Minimal immersions of Riemannian manifolds in products of space forms

http://www.producao.usp.br/handle/BDPI/50303

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Minimal immersions of Riemannian manifolds in products of space forms

Fernando Manfioa,\ast, Feliciano Vitóriob

a ICMC, Universidade de São Paulo, São Carlos – SP, 13561-060, Brazil
b IM, Universidade Federal de Alagoas, Maceió – AL, 57072-900, Brazil

\textbf{Article history:}
Received 14 May 2014
Available online 11 November 2014
Submitted by H.R. Parks

\textbf{Keywords:}
Minimal immersions
Isometric immersions
Riemannian product of space forms

\textbf{ABSTRACT}

In this paper, we give natural extensions to cylinders and tori of a classical result due to T. Takahashi \cite{8} about minimal immersions into spheres. More precisely, we deal with Euclidean isometric immersions whose projections in \mathbb{R}^N satisfy a spectral condition of their Laplacian.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

An isometric immersion $f: M^m \to N^n$ of a Riemannian manifold M in another Riemannian manifold N is said to be \textit{minimal} if its mean curvature vector field H vanishes. The study of minimal surfaces is one of the oldest subjects in differential geometry, having its origin with the work of Euler and Lagrange. In the last century, a series of works have been developed in the study of properties of minimal immersions, whose ambient space has constant sectional curvature. In particular, minimal immersions in the sphere S^n play an important role in the theory, as for example the famous paper of J. Simons \cite{7}.

Let $f: M^m \to \mathbb{R}^n$ be an isometric immersion of an m-dimensional manifold M into the Euclidean space \mathbb{R}^n. Associated with the induced metric on M, it is defined the Laplace operator Δ acting on $C^\infty(M)$. This Laplacian can be extended in a natural way to the immersion f. A well-known result by J. Eells and J.H. Sampson \cite{3} asserts that the immersion f is minimal if and only if $\Delta f = 0$. The following result, due to T. Takahashi \cite{8}, states that the immersion f realizes a minimal immersion in a sphere if and only if its coordinate functions are eigenfunctions of the Laplace operator with the same nonzero eigenvalue.

\textbf{Theorem 1}. Let $F: M^m \to \mathbb{R}^{n+1}$ be an isometric immersion such that

$$\Delta F = -mcF$$

\ast Corresponding author.

E-mail addresses: manfio@icmc.usp.br (F. Manfio), feliciano@pos.mat.ufal.br (F. Vitório).

http://dx.doi.org/10.1016/j.jmaa.2014.11.013

0022-247X/© 2014 Elsevier Inc. All rights reserved.
for some constant $c \neq 0$. Then $c > 0$ and there exists a minimal isometric immersion $f : M^m \to S^n_c$ such that $F = i \circ f$.

O. Garay generalized Theorem 1 for the hypersurfaces $f : M^n \to \mathbb{R}^{n+1}$ satisfying $\Delta f = Af$, where A is a constant $(n + 1) \times (n + 1)$ diagonal matrix. He proved in [4] that such a hypersurface is either minimal or an open subset of a sphere or of a cylinder. In this direction, J. Park [6] classified the hypersurfaces in a space form or in Lorentzian space whose immersion f satisfies $\Delta f = Af + B$, where A is a constant square matrix and B is a constant vector. Similar results were obtained in [1], where the authors study and classify pseudo-Riemannian hypersurfaces in pseudo-Riemannian space forms which satisfy the condition $\Delta f = Af + B$, where A is an endomorphism and B is a constant vector. We would point out that this problem is strongly connected to other related topics as immersions whose mean curvature satisfies a polynomial equation in the Laplacian, biharmonic submanifolds, finite type submanifolds and others. For the last, we refer to [2], where the author discusses the problem of determining the geometrical structure of a submanifold knowing some simple analytic information.

In this work we shall deal with an isometric immersion $f : M^m \to \mathbb{R}^N$ of a Riemannian manifold M^m into the Euclidean space \mathbb{R}^N. If the submanifold $f(M)$ is contained in a cylinder $S^n_c \times \mathbb{R}^k \subset \mathbb{R}^N$ or in a torus $S^n_c \times S^k_d \subset \mathbb{R}^N$, we shall call that the immersion f realizes an immersion in a cylinder or in a torus, respectively. Motivated by recent works on the submanifold theory in the product of space forms [5], we obtain theorems that give us necessary and sufficient conditions for an isometric immersion $f : M^m \to \mathbb{R}^N$ to realize a minimal immersion in a cylinder or in a torus (cf. Theorems 4 and 8).

2. Preliminaries

Let M^m be a Riemannian manifold and $h \in C^\infty(M)$. The hessian of h is the symmetric section of Lin($TM \times TM$) defined by

$$\text{Hess } h(X, Y) = XY(h) - \nabla_X Y(h)$$

for all $X, Y \in TM$. Equivalently,

$$\text{Hess } h(X, Y) = \langle \nabla_X \text{grad } h, Y \rangle$$

where $X, Y \in TM$ and grad h is the gradient of h. The Laplacian Δh of a function $h \in C^\infty(M)$ at the point $p \in M$ is defined as

$$\Delta h(p) = \text{trace Hess } h(p) = \text{div} \text{ grad } h(p).$$

Consider now an isometric immersion $f : M^m \to \mathbb{R}^n$. For a fixed $v \in \mathbb{R}^n$, let $h \in C^\infty(M)$ be the height function with respect to the hyperplane normal to v, given by $h(p) = \langle f(p), v \rangle$. Then

$$\text{Hess } h(X, Y) = \langle \alpha_f(X, Y), v \rangle$$

for any $X, Y \in TM$. For an isometric immersion $f : M^n \to \mathbb{R}^n$, by $\Delta f(p)$ at the point $p \in M$ we mean the vector

$$\Delta f(p) = (\Delta f_1(p), \ldots, \Delta f_n(p)),$$

where $f = (f_1, \ldots, f_n)$. Taking traces in (1) we obtain
\[\Delta f(p) = mH(p), \]

where \(H(p) \) is the mean curvature vector of \(f \) at \(p \in M \).

3. Minimal submanifolds in \(S^n_c \times \mathbb{R}^k \)

Let \(S^n_c \) denote the sphere with constant sectional curvature \(c > 0 \) and dimension \(n \). We use the fact that \(S^n_c \) admits a canonical isometric embedding in \(\mathbb{R}^{n+1} \) as

\[S^n_c = \{ X \in \mathbb{R}^{n+1} : \langle X, X \rangle = 1/c \}. \]

Thus, \(S^n_c \times \mathbb{R}^k \) admits a canonical isometric embedding

\[i : S^n_c \times \mathbb{R}^k \to \mathbb{R}^{n+k+1}. \]

Denote by \(\pi : \mathbb{R}^{n+k+1} \to \mathbb{R}^{n+1} \) the canonical projection. Then, the normal space of \(i \) at each point \(z \in S^n_c \times \mathbb{R}^k \) is spanned by \(N(z) = c(\pi \circ i)(z) \), and the second fundamental form of \(i \) is given by

\[\alpha_i(X, Y) = -c(\pi X, Y)\pi \circ i. \]

If we consider a parallel orthonormal frame \(E_1, \ldots, E_{n+k+1} \) of \(\mathbb{R}^{n+k+1} \) such that

\[\mathbb{R}^k = \text{span}\{E_{n+2}, \ldots, E_{n+k+1}\}, \]

we can express the second fundamental form \(\alpha_i \) as

\[\alpha_i(X, Y) = -c \left(\langle X, Y \rangle - \sum_{i=n+2}^{n+k+1} \langle X, E_i \rangle \langle Y, E_i \rangle \right) \pi \circ i. \]

(4)

The following result shows that minimal immersions of an \(m \)-dimensional Riemannian manifold into the cylinder \(S^n_c \times \mathbb{R}^k \) are precisely those immersions whose \(n+1 \) first coordinate functions in \(\mathbb{R}^{n+k+1} \) are eigenfunctions of the Laplace operator in the induced metric.

Proposition 2. Let \(f : M^m \to S^n_c \times \mathbb{R}^k \) be an isometric immersion and set \(F = i \circ f \), where \(i : S^n_c \times \mathbb{R}^k \to \mathbb{R}^{n+k+1} \) is the canonical inclusion. Let \(E_1, \ldots, E_{n+k+1} \) be a parallel orthonormal frame of \(\mathbb{R}^{n+k+1} \) as in (3). Then \(f \) is a minimal immersion if and only if

\[\Delta F = -c \left(m - \sum_{j=n+2}^{n+k+1} \|T_j\|^2 \right) \pi \circ F, \]

(5)

where \(T_j \) denotes the orthogonal projection of \(E_j \) onto \(TM \).

Proof. The second fundamental forms of \(f \) and \(F \) are related by

\[\alpha_F(X, Y) = i_\ast \alpha_f(X, Y) + \alpha_i(f_\ast X, f_\ast Y) \]

for all \(X, Y \in TM \). From (4) we get that

\[\alpha_F(X, Y) = i_\ast \alpha_f(X, Y) - c \left(\langle X, Y \rangle - \sum_{j=n+2}^{n+k+1} \langle X, T_j \rangle \langle Y, T_j \rangle \right) \pi \circ F, \]
where T_j denotes the orthogonal projection of E_i onto TM. Taking traces and using (2) yields

$$\Delta F = m_i H^f - c\left(m - \sum_{j=n+2}^{n+k+1} \|T_j\|^2 \right) \pi \circ F,$$

and the conclusion follows. \square

Remark 3. In case $f : M^m \to S^n_c \times \mathbb{R}$, a tangent vector field T on M and a normal vector field η along f are defined by

$$\frac{\partial}{\partial t} = f_* T + \eta,$$

where $\frac{\partial}{\partial t}$ is a unit vector field tangent to \mathbb{R}. In this case, f is a minimal immersion if and only if

$$\Delta F = -c(m - \|T\|^2) \pi \circ F.$$

The next result states that any isometric immersion of a Riemannian manifold M^m into Euclidean space \mathbb{R}^{n+k+1}, whose Laplacian satisfies a condition as in (5), arises for a minimal isometric immersion of M into some cylinder $S^n_c \times \mathbb{R}^k$.

Theorem 4. Let $F : M^m \to \mathbb{R}^{n+k+1}$ be an isometric immersion and let E_1, \ldots, E_{n+k+1} be a parallel orthonormal frame in \mathbb{R}^{n+k+1} such that

$$\Delta F = -c\left(m - \sum_{j=n+2}^{n+k+1} \|T_j\|^2 \right) \left(F - \sum_{j=n+2}^{n+k+1} \langle F, E_j \rangle E_j \right),$$

for some constant $c \neq 0$, where T_j denotes the orthogonal projection of E_j onto the tangent bundle TM. Then $c > 0$ and there exists a minimal isometric immersion $f : M^m \to S^n_c \times \mathbb{R}^k$ such that $F = i \circ f$.

Proof. Since $\Delta F = mH$ by (2), the assumption implies that the vector field

$$N = F - \sum_{j=n+2}^{n+k+1} \langle F, E_j \rangle E_j$$

is normal to F. On the other hand,

$$\langle N, E_j \rangle = \left(F - \sum_{l=n+2}^{n+k+1} \langle F, E_l \rangle E_l, E_j \right) = \langle F, E_j \rangle - \langle F, E_j \rangle = 0$$

for all $n + 2 \leq j \leq n + k + 1$. Hence, for any $X \in TM$ we have

$$X \langle N, N \rangle = 2 \left(F, X - \sum_{j=n+2}^{n+k+1} \langle F, X, E_j \rangle E_j, N \right) = 0,$$
and it follows that \(\langle N, N \rangle = r^2 \) for some constant \(r \). Now we claim that
\[
\Delta \|F\|^2 = 2 \sum_{j=n+2}^{n+k+1} \|T_j\|^2.
\] (6)

To see this, fix a point \(p \in M \) and consider a local geodesic frame \(\{X_1, \ldots, X_m\} \) in \(p \). Then
\[
\text{grad} \|F\|^2 = \sum_{\alpha=1}^{m} X_\alpha (\|F\|^2) X_\alpha = 2 \sum_{\alpha=1}^{m} \langle F_\ast X_\alpha, F \rangle X_\alpha = 2F^T.
\]
Since \(N \) is normal to \(F \), we have
\[
F^T = \sum_{j=n+2}^{n+k+1} \langle F, E_j \rangle T_j = \sum_{j=n+2}^{n+k+1} \sum_{\alpha=1}^{m} \langle F, E_j \rangle \langle E_j, X_\alpha \rangle X_\alpha,
\]
and it follows that
\[
\text{grad} \|F\|^2 = 2 \sum_{j=n+2}^{n+k+1} \sum_{\alpha=1}^{m} \langle F, E_j \rangle \langle E_j, X_\alpha \rangle X_\alpha.
\]
Therefore,
\[
\Delta \|F\|^2 = \sum_{\beta=1}^{m} \langle \nabla_{X_\beta} \text{grad} \|F\|^2, X_\beta \rangle = 2 \sum_{\alpha, \beta=1}^{m} \sum_{j=n+2}^{n+k+1} \langle \nabla_{X_\beta} \langle F, E_j \rangle \langle E_j, X_\alpha \rangle X_\alpha, X_\beta \rangle
\]
\[
= 2 \sum_{\alpha, \beta=1}^{m} \sum_{j=n+2}^{n+k+1} \langle F_\ast X_\beta, E_j \rangle \langle E_j, X_\alpha \rangle \langle X_\alpha, X_\beta \rangle
\]
\[
= 2 \sum_{\alpha=1}^{m} \sum_{j=n+2}^{n+k+1} \langle X_\alpha, T_j \rangle^2 = 2 \sum_{j=n+2}^{n+k+1} \|T_j\|^2,
\]
and this proves our claim. Finally, using the fact that
\[
\Delta \|F\|^2 = 2(\langle \Delta F, F \rangle + m),
\]
we get that
\[
\sum_{j=n+2}^{n+k+1} \|T_j\|^2 = \langle \Delta F, F \rangle + m = \left\langle -c \left(m - \sum_{j=n+2}^{n+k+1} \|T_j\|^2 \right) N, N \right\rangle + m
\]
\[
= - \left(m - \sum_{j=n+2}^{n+k+1} \|T_j\|^2 \right) cr^2 + m,
\]
and the equality above implies that \(c = 1/r^2 \). We conclude that there exists an isometric immersion \(f : M^m \to S^n_c \times \mathbb{R}^k \) such that \(F = i \circ f \), and minimality of \(f \) follows from Proposition 2. □
A simple application of Theorem 1 is to show that the Veronese surface $f : S_{1/3}^2 \rightarrow S^4$, given by

$$f(x, y, z) = \left(\frac{yz}{\sqrt{3}}, \frac{xz}{\sqrt{3}}, \frac{xy}{\sqrt{3}}, \frac{x^2 - y^2}{2\sqrt{3}}, \frac{x^2 + y^2 - 2z^2}{6}\right),$$

is a minimal surface. In this case, it is straightforward to verify that $\Delta f = -2f$. As an application of Theorem 4 we will construct an example into $S^{2n-1} \times \mathbb{R}$.

Example 5. Given two positive integer numbers n and k, with $1 < k < n$, consider the immersion $f : \mathbb{R}^n \rightarrow \mathbb{R}^{2n+1}$ given by

$$f(x_1, \ldots, x_n) = \frac{1}{\sqrt{k}} \left(e^{i\sqrt{k} x_1}, \ldots, e^{i\sqrt{k} x_k}, \sqrt{k} \sum_{j=k+1}^{n} x_j \right).$$

f is an isometric immersion and satisfies the hypothesis of Theorem 4. In fact, in this case, we have

$$\Delta f = -k \left(f - \left< f, \frac{\partial}{\partial t} \right> \frac{\partial}{\partial t} \right),$$

where $\frac{\partial}{\partial t}$ denotes a unit vector field tangent to the factor \mathbb{R}. Therefore, according to Theorem 4, f realizes a minimal isometric immersion into $S^{2n-1} \times \mathbb{R}$.

4. **Minimal submanifolds in the product $S^n_c \times S^k_d$**

Let us now consider two spheres S^n_c and S^k_d with their respective curvatures and dimensions. Using the fact that the spheres admit a canonical isometric embedding $S^n_c \subset \mathbb{R}^{n+1}$ and $S^k_d \subset \mathbb{R}^{k+1}$, the product $S^n_c \times S^k_d$ admits a canonical isometric embedding

$$i : S^n_c \times S^k_d \rightarrow \mathbb{R}^{n+k+2}.$$ \hspace{1cm} (7)

Denote by $\pi_1 : \mathbb{R}^{n+k+2} \rightarrow \mathbb{R}^{n+1}$ and $\pi_2 : \mathbb{R}^{n+k+2} \rightarrow \mathbb{R}^{k+1}$ the canonical projections. Then, the normal space of i at each point $z \in S^n_c \times S^k_d$ is spanned by $N_1(z) = c(\pi_1 \circ i)(z)$ and $N_2(z) = d(\pi_2 \circ i)(z)$, and the second fundamental form of i is given by

$$\alpha_i(X, Y) = -c(\pi_1 X, Y) N_1 - d(\pi_2 X, Y) N_2,$$

for all $X, Y \in T_z(S^n_c \times S^k_d)$.

Now, let $f : M^m \rightarrow S^n_c \times S^k_d$ be an isometric immersion of a Riemannian manifold M^m. Then, writing $F = i \circ f$, the unit vector fields $N_1 = \pi_1 \circ F$ and $N_2 = \pi_2 \circ F$ are normal to F. Consider a parallel orthonormal frame E_1, \ldots, E_{n+k+2} of \mathbb{R}^{n+k+2} such that

$$\mathbb{R}^{n+1} = \text{span}\{E_1, \ldots, E_{n+1}\} \quad \text{and} \quad \mathbb{R}^{k+1} = \text{span}\{E_{n+2}, \ldots, E_{n+k+2}\}.$$ \hspace{1cm} (8)

In terms of this frame, we can express the vector fields N_1 and N_2 as

$$N_1 = F - \sum_{j=n+2}^{n+k+2} \langle F, E_j \rangle E_j \quad \text{and} \quad N_2 = F - \sum_{i=1}^{n+1} \langle F, E_i \rangle E_i.$$ \hspace{1cm} (9)
Proposition 6. Let \(f : M^m \to S^n_c \times S^k_d \) be an isometric immersion and set \(F = i \circ f \), where \(i : S^n_c \times S^k_d \to \mathbb{R}^{n+k+2} \) is the canonical inclusion. Let \(E_1, \ldots, E_{n+k+2} \) be a parallel orthonormal frame of \(\mathbb{R}^{n+k+2} \) as in (8). Then \(f \) is a minimal isometric immersion if and only if

\[
\Delta F = -c \left(m - \sum_{j=n+1}^{n+k+2} \| T_j \|^2 \right) N_1 - d \left(m - \sum_{l=1}^{n+1} \| T_l \|^2 \right) N_2,
\]

where \(T_j \) denotes the orthogonal projection of \(E_j \) onto \(TM \).

Proof. The second fundamental forms of \(f \) and \(F \) are related by

\[
\alpha_F(X, Y) = i_* \alpha_f(X, Y) + \alpha_i(f_* X, f_* Y)
\]

for all \(X, Y \in TM \). Let \(E_1, \ldots, E_{n+k+2} \) be a parallel orthonormal frame of \(\mathbb{R}^{n+k+2} \) as in (8). Given \(X \in TM \), we can write

\[
\pi_1 X = X - \sum_{j=n+1}^{n+k+2} \langle X, T_j \rangle E_j \quad \text{and} \quad \pi_2 X = X - \sum_{l=1}^{n+1} \langle X, T_l \rangle E_l,
\]

and so, we have

\[
\langle \pi_1 X, Y \rangle = \langle X, Y \rangle - \sum_{j=n+1}^{n+k+2} \langle X, T_j \rangle \langle Y, T_j \rangle
\]

and

\[
\langle \pi_2 X, Y \rangle = \langle X, Y \rangle - \sum_{l=1}^{n+1} \langle X, T_l \rangle \langle Y, T_l \rangle.
\]

Then the second fundamental form of \(F \) can be expressed by

\[
\alpha_F(X, Y) = i_* \alpha_f(X, Y) - c \left(\langle X, Y \rangle - \sum_{j=n+1}^{n+k+2} \langle X, T_j \rangle \langle Y, T_j \rangle \right) N_1 - d \left(\langle X, Y \rangle - \sum_{l=1}^{n+1} \langle X, T_l \rangle \langle Y, T_l \rangle \right) N_2.
\]

Taking traces and using (2) yields

\[
\Delta F = m H_f = m i_* H_f - c \left(m - \sum_{j=n+1}^{n+k+2} \| T_j \|^2 \right) N_1 - d \left(m - \sum_{l=1}^{n+1} \| T_l \|^2 \right) N_2,
\]

and the conclusion follows. \(\square \)

Remark 7. Observe that the torus \(S^n_c \times S^k_d \) admits a canonical isometric embedding in the sphere \(S^{n+k+1}_\kappa \), where \(\kappa = \frac{cd}{e+d} \). Therefore, any isometric immersion \(f : M^m \to S^n_c \times S^k_d \) can be seen as an isometric immersion \(\tilde{f} = i \circ f : M^m \to S^{n+k+1}_\kappa \), where \(i : S^n_c \times S^k_d \to S^{n+k+1}_\kappa \) denotes the canonical inclusion.

The next result states that any isometric immersion of a Riemannian manifold \(M^m \) into the sphere \(S^{N-1}_\kappa \subset \mathbb{R}^N \) with constant sectional curvature \(\kappa \), whose Laplacian of the coordinate functions satisfies a condition as in (10), arises as a minimal isometric immersion of \(M^m \) into a product of spheres \(S^n_c \times S^k_d \subset \mathbb{R}^N \).
Theorem 8. Let $F : M^m \rightarrow \mathbb{S}^{N-1}_c$ be an isometric immersion. Fixed a choice of two integers n and k, with $N = n + k + 2$, let E_1, \ldots, E_N be a parallel orthonormal frame in \mathbb{R}^N as in (8) such that

$$
\Delta \tilde{F} = -c \left(m - \sum_{j=n+2}^{n+k+2} \|T_j\|^2 \right) N_1 - d \left(m - \sum_{i=1}^{n+1} \|T_i\|^2 \right) N_2,
$$

where $\tilde{F} = h \circ F$, $h : \mathbb{S}^{N-1}_c \rightarrow \mathbb{R}^N$ is the umbilical inclusion, T_i denotes the orthogonal projection of E_i onto TM, N_1 and N_2 are as in (9), and c and d are real numbers such that $\kappa = \frac{cd}{c+d}$. Then there exists a minimal isometric immersion $f : M^m \rightarrow \mathbb{S}^n_c \times \mathbb{S}^k_d$ such that $F = i \circ f$.

Proof. We first prove that N_1 and N_2 are normal to F. In fact, in terms of an orthonormal frame $\{X_1, \ldots, X_m\}$ of TM, we have

$$
\sum_{i=1}^{N} \|T_i\|^2 = \sum_{i=1}^{n+1} \|T_i\|^2 + \sum_{j=n+2}^{N} \|T_j\|^2 = m. \tag{11}
$$

Then, as $\tilde{F} = N_1 + N_2$, we can write:

$$
\Delta \tilde{F} = -c \left(\sum_{i=1}^{n+1} \|T_i\|^2 \right) N_1 - d \left(\sum_{j=n+2}^{N} \|T_j\|^2 \right) N_2 \\
= -c \left(\sum_{i=1}^{n+1} \|T_i\|^2 \right) \tilde{F} + \left(c \sum_{i=1}^{n+1} \|T_i\|^2 - d \sum_{j=n+2}^{N} \|T_j\|^2 \right) N_2. \tag{12}
$$

If

$$
c \sum_{i=1}^{n+1} \|T_i\|^2 = d \sum_{j=n+2}^{N} \|T_j\|^2,
$$

we have, by using (11), that

$$
\Delta \tilde{F} = -\frac{d}{c+d} m \tilde{F}.
$$

Thus, it follows from Theorem 1 that there exists a minimal isometric immersion $f : M^m \rightarrow \mathbb{S}^{N-1}_{c+d}$ such that $\tilde{F} = i \circ f$, where $i : \mathbb{S}^{N-1} \rightarrow \mathbb{R}^N$ is the umbilical inclusion. Suppose from now on that

$$
c \sum_{i=1}^{n+1} \|T_i\|^2 \neq d \sum_{j=n+2}^{N} \|T_j\|^2. \tag{13}
$$

As $\Delta \tilde{F} = mH$ and \tilde{F} is normal to M, we conclude from (12) that N_2 is normal to M. Similarly we obtain that N_1 is normal to M. Now, for $n + 2 \leq j \leq n + k + 2$, we have

$$
\langle N_1, E_j \rangle = \left\langle \tilde{F} - \sum_{i=n+2}^{N} \langle \tilde{F}, E_i \rangle E_i, E_j \right\rangle \\
= \langle \tilde{F}, E_j \rangle - \langle \tilde{F}, E_j \rangle = 0.
$$
Hence, for any $X \in TM$ we have

$$X \langle N_1, N_1 \rangle = 2\left(\tilde{F}_s X - \sum_{j=n+2}^N \langle \tilde{F}_s X, E_j \rangle E_j, N_1 \right) = 0,$$

and it follows that $\langle N_1, N_1 \rangle = r^2$, for some constant r. The same argument gives $\langle N_2, N_2 \rangle = s^2$ for some constant s. Since $\tilde{F} = N_1 + N_2$ and $\Delta \|\tilde{F}\|^2 = 2(\langle \Delta \tilde{F}, \tilde{F} \rangle + m)$, we have

$$0 = \frac{1}{2} \Delta \|\tilde{F}\|^2 = \langle \Delta \tilde{F}, \tilde{F} \rangle + m$$

$$= -c \left(m - \sum_{j=n+2}^N \|T_j\|^2 \right) r^2 - d \left(m - \sum_{l=1}^{n+1} \|T_l\|^2 \right) s^2 + m$$

$$= -c \left(\sum_{l=1}^{n+1} \|T_l\|^2 \right) r^2 - d \left(\sum_{j=n+2}^N \|T_j\|^2 \right) s^2 + m.$$

Since $r^2 + s^2 = \frac{c+d}{cd}$, we can rewrite the above equation as

$$\left(c \sum_{l=1}^{n+1} \|T_l\|^2 - d \sum_{j=n+2}^N \|T_j\|^2 \right) s^2 = \frac{c+d}{cd} \sum_{l=1}^{n+1} \|T_l\|^2 - m$$

$$= d \left(c \sum_{l=1}^{n+1} \|T_l\|^2 - d \sum_{j=n+2}^N \|T_j\|^2 \right).$$

As we are assuming (13), we obtain $d = \frac{1}{2}$, and therefore $c = \frac{1}{2}$. We conclude that there exists an isometric immersion $f : M^m \to S^n_c \times S^d_B$ such that $F = i \circ f$, and minimality of f follows from Proposition 6. □

References