in programming courses to enhance programming comprehension.

The main problem of learning programming among engineering students is understanding the logic of the problem statements. Misunderstanding the problem statement leads to incorrect implementation of programming structures or methods. Moreover, the level of logical thinking among engineering students is still considered as slightly average. Other problems of learning programming as stated by Abdel Rahman, et. al. (2016), are multi different accent of English language among programming lecturers, lack of attractive techniques in teaching approaches and insufficient appropriate programming materials. Therefore, interactive teaching aid is used as a tool to comprehend programming understanding.

For that reason, this study created a teaching aid focused on array topic in C++ introductory course specially designed for novice learners as a tool to improve program understanding, specifically the array data structure concept. The array topic has been chosen for this procedure in order to measure the learning ability of engineering students. Array topic is a core or backbone of all the previous topics that have been taught by the lecturers. The basic control structures such as selection or repetition and structured programming such as function or procedural concept applies the implementation of array data structures as an important element in C++ programming. If the students are able to comprehend and grab easily the concepts of array topic, we can conclude that the students have succesfully understand the entire topic of programming fundamentals. Failure to understand the array concepts can possibly imply that the students do not grab the understanding of the earlier topics such as selection, repetition and functions.

Figure 1 illustrate the framework of conducting the lectures in the programming classes. The framework in Figure 1 shows that the students should be able to understand clearly the previous topic before they can proceed to the next topics. Students are advisable to return to the prior topic if they failed to understand the current topic.
Based on all the motivation above, a simple teaching aid focused on array topic in C++ introductory course is developed using Java Script language. A questionnaire was designed and used as an evaluation procedure to assess on the benefits and effectiveness of the teaching aid. The following section discusses the details of the related work, evaluation procedure, results and findings of the study.

2. RELATED WORK

As mentioned by Abid (2011) in his study, a C++ programming course usually includes basic programming syntax and semantics, programming concepts such as declarations, math’s operations, control structures, arrays, functions, programming logic and application of problem-solving strategies using computer language.

In improving the understanding of computer program and programming languages, learners must be able to view a program code in different ways. Inability of visualizing a valid mental model of computer program contributes to student’s low capability in programming comprehension and skills, lack of interest in the subject and poor grades. In addition, the traditional auditory lecturing and text-based teaching materials also contributed to the learner’s lack of ability to comprehend computer programming.

Many previous researches including Bucks and Oakes (2008) ruled out that engineering students fall on the “visual learners” category of Felder-Silverman Learning Styles Model. This is the reason why Myers (1988) recommended programming subject instructors to explain some difficult programming concepts visually through pictures, diagrams and etc. Furthermore, Chang (2011) has also suggested that the application of animation, multimedia and visualization for the development of learning tools be used in programming courses to enhance programming comprehension.

The latest research on learning tools development for introductory programming courses was done by Tuparov et. al (2014). He had developed the interactive simulation-based learning objects (LOs) in an introductory course of programming, focusing on sorting and searching algorithms. Other than that, Abid et. al (2011) proposed a computer aided language software as a teaching and learning tool for students to understand the fundamental concepts in programming. In addition, Major et. al (2011) used robots as tools in teaching of introductory programming to novice learners, whereas Bucks and Oakes (2008) explored graphical programming languages in teaching introduction to programming concepts to learners. Other research studies in the same field were also carried out by Cooper et. al (2000) and Hulls et. al (2005). Cooper et. al (2000) used a 3-D interactive animation environment called ALICE as a tool to actively engage students to comprehend fundamental of programming concepts while Hulls et. al (2005) created an interactive online tutorial assistance for a first year programming course.

Having taken the suggestions of previous studies into account, the researchers of the study have created an interactive assistance using web tool to address one of the difficult concepts in programming which was Array data structures.
3. EVALUATION PROCEDURE AND WEB TOOL SAMPLE

Fifty nine students in the second and third year Bachelor of Civil Engineering (Infrastructure) programme, Universiti Teknologi MARA, Pulau Pinang participated in the study towards the end of semester in 2014 after the C++ Array topic was taught. The respondents were given the opportunity to use the teaching aid as shown in Figure 2 before questionnaires were distributed.

The questionnaire which comprised of 21 questions was uploaded on the web before conducting the survey. The questions in the study consisted of three parts: student’s profile, student’s perception on the topic of array after the tools was tested and student’s perception on the tools features. All of the respondents completed the questionnaires. Therefore, the number of valid data maintained as 59. The subjects were categorized as novice learners because they had learned programming languages for the second time but it was their first experience learning array topic in C++. The respondents learned C++ programming in their fourth semester. While conducting the survey, the instructor clearly explained the instruction for each of the questions and allocate sufficient time for the respondents to answer the questions. It took about ten minutes for the students to complete the survey.

4. RESULT AND DISCUSSION

Generally, by referring to Figure 3, about 83% of the respondents were categorized as beginners with moderate skills in C++ programming. These students were from Matriculation and Diploma program.

The survey also indicates that almost all the students have basic knowledge and skills in C++ programming. However, Array topic was not covered in the syllabus during their matriculation and diploma program. Array is an introduction of basic data structure for most of the Bachelor program at tertiary level.
Interestingly, positive feedback was given by all respondents after the non-functionality testing was carried out on the interactive web tools.

Table 1 shows approximately more than 70% of the respondents acknowledged that the web tools had improved their knowledge and confidence level on the Array topic. Yet, almost 38% of the respondents were unable to relate the usefulness of this web tool in creating the awareness on the importance of learning Array topic as well as its application. This result significantly influenced by the scope of the problem-solving project developed by some of the students.

Group project is one of the assessments for most C++ programming courses offered. The project scope and requirements should include the application of basic control structure such as selection and repetition, variables declaration as well as the used of Array data structures. Unfortunately, there were groups of students who were incapable to accomplish some requirements of group project especially the application of Array data structures in their C++ program. These were the students who contributed to the 38% of the respondents that were unable to appreciate the importance of Array data structure application in problem-solving.

Table 1 : Non-functionality Testing on Interactive Web Tools.

<table>
<thead>
<tr>
<th>NO.</th>
<th>QUESTION</th>
<th>*LEVEL OF SATISFACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>The tools make the student easy to understand the basic declaration of Array.</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>The tools increase confidence level towards the topic of Array.</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>The tools improve my knowledge on the topic of Array.</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>The tools create the awareness on the importance of Array in my life.</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>The tools help the student on how to apply Array in the real problem.</td>
<td>-</td>
</tr>
</tbody>
</table>

*1 – Extremely Disagree, 2 – Disagree, 3 – Neutral, 4 – Agree, 5 – Extremely Agree
Figure 4 show that approximately 73% of the respondents understand the basic declaration of Array in C++ programming.

![Figure 4: The Pie Chart of Students’ Understanding on Basic Declaration of Array in C++](image)

The web tools assisted them to comprehend better on the concept of array declaration using different data types, through online interactive visual examples. The students were guided theoretically about 45 minutes by an instructor before the interactive web tools were used and tested by them. They were given 30 minutes to practise and familiarise themselves with the web tools. Towards the end of the class session, simple quiz on Array topic was given to the students and the student’s marks obtained from the quiz were extremely high. This result indicates that the web tools aid the students in basic Array declaration and knowledge comprehension.

Functionality and usability testing on the web tools were also conducted by the same group of students. Figure 2 shows the interactive web tools that have been tested and evaluated. Table 2 shows the summary analysis table on the usability and functionality test that has been conducted.

<table>
<thead>
<tr>
<th>USABILITY &amp; FUNCTIONALITY TEST</th>
<th>AVERAGE</th>
<th>MODE</th>
<th>MEDIAN</th>
<th>STANDARD DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The web tools are easy to use</td>
<td>3.94</td>
<td>4</td>
<td>4</td>
<td>0.6327</td>
</tr>
<tr>
<td>2. The interface is friendly</td>
<td>3.94</td>
<td>4</td>
<td>4</td>
<td>0.5981</td>
</tr>
<tr>
<td>3. The language is easy to understand</td>
<td>4.02</td>
<td>4</td>
<td>4</td>
<td>0.4371</td>
</tr>
<tr>
<td>4. The web tools are informative</td>
<td>3.88</td>
<td>4</td>
<td>4</td>
<td>0.6058</td>
</tr>
<tr>
<td>5. The web tools encourage the user practices more exercises</td>
<td>3.85</td>
<td>4</td>
<td>4</td>
<td>0.6520</td>
</tr>
<tr>
<td>6. I would like to introduce the web tools to others</td>
<td>3.90</td>
<td>4</td>
<td>4</td>
<td>0.5921</td>
</tr>
</tbody>
</table>

The analysis from Table 2 is illustrated in the Figure 5.
The Likert scale from 1 to 5 was used to evaluate the usability and functionality of the web tools. Only six (6) questions that were relatively connected to non-functionality testing were selected to be discussed further.

Positive responses were achieved from the functionality testing that was conducted. More than 80% of the respondents were satisfied with the web tools functionality. The respondents claimed that the web tools were easy to use and decided to recommend this tool to other students in UiTM branches and faculties. 75% of the respondents agreed that the web tools were informative and facilitated the students in mastering Array topic since it encouraged the students to practise more examples.

5. CONCLUSION

The engineering learners’ visual learning styles that are not align with programming language text-based structure and in addition to the textual and auditory teaching methods contribute to misunderstanding, lack of program comprehension, inattentiveness and poor performance of students in programming subject. Many earlier and current research studies explored on computer visualization approaches and tools to create effective and enhance the understanding of programming. In order to address this issue, a teaching aid was developed, focusing on array topic in C++, as a tool to assist the teaching and learning process of programming concepts. Functional, non-functionality as well as usability testing on this web tool were also conducted through questionnaires distributed to the engineering students. The initial results show a positive response from the respondents of this study and optimistic impact on students’ programming comprehension and learning skills. In addition, this teaching aid should also serve as a resourceful assistance to educators in the process of teaching basic concepts in introductory programming course.

REFERENCES


