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1 Introduction

Consider the initial value problem (IVP) for the system of fractional differential equations (FrDE)
with a Caputo derivative for 0 < q < 1,

c
t0D

qx = f(t, x), x(t0) = x0, (1)

where x, x0 ∈ Rn, f ∈ C[R+ × Rn,Rn], f(t, 0) ≡ 0, t0 ≥ 0.
The goal of the paper is study the stability properties of zero solution of the system FrDEs (1).
The stability of fractional order systems is quite recent. There are several approaches in the

literature to study stability, one of which is the Lyapunov approach. We introduce the class Λ of
Lyapunov-like functions which will be used to investigate the stability of (1).

Definition 1. Let t0, T ∈ R+ : T > t0, and ∆ ⊂ Rn, 0 ∈ ∆. We will say that the function
V (t, x) : [t0, T )×∆ → R+ belongs to the class Λ([t0, T ),∆) if V (t, x) ∈ C([t0, T )×∆,R+) is locally
Lipschitzian with respect to its second argument and V (t, 0) ≡ 0.

Results on stability in the literature via Lyapunov functions could be divided into two main
groups:

- continuously differentiable Lyapunov functions (see, for example, the papers [4], [7]). Different
types of stability are discussed using the Caputo derivative of Lyapunov functions which
depends significantly of the unknown solution of the fractional equation. This approach
requires the function to be smooth enough (at least continuously differentiable) and also
some conditions involved are quite restrictive;

- continuous Lyapunov functions (see, for example, the papers [5], [6]) in which the authors
use the Dini fractional derivative along the FrDE by

cDq
+V (t, x) = lim sup

h→0

1

hq
[
V (t, x)− V (t− h, x− hqf(t, x))

]
. (2)

The “fractional Dini derivative” (2) is a strange operator since it is local and in some cases
it is totally different than the used derivatives in ordinary case (q = 1).
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Example 1. Let V (t, x) = x2

(t+1)2
, x ∈ R. Then using (2) we get DqV (t, x) = 2xf(t,x)

(t+1)2
which is

different than the used derivative in the ordinary case

DV (t, x) =
2x

(t+ 1)2
f(t, x) + x2

( 1

(t+ 1)2

)′
.

We introduce the derivative of the Lyapunov function based on the Caputo fractional Dini
derivative of a function. We define the generalized Caputo fractional Dini derivative of Lyapunov
like function V (t, x) along the system FrDE (1) by (see [1]):

c
(1)D

q
+V (t, x) = lim sup

h→0+

1

hq

{
V (t, x)− V (t0, x0)−

−
[
t−t0
h

]∑
r=1

(−1)r+1qCr
[
V (t− rh, x− hqf(t, x))− V (t0, x0)

]}
for t ≥ t0, (3)

where t ∈ (t0, T ), x, x0 ∈ ∆, and there exists h1 > 0 such that t− h ∈ [t0, T ), x− hqf(t, x) ∈ ∆ for
0 < h ≤ h1, ∆ ⊂ Rn.

Example 2. Let V (t, x) = x2

(t+1)2
, x ∈ R and t0 = 0, x0 = 0. Then using (3) we get the Caputo

fractional Dini derivative c
(1)D

q
+V (t, x) = 2xf(t,x)

(t+1)2
+ x2Dq

0
1

(t+1)2
. which is slightly different than the

ordinary case q = 1.

2 Comparison Results for Scalar FrDE

The base of the main results in study stability properties of FrDE (1) is the application of Caputo
fractional Dini derivative (3) and some comparison results.

Lemma 1. Assume the following conditions are satisfied:

1. the function x∗(t) = x(t; t0, x0), x∗ ∈ Cq([t0, T ],∆) is a solution of the FrDE (1), where
∆ ⊂ Rn, 0 ∈ ∆;

2. the function V ∈ Λ([t0, T ],∆) and for any points t ∈ [t0, T ], x ∈ ∆ the inequality c
(1)D

q
+V (t, x) ≤

−c(∥x∥) holds, where c ∈ K.

Then for t ∈ [t0, T ] the inequality V (t, x∗(t)) ≤ V (t0, x0)− 1
Γ(q)

t∫
t0

(t− s)q−1c(∥x∗(s)∥) ds holds.

3 Stability Results

Several sufficient conditions for stability, uniform stability, asymptotic stability of zero solution of
the system FrDE (1) are obtained.

Theorem 1 ([1]). Assume:
There exists a function V ∈ Λ(R+,Rn) such that

(i) for any points t ≥ 0 and x ∈ Rn the inequality c
(1)D

q
+V (t, x) ≤ −c(∥x∥) holds, where c ∈ K;

(ii) b(∥x∥) ≤ V (t, x) ≤ a(∥x∥) for t ∈ R+, x ∈ Rn, where a, b ∈ K.

Then the zero solution of the FrDE (1) is uniformly asymptotically stable.
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The introduced Caputo fractional Dini derivative (3) is appropriately transformed to the gen-
eralized Caputo fractional Dini derivative w.r.t. to ITD of the function V (t, x):

c
t0D

q
(1)V (t, x, y, η, x0, y0) = lim

h→0+
sup

1

hq

[
V (t, y − x)− V (t0, y0 − x0)−

−
[
t−t0
h

]∑
r=1

(−1)r+1qCr
(
V
(
t− rh, y − x− hq(f(t+ η, y)− f(t, x))

)
− V (t0, y0 − x0)

)]
, (4)

where t, t0 ∈ I, y − x, y0 − x0 ∈ ∆, and there exists h1 > 0 such that t − h ∈ I, y − x − hq(f(t +
η, y)− f(t, x)) ∈ ∆ for 0 < h ≤ h1 and η ∈ BH .

The Caputo fractional Dini derivative w.r.t. to ITD is applied to study practical stability with
initial time difference for FrDE (1) (see [3]).

The base of the main results is the following result.

Lemma 2 (Shift solutions in the nonautonomous FrDE [3]). Let the function x ∈ Cq(R+,Rn),
a ≥ 0, be a solution of the initial value problem for FrDE

c
aD

qx(t) = f(t, x(t)) for t > a, x(a) = x0. (5)

Then the function x̃(t) = x(t+ η) satisfies the initial value problem for the FrDE

c
bD

qx = f(t+ η, x) for t > b, x(b) = x0, (6)

where b ≥ 0, η = a− b.

One of the obtained sufficient conditions are formulated below:

Theorem 2 (Uniform practical stability [3]). Let the following conditions be satisfied:

1. The function g ∈ C[[t0,∞)× R× BH ,R], g(t, 0, 0) ≡ 0 and for any parameter η ∈ BH there
exists a positive number Mη such that for any ε ∈ [0,Mη] and v0 ∈ R the IVP for the scalar
FrDE c

τ0D
qx(t) = f(t, x(t)), t > τ0, x(τ0) = y0 has a solution u(t; t0, v0, η, ε) ∈ Cq([t0,∞),R),

where H > 0 is a given number.

2. There exists a function V ∈ Λ(R+, S(A)) such that

(i) b(∥x∥) ≤ V (t, x) ≤ a(∥x∥) for (t, x) ∈ R+ × S(A), where a, b ∈ K;

(ii) for any t0 ∈ R+, x, y, x0, y0 ∈ Rn : y − x ∈ S(A), y0 − x0 ∈ S(A) and η ∈ BH the
inequality c

t0D
q
(1)V (t, x, y, η, x0, y0) ≤ g(t, V (t, y − x), η) for t ≥ t0 holds, where A > 0 is

a given number.

3. The scalar FrDE c
τ0D

qx(t) = f(t, x(t)) for t > τ0, x(τ0) = y0 with ε = 0 is uniformly
parametrically practically stable with respect to (a(λ), b(A)), where the constant λ ∈ (0, A) is
given so that a(λ) < b(A).

Then the system of FrDE (1) is uniformly practically stable with ITD with respect to (λ,A) .

Also, the system of fractional differential equations with noninstantaneous impulses is defined,
the Caputo fractional Dini derivative (3) is appropriately transformed and stability of the zero
solution is studied in [2].



6 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

References

[1] R. Agarwal, D. O’Regan, and S. Hristova, Stability of Caputo fractional differential equations
by Lyapunov functions. Appl. Math. (accepted).

[2] R. Agarwal, D. O’Regan, and S. Hristova, Stability of Caputo fractional differential equations
with non-instataneous impulses. Commun. Appl. Anal. (accepted).

[3] R. Agarwal, D. O’Regan, S. Hristova, and M. Cicek, Practical stability with respect to initial
time difference for fractional differential equations. J. Dynam. Control Syst. (accepted).

[4] J.-B. Hu, G.-P. Lu, S.-B. Zhang, and L.-D. Zhao, Lyapunov stability theorem about fractional
system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20 (2015), No. 3,
905–913.

[5] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of fractional dynamic systems.
Cambridge Scientific Publishers, Cambridge 2009.

[6] V. Lakshmikantham, S. Leela, and M. Sambandham, Lyapunov theory for fractional differential
equations. Commun. Appl. Anal. 12 (2008), No. 4, 365–376.

[7] Y. Li, Y. Chen, and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lya-
punov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59 (2010),
No. 5, 1810–1821.



International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia 7

Travelling Wave Solutions of

Integro-Differential Equation Arising in Nano-Structures

G. Agranovich

Department of Electrical and Electronic Engineering, Ariel University Center of Samaria,
Ariel, Israel

E-mail: agr@ariel.ac.il

E. Litsyn

Department of Mathematics, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, Israel
E-mail: elena.litsyn@weizmann.ac.il

A. Slavova

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria
E-mail: slavova@math.bas.bg

1 Introduction

The demand for smaller and faster devices has encouraged technological advances resulting in the
ability to manipulate matter at nanoscales that have enabled the fabrication of nanoscale electrome-
chanical systems. With the advances in materials synthesis and device processing capabilities, the
importance of developing and understanding nanoscale engineering devices has dramatically in-
creased over the past decade. Computational Nanotechnology has become an indispensable tool
not only in predicting, but also in engineering the properties of multi-functional nano-structured
materials. The presence of nano-inclusions in these materials affects or disturbs their elastic field
at the local and the global scale and thus greatly influences their mechanical properties.

Let G ∈ R2 is a bounded piezoelectric domain with a set of inhomogeneities I = ∪Ik ∈ G
(holes, inclusions, nano–holes, nano–inclusions) subjected to time–harmonic load on the boundary
∂G. Note that heterogeneities are of macro size if their diameter is greater than 10−6m, while
heterogeneities are of nano–size if their diameter is less than 10−7m.

The aim is to find the field in every point of M = G\I, I and to evaluate stress concentration
around the inhomogeneities.

Using the methods of continuum mechanics the problem can be formulated in terms of boundary
value problem for a system of 2-nd order differential equations (see [1, Chapter 2])

cN44∆uN3 + eN15∆uN4 − ρNu3,tt = 0,

eN15∆uN3 − εN15∆uN4 = 0,
(1)

where x = (x1, x2), ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
is Laplace operator with respect to t, N = M for x ∈ M and

N = I for x ∈ I; uN3 is mechanical displacement, uN4 is electric potential, ρN is the mass density,
cN44 > 0 is the shear stiffness, eN15 ̸= 0 is the piezoelectric constant and εN11 > 0 is the dielectric
permittivity.

Assume that the interface between the nano-inclusion I and its surrounding matrix M is re-
garded as thin material surface S that possesses its own mechanical parameters cI44, e

I
15, ε

I
11.

We shall consider the case when I is a nano-hole and boundary conditions on S are

tMj =
∂σS

lj

∂l
on S, (2)
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where σS
lj is generalized stress [1], j = 3, 4, l is the tangential vector. Then we shall study boundary

value problem (BVP) (1) with boundary conditions (2).
There are no numerical results for dynamic behavior of bounded piezoelectric domain with

heterogeneities under anti-plane load. Validation is done in [1] for infinite piezoelectric plane with
a hole, in [2] for isotropic bounded domain with holes and inclusions and in [3] for piezoelectric
plane with nano-hole or nano-inclusion. In Section 2 we shall construct CNN model for the BVP
(1), (2). In section 3 we shall find travelling wave solutions of this model and we shall provide
validation.

2 Cellular Nonlinear Network (CNN) Model of the BVP

In [1] fundamental solutions of the BVP (1), (2) are found using the Fourier transform. Then using
the Gauss theorem and proceeding as in [1] from the BVP a system of integro-differential equations
(IDE) is obtained for the unknowns u3,4 on S. This system has the following general form

∂u

∂t
= D

∂2u

∂x2
− C1

∫
S

f(u(t, x)) dt, t ∈ [0, 1], (3)

where C1 is a constant depending on the ρM , cM44 > 0, eM15 ̸= 0 and εM11 > 0, D is diffusion coefficient.
Then the CNN model [4] for the IDE (3) can be written as

duij
dt

= DA1 ∗ uij − C1

∫
S

f(uij(t)) dt, 1 ≤ i ≤ n, j = 3, 4, (4)

where A1 is 1-dimensional discretized Laplacian template, ∗ is convolution operator.
We shall take the output of the IDE CNN model (4) as a piecewise linear function [4]:

y(uij) = auij + b
(
|uij − Vp| − |uij − Vv|

)
− b

(
|uij + Vp| − |uij + Vv|

)
= N(uij), j = 3, 4, (5)

where a > 0, b < 0 are constants, Vp, Vv(0 < Vp < Vv) are the peak and valley voltages of the CNN,
and as one can notice the output function is symmetric with respect to the origin. The graph of
the output function is given on Figure 1 below.

Figure 1. Graph of the output function (5) for the CNN model.
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3 Travelling Wave Solutions of IDE CNN Model

We shall study traveling wave solutions of IDE CNN model (4) of the form

ui = Φ(i− ct), (6)

for some continuous function Φ : R1 → R1 and some unknown real number c. Let us denote
s = i − ct. Let us substitute (6) in the IDE CNN model (4). Therefore Φ(s, c) and c satisfy the
equation of the form

−cΦ
′
(s, c) = Φ(s− 1, c)− 2Φ(s, c) + Φ(s+ 1, c)− C1

∫
S

f(Φ(s, c)) dt. (7)

Our aim in this note is to study traveling wave solution of the IDE CNN model (4). We consider
solution of equation (7). The following theorem about travelling wave solution of our IDE CNN
model holds.

Theorem 1. Let Φ(s, c) be a solution of (7) satisfying the following conditions

lim
s→−∞

Φ(s, c) = 0, lim
s→∞

Φ(s, c) = 1.

Then

(i) If c = c∗ < 0, Φ(s, c) is a stable travelling wave solution of IDE CNN model.

(ii) If c = c∗ > 2, Φ(s, c) is unstable travelling wave solution.

We shall skip the proof due to the lack of space.
Traveling wave solution for our IDE CNN model (4) is given on Figure 2. We use the following

parameter set for the numerical simulation.Material parameters of the matrix are for transversely
isotropic piezoelectric material PZT4 are: elastic stiffness: cM44 = 2.56 × 1010N/m2; piezoelectric
constant: eM15 = 12.7C/m2; dielectric constant: εM11 = 64.6 × 10−10C/V m; density: ρM = 7.5 ×
103 kg/m3.
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Figure 2. Traveling wave solution of IDE CNN model (4).

The characteristic that is of interest in nano-structures is normalized Stress Concentration Field
(SCF) (σ/σ0) and it is calculated by the following formula

σ = −σ13 sin(φ) + σ23 cos(φ), (8)
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where φ is the polar angle of the observed point, σji is the stress (2) near S. The applied load is
time harmonic uni-axial along vertical direction uniform mechanical traction with frequency ω and

amplitude σ0 = 400× 106N/m2 and electrical displacement with amplitude D0 = k
εM11
eM15

σ0.

The validation of our model is provided below on Figure 3 for the parameter sets given above.
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Figure 3. Validation – dynamic SCF at observed point.
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Let A0 ∈ BVloc(I;Rn×n), f0 ∈ BVloc(I;Rn), c0 ∈ Rn and t0 ∈ I, where I ⊂ R is an arbitrary
interval non-degenerated in the point. Consider the Cauchy problem

dx(t) = dA0(t) · x(t) + df0(t), x(t0) = c0. (1)

Let x0 be the unique solution of problem (1).
Along with the Cauchy problem (1) consider the sequence of the Cauchy problems

dx(t) = dAk(t) · x(t) + dfk(t), x(tk) = ck (k = 1, 2, . . . ), (1k)

where Ak ∈ BVloc(I;Rn×n) (k = 1, 2, . . . ), fk ∈ BVloc(I;Rn) (k = 1, 2, . . . ), tk ∈ I (k = 1, 2, . . . )
and ck ∈ Rn (k = 1, 2, . . . ).

To a considerable extent, the interest to the theory of generalized ordinary differential equations
has been stimulated also by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from the unified viewpoint.

In [2–4] the sufficient conditions are given for problem (1k) to have a unique solution xk for
sufficiently large k and

lim
k→+∞

∥xk − x0∥s = 0. (2)

In the present paper, the necessary and sufficient conditions are established for the sequence
of the Cauchy problems (1k) (k = 1, 2, . . . ) to have the above-mentioned property. Obtained here
results are based on the concept given in [8] and they differ from the analogous ones given in [3].

Moreover, we consider the question of relationship between the Lyapunov stability of system
given in (1) and the well-possedness of the Cauchy problem (1). Presented below results are more
general than analogous ones obtained in [4].

The following notations and definitions will be used.
R = ]−∞,+∞[ , R+ = [0,+∞[ .

Rn×m is the space of all real n×m-matricesX = (xij)
n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

On×m is the zero n×m matrix.
In is an identity n× n matrix.
b
∨
a
(X) is the sum of total variations of the components xij (i = 1, . . . ,m; j = 1, . . . ,m) of the

matrix-function X : [a, b] → Rn×m;
a
∨
b
(X) = −

b
∨
a
(X).

X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t ∈ I;
d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

BV(I;Rn×m) is the space of all bounded variation matrix-functions X : I → Rn×m with the
norm ∥X∥s = sup{∥X(t)∥ : t ∈ I}.

BVloc(I;Rn×m) is the set of all matrix-functions X : I → Rn×m for which the restriction on
[a, b] belong to BV([a, b];Rn×m) for every closed interval [a, b] ⊂ I.
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C̃loc(I;Rn) is the set of all vector-functions x : I → Rn which are absolutely continuous on
every closed interval [a, b] from I.

L(I;Rn×m) is the set of all matrix-functions X : I → Rn×m whose components are Lebesgue-
integrable;

Lloc(I;Rn×m) is the set of matrix-functions X : I → Rn×m whose components are Lebesgue
integrable on every closed interval from I.

We introduce the operators. If X ∈ BVloc(I,Rl×n) and Y : I → Rn×m, then we put

B(X,Y )(t) ≡ X(t)Y (t)−X(t0)Y (t0)−
t∫

t0

dX(τ) · Y (τ),

I(X,Y )(t) ≡
t∫

t0

d(X(τ) + B(X,Y )(τ)) ·X−1(τ).

If X ∈ BV(I ;Rn×n), det(In+(−1)jdjX(t)) ̸= 0 for t ∈ I (j = 1, 2), and Y ∈ BV([a, b] ;Rn×m),
then A(X,Y )(t0) ≡ On×m,

A(X,Y )(t) ≡ Y (t)− Y (t0)+

+
∑

t0<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)−
∑

t0≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ).

A vector-function x ∈ BVloc(I;Rn) is said to be a solution of the generalized differential system
given in (1) if

x(t)− x(s) =

t∫
s

dA0(τ) · x(τ) + f0(t)− f0(s) for s < t; s, t ∈ I,

where integral is understand in the Kurzweil sense [9].
Without loss of generality, we assume that either tk < t0 (k = 1, 2, . . . ) or tk = t0 (k = 1, 2, . . . )

or tk > t0 (k = 1, 2, . . . ).

Definition 1. We say that the sequence (Ak, fk; tk) (k = 1, 2, . . . ) belongs to the set S(A0, f0; t0)
if for every c0 ∈ Rn and a sequence ck ∈ Rn (k = 1, 2, . . . ) satisfying the condition

lim
k→+∞

ck = c0, (3)

problem (1k) has a unique solution xk for any sufficient large k and condition (2) holds.

Theorem 1. Let Ak ∈ BV(I;Rn×n) (k = 0, 1, . . . ), fk ∈ BV(I;Rn) (k = 0, 1, . . . ), t0 ∈ I and the
sequence of points tk ∈ I (k = 1, 2, . . . ) be such that

det
(
In + (−1)jdjA0(t)

)
̸= 0 for t ∈ I, (−1)j(t− t0) < 0 and for

t = t0 if j ∈ {1, 2} is such that (−1)j(tk − t0) > 0 (k = 1, 2, . . . ),
(4)

lim
k→+∞

tk = t0. (5)

Then (
(Ak, fk; tk)

)+∞
k=1

∈ S(A0, f0; t0) (6)
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if and only if there exists a sequence of matrix-functions Hk ∈ BV(I;Rn×n) (k = 0, 1, . . . ) such
that

inf
{
| det(H0(t))| : t ∈ I

}
> 0, (7)

lim
k→+∞

Hk(tk) = H0(t0), (8)

lim
k→+∞

∥Hk −H0∥s = 0, (9)

lim
k→+∞

sup
t∈I

{∥∥(I(Hk, Ak)(t)− I(H0, A0)(t))
∥∥(1 + ∣∣ t

∨
t0
(I(Hk, Ak))

∣∣)} = 0 (10)

and

lim
k→+∞

sup
t∈I

{∥∥(I(Hk, fk)(t)− I(H0, f0)(t)
∥∥(1 + ∣∣ t

∨
t0
(I(Hk, Ak))

∣∣)} = 0. (11)

Definition 2. The Cauchy problem (1) is called well-possed if condition (6) holds for every sequence
(Ak, fk; tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence Hk (k = 0, 1, . . . )
such that conditions (4), (5) and (7)–(11) hold.

The statements of Theorem 1 mean that the Cauchy problem (1) is well-possed.

Definition 3. The Cauchy problem (1) is called weakly well-possed if condition (6) holds for every
sequence (Ak, fk; tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence Hk

(k = 0, 1, . . . ) such that conditions (4), (5), (7)–(9) and

lim
k→+∞

(∥∥I(Hk, Ak)− I(H0, A0)
∥∥
s
+
∥∥I(Hk, fk)− I(H0, f0)

∥∥
s

)
= 0

hold.

Consider now the Lyapunov stability question on the set I = [0,+∞[ .

Definition 4. A solution x0 of the system given in (1) is called uniformly stable if for every ε > 0
there exists a positive number δ = δ(ε) such that an arbitrary solution x of system (1), satisfying
the inequality

∥x(t0)− x0(t0)∥ < δ (12)

for some t0 ∈ R+, admits the estimate ∥x(t)− x0(t)∥ < δ for t ≥ t0.

Definition 5. Let ξ : R+ → R+ be a nondecreasing function such that lim
t→+∞

ξ(t) = +∞. A

solution x0 of the system given in (1) is called ξ-exponentially asymptotically stable if there exists
a positive number η such that for every ε > 0 there exists a positive number δ = δ(ε) such that an
arbitrary solution x of system (1), satisfying inequality (12) for some t0 ∈ R+, admits the estimate

∥x(t)− x0(t)∥ < ε exp
(
− η(ξ(t)− ξ(t0))

)
for t ≥ t0.

Note that the exponentially asymptotic stability (see [3]) is a particular case of the ξ-exponentially
asymptotic stability if we assume ξ(t) ≡ t.

Definition 6. The system given in (1) is called stable in one or another sense if every its solution
is stable in the same sense.

Definition 7. The matrix-function A0 is called stable in one or another sense if the system dx(t) =
dA0(t) · x(t) is stable in the same sense.

Theorem 2. Let A0 ∈ BVloc(R+;Rn×n) and f0 ∈ BVloc(R+;Rn) be such that

lim
t→+∞

sup
ν(ξ)(t)
∨
t

A(A0, A0) < +∞ and lim
t→+∞

ν(ξ)(t)
∨
t

A(A0, f0) = 0,

where ν(ξ)(t) = sup{τ ≥ t : ξ(τ) ≤ ξ(t) + 1}. Then ξ-exponentially asymptotically stability of A0

guarantees the well-possedness of problem (1) on R+.
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Theorem 3. Let A0 ∈ BVloc(R+;Rn×n) and f0 ∈ BV(R+;Rn). Then uniformly stability of A0

guarantees the weakly well-possedness of problem (1) on R+.

We realize the above-given results for the Cauchy problem for ordinary differential systems.
Given here results are more general than obtained in [1, 5–8].

Let P0 ∈ Lloc(I,Rn×n) and q0 ∈ Lloc(I,Rn). Let x0 ∈ C̃loc(I;Rn) be the unique solution of the
Cauchy problem

dx

dt
= P0(t)x+ q0(t), x(t0) = c0. (13)

Consider the sequence of the Cauchy problems

dx

dt
= Pk(t)x+ qk(t), x(tk) = ck (k = 1, 2, . . . ). (13k)

The system (13k) is the particular case of system (1k) if we assume that Ak(t) ≡
t∫

t0

Pk(τ) dτ

and fk(t) ≡
t∫

t0

qk(τ) dτ for every k ∈ {0, 1, . . . }. Therefore, the results given below immediately

follow from the analogous ones presented above.

Definition 8. We say that the sequence (Pk, qk, tk) (k = 1, 2, . . . ) belongs to the set S(P0, q0, t0)
if condition (2) holds for every c0 ∈ Rn and ck ∈ Rn (k = 1, 2, . . . ) satisfying the condition (3),
where xk is the unique solution problem (13k).

Theorem 4. Let Pk ∈ L(I,Rn×n) (k = 0, 1, . . . ), qk ∈ L(I;Rn) (k = 0, 1, . . . ), and the sequence of
points tk ∈ I (k = 1, 2, . . . ) satisfy condition (5). Then(

(Pk, qk, tk)
)+∞
k=1

∈ S(P0, q0, t0) (14)

if and only if there exists a sequence of matrix-functions Hk ∈ C̃([a, b];Rn×n) (k = 0, 1, . . . ) such
that conditions (7)–(9),

lim
k→+∞

sup
t∈I

{∥∥∥∥
t∫

t0

(P∗
k(τ)− P∗

0 (τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

t0

∥P∗
k(τ)∥ dτ

∣∣∣∣)
}

= 0 (15)

and

lim
k→+∞

sup
t∈I

{∥∥∥∥
t∫

t0

(q∗k(τ)− q∗0(τ)) dτ

∥∥∥∥(1 + ∣∣∣∣
t∫

t0

∥P∗
k(τ)∥ dτ

∣∣∣∣)
}

= 0 (16)

hold, where

P∗
k(t) ≡

(
H ′

k(t) +Hk(τ)Pk(t)
)
H−1

k (t), q∗k(t) ≡
(
H ′

k(t) +Hk(τ)qk(t)
)
H−1

k (t).

Definition 9. The Cauchy problem (13) is called well-possed if condition (14) holds for every
sequence (Pk, qk, tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence Hk

(k = 0, 1, . . . ) such that conditions (7)–(9), (15) and (16) hold, where P∗
k and q∗k are matrix- and

vector-functions defined in Theorem 4.

Definition 10. The Cauchy problem (1) is called weakly well-possed if condition (14) holds for
every sequences (Pk, qk, tk) (k = 1, 2, . . . ) and tk (k = 1, 2, . . . ) for which there exists a sequence
Hk (k = 0, 1, . . . ) such that conditions (7)–(9) and

lim
k→+∞

sup
t∈I

{∥∥∥∥
t∫

t0

(
P∗
k(τ)− P∗

0 (τ)
)
dτ

∥∥∥∥+

∥∥∥∥
t∫

t0

(
q∗k(τ)− q∗0(τ)

)
dτ

∥∥∥∥
}

= 0

hold, where P∗
k and q∗k are the matrix- and vector-functions defined in Theorem 4.
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Theorem 5. Let P0 ∈ Lloc(R+,Rn×n) and q0 ∈ Lloc(R+,Rn) be such that

lim
t→+∞

sup

ν(ξ)(t)∫
t

∥P0(τ)∥ dτ < +∞ and lim
t→+∞

ν(ξ)(t)∫
t

∥q0(τ)∥ dτ = 0,

where ν(ξ)(t) = sup{τ ≥ t : ξ(τ) ≤ ξ(t) + 1}. Then ξ-exponentially asymptotically stability of P0

guarantees the well-possedness of problem (13) on R+.

Theorem 6. Let P0 ∈ Lloc(R+,Rn×n) and q0 ∈ L(R+,Rn). Then uniformly stability of P0 guar-
antees the weakly well-possedness of problem (13) on R+.
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1 Introduction

The problem of asymptotic behavior of solutions to nonlinear differential equations with an expo-
nentially small or power-law small right-hand sides is investigated.

Consider the equation

y(n) + p(x)|y|k sgn y = F (x), n ≥ 2, k > 1, (1)

with continuous functions p(x) and F (x).
Equation (1) with F (x) = 0 was investigated from different points of view (see, for example, [8],

[4] and the bibliography therein). In particular, the asymptotic behavior of its solutions vanishing
at infinity is described. If the function F (x) is sufficiently small, it is possible to describe the
asymptotic behavior of vanishing at infinity solutions to equation (1), too. Previous results are
published in [1]– [6]. Results of this type for ordinary differential equations and their systems can
be useful also to investigate some problems for partial differential equations (see, for example, [7]).

Note that there exist notions of asymptotic equivalence different from the one used here (cf. [10]–
[17]).

2 Main results

In this section results on asymptotic equivalence of solutions to differential equations with different
right-hand sides are formulated.

1 Exponentially equivalent right-hand sides

Theorem 2.1 (see [6]). Let f(x), g(x), and p(x) be bounded continuous functions defined in a
neighborhood of +∞. Suppose y(x) is a solution to the equation

y(n) + p(x)|y|k sgn y = f(x) e−βx (2)

with n > 2, k > 1, β > 0 and y(x) → 0 as x → +∞. Then there exists a unique solution z(x) to
the equation

z(n) + p(x)|z|k sgn z = g(x) e−βx (3)

such that |z(x)− y(x)| = O(e−βx) as x → +∞.

To prove this result we use the following lemmas.

Lemma 2.1. If a function y(x) and its n-th derivative y(n)(x) both tend to zero as x → +∞, then

the same is true for all of its lower-order derivatives y(j)(x), 0 < j < n.

Lemma 2.2. Suppose a function y(x) satisfies the inequality |y(j)(x)| ≥ W > 0 on a segment I of
length ∆. Then there exists a segment I ′ ⊂ I of length 4−j∆ with |y(x)| ≥ W (2−1−j∆)j satisfied
for all x ∈ I ′.
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Lemma 2.3. Let y(x) be a solution to equation (2) tending to zero as x → +∞. Then

y(x) = Jn
[
e−βxf(x)− p(x)|y(x)|k sgn y(x)

]
,

where the operator J takes each sufficiently rapidly decreasing function φ(x) to its primitive function
vanishing at infinity:

J[φ](x) = −
∞∫
x

φ(ξ) dξ.

Corollary 2.1. Suppose the function F (x) in equation (1) satisfies the condition

|F (x)| ≤ Ce−βx, C > 0, β > 0, (4)

and p(x) is a bounded continuous function. Then for any solution y(x) to equation (1) tending to
zero as x → ∞ there exists a solution z(x) to equation (1) with F(x)=0 such that

|y(x)− z(x)| = O(e−βx), x → ∞.

Remark 2.1. Note that if p(x) → p0 ̸= 0 as x → ∞, for n = 2 [8] and n ∈ {3, 4} ( [3] and [4],
Ch.I, Section 5.4) asymptotic behavior of all solutions to equation (1) with F (x) = 0 is described.
In particular, if (−1)np0 < 0, then all nontrivial vanishing at infinity solutions z(x) to equation (1)
with F (x) = 0 satisfy

z(x) = C x−α(1 + o(1)), x → ∞, withα =
n

k − 1
, C =

( 1

p0

n−1∏
j=0

(α+ j)
) 1

k−1
.

As for n ≥ 5, solutions with the above asymptotic behavior also exist if p(x) tends to p0 quickly

enough. This was proved in [4] (Ch.I, Theorem 5.3) for the function p depending on x, y, y′, . . . , y(n−1)

and satisfying rather cumbersome conditions, which are reduced, in the case p(x), to the condition
p(x) = p0 +O(x−γ) with some γ > 0.

So, we can obtain asymptotic behavior of solutions to equation (1) vanishing at +∞.

Theorem 2.2. Suppose 2 ≤ n ≤ 4, p(x) → p0 ̸= 0 as x → ∞, (−1)np0 < 0, and f(x) satisfies
condition (4). Then any solution y(x) to equation (1) tending to zero as x → ∞ behaves as

y(x) = C x−α(1 + o(1)), x → ∞. (5)

If n ≥ 5 and p(x) = p0+O(x−γ) as x → ∞ with γ > 0, then there exists a solution to equation (1)
satisfying (5).

The following theorems, which were formulated in [1]– [6], can proved similarly.

Theorem 2.3 (see [2, Ch. 2, pp. 15–16]). Consider the equations

y(2n) + (−1)nxσ|y|k sgn y = F (x), (6)

z(2n) + (−1)nxσ|z|k sgn z = 0 (7)

with σ > 0, n ≥ 1, k > 1.
Suppose |F (x)| = O(e−βx), β > 0, x → ∞, and y(x) is a solution to equation (6) with

lim
x→∞

y(x) = 0. Then there exists a unique solution z(x) to equation (7) such that

|y(x)− z(x)| = O(e−βx), x → ∞.
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Straightforward calculations show that the function y(x) = C(x − x0)
−α with α = n

k−1 , C =

(
n−1∏
j=0

(α+ j))
1

k−1 , and arbitrary x0 is a solution to the equation

y(n) + (−1)n−1|y(x)|k sgn y = 0, n ≥ 2, k > 1. (8)

It was proved for this equation with n = 2 [8] and 3 ≤ n ≤ 4 [3] that all its Kneser solutions, i.e.

those satisfying y(x) → 0 as x → ∞ and (−1)j y(j)(x) > 0 for 0 ≤ j < n, have the above power
form. However, it was also proved [9] that for any N and K > 1 there exist an integer n > N and
k ∈ (1;K) such that equation (1) has a solution y(x) = (x − x0)

−α h(log (x − x0)), where h is a
positive periodic non-constant function on R.

In [5] existence of that type of solutions was investigated for some fixed n.

Theorem 2.4. Suppose 12 ≤ n ≤ 14. Then there exists k > 1 such that equation (8) has a solution
y(x) satisfying

y(j)(x) = (x− x0)
−α−jhj

(
log(x− x0)

)
, j = 0, 1, . . . , n− 1,

with periodic positive non-constant functions hj on R and arbitrary x0 ∈ R.

So, the following Theorem is proved.

Theorem 2.5. If 12 ≤ n ≤ 14, f(x) satisfies (4), then there exist k > 1 and a solution to the
equation

y(n) + (−1)n−1|y(x)|k sgn y = F (x),

satisfying the condition∣∣y(x)− (x− x0)
−αh

(
log(x− x0)

)∣∣ = O(e−βx), x → ∞,

with some periodic positive non-constant function h on R.

2 Power-law small potential

Theorem 2.6. Suppose the function F (x) in equation (1) satisfies the condition

|F (x)| ≤ Cx−σ, C > 0, σ > n, (9)

and p(x) is a bounded continuous function.
Then for any solution y(x) to equation (1) tending to zero as x → ∞ there exists a solution

z(x) to equation (1) with F (x) = 0 such that

|y(x)− z(x)| = O(xn−σ), x → ∞.
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Consider the second order nonlinear dynamic equations

x∆∆ + p(t)xα(σ(t)) = 0, (1)

where p ∈ C(T, R), t ∈ T is a time scale (i.e., a closed nonempty subset of R) with supT = ∞,
σ(t) = inf{s ∈ T : s > t} and α ̸= 1, α > 0 is the quotient of odd positive integers. Equation (1)
is called superlinear if α > 1 and sublinear if 0 < α < 1. We call an equation oscillatory if all its
continuable solutios are oscillatory.

When T = R, the dynamic equation (1) is the second order nonlinear differential equation

x′′(t) + p(t)xα(t) = 0. (2)

When T = N0, the dynamic equation (1) is the second order nonlinear difference equation

∆2x(n) + p(t)xα(n+ 1) = 0. (3)

When p(t) is nonnegative, stronger oscillation results exist for the nonlinear equation (2) when
α ̸= 1, notably the following:

Theorem 1 (Atkinson [2]). Let α > 1. Then (2) is oscillatory if and only if

∞∫
tp(t) dt = ∞. (4)

Theorem 2 (Belohorec [10]). Let 0 < α < 1. Then (2) is oscillatory if and only if

∞∫
tαp(t) dt = ∞. (5)

When p(t) is allowed to take on negative values, for α > 1, Kiguradze [1] proved that (4) is
sufficient for the differential equation (2) to be oscillatory and for 0 < α < 1 Belohorec [11] proved
that (5) is a sufficient for the differential equation (2) to be oscillatory. These results have been
further extended by Kwong and Wong [12].

When p(n) is nonnegative, J. W. Hooker and W. T. Patula [5, Theorem 4.1], A. Mingarelli [6],
respectively proved that

Theorem 3. Let α > 1. Then (3) is oscillatory if and only if

∞∑
1

(n+ 1)p(n) = ∞. (6)
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Theorem 4. Let 0 < α < 1. Then (3) is oscillatory if and only if

∞∑
1

(n+ 1)αp(n) = ∞.

In this paper, when p(t) is allowed to take on negative values, we obtain the following results.

Theorem A. Let α > 1 and there exist a real number β, 0 < β ≤ 1 such that
∞∫
t0

(σ(t))βp(t)∆t = ∞.

Then (1) is oscillatory.

Theorem B. Let 0<α<1 and there exist a real number β, 0<β≤1 such that
∞∫
t0

(σ(t))αβp(t)∆t=∞.

Then (1) is oscillatory.

From Theorem A and Theorem B, we can get the following corollaries.

Corollary 5. Let α > 1 and p(t) be allowed to take on negative values. Then (3) is oscillatory if

∞∑
1

(n+ 1)p(n) = ∞.

Corollary 6. Let 0 < α < 1 and p(t) be allowed to take on negative values. Then (3) is oscillatory if

∞∑
1

(n+ 1)αp(n) = ∞.

Example 7. The superlinear difference equation

∆2x(n) +
[ a

(n+ 1)b+1
+

c(−1)n

(n+ 1)b

]
xα(n+ 1) = 0, α > 1,

for a > 0, 0 < b ≤ 1, is oscillatory. In [3], this result is shown to be true only for 0 < b < 1 and
0 < bc < a < c(1− b).

Example 8. The sublinear difference equation

∆2x(n) +
[ 1

(n+ 1)c+1
+

b(−1)n

(n+ 1)c

]
xα(n+ 1) = 0, 0 < α < 1,

is oscillatory if 0 ≤ c ≤ α, and is nonoscillatory if c > α (using Theorem 2.1 in [7]).

To prove Theorem A and Theorem B, we need the following Lemmas.

Lemma 9. Suppose that α > 1 and x(t) > 0 for t ∈ [T,∞)T. Then we have

t∫
T

x∆(s)

xα(σ(s))
∆s ≤ x−α+1(T )

α− 1
.

Proof. Using the Pötzsche chain rule [4, Theorem 1.90], we get that

(x−α+1(s)

α− 1

)∆
= −

1∫
0

dh

(x(s) + hµ(s)x∆(s))α
x∆(s) =

= −
1∫

0

dh

(hx(σ(s)) + (1− h)x(s))α
x∆(s). (7)
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When x∆(s) ≥ 0, that is x(σ(s)) ≥ x(s), from (7) we have

(x−α+1(s)

α− 1

)∆
≤ −

1∫
0

dh

(hx(σ(s)) + (1− h)x(σ(s)))α
x∆(s) = − x∆(s)

xα(σ(s))
. (8)

When x∆(s) ≤ 0, that is x(σ(s)) ≤ x(s), from (7) we also have

(x−α+1(s)

α− 1

)∆
≤ −

1∫
0

dh

(hx(σ(s)) + (1− h)x(σ(s)))α
x∆(s) = − x∆(s)

xα(σ(s))
. (9)

So from (8) and (9), we get that for s ∈ [T,∞)T(x−α+1(s)

α− 1

)∆
≤ − x∆(s)

xα(σ(s))
. (10)

Integrating (10) from T to t, we get

t∫
T

x∆(s)

xα(σ(s))
∆s ≤ −

t∫
T

(x−α+1(s)

α− 1

)∆
∆s =

x−α+1(T )

α− 1
− x−α+1(t)

α− 1
≤ x−α+1(T )

α− 1
.

Similarly, we have

Lemma 10. Suppose that 0 < α < 1 and x(t) > 0 for t ∈ [T,∞)T. Then we have

t∫
T

x∆(s)

xα(s)
∆s ≥ −x1−α(T )

1− α
,

and

t∫
T

(xα(s))∆x(σ(s))

xα(s)xα(σ(s))
∆s ≥ −αx1−α(T )

1− α
.

The complete proofs of Theorem A and Theorem B are in [8] and [9].
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Let us consider the linear nth-order homogeneous differential equation (n ∈ N)

y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)ẏ + an(t)y = 0, t ∈ R+

def
= [0,+∞), (1)

with continuous coefficients ai( · ) : R+ → R, i = 1, n. Identifying equation (1) and its row of
coefficients a = a( · ) = (a1( · ), . . . , an( · )), we denote equation (1) also by a. For the set of all
nonzero solutions of equation (1) we use the notation S∗(a).

The following definitions were given by I. N. Sergeev [1], [2].

Definition 1. For an arbitrary solution y( · ) ∈ S∗(a) and a time t > 0 the expression ν(y, t) with
either ν = ν0 or ν = ν− or ν = ν+ is understood as follows.

(a) The number ν0(y, t) of zeros of the function y( · ) on the interval (0, t).

(b) The number ν−(y, t) of sign alternations of the functions y( · ) on the interval (0, t). (A point
τ > 0 is called a sign alternation point of the function y( · ) if in every sufficiently small
neighborhood of τ the function takes values of different signs).

(c) The total number ν+(y, t) of roots of the function y( · ) on the interval (0, t); here each root
of the function y( · ) is counted with regard of their multiplicity.

It is easy to see that ν0(y, t), ν−(y, t), and ν+(y, t) are finite integer numbers for every nonzero
solution y( · ) and t > 0.

Definition 2. The upper frequencies of zeros, signs, and roots of a solution y( · ) ∈ S∗(a) are
defined as

ν̂ 0[y]
def
= lim

t→+∞

π

t
ν 0(y( · ); t), ν̂ −[y]

def
= lim

t→+∞

π

t
ν −(y( · ); t), and ν̂ +[y]

def
= lim

t→+∞

π

t
ν +(y( · ); t),

respectively.

Definition 3. The upper frequency spectra ν̂ 0(S∗(a), ν̂
−(S∗(a), and ν̂ +(S∗(a) of zeros, signs, and

roots of equation (1) are defined as the sets of upper frequencies of zeros, signs, and roots of all
solutions belonging to S∗(a), respectively.

Generally speaking, upper frequencies (2) can be equal to +∞ for some solutions of equation (1)
with unbounded coefficients.

For symbols ν = ν0, ν−, and ν+, respectively, functions ν̂( · ) : Rn \ {0} → R+ are defined as

ν̂(α)
def
= ν̂[yα], where yα( · ) is a solution of equation (1) such that (yα(0), ẏα(0), . . . , y

(n−1)
α (0))T = α,

and R+
def
= [0,+∞] is a nonnegative semi-axis of the extended real number line R def

= R⊔{−∞,+∞}.
The functions ν̂ 0( · ), ν̂ −( · ), and ν̂ +( · ) are called functions of zeros, signs, and roots of equation (1),
respectively.

As it follows from Sturm’s theorem and was noted in [1], [2], the upper frequency spectra
consist of zero for an arbitrary first-order equation (1) and of the same nonnegative number for
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an arbitrary second-order equation (1). Let us present some results dedicated to the structure of
the upper frequency spectra of higher order equations. For arbitrary positive incommensurable
numbers ω2 > ω1 there exists [3] a fourth-order autonomous equation, whose upper frequency
spectra coincide with segment [ω1, ω2]. There exists [4] a third-order periodic equation whose
upper frequency spectra contain the same segment. In [5] a third-order equation was constructed
whose upper frequency spectra are equal to [0, 1] ∩ Q, where the symbol Q stands for the set of
rational numbers. Moreover in the paper [5] another one third-order equation was obtained whose
upper frequency spectra consist of ([0, 1] ∩ I) ∪ {0}, where by I we denote the set of irrational
numbers of the real number line R.

We naturally encounter the problem as to what the upper frequency spectra and the functions
of zeros, signs, and root are. In the report under the assumption that zero belongs to the upper
frequency spectra of equation (1) the complete description of the spectra are obtained. Here we
also give an improvable description of the functions ν̂ 0( · ), ν̂ −( · ), and ν̂ +( · ) in terms of Baire
classes.

To formulate the theorem of our report let us briefly give some necessary notations and defi-
nitions. Let M be an arbitrary set and N be some class of its subsets. It is said that a function
f( · ) : M → R belongs to the class (∗, N) if for every r ∈ R Lebesgue set [f( · ) > r] (i.e. a preimage
f−1([r,+∞]) of the segment [r,+∞]) belongs to the class N . In the report we consider mainly Borel
subsets of Rn \ {0} of orders zero, one, and two [6]. Closed and open sets are said to be Borel sets
of zero order. Borel sets of order one are sets of type Fσ or Gδ which are, respectively, countable
unions of closed sets and countable intersections of open sets. Borel sets of the second order are
set of type Fσδ (the countable intersections of Fσ-sets) or sets of type Gδσ (the countable unions of
Gδ-sets). Borel sets of an arbitrary finite order are defined in a similar manner by induction. A set
is said to be a Borel set of the exact order k if it is a Borel set of the kth order but it isn’t Borel
set of order k − 1.

A set A ⊂ R is called a Suslin set [7, p. 213], [8, p. 489] of the number line R if it is a continuous
image of irrational numbers I with the subspace topology. The class of Suslin sets contains the
class of Borel sets as a proper subclass, and at the same time it is a proper subclass of the class of
Lebesgue measurable sets. A set A ⊂ R is called a Suslin set of the extended real number line if it
can be represented as an union of a Suslin set of R and some subset (including the empty subset)
of two-element set {−∞,+∞}.

Theorem 1. The following inclusions ν̂ −( · ) ∈ (∗, Gδ) and ν̂ 0( · ), ν̂ +( · ) ∈ (∗, Fσδ) hold.

From Theorem 1 it follows that the function ν̂ −( · ) belongs to the second Baire class and
the functions ν̂ 0( · ), ν̂ +( · ) belong to the third Baire class. The following theorem is a simple
consequence of Theorem 1 and the definition of Suslin sets.

Theorem 2. The upper frequency spectra ν̂ 0(S∗(a)), ν̂
−(S∗(a)), and ν̂ +(S∗(a)) of zeros, signs,

and roots of equation (1) are Suslin sets of the nonnegative semi-axis R+.

Under the assumption that zero belongs to the upper frequency spectra the converse of Theorem
2 was obtained.

Theorem 3. For an arbitrary Suslin set A ⊂ R+ containing zero there exists a third-order differ-
ential equation (1) whose upper frequency spectra of zeros, signs, and roots are equal to A.

The following theorem shows that the assertion of Theorem 1 is improvable.

Theorem 4. There exist a number r > 0 and a third-order differential equation (1) such that
the Lebesgue set [ν̂ −( · ) > r] of its function of signs is a Baire set of the exact first order, also
there exists another third-order differential equation (1) such that the Lebesgue sets [ν̂ 0( · ) > r]
and [ν̂ +( · ) > r] of its functions of zeros and roots, respectively, are Baire sets of the exact second
order.
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We consider the initial boundary-value problem for the 1D nonlinear Generalized Benjamin–
Bona–Mahony–Burgers (GBBM-Burgers) equation

∂u

∂t
− α

∂2u

∂x2
+ β

∂u

∂x
+

∂(u)m

∂x
− ∂3u

∂x2∂t
= 0, (x, t) ∈ Q, (1)

u(0, t) = u(1, t) = 0, t ∈ [0, T ), u(x, 0) = φ(x), x ∈ [0, 1], (2)

where u(x, t) represents the velocity of fluid in the horizontal direction x, Q = (0, 1)× (0, T ], α > 0,
β are constants and m ≥ 2 is an integer.

Assume that the solution of this problem belongs to the fractional-order Sobolev space W k
2 (Q),

k > 1, whose norms we denote by ∥ · ∥Wk
2 (Q).

In [1], Che et al. have investigated a three-level unconditionally stable difference scheme for
the problem (1), (2) and ascertained second-order convergence under assumption that the exact
solution belongs to C4,3(Q).

In this article, two-level scheme is constructed to find the values of the unknown function on the
first level, besides the term ∂(u)2/∂x is approximated by the offered in [2, 3] way. For the upper
layers, as in [1], the known approximations are used for derivatives. The error estimate is derived
using certain well-known techniques (see, e.g. [4, 5]).

The finite domain [0, 1]× [0, T ] in plane is divided into rectangle grids by the points (xi, tj) =
(ih, jτ), i = 0, 1, . . . , n, j = 0, 1, 2, . . . , J , where h = 1/n and τ = T/J denote the spatial and
temporal mesh sizes, respectively.

The value of mesh function U at the node (xi, tj) is denoted by U j
i , that is U(ih, jτ) = U j

i .

For the sake of simplicity sometimes we use notations without subscripts: U j
i = U , U j+1

i = Û ,

U j−1
i = Ǔ . Moreover, let

U
0
=

U1 + U0

2
, U

j
=

U j+1 + U j−1

2
, j = 1, 2, . . . .

We define the difference quotients in x and t directions as follows:

(Ui)x =
Ui − Ui−1

h
, (Ui)◦x =

1

2h
(Ui+1 − Ui−1), (Ui)xx =

Ui+1 − 2Ui + Ui−1

h2
,

(U j)t =
U j+1 − U j

τ
, (U j)◦

t
=

U j+1 − U j−1

2τ
, (U j)tt =

U j+1 − 2U j + U j−1

τ2
.

We approximate the problem (1), (2) with the help of the three-level finite-difference scheme:

LU j
i = 0, i = 1, 2, . . . , n− 1, j = 0, 1, . . . , J − 1, (3)

U j
0 = U j

n = 0, j = 0, 1, 2, . . . , J, U0
i = φ(xi), i = 0, 1, 2, . . . , n, (4)
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where

LU0 :=(U0)t − α(U
0
)xx + β(U

0
)◦
x
+

m

m+ 1
ΛU0 − (U0)xxt,

LU j :=(U j)◦
t
− α(U

j
)xx + β(U

j
)◦
x
+

m

m+ 1
ΛU j − (U j)

xx
◦
t
, j = 1, 2, . . . ,

ΛU0
i :=(U ,0

i )m−1(U
0
)◦
x
+

(
(U0

i )
m−1U

0)
◦
x
,

ΛU j :=(U j)m−1(U
j
)◦
x
+
(
(U j)m−1U

j)
◦
x
, j = 1, 2, . . . .

Let ω = {xi : i = 0, 1, 2, . . . , n}, ω = {xi : i = 1, 2, . . . , n − 1}, ω+ = {xi : i = 1, 2, . . . , n}.
By L2(ω) we denote the set of functions defined on the mesh ω̄ and equal to zero at x = x0 and
x = xn. We define the following inner product and norms:

(U, V ) =
∑
x∈ω

hU(x)V (x), ∥U∥ = (U,U)1/2.

Let, moreover,

(U, V ] =
∑
x∈ω+

hU(x)V (x), ∥U ]| = (U,U ]1/2, ∥U∥W 1
2 (ω)

= ∥Ux]|.

Theorem 1. Difference scheme (3), (4) is uniquely solvable and the following estimates hold for
its solution:

∥U j∥2 + ∥U j
x ]|

2 ≤ ∥φ∥2 + ∥φx]|2, j = 1, 2, . . . .

Theorem 2. Difference scheme (3), (4) is absolutely stable with respect to initial data.

Theorem 3. Let the exact solution of the initial-boundary value problem (1), (2) belong to W k
2 (Q).

Then, the convergence rate of the finite difference scheme (3), (4) is determined by the estimate

∥U j − uj∥W 1
2 (ω)

≤ c(τk−1 + hk−1)∥u∥Wk
2 (Q), 1 < k ≤ 3,

where c = c(u) denotes positive constant, independent of h and τ .
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The differential equation

y′′ = α0p(t)φ0(y) exp(R(| ln |y||))φ1(y
′), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ 1 (−∞ < a < ω ≤ +∞), φi : ∆Yi → ]0,+∞[ (i = 0, 1), are
continuous functions, R : ]0,+∞[→ ]0,+∞[ is a continuously differentiable function, Yi ∈ {0,±∞},
∆Yi is either the interval [y0i , Yi[

2, or the interval ]Yi, y
0
i ], is considered.

We suppose also that R is a regularly varying function of index µ, every φi(z) is regularly
varying as z → Yi (z ∈ ∆Yi) of index σi and 0 < µ < 1, σ0 + σ1 ̸= 1.

We call the measurable function φ : ∆Y → ]0,+∞[ a regularly varying as z → Y of index σ if
for every λ > 0 we have

lim
z→Y
z∈∆Y

φ(λz)

φ(z)
= λσ.

Here Y ∈ {0,±∞}, ∆Y is some one-sided neighbourhood of Y . If σ = 0, such function is called
slowly varying.

It follows from the results of the monograph [1] that regularly varying functions have the next
properties.

M1: The function φ(z) is regularly varying of index σ as z → Y if and only if it admits the
representation

φ(z) = zσθ(z),

where θ(z) is a slowly varying function as z → Y .

M2: If the function L : ∆Y 0 → ]0,+∞[ is slowly varying as z → Y0, the function φ : ∆Y → ∆Y 0

is regularly varying as z → Y , then the function L(φ) : ∆Y → ]0,+∞[ is slowly varying as
z → Y .

M3: If the function φ : ∆Y → ]0,+∞[ satisfies the condition

lim
z→Y
z∈∆

zφ′(z)

φ(z)
= σ ∈ R,

then φ is regularly varying as z → Y of index σ.

We call the solution y of the equation (1) the Pω(Y0, Y1, λ0)-solution, where −∞ ≤ λ0 ≤ +∞,
if the following conditions take place

y(i) : [t, ω[→ ∆Yi , lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t) y(t)
= λ0. (2)

1If ω > 0, we take a > 0.
2If Yi = +∞ (Yi = −∞), we take y0

i > 0 (y0
i < 0).
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All Pω(Y0, Y1, λ0)-solutions of the equation (1) were investigated in [2, 3] for λ0 ∈ R \ {0}.
The necessary and sufficient conditions for the existence and asymptotic representations of such
solutions as t ↑ ω were found. The cases λ0 ∈ {0,±∞} are singular in studying of Pω(Y0, Y1, λ0)-
solutions of (1). To investigate such solutions we must put additional conditions to the right side
of equation (1).

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies the
condition S if for any continuous differentiable function L : ∆Yi → ]0;+∞[ such that

lim
z→Yi
z∈∆Yi

zL′(z)

L(z)
= 0,

the next condition takes place

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

By the statement M1 and definition of φ0 it is clear that φ0(z)|z|−σ0 is slowly varying function
as z → Y0 (z ∈ ∆Y0). The sufficiently important class of Pω(Y0, Y1,∞)-solutions of the equation (1)
was investigated only in cases, when R(z) ≡ 1 and the function φ0(z)|z|−σ0 satisfies the condition S.
Using (2) and statements M1–M3, it is easy to see that the first derivative of every Pω(Y0, Y1,∞)-
solution of the equation (1) is a slowly varying function as t ↑ ω. This is one of the most difficult
problems in studying such solutions. For equations of the type (1) that contain, for example,

functions like exp(
√

| ln |y||) or exp( m
√

| ln ∥y∥|), the asymptotic representations of Pω(Y0, Y1,∞)-
solutions were not established before. The aim of the work is to establish the necessary and sufficient
conditions for the existence and asymptotic representations as t ↑ ω of Pω(λ

0
n−1)-solutions of the

equation (1) in general case. Let us note that the function exp(R(| ln |z||)) does not satisfy the
condition S.

We need the following subsidiary notations

πω(t) =

{
t as ω = +∞,

t− ω as ω < +∞,
θ0(z) = Ψ0(z)|z|−σ0 .

We put also

L(t) = p(t)|πω(t)|σ0+1θ0
(
|πω(t)| sign y00

)
,

I0(t) =

t∫
A0

ω

p(τ)|πω(τ)|σ0θ0
(
|πω(τ)| sign y00

)
dτ,

A0
ω =


a, if

ω∫
a

p(t)|πω(t)|σ0θ0
(
|πω(t)| sign y00

)
dt = +∞,

ω, if

ω∫
a

p(t)|πω(t)|σ0θ0
(
|πω(t)| sign y00

)
dt < +∞,

in case lim
t↑ω

|πω(τ)| sign y00 = Y0. Here we choose b ∈ [a, ω[ so that |πω(t)| sign y00 ∈ ∆Y0 as t ∈ [b, ω[ .

The following conclusions are valid for the equation (1).

Theorem 1. The following conditions are necessary for the existence of the Pω(Y0, Y1,±∞)-
solutions of the equation (1)

Y0 =

{
±∞, if ω = +∞,

0, if ω < +∞,
πω(t)y

0
0y

0
1 > 0 as t ∈ [a, ω[ . (3)
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If the function φ0(z)|z|σ0 satisfies the condition S and the statement

lim
t↑ω

R′(| ln |πω(t)||)I0(t)
πω(t)I ′0(t)

= 0 (4)

is true, then the conditions (3) and

α0y
0
1(1− σ0 − σ1)I0(t) > 0 as t ∈ [b, ω[ ,

lim
t↑ω

y01|I0(t)|
1

1−σ0−σ1 = Y1, lim
t↑ω

πω(t)I
′
0(t)

I0(t)
= 0

are necessary and sufficient for the existence of Pω(Y0, Y1,±∞)-solutions of the equation (1). For
any such solution the following asymptotic representations take place as t ↑ ω:

y′(t)|y′(t)|−σ0

φ1(y′(t)) exp(R(| ln |y(t)||))
= α0(1− σ0 − σ1)I0(t)[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].

Theorem 2. Let the function φ0(z)|z|σ0 satisfy the condition S, but the statement (4) do not
fulfilled. If

lim
t↑ω

R′(| ln |πω(t)||)L(t)
πω(t)L′(t)

= ∞,

then the conditions (3) and

α0y
0
1(1− σ0 − σ1) ln |πω(t)| > 0 for t ∈ [a, ω[ ,

lim
t↑ω

y01 exp
( 1

1− σ0 − σ1
R(| ln |πω(t)||)

)
= Y1

are necessary and sufficient for the existence of Pω(Y0, Y1,±∞)-solutions of the equation (1). For
any such solution the following asymptotic representations take place as t ↑ ω:

|y′(t)|1−σ0

φ1(y′(t)) exp(R(| ln |y(t)||))
=

|1− σ0 − σ1|L(t)
R′(| ln |πω(t)||)

[1 + o(1)],

y′(t)

y(t)
=

1

πω(t)
[1 + o(1)].
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60 (2008), No. 3, 310–331; translation in Ukrainian Math. J. 60 (2008), No. 3, 357–383.

[3] M. A. Bilozerova, Asymptotic representations of the solutions of the differential equations
of the second order with the nonlinearities, that are regularly varying at the critical points.
(Ukrainian) Bull. Odessa National University, Mathematics and Mechanics 15 (2010), No. 18,
7–21.



32 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

Multipoint Boundary Value Problem for the

Linear Matrix Lyapunov Equation with Parameter

A. N. Bondarev

Belarusian-Russian University, Mogilev, Belarus

This work is a continuation and development of [1] and the problem is investigated with the
help of constructive regularization method [2, Ch. 1].

Consider the multipoint boundary value problem for the matrix equation

dX

dt
=
(
A0(t) + λA1(t)

)
X +XB(t) + F (t), X ∈ Rn×m (1)

with the condition
k∑

i=1

MiX(ti) = 0, 0 = t1 < t2 < · · · < tk = ω, (2)

where A0(t), A1(t), B(t), F (t) are matrices for class C[0, ω] of corresponding dimensions, Mi are
given constant (n× n)-matrices, λ ∈ R.

A nonlinear problem of the type (1), (2) was studied by qualitative methods in [3].
We investigate the problem (1), (2) on the bases of the method of integral equations. We use

the additive decomposition of the matrix B(t) in the form B(t) = B1(t)+B2(t), where the matrices
B1(t), B2(t) are chosen in a certain way (see, for example, [2, Ch. 1]).

We introduce the following notations.

γ = ∥Φ−1∥, µ1 = max
t

∥V (t)∥, µ2 = max
t

∥V −1(t)∥, vi = ∥Vi∥, mi = ∥Mi∥, ε = |λ|,

β2 = max
t

∥B2(t)∥, αi = max
t

∥Ai(t)∥ (i = 0, 1), q0 = γµ1µ2(α0 + β2)ω

k∑
i=1

mivi,

q1 = γµ1µ2α1ω
k∑

i=1

mivi, N = γµ1µ2ωh
k∑

i=1

mivi,

where Φ is a linear operator: ΦY ≡
k∑

i=1
MiY Vi; Vi = V (ti), V (t) is a fundamental matrix of the

equation dV/dt = V B1(t); ∥ • ∥ is an agreement matrix norm.

Theorem. Let the operator Φ be invertible and q0 < 1. Then for |λ| < (1 − q0)/q1 the problem
(1), (2) is uniquely solvable; its solution X(t) can be represented as the limit of a uniformly con-
vergent sequence of matrix functions defined by an integral recursion relation and satisfying the
condition (2); moreover, the following estimate holds

∥X(t, λ)∥ ≤ N

1− q0 − εq1
. (3)

Proof. We use a constructive method that follows from the approach in [2]. Then we have equivalent
integral equation

X(t) =

(
Φ−1

{ k∑
i=1

Mi

t∫
ti

[
A(τ)X(τ) +X(τ)B2(τ) + F (τ)

]
V −1(τ) dτ · Vi

})
V (t), (4)
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where X(t) ≡ X(t, λ), A(τ) ≡ A0(τ) + λA1(τ).
To analyze the solvability of the matrix equation (4), we use the contraction mapping principle

[4, p. 605]. Next, we obtain an integral recursion relation for the approximate solution

Xp(t) =

(
Φ−1

{ k∑
i=1

Mi

t∫
ti

[
A(τ)Xp−1(τ) +Xp−1(τ)B2(τ) + F (τ)

]
V −1(τ) dτ · Vi

})
V (t), (5)

p = 1, 2, . . . .

For the initial approximation X0(t) one can take any matrix of the class C(I,Rn×n).
We proof next: the functions X1(t), X2(t), . . . satisfy the condition (2). Consider the algorithm

(5) in differential form:

dXp(t)

dt
= Xp(t)B1(t) +

(
Φ−1

{ k∑
i=1

Mi

[
A(t)Xp−1(t) +Xp−1(t)B2(t) + F (t)

]
V −1(t)Vi

})
V (t) =

= Xp(t)B1(t) +
(
Φ−1

{
Φ
[
A(t)Xp−1(t) +Xp−1(t)B2(t) + F (t)

]
V −1(t)

})
V (t) =

= Xp(t)B1(t) +
[
A(t)Xp−1(t) +Xp−1(t)B2(t) + F (t)

]
V −1(t)V (t) =

= Xp(t)B1(t) +
[
A(t)Xp−1(t) +Xp−1(t)B2(t) + F (t)

]
.

Hence we obtain the representation

dXp(t)

dt
= Xp(t)B1(t) +

[
A(t)Xp−1(t) +Xp−1(t)B2(t) + F (t)

]
. (6)

From (6) we have[
A(τ)Xp−1(τ) +Xp−1(τ)B2(τ) + F (τ)

]
dτ = dXp(τ)−Xp(τ)B1(τ) dτ. (7)

By using (7), on the bases of (6) we obtain

Xp(t) =

(
Φ−1

{ k∑
i=1

Mi

t∫
ti

[
dXp(τ)−Xp(τ)B1(τ) dτ

]
V −1(τ) · Vi

})
V (t) =

=

(
Φ−1

{ k∑
i=1

Mi

t∫
ti

(dXp(τ))V
−1(τ)Vi −

k∑
i=1

Mi

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ · Vi

})
V (t) =

=

(
Φ−1

{
k∑

i=1

Mi

(
Xp(τ)V

−1(τ)
∣∣∣t
ti
+

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ

)
Vi−

−
k∑

i=1

Mi

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ · Vi

})
V (t) =

=

(
Φ−1

{
k∑

i=1

Mi

(
Xp(t)V

−1(t)−Xp(ti)V
−1(ti) +

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ

)
Vi−

−
k∑

i=1

Mi

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ · Vi

})
V (t) =
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=

(
Φ−1

{
k∑

i=1

(
MiXp(t)V

−1(t)Vi −MiXp(ti) +Mi

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ · Vi

)
−

−
k∑

i=1

Mi

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ · Vi

})
V (t) =

=

(
Φ−1

{
k∑

i=1

MiXp(t)V
−1(t)Vi −

k∑
i=1

MiXp(ti) +

k∑
i=1

Mi

∫ t

ti

Xp(τ)B1(τ)V
−1(τ) dτ · Vi−

−
k∑

i=1

Mi

t∫
ti

Xp(τ)B1(τ)V
−1(τ) dτ · Vi

})
V (t) =

=
(
Φ−1

{
Φ
[
Xp(t)V

−1(t)
]
−

k∑
i=1

MiXp(ti)
})

V (t) =

=
(
Φ−1Φ

[
Xp(t)V

−1(t)
]
− Φ−1

k∑
i=1

MiXp(ti)
)
V (t) =

=
(
Xp(t)V

−1(t)− Φ−1
k∑

i=1

MiXp(ti)
)
V (t) = Xp(t)−

(
Φ−1

k∑
i=1

MiXp(ti)
)
V (t). (8)

Note that the formula (8) yields

k∑
i=1

MiXp(ti) = 0.

Let us analyze the convergence of the sequence {Xp(t)}∞1 . By (5), we have

Xp+1(t)−Xp(t) = L(Xp)− L(Xp−1), p = 1, 2, . . . , (9)

where

L(Y ) =

(
Φ−1

{ k∑
i=1

Mi

t∫
ti

[
A(τ)Y (τ) + Y (τ)B2(τ) + F (τ)

]
V −1(τ) dτ · Vi

})
V (t).

By estimating the norm in (9), we obtain the inequality

∥Xp −Xp−1∥C ≤ qp∥X1 −X0∥C , p = 1, 2, . . . , (10)

where q = q0 + εq1, ∥X1 −X0∥C = ∥L(X0)−X0∥C .
By using (10), one can show that the sequence converges uniformly with respect to t ∈ [0, ω]

to a solution of the integral equation (4), equivalent to the problem (1), (2), and we obtain the
estimates

∥X −Xr∥C ≤ qr

1− q
∥X1 −X0∥C , r = 0, 1, 2, . . . ,

∥X∥C ≤ ∥X0∥C +
∥X1 −X0∥C

1− q
. (11)

From (5) we have the estimate ∥X1∥C ≤ N for X0 = 0 , and from (11) we have the inequality
(3).
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On the Existence of Positive Periodic Solutions to
Second Order Linear Functional Differential Equations
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For linear second order functional differential equations, the periodic boundary value problem
is investigated (see, for example, [1–5]). We will find unimprovable conditions for the existence of
a positive solution in two cases:

1. the Green function of the periodic problem can change its sign (Theorems 2, 3, 4, Corollary 1);

2. right-hand side functions f of the equations are not necessary non-negative or non-positive
(Theorems 2, 5, 6, Corollary 2).

Consider the periodic boundary value problem{
ẍ(t) = (Tx)(t) + f(t) for almost all t ∈ [0, 1],

x(0) = x(1), ẋ(0) = ẋ(1),
(1)

where T : C[0, 1] → L[0, 1] is a linear bounded operator, f ∈ L[0, 1], a solution x : [0, 1] → R has
an absolutely continuous derivative, C[0, 1] is the space of all continuous functions x : [0, 1] → R
with the norm ∥x∥C = max

t∈[0,1]
|x(t)|, L[0, 1] is the space of all integrable functions z : [0, 1] → R with

the norm ∥x∥L =
1∫
0

|z(t)| dt.

Assumption 1. Let non-negative functions q, r ∈ L[0, 1] be given,

p ≡ q − r,

P ≡
1∫

0

p(t) dt ̸= 0, p̃ ≡ p/P.

We suppose that the operator T has a representation

T = T+ − T−,

where T+, T− : C[0, 1] → L[0, 1] are linear bounded operators such that

T+1 = q, T−1 = r,

1 is the unit function, the operators T+, T− are positive (that is, they map nonnegative functions
from C[0, 1] into almost everywhere non-negative functions from L[0, 1]).

Definition 1. For every t1, t2 (0 ≤ t1 ≤ t2 ≤ 1), define the piecewise linear function

gt1,t2(s) ≡ G(t2, s)−G(t1, s), s ∈ [0, 1],
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where

G(t, s) =

{
t(s− 1) if 0 ≤ t ≤ s ≤ 1,

s(t− 1) if 0 ≤ s < t ≤ 1,

is the Green function of the Dirichlet problem ẍ(t) = z(t), t ∈ [0, 1], x(0) = 0, x(1) = 0.
For every function z ∈ L[0, 1], we denote

gt1,t2,z(s) ≡ gt1,t2(s)−
1∫

0

z(τ)gt1,t2(τ) dτ, s ∈ [0, 1],

[z]+(s) ≡ z(s) + |z(s)|
2

, [z]−(s) ≡ |z(s)| − z(s)

2
, s ∈ [0, 1].

Theorem 1. Let

max
0≤t1≤t2≤1

1∫
0

(
q(t)[gt1,t2,p̃]

+(t) + r(t)[gt1,t2,p̃]
−(t)

)
dt < 1. (2)

Then periodic problem (1) has a unique solution.

Assumption 2. Suppose further that
1∫
0

f(s) ds ̸= 0. Define F ≡
1∫
0

f(s) ds, f̃ ≡ f/F .

Theorem 2. Let inequality (2) be fulfilled.
If

max
0≤t1≤t2≤1

1∫
0

(
q(t)[g

t1,t2,f̃
]+(t) + r(t)[g

t1,t2,f̃
]−(t)

)
dt < 1 (3)

and

max
0≤t1≤t2≤1

1∫
0

(
q(t)[g

t1,t2,f̃
]−(t) + r(t)[g

t1,t2,f̃
]+(t)

)
dt < 1, (4)

then a unique solution to problem (1) satisfies the inequality

− sgn(FP)x(t) > 0 for all t ∈ [0, 1]. (5)

Definition 2. Let µ ≥ 1. Define the set

Sµ ≡
{
h ∈ L[0, 1] : vrai supt∈[0,1] h(t) ≤ µ vrai inft∈[0,1] h(t) > 0

}
.

Theorem 3. Let inequality (2) be fulfilled, f ∈ Sµ.
If

min
{
vrai supt∈[0,1] q(t), vrai supt∈[0,1] r(t)

}
+

+ µmax
{
vrai supt∈[0,1] q(t), vrai supt∈[0,1] r(t)

}
≤ 8(1 +

√
µ)2,

and
q + µr ̸≡ 8(1 +

√
µ)2, r + µq ̸≡ 8(1 +

√
µ)2,

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].
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Theorem 4. Let inequality (2) be fulfilled, f ∈ Sµ.
If

min

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
+

√
µmax

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
≤ 4(1 +

√
µ),

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].

Corollary 1. Let q ≡ 0 or r ≡ 0.
If

vrai supt∈[0,1] |p(t)| ≤ 32
(
1−

√
µ− 1

2
√
µ

)2
, |p| ̸≡ 32

(
1−

√
µ− 1

2
√
µ

)2
,

or
1∫

0

|p(t)| dt ≤ 8
(
1−

√
µ− 1

2
√
µ

)
,

then for each f ∈ Sµ a unique solution to problem (1) satisfies the inequality

− sgn(P )x(t) > 0 for all t ∈ [0, 1].

Definition 3. Let ρ > 1. Define the set

Λρ ≡
{
h ∈ L[0, 1] : h ̸≡ 0,

1∫
0

[h]+(t) dt ≥ ρ

1∫
0

[h]−(t) dt

}
.

Theorem 5. Let inequality (2) be fulfilled, f ∈ Λρ.
If

max
{
vrai supt∈[0,1] q(t), vrai supt∈[0,1] r(t)

}
≤ 8

ρ− 1

ρ+ 1
, r ̸≡ 8

ρ− 1

ρ+ 1
, q ̸≡ 8

ρ− 1

ρ+ 1
,

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].

Theorem 6. Let inequality (2) be fulfilled, f ∈ Λρ.
If

ρ max

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
−min

{ 1∫
0

q(t) dt,

1∫
0

r(t) dt

}
≤ 4 (ρ− 1),

then a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].

Corollary 2. Let q ≡ 0 or r ≡ 0.
If

vrai supt∈[0,1] |p(t)| ≤ 8
ρ− 1

ρ+ 1
, |p| ̸≡ 8

ρ− 1

ρ+ 1
,

or
1∫

0

|p(t)| dt ≤ 4
(
1− 1

ρ

)
,

then for each f ∈ Λρ a unique solution to problem (1) satisfies the inequality

− sgn(P)x(t) > 0 for all t ∈ [0, 1].
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Remark. All inequalities in all these theorems and corollaries are sharp. In particular, if inequality
(2) is not fulfilled, then there exists an operator T such that Assumption 1 is satisfied and problem
(1) does not have a unique solution. If inequality (3) or (4) is not fulfilled, then there exist an
operator T and a function f such that Assumption 1 is satisfied and problem (1) has a solution
which does not satisfy (5).
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[5] A. Lomtatidze and J. Šremr, Periodic solutions to second-order duffing type equa-
tions. Abstracts of the International Workshop on the Qualitative Theory of Differen-
tial Equations – QUALITDE-2014, Tbilisi, Georgia, December 18-20, 2014, pp. 94–97;
http://www.rmi.ge/eng/QUALITDE-2014/workshop−2014.htm.



40 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia
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The investigations of second order differential equations play an important role in the develop-
ment of the qualitative theory of differential equations. Such equations have a lot of applications
in different fields of science.

Many results have been obtained for equations with power nonlinearities. But in practice we
often deal with differential equations not only with power nonlinearities but also with exponential
nonlinearities. It happens, for example, when we study the distribution of electrostatic potential in
a cylindrical volume of plasma of products of burning. The corresponding equation may be reduced
to the following one

y′′ = α0p(t)e
σy|y′|λ.

In the work of V. M. Evtukhov and N. G. Drik [3] some results on asymptotic behavior of solutions
of such equations have been obtained.

Exponential nonlinearities form a special class of rapidly varying nonlinearities. The consider-
ation of the last ones is necessary for some models. Such consideration needs the establishment of
the next class of functions.

The function φ : [s,+∞[→ ]0,+∞[ (s > 0) is called a rapidly varying [1] function of the order
+∞ as z → ∞ if this function is measurable and the following condition is true

lim
z→∞

φ(λz)

φ(z)
=


0, if 0 < λ < 1,

1, if λ = 1,

∞, if λ > 1.

The function φ is called a rapidly varying function of the order −∞ as z → ∞ if this function is
measurable and

lim
z→∞

φ(λz)

φ(z)
=


−∞, if 0 < λ < 1,

1, if λ = 1,

0, if λ > 1.

The function φ(z) is called a rapidly varying function in zero if φ(1z ) is a rapidly varying function
of the order +∞.

An exponential function is a special case of such functions. The differential equation

y′′ = α0p(t)φ(y)

with a rapidly varying function φ, was investigated in the work of V. M. Evtuhov and V. M. Khar-
kov [4]. But in the mentioned work the introduced class of solutions of the equation depends on
the function φ. This is not convenient for practice.

The more general class of equations of the mentioned type is established in this work. It is a
natural generalization of previous investigations.

Let us consider the differential equation

y′′ = α0p(t)φ0(y)φ1(y
′), (1)
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In this equation α0 is −1 or +1, p : [a, ω[→ ]0,+∞[ (−∞ < a < ω ≤ +∞) is a continuous function,
φi : ∆Yi → ]0,+∞[ (i ∈ {0, 1}) also are continuous functions, Yi ∈ {0,±∞}, the intervals ∆Yi ,
i ∈ {0, 1} may be of the form [y0i , Yi[

1, or of the form ]Yi, y
0
i ].

Furthermore, we assume that the function φ1 is a regularly varying function as z → Y1 (z ∈ ∆Y1)
of the order σ1, and the function φ0 is twice continuously differentiable and satisfies the following
limit relations

lim
z→Y0
z∈∆Y0

φ0(z) ∈ {0,+∞}, lim
z→Y0
z∈∆Y0

φ0(z)φ
′′
0(z)

(φ′
0(z))

2
= 1.

It can be proved that φ0 is a rapidly varying function as z → Y0 (z ∈ ∆Y0).
We introduce the following notations and definitions.

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,

θ1(z) = φ1(z)|z|−σ1 ,

I(t) = |λ0 − 1|
1

1−σ1

t∫
B0

ω

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 sign y01

)∣∣∣ 1
1−σ1 dτ,

B0
ω =



b, if

ω∫
b

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 sign y01

)∣∣∣ 1
1−σ1 dτ = +∞,

ω, if

ω∫
b

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 sign y01

)∣∣∣ 1
1−σ1 dτ < +∞,

I1(t) =

t∫
B1

ω

λ0I(τ)

(λ0 − 1)πω(τ)
dτ, B1

ω =



b, if

ω∫
b

λ0I(τ)

(λ0 − 1)πω(τ)
dτ = +∞,

ω, if

ω∫
b

λ0|I(τ)|
(λ0 − 1)πω(τ)

dτ < +∞

Φ0(z) =

z∫
A0

ω

1

|φ0(y)|
1

1−σ1

dy, A0
ω =



y00, if

Y0∫
y00

1

|φ0(y)|
1

1−σ1

dy = +∞,

Y0, if

Y0∫
y00

1

|φ0(y)|
1

1−σ1

dy < +∞,

Φ1(z) =

z∫
A1

ω

Φ0(τ)

τ
dτ, A1

ω =



y00, if

Y0∫
y00

Φ0(τ)

τ
dτ = +∞,

Y0, if

Y0∫
y00

|Φ0(τ)|
τ

dτ < +∞.

1If Yi = +∞ (Yi = −∞), we suppose that y0
i > 0 (y0

i < 0).
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The inferior limits of the integrals are chosen in such a way that the corresponding integrals
tend either to 0 or to ∞.

The solution y of the equation (1) is called Pω(Y0, Y1, λ0)-solution if

y(i) : [t0, ω[→ ∆Yi (t0 ≥ a), lim
t↑ω

y(i)(t) = Yi (i = 0, 1), lim
t↑ω

(y′(t))2

y′′(t) y(t)
= λ0.

Let Y ∈ {0,∞}, ∆Y is some one-sided neighborhood of Y . The differentiable function L :
∆Y → ]0;+∞[ is said to be a normalized slowly varying function as z → Y (z ∈ ∆Y ) if

lim
z→Y1
z∈∆Yi

zL′(z)

L(z)
= 0.

We say that a slowly varying function θ : ∆Y → ]0;+∞[ as z → Y (z ∈ ∆Y ) satisfies the
condition S if for any continuous differentiable normalized slowly varying as z → Y (z ∈ ∆Y )
function L : ∆Yi → ]0;+∞[ the following relation takes place

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

The next theorem contains necessary and sufficient conditions of existence of Pω(Y0, Y1, λ0)-
solutions of the equation (1), and the asymptotic representations for these solutions and their
derivatives of the first order as t ↑ ω.

Theorem. Let σ1 ̸= 1, the function φ1 satisfy the condition S, and the following limit relation be
true

lim
z→Y0
z∈∆Y0

(
Φ′

1(z)
Φ1(z)

)′′(
Φ′

1(z)
Φ1(z)

)

((
Φ′

1(z)
Φ1(z)

)′)2
= γ0, γ0 ∈ R \ {1, 0}.

The following conditions are necessary for the existence of the Pω(Y0, Y1, λ0)-solutions of the
equation (1), where λ0 ∈ R \ {0, 1},

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0; πω(t)y

0
1α0(λ0 − 1) > 0, y01 · lim

t↑ω
|πω(t)|

1
λ0−1 = Y1,

lim
t↑ω

Φ−1
1 (I1(t)) = Y0,

lim
t↑ω

πω(t)I
′
1(t)

I1(t)
= ∞, lim

t↑ω

I ′1(t)πω(t)

Φ′
1(Φ

−1
1 (I1(t)))Φ

−1
1 (I1(t))

=
λ0

λ0 − 1
.

These conditions are also sufficient for the existence of the Pω(Y0, Y1, λ0)-solutions of the equation
(1) if

I(t)I1(t)λ0(σ1 − 1) > 0 as t ∈ [a;ω[

and the function
|πω(t)|

1− (2−γ0)λ0
(1−γ0)(λ0−1) I′1(t)
I1(t)

is a normalized slowly varying function as t ↑ ω.

Moreover, for each such solution the following asymptotic representations take place as t ↑ ω:

Φ1(y(t)) = I1(t)[1 + o(1)],
y′(t)Φ′

1(y(t))

Φ1(y(t))
=

I ′1(t)

I1(t)
[1 + o(1)].
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It is well known that, under certain conditions, a periodic differential system has periodic so-
lutions whose period is incommensurable with the period of the system itself [1–5]. Such solutions
are said to be strongly irregular [5]. The conditions of the process in which the oscillations of the
system are described by strongly irregular solutions are called an asynchronous mode [6,7], and the
frequency spectrum of such solutions is referred to as the asynchronous spectrum. Asynchronous
modes of oscillations are implemented in a number of various devices (see, [6] etc.). In particu-
lar, there exist systems that transform the energy of a source of high-frequency oscillations into
low-frequency ones whose frequency is almost independent of the source frequency. Such systems
implement a specifically defined influence on the oscillations, which leads to a periodic transport
of energy from an external harmonic source designed for the generation, amplification, or trans-
formation of oscillations. In this case, the oscillatory processes are implemented at the natural
frequency of system oscillations, which is not necessarily commensurable with the frequency of the
external force. Note that, even in the mid-1930s, the possibility of excitation of oscillations at
frequencies with an almost arbitrary relationship with the frequency of changes of parameters was
demonstrated in investigation [8] under the supervision by L. I. Mandel’shtam and N. D. Papaleksi
of the parametric influence on two-circuit systems.

The problem of synthesis of such modes for linear problems was stated in [9] as a control problem
for the asynchronous spectrum. This problem was solved in [10] for linearly independent column
basis of some blocks of the coefficient matrix without the average value. In the present paper, we
solve the control problem for the asynchronous spectrum with depended blocks of complete column
rank.

Consider the linear control system

ẋ = A(t)x+Bu, t ∈ R, x ∈ Rn, n ≥ 2, (1)

where A(t) is a continuous ω-periodic n×n-matrix, B is a constant n×n-matrix. We assume that
the control is given in the form of a linear state feedback

u = U(t)x (2)

with ω-periodic n×n-matrix U(t). The problem of finding the matrix U(t) (the feedback coefficient)
such that the closed system

ẋ = (A(t) +BU(t))x (3)

has strongly irregular periodic solutions with a given frequency spectrum L (the objective set) will
be called the problem of control of the frequency spectrum of irregular oscillations (asynchronous
spectrum)with objective set L.

This problem is a version of the generalization of the spectrum assignment problem in the
nonstationary case. Note that, for regular oscillations, the choice of frequencies other than multiples
of the frequencies of the right-hand side of system (1) is impossible.

Let L = {λ1, . . . , λ
′
r} be an objective set of frequencies whose elements are pairwise distinct,

commensurable with each other, and incommensurable with 2π/ω. Then there exists a maximum
positive real number λ such that λ1, . . . , λ

′
r are multiples of λ. Set Ω = 2π/λ then the ratio ω/Ω is

irrational.
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Consider the case of a singular matrix B, i.e. rankB = r < n (n− r = d), and let the first d
rows of the matrix B are zero. We denote the matrix consisting of the last r rows of the matrix B
by Br,n.

We represent the coefficient matrix A(t) in block form corresponding to the structure of the

matrix B. Let A
(11)
d,d (t) and A

(21)
r,d (t) be its left upper and lower blocks, and let A

(12)
d,r (t) and A

(22)
r,r (t)

be its right upper and lower blocks. The subscripts show the dimension. In accordance with this

representation, in turn, we split the averaged matrix Â into four blocks Â
(11)
d,d , Â

(21)
r,d , Â

(12)
d,r , Â

(22)
r,r of

the same dimensions. Let Ã(t) = A(t)− Â. Suppose that Â
(12)
d,r = 0. Then Ã

(12)
d,r (t) = A

(12)
d,r (t).

Let us consider the system

ẋ[d] = Â
(11)
d,d x

[d],

ẋ[r] =
(
Â

(21)
r,d +Br,nÛn,d

)
x[d] +

(
Â(22)

r,r +Br,nÛn,r

)
x[r],

Ã
(11)
d,d (t)x

[d] +A
(12)
d,r (t)x[r] = 0,

(Ã
(21)
r,d (t) +Br,nŨn,d(t))x

[d] + (Ã(22)
r,r (t) +Br,nŨn,r(t))x[r] = 0, (4)

where

x = col(x[d], x[r]), x[d] = col(x1, . . . , xd), x[r] = col(xd+1, . . . , xn),

Û =
{
Ûn,d, Ûn,r

}
, Ũ(t) =

{
Ũn,d(t), Ũn,r(t)

}
.

Suppose that the upper left and right blocks of the matrix Ã(t) have complete column rank

rankcol Ã
(11)
d, d = d, rankcolA

(12)
d, r = r (5)

and are linearly depended

Ã
(11)
1 (t)F1 + Ã

(11)
2 (t)F2 = A

(12)
d,r (t)G, (6)

where Ã
(11)
d,d (t) = {Ã(11)

1 (t), Ã
(11)
2 (t)}, F1 is nonsingular s× s-martix, F2 is (d− s)× s-martix. G is

a constant r × s matrix (1 ≤ s ≤ min{d, r})).
Let x

′[d] = col(x1, y2, . . . , ys), x
′′[d] = col(xs+1, . . . , xd). In accordance with the representation

of the vector x[d] via x
′[d] and x

′′[d] on the basis of the matrix Â
(11)
d,d we form four matrices Â

(11)
1 ,

Â
(11)
2 , Â

(21)
1 , and Â

(22)
1 .

By assumption (5), (6), system (4) can be represented in the form

ẋ
′[d] = (Â

(11)
1 + Â

(11)
2 H)x

′[d],

Hẋ
′[d] = (Â

(11)
3 + Â

(11)
4 H)x

′[d],

ẋ[r] = (Â
(21)
r,d +Br,nÛn,d)x

[d] + (Â(22)
r,r +Br,nÛn,r)x[r],

(Ã
(21)
r,d (t) +Br,nŨn,d(t))x

[d] + (Ã(22)
r,r (t) +Br,nŨn,r(t))x[r] = 0,

x
′′[d] = Hx

′[d], x[r] = Px
′[d] (H = F2F

−1
1 , P = −GF−1

1 ), (7)

where
x

′[d] = col(x1, y2, . . . , ys), x
′′[d] = col(xs+1, . . . , xd).

It follows from [4] that systems (3) and (7) are equivalent in the sense of existence of strongly
irregular periodic solutions. Therefore, a strongly irregular solution of the closed system (3) is a
trigonometric polynomial.

The following assertion holds.
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Theorem. Let the first d rows in the matrix B be zero, and the remaining r rows be linearly indepen-

ded. Suppose that Â
(12)
d,r = 0. Under assumptions (5), (6), the control problem for an asynchronous

spectrum for system (1) can be reduced to finding constant matrices Ûn,d, Ûn,r and ω-periodic

matrices Ũn,d(t), Ũn,r(t) such that system (7) has an Ω-periodic solution col(x
′[d](t), x

′′[d](t), x[r](t))
whose frequencies form the objective set L. A strongly irregular solution of the closed system (3) is
a trigonometric polynomial.
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Institute of Mathematics, Czech Academy of Sciences, branch in Brno, Brno, Czech Republic;
Institute of Informatics, FBM, Brno University of Technology, Brno, Czech Republic

E-mail: puza@math.cas.cz; puza@fbm.vutbr.cz

On the interval [a, b], we consider the multi-point boundary value problem

u′(t) = ℓ(u)(t) + q(t), (1)
n∑

i=1

αiu(ti) = c, (2)

where ℓ : C([a, b];R) → L([a, b];R) is a linear bounded operator, q ∈ L([a, b];R), αi ∈ R \ {0},
a ≤ t1 < t2 < · · · < tn ≤ b (i = 1, . . . , n), and c ∈ R. Here and in what follows, C([a, b];R) and
L([a, b];R) stand for Banach spaces of continuous and Lebesgue integrable functions defined on
[a, b], respectively, with standard norms; C([a, b];R+) and L([a, b];R+) are subsets of non-negative
functions of the corresponding spaces; AC([a, b];R) is a set of absolutely continuous functions
defined on [a, b].

A linear bounded operator ℓ : C([a, b];R) → L([a, b];R) is called an a-Volterra operator, resp.
a b-Volterra operator, if for arbitrary c ∈ ]a, b], resp. c ∈ [a, b[ , and v ∈ C([a, b];R) such that

v(t) = 0 for t ∈ [a, c], resp. v(t) = 0 for t ∈ [c, b],

the equality

ℓ(v)(t) = 0 for a.e. t ∈ [a, c], resp. ℓ(v)(t) = 0 for a.e. t ∈ [c, b],

is fulfilled.

Notation. Let ℓ : C([a, b];R) → L([a, b];R) be a linear bounded operator. Then ℓ ∈ Pab iff it
transforms a set C([a, b];R+) into a set L([a, b];R+); ℓ ∈ P+

ab iff it transforms the non-negative
non-decreasing absolutely continuous functions to the non-negative functions; ℓ ∈ Sab(a), resp.
ℓ ∈ Sab(b), iff every absolutely continuous function u satisfying

u′(t) ≥ ℓ(u)(t) for a.e. t ∈ [a, b], u(a) ≥ 0,

resp.
u′(t) ≤ ℓ(u)(t) for a.e. t ∈ [a, b], (b) ≥ 0,

admits the inequality u(t) ≥ 0 for t ∈ [a, b].
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Remark 1. In the case when ℓ(u)(t)
def
= p(t)u(τ(t)) − g(t)u(µ(t)) with p, g ∈ L([a, b];R+), τ, µ :

[a, b] → [a, b] measurables functions, it can be shown that ℓ ∈ P+
ab iff p(t) ≥ g(t) and g(t)(τ(t) −

µ(t)) ≥ 0 for a.e. t ∈ [a, b].
The efficient conditions guaranteeing the inclusions ℓ ∈ Sab(a) and ℓ ∈ Sab(b) can be found

in [2].

The proofs of the following theorems are based on the results established in [1].

Theorem 1. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab and let ℓ0 ∈ Sab(a).

Let, moreover, there exist ij ∈ {1, . . . , n} (j = 1, . . . , k) such that

n > i1 > i2 > · · · > ik ≥ 1, (3)

and either
(−1)rαz > 0 for z = ir+1 + 1, . . . , ir (r = 0, . . . , k) (4)

or
(−1)rαz < 0 for z = ir+1 + 1, . . . , ir (r = 0, . . . , k), (5)

where i0 = n, ik+1 = 0. Let, in addition,

i2r∑
z=i2r+1+1

|αz| ≥
i2r+1∑

z=i2r+2+1

|αz|, r = 0, . . . ,
[k − 1

2

]
. (6)

If either at least one of the inequalities in (6) is strict, or k is even, or

∫
I

ℓ(1)(t) dt ̸= 0, I =

[ k−1
2

]∪
r=0

[ti2r+2+1, ti2r ], (7)

then the problem (1), (2) is uniquely solvable.

Theorem 2. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0−ℓ1 with ℓ0, ℓ1 ∈ Pab and let −ℓ1 ∈ Sab(b).

Let, moreover, there exist γ ∈ AC([a, b];R) satisfying

γ(t) > 0 for t ∈ [a, b], (8)

γ′(t) ≥ ℓ(γ)(t) for a.e. t ∈ [a, b], (9)

and let there exist ij ∈ {1, . . . , n} (j = 1, . . . , k) such that (3) holds and either (4) or (5) is satisfied,
where i0 = n, ik+1 = 0. Let, in addition, (6) be fulfilled. If either at least one of the inequalities in
(6) is strict, or k is even, or (7) holds, then the problem (1), (2) is uniquely solvable.

Theorem 3. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab and let ℓ0 ∈ Sab(a).

Let, moreover, there exist ij ∈ {1, . . . , n} (j = 1, . . . , k) such that (3) holds, and either (4) or (5)
be fulfilled where i0 = n, ik+1 = 0. Let, in addition,

γ(tn)

γ(a)

n∑
z=i1+1

|αz| ≤
ik∑
z=1

|αz| if k is odd, (10)

γ(tn)

γ(a)

n∑
z=i1+1

|αz|+
ik∑
z=1

|αz| ≤
ik−1∑

z=ik+1

|αz| if k is even, (11)

and
i2r+2∑

z=i2r+3+1

|αz| ≤
i2r+1∑

z=i2r+2+1

|αz|, r = 0, . . . ,
[k − 3

2

]
if k ≥ 3, (12)
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where γ ∈ AC([a, b];R) is a function satisfying (8) and (9)1. If either at least one of the inequalities
in (10)–(12) is strict, or there exists I ⊆ [a, tn] with meas I > 0 such that

γ′(t) ̸= ℓ(γ)(t) for a.e. t ∈ I, (13)

or
n∑

i=1

αiγ(ti) ̸= 0, (14)

or ∫
I

ℓ(1)(t)dt ̸= 0, (15)

where
I = [ti1 , tn] ∪ I1 ∪ I2,

I1 = [a, tik ] if k is odd, I1 = [a, tik−1
] if k is even,

I2 =

[ k−3
2

]∪
r=0

[ti2r+3+1, ti2r+1 ] if k ≥ 3, I2 = ∅ if k < 3,

(16)

then the problem (1), (2) is uniquely solvable.

Theorem 4. Let ℓ ∈ P+
ab admit the representation ℓ = ℓ0−ℓ1 with ℓ0, ℓ1 ∈ Pab and let −ℓ1 ∈ Sab(b).

Let, moreover, there exist γ ∈ AC([a, b];R) satisfying (8) and (9), and let there exist ij ∈ {1, . . . , n}
(j = 1, . . . , k) such that (3) holds, and either (4) or (5) be fulfilled where i0 = n, ik+1 = 0. Let,
in addition, (10)–(12) be satisfied. If either at least one of the inequalities in (10)–(12) is strict,
or there exists I ⊆ [a, tn] with meas I > 0 such that (13) holds, or (14), or (15) is fulfilled with I
defined by (16), then the problem (1), (2) is uniquely solvable.

Theorem 5. Let ℓ admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab, ℓ(1)(t) ≥ 0 for a.e.
t ∈ [a, b], and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Let, moreover, there exist γ ∈ AC([a, b];R)
satisfying (8) and (9). Let, in addition, t1 = a and

α1αi < 0 (i = 2, . . . , n), |α1| ≤
n∑

i=2

|αi|.

If either

|α1| <
n∑

i=2

|αi|

or
tn∫
a

ℓ(1)(t) dt ̸= 0,

then the problem (1), (2) is uniquely solvable.

Theorem 6. Let ℓ admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab, ℓ(1)(t) ≥ 0 for a.e.
t ∈ [a, b], and let ℓ0 ∈ Sab(a) be a b-Volterra operator. Let, moreover, tn = b and

|αn| ≥
n−1∑
i=1

σi|αi|,

where

σi =
1

2

(
1− sgn(αiαn)

)
(i = 1, . . . , n− 1).

Let, in addition, at least one of the following items be fulfilled:

1The existence of such a function is guaranteed by [2, Theorem 1.1].
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(a)

|αn| >
n−1∑
i=1

σi|αi|;

(b) there exists i0 ∈ {1, . . . , n− 1} such that αi0αn > 0;

(c)
b∫

t1

ℓ(1)(t) dt ̸= 0.

Then the problem (1), (2) is uniquely solvable.

Remark 2. Results analogous to Theorems 1–6 can be derived by a standard transformation in the
case when ℓ ∈ N−

ab, i.e. when ℓ transforms the non-negative non-increasing absolutely continuous
functions to the non-positive functions, and when ℓ(1)(t) ≤ 0 for a.e. t ∈ [a, b], respectively.
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We consider the differential equation

y(n) =

m∑
k=1

αkpk(t)

n−1∏
j=0

φkj(y
(j)), (1)

where αk ∈ {−1; 1} (k = 1,m), pk : [a, ω[→ ]0,+∞[ (k = 1,m) are continuous functions, φkj :

∆Yj → ]0,+∞[ (k = 1,m; j = 0, n− 1) are continuous and regularly varying functions as y(j) → Yj
of orders σkj , −∞ < a < ω ≤ +∞1, ∆Yj – one-sided neighborhood of Yj , Yj is equal to 0, or ±∞.

Definition. A solution y of the equation (1) is called a Pω(Y0, . . . , Yn−1, λ0)-solution, where −∞ ≤
λ0 ≤ +∞, if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

y(j)(t) ∈ ∆Yj at t ∈ [t0, ω[ , lim
t↑ω

y(j)(t) = Yj (j = 0, n− 1), (2)

lim
t↑ω

[y(n−1)(t)]2

y(n)(t)y(n−2)(t)
= λ0.

The aim of this work is to establish the conditions of the existence and asymptotic as t → ω(ω ≤
+∞) representations of one class of Pω solutions of n-th order differential equation (1) containing
the right side several main terms, what means that for some s ∈ {1, . . . ,m} and not empty set
Γ ⊂ {1, . . . ,m},

lim
t↑ω

pk(t)
n−1∏
j=0

φkj(y
(j)(t))

ps(t)
n−1∏
j=0

φsj(y(j)(t))

= cks = const ̸= 0 at k ∈ Γ, (3)

lim
t↑ω

pk(t)
n−1∏
j=0

φkj(y
(j)(t))

ps(t)
n−1∏
j=0

φsj(y(j)(t))

= 0 at k ∈ {1, . . . ,m} \ Γ. (4)

In the works by Evtukhov V. M. and Klopot A. M. [1–3] there is considered the case when in
the target class of solutions the right side of equation (1) has one main term, which means that the
condition (4) is satisfied for all k ̸= s.

Let us introduce notation needed in forthcoming considerations.
From the definition of Pω(Y0, . . . , Yn−1, λ0)-solutions of the equation (1) it is clear that any such

solution and all of its derivatives up to order n differs from zero on an interval [t1, ω[⊂ [t0, ω[ , and

1We consider that a > 1 when ω = +∞, and ω − 1 < a < ω when ω < +∞.
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on this interval j + 1-th (j ∈ {0, . . . , n − 1}) derivative of this decision is positive, if ∆Yj is left
neighborhood of Yj , and negative – otherwise. Given this fact enter the number

νj =

{
1, if ∆Yj -left neighborhood 0, and if Yj = +∞, or Yj = 0,

−1, if ∆Yj -right neighborhood 0, and if Yj = −∞, or Yj = 0,
(j = 0, n− 2)

defining accordingly signs of j-th and j +1-th derivatives of Pω(Y0, . . . , Yn−1, λ0)-solutions. At the
same time, we note that for Pω(Y0, . . . , Yn−1, λ0)-solutions of equation (1) the conditions

νjνj+1 < 0, if Yj = 0, νjνj+1 > 0, Yj = ±∞ (j = 0, n− 2) (5)

are satisfied.
Let

a0i = (n− i)λ0 − (n− i− 1) (i = 1, . . . , n) at λ0 ∈ R,

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞.

For the formulation of the main results, we introduce the following notation.

γk = 1−
n−1∑
j=0

σkj , µkn =
n−2∑
j=0

σkj(n− j − 1),

Ck =

n−2∏
j=0

∣∣∣∣(λ0 − 1)n−j−1

n−1∏
i=j+1

a0i

∣∣∣∣σkj

, Jkn(t) =

t∫
Akn

pk(τ)|πω(τ)|µkn dτ,

Akn =


a, if

ω∫
a

pk(t)|πω(t)|µkn dt = +∞,

ω, if

ω∫
a

pk(t)|πω(t)|µkn dt < +∞,

where k = 1,m,

Y (t) =

∣∣∣∣γsCsJsn(t)

n−1∏
j=0

Lsj

(
νj |πω(t)|

a0j+1
λ0−1

)∑
k∈Γ

αkcks

∣∣∣∣,
Yj(t) = νn−1|Y (t)|

1
γs
[(λ0 − 1)πω(t)]

n−j−1

n−1∏
k=j+1

a0k

.

We say that a continuous and slowly varying as y → Y function L : ∆Y → ]0,+∞[ (Y is equal
to 0 or ±∞, ∆Y – one-sided neighborhood of Y ) satisfies the condition S if for any continuously
differentiable function l : ∆Y → ]0,+∞[ such that

lim
y→Y
y∈∆Y

y l′(y)

l(y)
= 0,

the asymptotic relation holds

L(yl(y)) = L(y)[1 + o(1)] for y → Y (y ∈ ∆Y ).
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Theorem 1. Let λ0 ∈ R \ {0, 12 , . . . ,
n−2
n−1 , 1} and for some s ∈ {1, . . . ,m} and not empty set

Γ ⊂ {1, . . . ,m} complied inequality γs ̸= 0. Suppose, moreover, that slowly varying components
Lkj(y) ∀ k ∈ Γ (j = 0, . . . , n − 1) of functions φkj satisfy the condition S. Then for the existence
of Pω(Y0, . . . , Yn−1, λ0)-solution of (1) for which performed (3), where

∑
k∈Γ

αkcks ̸= 0 and (4), it is

necessary the inequalities (5), the condition

lim
t↑ω

πω(t)J
′
sn(t)

Jsn(t)
=

γs
λ0 − 1

, (6)

the inequalities
νjνj+1a0j+1(λ0 − 1)πω(t) > 0 (j = 0, n− 2),

νn−1γsJsn(t)
(∑

k∈Γ
αkcks

)
> 0 at t ∈ ]a, ω[ , (7)

as well as the conditions

lim
t↑ω

pk(t)
n−1∏
j=0

φkj(Yj(t))

ps(t)
n−1∏
j=0

φsj(Yj(t))

= 0 at k ∈ {1, . . . ,m} \ {s}, (8)

lim
t↑ω

pk(t)
n−1∏
j=0

φkj(Yj(t))

ps(t)
n−1∏
j=0

φsj(Yj(t))

= cks at k ∈ Γ (9)

to be satisfied. Moreover, each such solution as t ↑ ω has the asymptotic representation

y(j−1)(t) = νn−1
[(λ0 − 1)πω(t)]

n−j

n−1∏
i=j

a0i

|Y (t)|
1
γs [1 + o(1)] (j = 1, . . . , n), (10)

where
Lsj(y

(j)) = |y(j)|−σsjφsj(y
(j)) (j = 0, . . . , n− 1).

Let us introduce the following notation.

Bm =

∑
k∈Γ

αkcksσkm∑
k∈Γ

αkcks
. (11)

Theorem 2. Let the conditions of Theorem 1 be executed. Then, if in addition to (5), (6), (7),
(8) and (9) the algebraic respect to ρ equation

n−1∑
m=0

Bm

n−1∏
i=m+1

a0i

m∏
j=1

(a0j + ρ) =
n∏

j=1

(a0j + ρ) (12)

doesn’t have roots with a zero real part, then the differential equation (1) has Pω(Y0, . . . , Yn−1, λ0)-
solutions of the type (10). Moreover, there is an l-parameter family of solutions with these repre-
sentations when among the roots an algebraic equation (12) there are l roots of real parts which
have the opposite sign of β(λ0 − 1).
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We consider the differential equation

y′′ = α0p(t)φ(y) (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, φ : ∆Y0 → ]0;+∞[ (i = 1, n) is a
continuously differentiable function satisfying the conditions

φ′(y) ̸= 0 at y ∈ ∆Y0 , lim
y→Y0
y∈∆Y0

φ(y) =

{
either 0,

or +∞,
lim
y→Y0
y∈∆Y0

φ′′(y)φ(y)

φ′2(y)
= 1, (2)

where ∆Y0 is some one-sided neighborhood of the points Y0, Y0 is equal to either 0 or ±∞.
From the identity

φ′′(y)φ(y)

φ′2(y)
=

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2
+ 1

and the conditions (2) it follows that

φ′(y)

φ(y)
∼ φ′′(y)

φ′(y)
as y → Y0 (y ∈ ∆Y0) and lim

y→Y0
y∈∆Y0

yφ′(y)

φ(y)
= ±∞.

The function φ in the equation (1) and its derivative of the first order are (see, Seneta E. [1,
Ch. 3, § 3.4, pp. 91–92]) rapidly varying as y → Y0.

The most simple example of such a function is the function φ(y) = eσy (σ ̸= 0) as Y0 = +∞. In
case of such function φ the asymptotic behaviour of solutions of the differential equation (1) was
studied in [2–6].

Under conditions (2) in the monography by V. Maric [7, Ch. 3, § 3, pp. 90–99] for the case when
α0 = 1, ω = +∞, Y0 = 0 and p-regularly varying function as t → +∞, and in [8] for the general
case, asymptotic representations for some classes of solutions of the differential equation (1) have
been established. Thus in [8] a class of studied solutions was defined through the function φ.

Naturally, however, it is represented for the equation (1) to investigate the same class of so-
lutions, which was studied earlier (see, for example, [9]) in case of regularly varying as y → Y0
nonlinearity φ.

Definition. A solution y of the equation (1) is called a Pω(Y0, λ0)-solution, where −∞ ≤ λ0 ≤ +∞,
if it is defined on some interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions:

lim
t↑ω

y(t) = Y0, lim
t↑ω

y′(t) =

{
either 0,

or ±∞,
lim
t↑ω

y′2(t)

y′′(t)y(t)
= λ0.
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The aim of the paper is to derive necessary and sufficient conditions for the existence of Pω(Λ0)-
solutions of the equation (1) when λ0 ∈ R \ {0; 1}, and also to establish asymptotic formulas for
such solutions and their derivatives of the first order.

Let

∆Y0 =

{
[y0, Y0[ , if ∆Y0 is a left neighborhood of Y0,

]Y0, y0], if ∆Y0 is a right neighborhood of Y0,

where |y0| < 1, if Y0 = 0, and y0 > 1 (y0 < −1), if Y0 = +∞ (Y0 = −∞).
We set

ν0 = sign y0, µ0 = signφ′(y),

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
J(t) =

t∫
A

πω(τ)p(τ) dτ, Φ(y) =

y∫
B

ds

φ(s)
,

q(t) =
α0(λ0 − 1)π2

ω(t)φ(Φ
−1(α0(λ0 − 1)J(t)))

Φ−1(α0(λ0 − 1)J(t))
,

H(t) =
Φ−1(α0(λ0 − 1)J(t))φ′(Φ−1(α0(λ0 − 1)J(t)))

φ(Φ−1(α0(λ0 − 1)J(t)))
,

where

A =


ω, if

ω∫
a

|πω(τ)|p(τ) dτ < +∞,

a, if

ω∫
a

|πω(τ)|p(τ) dτ = ±∞,

B =



Y0, if

Y0∫
y0

ds

φ(s)
= const,

y0, if

Y0∫
y0

ds

φ(s)
= ±∞.

With use of properties of rapidly varying functions (see, Bingham N. H., Goldie C. M., Teugels J.
L. [10, Ch. 3, 3.10, pp. 174–178]) and the results from [11] on the existence of systems of quasilinear
differential equations with vanishing solutions in singular point, the following two theorems are
established.

Theorem 1. Let λ0 ∈ R \ {0; 1}. Then for the existence of Pω(Λ0)-solutions of the equation (1) it
is necessary that

α0ν0λ0 > 0, α0µ0(λ0 − 1)J(t) < 0 at t ∈ ]a, ω[ , (3)

lim
t↑ω

πω(t)J
′(t)

J(t)
= ±∞, lim

t↑ω
q(t) =

λ0

λ0 − 1
. (4)

Moreover, each solution of this kind admits the following asymptotic representation:

y(t) = Φ−1(α0(λ0 − 1)J(t))
[
1 +

o(1)

H(t)

]
at t ↑ ω, (5)

y′(t) =
λ0

λ0 − 1

Φ−1(α0(λ0 − 1)J(t))

πω(t)
[1 + o(1)] at t ↑ ω. (6)

Theorem 2. Let λ0 ∈ R \ {0; 1}, conditions (3), (4) be satisfied and there exist a final or equal to
infinity

lim
y→Y0
y∈∆Y0

(φ
′(y)

φ(y) )
′

(φ
′(y)

φ(y) )
2

√∣∣∣yφ′(y)

φ(y)

∣∣∣ .
Then:
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1) if

(λ0 − 1)J(t) < 0 at t ∈ ]a, ω[ and lim
t↑ω

[ λ0

λ0 − 1
− q(t)

]
|H(t)|

1
2 = 0,

the differential equation (1) has a one-parametric family of Pω(Y0, λ0)-solutions with asymp-
totic representations (5), (6), and the derivative of such solutions admits the representation

y′(t) =
λ0

λ0 − 1

Φ−1(α0(λ0 − 1)J(t))

πω(t)

[
1 + |H(t)|−

1
2 o(1)

]
at t ↑ ω;

2) if

(λ0 − 1)J(t) > 0 at t ∈ ]a, ω[ , lim
t↑ω

[ λ0

λ0 − 1
− q(t)

]
|H(t)|

1
2

( t∫
t0

|H(τ)|
1
2 dτ

πω(τ)

)2

= 0

and

lim
t↑ω

t∫
t0

|H(τ)|
1
2 dτ

πω(τ)

|H(t)|
1
2

= 0, lim
t↑ω

|H(t)|
1
2

( t∫
t0

|H(τ)|
1
2 dτ

πω(τ)

) (yφ
′(y)

φ(y) )′

(yφ
′(y)

φ(y) )2

∣∣∣∣∣
y=Φ−1(α0(λ0−1)J(t))

= 0,

where t0 – some number from [a, ω[ , the differential equation (1) as ω = +∞ has a one-
parametric family of Pω(Y0, λ0)-solutions admitting the asymptotic representations

y(t) = Φ−1(α0(λ0 − 1)J(t))

[
1 +

(
H(t)

t∫
t0

|H(τ)|
1
2 dτ

πω(τ)

)−1

o(1)

]
at t ↑ ω,

y′(t) =
λ0

λ0 − 1

Φ−1(α0(λ0 − 1)J(t))

πω(t)

[
1 +

( t∫
t0

|H(τ)|
1
2 dτ

πω(τ)

)−1

o(1)

]
at t ↑ ω,

and for ω < +∞, a two-parametric families of Pω(Y0, λ0)-solutions with such representations.
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Just as in our previous report [1], we consider here both the linear differential systems

ẋ = A(t)x, x ∈ Rn, t ≥ t0 (1)

with bounded infinitely differentiable on the semi-axis [t0,+∞) coefficients and characteristic ex-
ponents λ1(A) ≤ · · · ≤ λn(A) < 0, and the nonlinear systems

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ t0 (2)

with infinitely differentiable in time t and variables y1, . . . , yn so-called m-perturbations f(t, y).
These perturbations have the order m > 1 of smallness in the neighbourhood of the origin and
admissible growth outside of it, satisfying the inequality

∥f(t, y)∥ ≤ Cf∥y∥m, Cf = const > 0, y ∈ Rn, t ≥ t0. (3)

The well-known (partial) Perron’s effects of sign and value changes [1], [2, pp. 50–61] in charac-
teristic exponents claimed the existence of such two-dimensional system (1) with specific character-
istic exponents λ1(A) = λ1 < λ2(A) = λ2 < 0 and the 2-perturbation (3) f(t, y) that all solutions
y(t, c), c ∈ R2 of the two-dimensional perturbed system (2) turned out to be infinitely extendable
to the right and had characteristic exponents

λ
[
y(·, c)

]
=

{
λ2 < 0, c = (0, c2) ̸= 0,

λ2 > 0, c1 ̸= 0.

The equal to λ2 coincidence of characteristic exponents of solutions x(t, c) and y(t, c), c = (c1, c2)
of systems (1) and (2), respectively, on the axis c1 = 0 (for c2 ̸= 0) of the plane R2 as well as the lack
of arbitrariness in the parameters λ1 ≤ λ2 < 0, m > 1, and in the set β = {λ[y(·, c)] : 0 ̸= c ∈ R2}
just right stipulates its partiality.

To the construction of various complete analogues of Perron’s effect of value change in charac-
teristic exponents of differential systems is devoted a cycle of our works, including those written
jointly with S. K. Korovin. In particular, in our previous report, for arbitrary parameters m > 1,
λ1 ≤ λ2 < 0 and for bounded closed from the above countable set

β ⊂ [λ1,+∞), λ2 ≤ supβ ∈ β,

we have stated that there exist the two-dimensional linear system (1) with exponents λ1(A) =
λ1 ≤ λ2 = λ2(A) and the nonlinear system (2) with m-perturbation (3) such that all its nontrivial
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solutions y(t, c), c ∈ R2, are infinitely extendable to the right, and their characteristic exponents
form the set Λ(A, f) = β which coincides for p = 0 ∈ R2 with its limiting subset

Λp(A, f) ≡ Lim
r→+0

{
λ
[
y(·, c)

]
: 0 < ∥c− p∥ ≤ r

}
, p ∈ R2,

of characteristic exponents of nontrivial solutions of system (2) starting in any arbitrarily small
neighbourhood of the point p ∈ R2.

In this connection, there arises the problem on the existence of another, different from the origin
(0, 0), points p ∈ R2 of the space of initial solutions for which the equality

Λ(A, f) = Λp(A, f) = β (4)

would be fulfilled for an infinite number of points p = (p1, p2) ∈ R2 and for any bounded countable
(not necessarily closed from the above) set β of positive, in particular, numbers. Its solution is
involved in the following theorem.

Theorem. For any parameters m > 1, λ1 ≤ λ2 < 0 and for any finite or bounded countable set

β ⊂ [λ1,+∞), β ∩ [λ2,+∞) ̸= ∅,

there exist:

1) the two-dimensional system (1) with characteristic exponents λ1(A) = λ1 ≤ λ2 = λ2(A);

2) the infinitely differentiable with respect to the variables t, y1, y2, and satisfying the condition
(3) perturbation f : [1,+∞)×R2 → R2 of order m > 1 such that all nontrivial solutions of the
nonlinear two-dimensional system (2) with linear approximation (1) are infinitely extendable
to the right, and their characteristic exponents form the set Λ(A, f) = β which takes at the
points p = (p1, p2) ∈ R2 with integer coordinates its limiting values

Λp(A, f) =

{
β if p1 ∈ Z, p2 = 0,

β ∩ [λ2,+∞) if p1 ∈ Z, p2 ∈ Z \ {0}.
(5)

Statement (5) and condition (4) result in the following

Corollary 1. In the case of a finite or bounded countable set β ⊂ (0,+∞) of positive numbers, the
representation

Λ(A, f) = Λp(A, f), p1 ∈ Z, p2 ∈ Z

is valid.

When proving the theorem in the case, where

β ∩ [λ2,+∞) ̸= β,

we have obtained a stronger compared with the second statement in (5)

Corollary 2. For the limiting at the point p = (p1, p2) ∈ R2 set Λp(A, f) of characteristic exponents
of solutions of the perturbed system (2), the representation

Λp(A, f) = β ∩ [λ2 +∞) ̸= β, p1 ∈ R, p2 ∈ Z \ {0}

is valid.

The results obtained in the present report are published in [1]– [3].
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We consider the linear systems of the form

ẋ = A(t)x, x ∈ Rn, t ∈ I = [0,+∞), (1A)

with piecewise continuous bounded coefficients (∥A(t)∥ ≤ a for t ∈ I). Along with original systems
(1) we will consider perturbed systems (1A+Q) with piecewise continuous perturbations Q defined
on I and satisfying either the condition

∥Q(t)∥ ≤ CQe
−σt, σ > 0, t ≥ 0, (2)

or the more general condition

λ[Q] ≡ lim
t→+∞

t−1 ln ∥Q(t)∥ ≤ −σ < 0. (3)

If σ = 0 in (2), (3), then we additionally suppose that Q(t) → 0 as t → +∞.
Following Yu. S. Bogdanov [1], we say that systems (1A) and (1A+Q) are asymptotically equiv-

alent (Lyapunov’s equivalent, reducible) if there exists a Lyapunov transformation

x = L(t)y, max
{
sup
t∈I

∥L(t)∥, sup
t∈I

∥L−1(t)∥, sup
t∈I

∥L̇(t)∥
}
< +∞,

reducing one of them to the other.
The sets N2(a, σ), N3(a, σ), a ≥ 0, σ ≥ 0, are said to be the irreducibility sets if they consist of

all systems (1A) with the following properties [2]:

1) the norm of the coefficient matrix A is less than or equal to a on I;

2) for each system (1A) ∈ Ni(a, σ), i = 2, 3, there exists a system (1A+Q) with the matrix
Q satisfying either the condition (2) or the more general condition (3), respectively, which
cannot be reduced to system (1A).

If Q satisfies (2) or (3) with σ > 2a, then ∥
∫ +∞
t Q(u) du∥ ≤ Ce−σ1t for some C > 0 and

σ1 > 2a, therefore [3,5] systems (1A) and (1A+Q) are asymptotically equivalent, and, therefore, the
sets N2(a, σ), N3(a, σ) are empty for all σ > 2a.

We have [6] the following

Theorem 1. The following strict inclusions are valid for the irreducibility sets N2(a, σ) and
N3(a, σ):

Ni(a1, σ) ⊂ Ni(a2, σ) ∀ 0 ≤ a1 < a2, ∀σ ∈ [0, 2a2], i = 2, 3.
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The limit irreducibility sets

Ni(σ) ≡ Lim
a→+∞

Ni(a, σ), i = 2, 3,

were defined in [4]. The properties of these sets treated as functions of the parameter σ are similar
to the properties of the irreducibility sets Ni(a, σ), i = 2, 3. By Theorem 1, the limit irreducibility
sets are defined as the union of appropriate irreducibility sets

Lim
a→+∞

Ni(a, σ) =
∪
a≥0

Ni(a, σ),

and, by virtue of their definition, they are related by the inclusions N2(σ) ⊆ N3(σ) for all σ ≥ 0.
The following statements are valid [6].

Theorem 2. The limit irreducibility sets N2(σ) and N3(σ) coincide for σ = 0 and do not coincide
for any σ > 0, i.e., N3(σ) \N2(σ) ̸= ∅ for any σ > 0.

Theorem 3. The limit irreducibility sets N2(σ) and N3(σ) of linear differential n-dimensional
systems (1A) satisfy the strict inclusions

Ni(σ2) ⊂ Ni(σ1) ∀ 0 ≤ σ1 < σ2, i = 2, 3.

Theorem 4. The limit irreducibility sets satisfy the relations

Lim
σ→σ0+0

Ni(σ) ⊂ Ni(σ0) ∀σ0 ≥ 0, i = 2, 3,

Lim
σ→σ0−0

N2(σ) ⊃ N2(σ0) ∀σ0 > 0,

Lim
σ→σ0−0

N3(a, σ) = N3(a, σ0) ∀σ0 > 0.

Theorem 5. The limit sets N2(σ) and N3(σ) are invariant under Lyapunov transformations.
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One type integro-differential nonlinear parabolic model is obtained at mathematical simulation
of processes of electromagnetic field penetration in the substance. Based on Maxwell system [1] this
model at first appeared in [2]. Many other processes are described by integro-differential system
obtained in [2] (see, for example, [3] and references therein). A lot of scientific works are dedicated
to investigation and numerical resolution of the initial-boundary value problems for these type
models (see, for example, [3] and references therein). The existence, uniqueness and asymptotic
behavior of the solution for such type equations and systems are studied in the works [2–6] and
in a number of other works as well (for more detail citations see, for example, [3] and references
therein).

The present work is dedicated to the investigation and approximate resolution of the initial-
boundary value problem with first type boundary conditions for one generalization and one-
dimensional variant of such model.

In the domain Q = (0, 1) × (0, T ), where T is a positive constant, uniqueness and existence
properties and semi-discrete and finite difference approximations are discussed for the following
nonlinear integro-differential problem:

∂U

∂t
− ∂

∂x

{[
1 +

t∫
0

(∂U
∂x

)2
dτ

]p∣∣∣ ∂U
∂x

∣∣∣q−2 ∂U

∂x

}
= f(x, t), (1)

U(0, t) = U(1, t) = 0, (2)

U(x, 0) = U0(x), (3)

where p, q are constants and f = f(x, t) and U0 = U0(x) are given functions of their arguments.
Principal characteristic peculiarity of the equation (1) is connected with the appearance in the

coefficient with derivative of higher order nonlinear term depended on the integral in time. These
circumstances requires different discussions than it is usually necessary for the solution of local
differential problems.

Using one modification of compactness method developed in [7] (see also [8]) the following
existence statement takes place [5].

Theorem 1. If 0 < p ≤ 1, q ≥ 2, f ∈ W 1
2 (Q), f(x, 0) = 0, U0 ∈

◦
W 1

2(0, 1), then there exists the
unique solution U of problem (1)–(3) satisfying the following properties:

U ∈ Lpq+q

(
0, T ;

◦
W 1

pq+q(0, 1)
)
,

∂U

∂t
∈ L2(Q),

∂

∂x

(∣∣∣∂U
∂x

∣∣∣ q−2
2 ∂U

∂x

)
∈ L2(Q),

√
T − t

∂

∂t

(∣∣∣∂U
∂x

∣∣∣ q−2
2 ∂U

∂x

)
∈ L2(Q).
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Here usual well-known spaces are used. The proof of the formulated theorem is divided into
several steps applying Galerkin’s method and the method of compactness. One of the basic step is
to obtain necessary a priori estimates.

In [4], there is proposed the operational scheme with so called conditionally closed operators.
That scheme is applied for investigation of problems of (1) types in this work, too.

In order to describe the space-discretization to problem (1)–(3), it is introduced a net whose
mesh points are denoted by xi = ih, i = 0, 1, . . . ,M , with h = 1/M . The boundaries are specified
by i = 0 and i = M . The semi-discrete approximation at (xi, t) is designed ui = ui(t). The exact
solution to the problem at (xi, t), denoted by Ui = Ui(t), is assumed to exist and be smooth enough.
From the boundary conditions (2) we have u0(t) = uM (t) = 0. At other points i = 1, 2, . . . ,M −
1, the integro-differential equation will be replaced by approximating the space derivatives by a
forward and backward differences. We will use the following known notations.

ux,i(t) =
ui+1(t)− ui(t)

h
, ux,i(t) =

ui(t)− ui−1(t)

h
.

Let’s correspond to problem (1)–(3) the following semi-discrete scheme:

dui
dt

−

{[
1 +

t∫
0

(
ux,i

)2
dτ

]p
|ux,i|q−2ux,i

}
x,i

= f(xi, t), i = 1, 2, . . . ,M − 1, (4)

u0(t) = uM (t) = 0, (5)

ui(0) = U0,i, i = 0, 1, . . . ,M. (6)

The (4)–(6) is a Cauchy problem for nonlinear system of ordinary integro-differential equations.
Using multiplier u(t) = (u1(t), u2(t), . . . , uM−1(t)), after simple transformations we obtain the
inequality

∥u(t)∥2 +
t∫

0

∥ux]|q dτ < C, (7)

where C is a positive constant which do not depend on h and norms are defined as follows:

(u, v) =

M−1∑
i=1

uivih, (u, v] =

M∑
i=1

uivih,

∥u∥ = (u, u)1/2, ∥u]| = (u, u]1/2.

The a priori estimate (7) guarantees the global solvability of problem (4)-(6). It is not difficult
to prove the uniqueness of the solution of problem (4)–(6), too.

The following statement takes place.

Theorem 2. If 0 < p ≤ 1, q ≥ 2, and problem (1)–(3) has a sufficiently smooth solution U =
U(x, t), then the solution u = u(t) = (u1(t), u2(t), . . . , uM−1(t)) of problem (4)–(6) tends to U =
U(t) = (U1(t), U2(t), . . . , UM−1(t)) as h → 0 and the following estimate is true

∥u(t)− U(t)∥ < Ch.

In order to describe the finite difference method it is introduced a net whose mesh points are
denoted by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M ; j = 0, 1, . . . , N with h = 1

M , τ = T
N . The

initial line is denoted by j = 0. The discrete approximation at (xi, tj) is designed by uji once again

and the exact solution to problem (1)–(3) by U j
i .
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Using forward derivative formula for time variable and rectangle formula for integration, let us
correspond to problem (1)–(3) the following finite difference scheme:

uj+1
i − uji

τ
−

{[
1 + τ

j+1∑
k=1

(
ukx,i

)2
]p
|uj+1

x,i |q−2uj+1
x,i

}
x,i

= f j
i , (8)

i = 1, 2, . . . ,M − 1; j = 0, 1, . . . , N − 1,

uj0 = ujM = 0, j = 0, 1, . . . , N, (9)

u0i = U0,i, i = 0, 1, . . . ,M. (10)

So, system of nonlinear algebraic equations (8)–(10) is obtained. It is not difficult to get the
inequality

∥un∥2 +
n∑

j=1

∥ujx]|
qτ < C, n = 1, 2, . . . , N, (11)

where C here and below is a positive constant independent of τ and h.
The a priori estimate (11) guarantees the stability of the scheme (8)–(10). Note that it is easy

to prove the existence and uniqueness of a solution of the scheme (8)–(10), too.
The following statement takes place.

Theorem 3. If p = 1, q ≥ 2, and problem (1)–(3) has a sufficiently smooth solution U = U(x, t),

then the solution uj = (uj1, u
j
2, . . . , u

j
M−1), j = 1, 2, . . . , N of difference scheme (8)–(10) tends to

the U j = (U j
1 , U

j
2 , . . . , U

j
M−1), j = 1, 2, . . . , N as τ → 0, h → 0 and the following estimate is true

∥uj − U j∥ < C(τ + h), j = 1, 2, . . . , N.

Note that for solving the difference scheme (8)–(10) Newton’s iterative process is used. Various
numerical experiments are done. These experiments agree with theoretical research.
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Dunod; Gauthier-Villars, Paris, 1969.



68 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

Periodic Problem for the Nonlinear Telegraph Equation

Otar Jokhadze

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
E-mail: jokha@rmi.ge

In the plane of independent variables x and t in the strip Ω := {(x, t) ∈ R2 : 0 < x < l, t ∈ R}
consider the problem on finding a solution U(x, t) to the nonlinear telegraph equation of the form

LU := Utt − Uxx + 2aUt + cU + g(U) = F (x, t), (x, t) ∈ Ω, (1)

satisfying the Poincare homogeneous boundary conditions

γ1Ux(0, t) + γ2Ut(0, t) + γ3U(0, t) = 0, t ∈ R, (2)

and the Dirichlet boundary condition

U(l, t) = 0, t ∈ R, (3)

respectively, for x = 0 and x = l, and also the condition of periodicity with respect to the variable t

U(x, t+ T ) = U(x, t), x ∈ [0, l], t ∈ R, (4)

with constant real coefficients a, c, γi, i = 1, 2, 3, with γ1γ2 ̸= 0. Here T := const > 0; F is a
given, while U is an unknown real T -periodic in time functions; g : R → R is a given continuous
real nonlinear function.

Remark 1. Let ΩT := Ω ∩ {0 < t < T}, f := F
∣∣
ΩT

. It is easy to see that if U ∈ C2(Ω) is a

classical solution of the problem (1)–(4), then the function u := U
∣∣
ΩT

is a classical solution of the

following nonlocal problem

Lu = f(x, t), (x, t) ∈ ΩT , (5)

γ1ux(0, t) + γ2ut(0, t) + γ3u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T, (6)

(B0u)(x) = 0, (B0ut)(x) = 0, x ∈ [0, l], (7)

where (Bβw)(x) := w(x, 0) − exp(−βT )w(x, T ), β ∈ R, x ∈ [0, l], and, vice versa, if f ∈ C(ΩT )

and u ∈ C2(ΩT ) is a classical solution of the problem (5)–(7), then the function U ∈ C2(Ω), being
T -periodic continuation of the function u from the domain ΩT into the strip Ω, will be a classic
solution of the problem (1)–(4), if f(x, 0) = f(x, T ), x ∈ [0, l].

Definition 1. Let f ∈ C(ΩT ) be a given function, and Γ1 : x = 0, 0 ≤ t ≤ T , Γ2 : x = l,
0 ≤ t ≤ T . The function u is called a strong generalized solution of the problem (5)–(7) of the class

C, if u ∈ C(ΩT ) and there exists the sequence of functions un ∈
◦
C2(ΩT ,Γ1,Γ2) :=

{
w ∈ C2(ΩT ) :

(γ1wx + γ2wt + γ3w)|Γ1 = 0, w|Γ2 = 0
}
such that un → u and Lun → f in the space C(ΩT ), while

B0un → 0 and B0unt → 0 as n → ∞ in the spaces C1([0, l]) and C([0, l]), respectively.

Remark 2. It is obvious that a classical solution of the problem (5)–(7) from the space C2(ΩT ) is
a strong generalized solution of this problem of the class C.
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Consider the following conditions

G(s) :=

s∫
0

g(s1) ds1 ≥ 0, sg(s)− 2G(s) ≥ 0, s ∈ R, (8)

a > 0, c ≥ a2, γ1γ2 < 0, γ3γ
−1
2 ≥ a. (9)

The following Theorem is valid.

Theorem. Let T = 2l, the conditions (8), (9) and f ∈ C(Ω2l) be fulfilled. Then the problem
(5)–(7) has at least one strong generalized solution u of the class C in the sense of Definition 1,
which belongs to the space C1(Ω2l), besides, in the case f ∈ C1(Ω2l) this solution is a classical one.
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Stochastic difference equations were truly introduced in [3]. Stability of these equations is an
important problem which has not been comprehensively studied yet. Some results can be found
in [2,4,9–12]. Stochastic functional difference equations were introduced in [8] and studied further
in [13]. Stability of difference equations with a random delay was studied in [6].

Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis satisfying usual assumptions (see e.g. [7]). In what
follows we assume that Bi, i = 2, . . . ,m are independent standard scalar Wiener processes; E is
the expectation with respect to the probability measure P ; | · | is a fixed norm in Rn; ∥ · ∥ is the
norm of an n × n-matrix, which is consistent with the chosen vector norm in Rn; N is the set of
all natural numbers; N+ = {0} ∪N ; Z is the set of all integers.

For given 1 ≤ p < ∞, h > 0 the number chp is the universal constant for which the following
inequalities are satisfied

E

∣∣∣∣
t+h∫
t

φ(s) dB(s)
∣∣∣∣2p ≤ chpE

t+h∫
t

|φ(s)|2p ds. (1)

The inequalities should be valid for any t ≥ 0, any Ft-adapted stochastic process φ and a standard
scalar Wiener process B. In [7, p. 39], these constants are defined (up to a change of the notation)
as chp = pp(2p−1)php−1 for p > 1 and c1 = 1 for p = 1. The Burkholder–Davis–Ghandy inequalities
give the estimates which are independent of h (see e.g. [7, p. 40] where p should be replaced with 2p).

Below we consider the following stochastic difference equations:

(a) The linear ordinary difference Itô equation

x(s+ 1) = x(s) +A1(s)x(s)h+

m∑
i=2

Ai(s)x(j)
(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+), (2)

where x(s) is a Fs-measurable, n-dimensional random variable for any s ∈ N+, h is a positive
number, Ai(s) is an n× n-matrix, whose entries are Fs-measurable random variables for any
i = 1, . . . ,m, s ∈ N+.

(b) The linear difference Itô equation with delay

x(s+ 1) = x(s) +

s∑
j=−∞

A2
1(s, j)x(j)h+

+

m∑
i=2

s∑
j=−∞

A2
i (s, j)x(j)

(
Bi((s+ 1)h)− Bi(sh)

)
(s ∈ N+),

x(j) = φ(j) (j < 0),

(3)
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where x(s) is a Fs-measurable, n-dimensional random variable for any s ∈ N+, h is a positive
number, A2

i (s, j) is an n × n-matrix, whose entries are Fs-measurable random variables for
any s ∈ N+, j = −∞, . . . , s, i = 1, . . . ,m, φ(j) (j < 0) is a F0-measurable random variable.

Note that the equation (2) is a particular case of the equation (3). Below we therefore formulate
the definitions and results in terms of (3), only.

A solution of the equation (3) is a sequence of n-dimensional and Fs-measurable random vari-
ables x(s) (s ∈ Z), which satisfies (3) P -almost everywhere. More precisely, x(s) satisfies the
difference equation for s ∈ N+ and coincides with φ(s) for s < 0. Thus the only degree of freedom
of the solution of (3) is its initial value x(0) = x0 at s = 0.

Note that for any F0-measurable initial value x0, the solution of (3) always exists, and it is
unique up to the natural P -equivalence. Moreover, this solution is a Fs-adapted discrete stochastic
process x : Z × Ω → Rn. Restricted to the set N+, this solution will be denoted by xφ(s, x0),
s ∈ N+.

Definition 1. The trivial solution of the equation (3) is called p-stable with respect to the initial
data (φ and x0) if for any ε > 0 there exists η(ε) > 0 such that E|x0|p + vrai sup

j<0
E|φ(j)|p) < η

implies E|x(s, x0)|p ≤ ε for all s ∈ N+.
If, in addition, E|xφ(s, x0)|p → 0 as s → ∞, then the trivial solution is called asymptotically

p-stable.

The first result concerns asymptotic stability of the ordinary difference equation (2).

Theorem 1. Assume that Ai(s) = ai, i = 1, . . . ,m for s ∈ N+.
If now

−1 < a1h < 0, chp

m∑
i=2

|ai| < −a1h
1/2,

then the equation (2) is asymptotically 2p-stable with respect to initial data.

The second result applies to the vector equation (3). However, it does not guarantee asymptotic
stability.

Theorem 2. Assume that there exist positive numbers ai(s, j), i = 1, . . . , n, s ∈ N+, j = −∞, . . . , s
such that the coefficients in (3) satisfy

∥Ai(s, j)∥ ≤ ai(s, j), i = 1, . . . ,m, s ∈ N+, j = −∞, . . . , s

P -almost everywhere,
∞∑
τ=0

−1∑
j=−∞

ai(τ, j) < ∞ (i = 1, . . . ,m)

and

c
def
=

∞∑
τ=0

( τ∑
j=0

a1(τ, j)h+ chp

m∑
i=2

τ∑
j=0

ai(τ, j)h
1/2

)
< 1.

Then the trivial solution of the equation (3) is 2p-stable with respect to the initial data.

The idea of the proofs.

The proofs of the theorems are based on Azbelev’s W -transform of the equations (2) and (3),
respectively (see e. g. [1]). The transform is designed in a special manner with the help of the so-
called “reference equation”. Usually, the latter is an equation which already possesses the desired
asymptotic properties, but which is simpler than the equation to be studied. The W -method
works if the integral operator, which results from the substitution of the solutions of the reference
equations into the given equation, is invertible.

Applying this idea, we first of all introduce two spaces of discrete stochastic processes:
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1) dn is the linear space of all possible solutions of the difference equation (3);

2) ln is the linear space of all sequences of m×n-matrices H(s)(s ∈ N+), with the entries being
Fs-measurable random variables.

We will also need the following operator equation constructed from the equation (3):

x(s+ 1) = x(s) + [(V x)(s) + f(s)]Z(s) (s ∈ N+), (4)

where

(V x)(s) =
( s∑

j=0

A1(s, j)x(j),

s∑
j=0

A2(s, j)x(j), . . . ,

s∑
j=0

Am(s, j)x(j)
)

(s ∈ N+),

f(s) =
(
f1(s), f2(s), . . . , fm(s)

)
(s ∈ N+),

Z(s) =
(
h,

(
B2((s+ 1)h)− B2(sh)

)
, . . . ,

(
Bm((s+ 1)h)− Bm(sh)

))
(s ∈ N+).

Here f ∈ ln. Let us note that the initial function φ(s) from (3) is in this representation included in
the equation (4) as a special case of f , see the formula (8) below and [1,5] for further details. This
trick gives us opportunity to study stability with respect to φ as a particular case of admissibility
of pairs of spaces (see Definition 2 below).

It is easy to see that V is a linear operator from dn to ln.
The crucial step in the W -transform is the choice of “a reference equation”, which has the same

shape as the equation to be studied, but already has the desired asymptotic properties

x(s+ 1) = x(s) +
[
(Qx)(s) + g(s)

]
Z(s) (s ∈ N+), (5)

where Q : dn → ln is a linear operator and g ∈ ln.
One usually assumes that for any admissible x0 there exists a unique (up to the P -equivalence)

solution x of the equation (5). In this case, the solution xg(s, x0) (s ∈ N+) of (5) satisfying
xg(0, x0) = x0 has the following canonical representation

xg(s, x0) = U(s)x0 + (Wg)(s) (s ∈ N+), (6)

where U(s) (s ∈ N+) is the fundamental matrix to (5) and W : ln → dn is a linear operator such
that (Wg)(0) = 0 and (Wg)(s) (s ∈ N+) is a solution of (5)).

We rewrite the equation (4) using the representation (6) for the reference equation (5) as follows

x(s+ 1) = x(s) +
[
(Qx)(s) + ((V −Q)x)(s) + f(s)

]
Z(s) (s ∈ N+)

or alternatively,

x(s+ 1) = x(s) + U(s)x0 + (W (V −Q)x)(s) + (Wf)(s) (s ∈ N+).

Introducing the notation W (V −Q) = Θ, we obtain the equation

((I −Θ)x)(s) = U(s)x0 + (Wf)(s) (s ∈ N+).

To study asymptotic properties of a stochastic difference equation we need a notion of admis-
sibility of a pair of spaces. In the sequel we will use the following spaces of random variables.

The space kn consists of all n-dimensional F0-measurable random variables and

knp =
{
α : α ∈ kn, ∥α∥kn

def
= (E|α|p)1/p < ∞

}
.

Given a sequence γ(s) (s ∈ N+) of positive real numbers, we define two more spaces of discrete
stochastic processes:

mγ
p =

{
x : x ∈ dn, ∥x∥mγ

p

def
= sup

s∈N+

(
E|γ(s)x(s)|p

)1/p
< ∞

}
(m1

p = mp);
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and
bγ =

{
f : f ∈ b, γf ∈ b

}
which is endowed with the induced norm ∥f∥bγ = ∥γf∥b, where b is a linear subspace of the space
ln equipped with some norm ∥ · ∥b.

Definition 2. We say that the pair (mγ
p , bγ) is admissible for the system (4) if there exists a number

c ∈ R1
+ such that for any x0 ∈ knp , f ∈ bγ we have that xf ( · , x0) ∈ mγ

p and∥∥xf ( · , x0)∥∥mγ
p
≤ c

(
∥x0∥knp + ∥f∥bγ

)
. (7)

Now we make assumptions on the space b. Letting

f =
( −1∑

j=−∞
A2

1( · , j)φ(j), . . . ,
−1∑

j=−∞
A2

m( · , j)φ(j)
)
, (8)

we assume that the coefficients of the system (3) satisfy the following condition:

- for any φ such that sup
j<0

E|φ(j)|p < ∞ the stochastic process (8) belongs to the linear subspace

b of the space ln, the norm in b satisfies the estimate

∥f∥b ≤ K sup
j<0

(
E|φ(j)|p

)1/p
for some positive constant K.

The proofs of the above theorems are based on the following lemmas.

Lemma 1. Let the pair (mγ
p , bγ) be admissible for the reference equation (5) and the operator Θ

act in the space mγ
p . If the operator (I − Θl) : m

γ
p → mγ

p is continuously invertible, then the pair
(mγ

p , bγ) is admissible for the system (4).

Lemma 2. If for the system (4) corresponding to the equation (3) the pair (mp, b) is admissible,
then the trivial solution of (3) is p-stable with respect to the initial data.

Lemma 3. If for the system (4) corresponding to the equation (3) the pair (mγ
p , bγ) is admissible

for some sequence of numbers γ(s) (s ∈ N+) satisfying γ(s) ≥ δ > 0 for all s ∈ N+ (δ > 0),
lim

s→+∞
γ(s) = +∞ , then the trivial solution of (3) is asymptotically p-stable with respect to the

initial data.

For the technical details of the proofs see the paper [5].
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Consider the n-dimensional (n ≥ 2) linear system of differential equations

dx/dt = A(t)x, x ∈ Rn, t ≥ 0, (1)

with piecewise continuous on the half-line t ≥ 0 coefficient matrix A( · ) : [0,+∞) → EndRn. Denote
the class of all such systems by M∗

n. We identify the system (1) and it’s coefficient matrix and
therefore write A ∈ M∗

n. Along with the system (1) we consider the one-parameter family

dx/dt = µA(t)x, x ∈ Rn, t ≥ 0, (2)

of linear differential systems with a parameter-multiplier µ ∈ R. Denote by λ1(µA) ≤ · · · ≤ λn(µA)
the Lyapunov exponents [1, p. 34], [2, p. 63] of the system (2).

V. I. Zubov in [3, p. 408; Problem 1] set the following problem: find out how the Lyapunov
exponents of the systems (1) and (2) are related. For every A ∈ M∗

n we consider the exponent
λi(µA) as function of variable µ ∈ R and call it the i-th Lyapunov exponent of the family (2).
Emphasize that in [3] in the formulation of the problem it is not necessary that the coefficient
matrix of (1) is bounded. Therefore the exponent λi(µA), i = 1, n, can take improper values −∞
and +∞. Hence the function λi(µA) is a mapping R → R where R = R ⊔ {−∞,+∞}.

Zubov problem is equivalent to the following: for every i = 1, n give a complete description

of the set of i-th Lyapunov exponents of families (2), i.e. the set Ln
i

def
= {λi(µA) | A ∈ M∗

n} of

functions λi(µA) : R → R. In the present report this problem is solved for the largest Lyapunov
exponent, i.e. a complete description of the set Ln

n is given for every integer n ≥ 2.
Note that for parametric families of linear differential systems

dx/dt = A(t, µ)x, x ∈ Rn, t ≥ 0, (3)

with continuous in the variables t, µ and bounded on the half-line t ≥ 0 for every fixed µ ∈ R
coefficient matrix A(t, µ) : [0,+∞) × R → EndRn, a similar problem is solved in [4]. It is proved
that for every i = 1, n a function λ( · ) : R → R is the i-th Lyapunov exponent (considered as a
function of µ ∈ R) of some family (3) if and only if λ( · ) belongs to the Baire class (∗, Gδ) and
have an upper semicontinuous minorant. In the paper [4] it is proved that this result holds in a
more general situation – for the Lyapunov exponents of families of morphisms of Millionshchikov
bundles.

Recall that a real-valued function is referred to as a function of the class (∗, Gδ) [5, p. 223–224]
if for each r ∈ R the preimage of the interval [r,+∞) under the mapping f is a Gδ-set, i.e. can be
represented as a countable intersection of open sets. Consider R with a natural (order) topology, so
that R is homeomorphic to the interval [−1, 1]. Choose such a homeomorphism ℓ : R → [−1, 1] in a
standard way: ℓ(x) = x

|x|+1 if x ∈ R, and ℓ(x) = sgn(x) if x = ±∞. Since the mapping ℓ performs

an order-preserving homeomorphism between R and [−1, 1], we say that a function f : R → R
belongs to the Baire class K if the composition ℓ ◦ f belongs to the class K. This definition is
equivalent to the definition [6, p. 382, 401] of Baire classes of mappings between metric spaces.
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Slightly modifying proofs of [4] one can get that similar result holds true for the generalized
Lyapunov exponents which implies that for every i = 1, n a function λ( · ) : R → R is the i-th
Lyapunov exponent (considered as a function of µ ∈ R) of some family (3) with not necessary
bounded coefficients if and only if λ( · ) belongs to the Baire class (∗, Gδ).

Despite the fact that the dependence on the parameter in the families (2) is linear, the descrip-
tion of the largest Lyapunov exponents of families (2) is similar to the description of the largest
Lyapunov exponents in the general case of families (3).

A partial solution to the Zubov problem was announced in report [7]. In the paper [8] it was
proved that conditions 1) – 4) of the theorem below are necessary. In [8] it was also proved that
conditions 1) – 3) are sufficient under the assumption that there exists such a real number b that the
inequality f(µ) ≥ bµ holds for all µ ∈ R. In the general case the theorem below gives a complete
description of the set Ln

n for an arbitrary integer n ≥ 2.

Theorem. A function f : R → R belongs to the class Ln
n = {λn(µA) : R → R | A ∈ M∗

n} for an
arbitrary n ≥ 2 if and only if it fits the next four conditions:

1) f belongs to (∗, Gδ) Baire class;

2) f(0) = 0;

3) f is nonnegative on some real semiaxis;

4) if f is not identically equal to +∞ on any semiaxis, then there exists such a real number b
that the inequality f(µ) ≥ bµ holds for all µ ∈ R.
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In the Euclidian space Rn+1 of the variables x1, . . . , xn, t we consider the semilinear equation
of the type

Lλu := �2u+ λ|u|α sgnu = F, (1)

where λ ̸= 0 and α > 0 are given real numbers, F is a given and u is an unknown real functions,

� :=
∂2

∂t2
−

n∑
i=1

∂2

∂x2i
, n ≥ 2.

For the equation (1) we consider the boundary value problem: find in the cylindrical domain
DT = Ω × (0, T ), where Ω is an open Lipschitz domain in Rn, a solution u(x1, . . . , xn, t) of that
equation according to the boundary conditions

u
∣∣
∂DT

= 0,
∂u

∂ν

∣∣∣
∂DT

= 0, (2)

where ν = (ν1, . . . , νn, νn+1) is the unit vector of the outer normal to ∂DT .
Let

◦
Ck(DT , ∂DT ) :=

{
u ∈ Ck(DT ) : u

∣∣
∂DT

=
∂u

∂ν

∣∣∣
∂DT

= 0

}
, k ≥ 2.

Introduce the Hilbert space
◦
W 1

2,�(DT ) as the completion with respect to the norm

∥u∥2◦
W 1

2,�(DT )
=

∫
DT

[
u2 +

(∂u
∂t

)2
+

n∑
i=1

( ∂u

∂xi

)2
+ (�u)2

]
dx dt

of the classical space
◦
C2(DT , ∂DT ).

Definition. Let α < n+1
n−1 and F ∈ L2(DT ). The function u ∈

◦
W 1

2,�(DT ) is said to be a weak

generalized solution of the problem (1), (2) if the integral equality∫
DT

�u�φ dx dt+ λ

∫
DT

|u|α sgnuφ dx dt =

∫
DT

Fφ dx dt

is valid for any φ ∈
◦
W 1

2,�(DT ).

It is not difficult to verify that if a weak generalized solution u of the problem (1), (2) belongs

to the class
◦
C4(DT , ∂DT ), then it will also be a classical solution of that problem.

Theorem. Let λ > 0, α < n+1
n−1 . Then for any F ∈ L2(DT ) the problem (1), (2) has a unique weak

generalized solution in the space
◦
W 1

2,�(DT ).



78 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

Acknowledgement

The work was supported by the Shota Rustaveli National Science Foundation, Grant
No. FR/86/5-109/14, 31/32.



International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia 79

On Boundary Value Problems with the Condition at Infinity for

Systems of Higher Order Nonlinear Differential Equations

Ivan Kiguradze

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
E-mail: kig@rmi.ge

In the interval R+ = [0,+∞[ , we consider the problem on the existence of a solution of the
nonlinear differential system

u(m) = f1(t, v, . . . , v
(n−1)), v(n) = f2(t, u, . . . , u

(m−1)), (1)

satisfying the boundary conditions

u(i−1)(0) = φi

(
v(n−1)(0)

)
(i = 1, . . . ,m), v(k−1)(0) = ψk

(
v(n−1)(0)

)
(k = 1, . . . , n− 1),

lim inf
t→+∞

|v(n−1)(t)| = 0.
(2)

Here m ≥ 1, n ≥ 2, and f1 : R+ × Rn → R, f2 : R+ × Rm → R, φi : R → R (i = 1, . . . ,m),
ψk : R → R (k = 1, . . . , n− 1) are continuous functions.

Problem (1), (2) is interesting because its different particular cases arise in the oscillation theory
(see, e.g., [1, 2]). Nevertheless, in the general case this problem is not studied yet. We have
established sufficient conditions for the solvability and unique solvability of that problem. In
particular, the following theorems are proved.

Theorem 1. Let there exist a positive constant r and continuous functions h0 : R+ → R+, hk :
R+ → R+ (k = 1, . . . , n) such that

∣∣f1(t, x1, . . . , xn)∣∣ ≤ h0(t)
(
1 +

n∑
i=1

|xi|
)

for t ∈ R+, (x1, . . . , xn) ∈ Rn,

f1(t, x1, . . . , xn) sgn(x1) ≥
n∑

k=1

hk(t)|xk| for t ∈ R+, xi sgn(x1) ≥ r (i=1, . . . , n−1), xnx1>0,

∣∣f2(t, x1, . . . , xm)
∣∣ ≤ h0(t)

(
1 +

n∑
i=1

|xi|
)

for t ∈ R+, (x1, . . . , xm) ∈ Rm,

f2(t, x1, . . . , xm) sgn(x1) ≥ 0 for t ∈ R+, xi sgn(x1) ≥ r (i = 1, . . . ,m),

and

lim inf
|x|→+∞

φi(x) sgn(x) > r (i = 1, . . . , n), lim inf
|x|→+∞

ψk(x) sgn(x) > r (k = 1, . . . , n− 1).

If, moreover,
∞∫
0

( m∑
k=1

tn−khk(t)
)
dt = +∞ (k = 1, . . . , n), (3)

then problem (1), (2) has at least one solution.
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Theorem 2. Let the functions fi (i = 1, 2) have continuous partial derivatives in the phase vari-
ables,

fi(t, 0, . . . , 0) = 0 for t ∈ R+ (i = 1, 2),

and let there exist continuous functions hk : R+ → R+ (k = 0, . . . , n) such that

hk(t) ≤
∂f1(t, x1, . . . , xn)

∂xk
≤ h0(t) for t ∈ R+, (x1, . . . , xn) ∈ Rn (k = 1, . . . , n),

0 ≤ ∂f2(t, x1, . . . , xm)

∂xk
≤ h0(t) for t ∈ R+, (x1, . . . , xm) ∈ Rm (k = 1, . . . ,m).

Let, moreover, hk (k = 1, . . . , n) satisfy condition (3), while φi (i = 1, . . . ,m) and ψk (k =
1, . . . , n− 1) be nondecreasing functions such that

lim inf
|x|→+∞

φi(x) sgn(x) > 0 (i = 1, . . . ,m), lim inf
|x|→+∞

ψk(x) sgn(x) > 0 (k = 1, . . . , n− 1).

Then problem (1), (2) has one and only one solution.
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In the infinite interval R+ = [0,+∞[ , we consider the (n ≥ 2)-th order differential equation

u(n)(t) = f
(
t, u(t), . . . , u(n−1)(t), u(τ1(t)), . . . , u

(n−1)(τn(t))
)

(1)

with the boundary conditions

u(i−1)(0) = φi

(
u(n−1)(0)

)
(i = 1, . . . , n− 1), lim inf

t→+∞
|u(n−1)(t)| < +∞, (2)

where f : R+ × R2n → R, φi : R → R (i = 1, . . . , n − 1) and τk : R+ → R+ (k = 1, . . . , n) are
continuous functions and

0 ≤ τk(t) < t for t > 0, lim
t→+∞

τk(t) = +∞ (k = 1, . . . , n). (3)

Problems of the type (1), (2) arise in the oscillation theory when studying the existence of proper
oscillatory solutions of differential and functional differential equations having the property B (see,
e.g., [1–3]).

We have found conditions guaranteeing, respectively, the solvability and unique solvability of
problem (1), (2). In particular, the following theorems are proved.

Theorem 1. Let there exist a continuous function g : R+ × Rn → R+ and a positive constant ρ
such that∣∣f(t, x1, . . . , xn, y1, . . . , yn)∣∣ ≤

≤ g(t, y1, . . . , yn)
(
1 +

n∑
k=1

|xk|
)

for t ∈ R+, (x1, . . . , xn, y1, . . . , yn) ∈ R2n, (4)

f(t, x1, . . . , xn, y1, . . . , yn)x1 ≥ 0 for t ∈ R+, xk sgn(x1) ≥ ρ, yk sgn(y1) ≥ ρ (k = 1, . . . , n) (5)

and
lim inf
|x|→+∞

φi(x) sgn(x) > ρ (i = 1, . . . , n− 1). (6)

Then problem (1), (2) has at least one solution.

Theorem 2. Let the function f be nondecreasing and locally Lipschitz in the last 2n arguments
and along with (4), (5) satisfy the condition

+∞∫
0

∣∣f(t, tn−1x, . . . , x, τn−1(t)x, . . . , x)
∣∣ dt = +∞ for x ̸= 0.

If, moreover, φi (i = 1, . . . , n) are nondecreasing functions satisfying inequalities (6), then problem
(1), (2) has one and only one solution.
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As examples, we consider the differential equations

u(n)(t) =

n∑
k=1

pk(t)
∣∣u(k−1)(τk(t))

∣∣λku(k−1)(t) + q(t), (7)

u(n)(t) =

n∑
k=1

p1k(t)
∣∣u(k−1)(τk(t))

∣∣λ1k sgn
(
u(k−1)(τk(t))

)
+

+
n∑

k=1

p2k(t)
(
1 + |u(k−1)(t)|

)−λ2ku(k−1)(t) + q(t) (8)

with the boundary conditions

u(i−1)(0) = αi|u(n−1)(0)|µi sgn
(
u(n−1)(0)

)
+ βi (i = 1, . . . , n− 1), lim inf

t→+∞
|u(n−1)(t)| < +∞, (9)

where

λk > 0, λ1k ≥ 1, 0 ≤ λ2k ≤ 1 (k = 1, . . . , n),

αi > 0, µi > 0, βi ∈ R (i = 1, . . . , n),

pk : R+ → R+, pik : R+ → R+ (i = 1, 2; k = 1, . . . , n), q : R+ → R are continuous functions, while
τk : R+ → R+ (k = 1, . . . , n) are functions satisfying conditions (3).

Theorems 1 and 2 imply the following proposition.

Corollary 1. If

|q(t)| ≤ r

m∑
k=1

pk(t) for t ∈ R+,

where r = const > 0, then problem (7), (9) has at least one solution.

Corollary 2. If

|q(t)| ≤ r
n∑

k=1

(
p1k(t) + p2k(t)

)
for t ∈ R+

and
+∞∫
0

n∑
k=1

(
p1k(t)τ

(n−k)λ1k(t) + p2k(t)t
(1−λ2k)(n−k)

)
dt = +∞,

+∞∫
0

|q(t)| dt < +∞,

then problem (8), (9) has one and only one solution.
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As it is known the magnetic field diffusion process in the medium can be modeled by Maxwell’s
system of partial differential equations [1]. Assume that coefficients of thermal heat capacity and
electroconductivity of the substance depend on temperature. In this case, as it is shown in [2], the
system of Maxwell’s equation can be reduced to the following integro-differential form

∂H

∂t
= − rot

[
a

( t∫
0

| rotH|2 dτ
)
rotH

]
, (1)

where H = (H1,H2,H3) is a vector of the magnetic field and function a = a(S) is defined for
S ∈ [0,∞).

In the work [3] some generalization of equations of type (1) is proposed. In particular, if the
temperature is kept constant throughout the material, the same process of penetration of a magnetic
field into a substance can be rewritten in the following integro-differential form [3]:

∂H

∂t
= a

( t∫
0

∫
Ω

| rotH|2 dx dτ
)
∆H, (2)

where x ∈ Ω ⊂ R3.
Note that integro-differential parabolic models of (1) and (2) type are complex and still yield

to the investigation only for special cases (see, for example, [2], [4]–[17] and references therein).
Investigations mainly are done for one-dimensional case, i.e., when components of magnetic field
H depend on one space variable.

The existence of a weak solution to the first boundary value problem for the one component
magnetic field and one dimensional spatial version for the case a(S) = 1+S and uniqueness results
for some general cases of model (1) were proved in [2]. The same questions for model (2) has been
discussed in [8].

The theorems and discussions of a large time behavior to the solutions of the initial-boundary
value problems for the one-dimensional analog of (2) type models for the different cases of function
a = a(S) are studied in [4], [8]–[14], [16]. The multidimensional case for (1) type model is considered
in [6]. The questions of numerical solution of corresponding initial-boundary value problems for
(2) type models are discussed in [7], [12]–[17].

Purpose of this note is to study asymptotic behavior as t → ∞ of a solution of the Dirichlet
problem for model (2) in one component magnetic field and two-dimensional spatial case. Assume
that the magnetic field has the following form H = (0, 0, U) and U = U(x, y, t). Then we have

rotH =
(∂U
∂y

,−∂U

∂x
, 0
)

and equation (2) takes the following form

∂U

∂t
= a(S)

(∂2U

∂x2
+

∂2U

∂y2

)
, (x, t) ∈ Q = Ω× (0,∞), (3)
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where

S(t) =

t∫
0

∫
Ω

[(∂U
∂x

)2
+

(∂U
∂y

)2
]
dx dy dτ, (4)

and Ω = (0, 1)× (0, 1).
In the domain Q, let us consider the following initial-boundary value problem for equation (3),

(4):

U(x, y, t) = 0, (x, y) ∈ ∂Ω, t ≥ 0, (5)

U(x, y, 0) = U0(x, y), (x, y) ∈ Ω, (6)

where U0 = U0(x, y) is a given function.
Recall the L2-inner product and norm:

(u, v) =

∫
Ω

u(x, y)v(x, y) dx dy, ∥u∥ = (u, u)1/2.

The following statements take place.

Theorem 1. If a(S) = (1 + S)p, p > 0; U0 ∈ H1
0 (Ω), then for the solution of problem (3)–(6) the

following estimate is true ∥∥∥∂U
∂x

∥∥∥2 + ∥∥∥∂U
∂y

∥∥∥2 ≤ C exp(−2t).

Here and below we use usual Sobolev spaces Hk(Ω) and Hk
0 (Ω) and constant C which denotes

various positive values independent of t.
Note that Theorem 1 gives exponential stabilization of the solution of problem (3)–(6) in the

norm of the space H1(Ω).

Theorem 2. If a(S) = (1 + S)p, p > 0; U0 ∈ H1
0 (Ω) ∩ H2(Ω), then for the solution of problem

(3)–(6) the following estimate is true∥∥∥∂U(x, t)

∂t

∥∥∥ ≤ C exp
(
− t

2

)
.

The algorithm of an approximate solution is constructed by using of which numerous numerical
experiments for problem (3)–(6) with different kind of initial-boundary value problems are carried
out. Results of numerical experiments agree with the theoretical ones obtained in Theorems 1
and 2.
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We consider the second order ordinary differential equation of the form:

F (t, y, y′, y′′) =

n∑
k=1

pk(t)y
αk |y′|βk |y′′|γk = 0, (1)

n ∈ N, n ≥ 2, αk, βk, γk ∈ R,
n∑

k=1

|γk| ̸= 0, pk ∈ C([a; +∞), a > 0; R) (k = 1, n), pi(t) ̸= 0 (i = 1, s,

2 ≤ s ≤ n). We investigate the question of the existence and asymptotic behavior (as t → +∞) of
unboudedly continuable to the right solutions (R-solutions) y(t) of equation (1) and the derivatives
y′(t), y′′(t) of these solutions.

Earlier in [1] we have considered a similar question of the asymptotic behavior of solutions of

equation of the form (1) when
n∑

k=1

|γk| = 0.

The main result is obtained under the assumption that there exists a function v ∈
C2([t1; +∞), t1 > a;R) which possesses the following properties:

(A) v(t) > 0, v′′(t) ̸= 0 on [t1; +∞), v(+∞) is equal to 0 or +∞;

(B) lim
t→+∞

pi(t)v
αi(t)|v′(t)|βi |v′′(t)|γi

p1(t)vα1(t)|v′(t)|β1 |v′′(t)|γ1
= ci (0 ̸= ci ∈ R, i = 1, s),

lim
t→+∞

pj(t)v
αj (t)|v′(t)|βj |v′′(t)|γj

p1(t)vα1(t)|v′(t)|β1 |v′′(t)|γ1
= 0 (j = s+ 1, n);

(C) ∃ lim
t→+∞

v′′(t)v(t)
(v′(t))2 = µ (0 ̸= µ ∈ R).

The following theorem is valid.

Theorem 1. Let there exist a function v ∈ C2([t1; +∞), t1 > a;R) which possesses the prop-
erties (A)–(C). Then for the R-solution y(t) of the differential equation (1) with the asymptotic
representation

y(k)(t) ∼ v(k)(t) (k = 0, 2) (2)

to exist it is necessary, and if the roots λ1, λ2 of the algebraic equation

λ2 +

(
1 +

m
s∑

i=1
(βi + γi)ci

s∑
i=1

γici

)
λ+

m
s∑

i=1
(αi + βi + γi)ci

s∑
i=1

γici

= 0
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have the property Reλk ̸= 0 (k = 1, 2), then it is also sufficient that
s∑

i=1
ci = 0.

Moreover, if in some suburb of +∞ sign(Reλ1) ̸= sign(Reλ2), then there exists a one-parametric
set of R-solutions with the asymptotic representation (2); if sign(Reλ1) = sign(Reλ2) ̸= sign(v′(t)),
then there exists a two-parametric set of R-solutions with the asymptotic representation (2).

This result is obtained using the results from [2,3].
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We consider the differential equation

y(n) = αp(t)

n−1∏
j=0

φj(y
(j)), (1)

where n ≥ 2, α ∈ {−1, 1}, p : [a,+∞[→ ]0,+∞[ is a continuous function, a ∈ R, φj : ∆Yj → ]0;+∞[

is a continuous and regularly varying as y(j) → Yj function of order σj , j = 0, n− 1, where ∆Yj is
some one-sided neighborhood of the point Y0, Y0 is equal to either 0 or ±∞1.

The set of solutions of equation (1), that is defined in some neighborhood of +∞, consists of
monotonous functions and their derivatives of orders till n− 1 and falls into two classes:

1) solutions, for each of them

lim
t→+∞

y(k−1)(t) =

{
or ±∞,

or 0
(k = 1, n);

2) solutions, for each of them there exists k ∈ {1, . . . , n} such that

y(t) = tk−1 [c+ o(1)] (c ̸= 0) as t → +∞.

From the first class of solutions a sufficiently wide subclass of solutions of the equation (1) was
picked out in the works of Evtukhov V. M. and Samǒılenko A. M. [1], Klopot A. M. [2]. Asymptotic
representations for this class of solutions as t → +∞ were established and necessary and sufficient
conditions for the existence of these solutions were derived there.

The aim of the paper is to derive necessary and sufficient conditions for the existence of solu-
tions of the equation (1) and more particular case, each of that for some k ∈ {1, . . . , n} admits
representations

y(t) = tk−1 [c0 + o(1)], y(k−1) = c0 + o(1) (c0 ̸= 0) as t → +∞.

Moreover, we establish asymptotic formulas as t → +∞ for their derivatives of orders till n−1 and
solve a question of quantity of these solutions.

Let us introduce notation for signs of numbers from neighborhoods of ∆Yj (j = 0, n− 1).

µj =

{
1, if Yj = +∞, ; or Yj = 0 and ∆(Yj) is a right neighborhood of the point 0,

−1, if Yj = −∞, or Yj = 0 and ∆(Y 0
j ) is a left neighborhood of the point 0.

1When Yj = ±∞, here and in the sequel all signs in the neighborhood of the point ∆Yj are assumed to have the
uniform sign.
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Theorem 1. For the existence of solutions of the equation (1), that admit the representation

y(n−1) = c+ o(1) (c ̸= 0) as t → +∞,

it is necessary and sufficient that c ∈ ∆Yn−1 and conditions be satisfied

Yj−1 =

{
+∞, if µn−1 > 0,

−∞, if µn−1 < 0,
when j = 1, n− 1,

+∞∫
t0

p(τ)φ0(µ0τ
n−1)φ1(µ1τ

n−2) · · ·φn−2(µn−2τ) dτ < +∞,

where t0 ≥ a is chosen so that ctn−k

(n−k)! ∈ ∆Yk−1 (k = 1, n− 1) for t ≥ t0.

Moreover, when these conditions are implemented, there exists an n-parameter family of such
solutions and each of them admits the following asymptotic representations as t → +∞:

y(j−1)(t) =
ctn−j

(n− j)!
[1 + o(1)] (j = 1, n− 1),

y(n−1)(t) = c+ αM(c)φn−1(c)

t∫
+∞

p(τ)φ0(µ0τ
n−1)φ1(µ1τ

n−2) · · ·φn−2(µn−2τ) dτ · [1 + o(1)],

where

M(c) =

n−1∏
k=1

∣∣∣ c

(n− k)!

∣∣∣σk−1

.

Let us introduce the notation needed in the forthcoming theorem.

I(t) = αφn−2(c)M(c)

t∫
B

p(τ)φ0(µn−2τ
n−2)φ1(µn−2τ

n−3) · · ·φn−3(µn−3τ) dτ,

M(c) =

n−2∏
k=1

∣∣∣ c

(n− k − 1)!

∣∣∣σk−1

, c ∈ ∆Yn−2, Φ(z) =

z∫
A

ds

φn−1(s)
,

A = 0 and B = +∞, if

Yn−1∫
yn−1

ds

φn−1(s)
< +∞ (σn−1 < 1, yn−1 ∈ ∆Yn−1),

A = yn−1 and B = t0, if

Yn−1∫
yn−1

ds

φn−1(s)
= ±∞ (σn−1 > 1, yn−1 ∈ ∆Yn−1).

Theorem 2. Let σn−1 ̸= 1. For the existence of solutions of the equation (1), that admit the
representation

y(n−2)(t) = c+ o(1) (c ̸= 0) when t → +∞,

it is necessary and sufficient that c ∈ ∆Yn−2 and conditions be satisfied

Yn−1 = 0, Yj−1 =

{
+∞, if µn−2 > 0,

−∞, if µn−2 < 0,
when j = 1, n− 2,

+∞∫
t0

Φ−1(I(τ)) dτ < +∞,
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where t0 ≥ a is chosen so that

ctn−k−1

(n− k − 1)!
∈ ∆Yk−1 (k = 1, n− 2) for t ≥ t0,

Φ−1 is an inverse function for Φ.
Moreover, when these conditions are implemented, there exists an n-parameter family of such

solutions, if σn−1 < 1, and (n − 1)-parameter family of such solutions, if σn−1 < 1, and each of
them admits the following asymptotic representations as t → +∞:

y(j−1)(t) =
ctn−j−1

(n− j − 1)!
[1 + o(1)] (j = 1, n− 2),

y(n−2)(t) = c+

t∫
+∞

Φ−1(I(s))ds [1 + o(1)],

y(n−1)(t) = Φ−1(I(t)) [1 + o(1)].

Let us consider a particular type of equation (2)

y(n) = αp(t)φ0(y)φ1(y
′) · · ·φn−k(y

(n−k)), (2)

where n ≥ 2, α ∈ {−1, 1}, k ∈ {1, . . . , n}, p : [a,+∞[→ ]0,+∞[ is a continuous function, a ∈ R,
φj : ∆Yj → ]0;+∞[ is a continuous and regularly varying as y(j) → Yj function of order σj ,

j = 0, n− k, where ∆Yj is some one-sided neighborhood of the point Yj , Yj is equal to either 0 or
±∞.

Theorem 3. For the existence of solutions of the equation (2), that admit the representation as
i ∈ {1, . . . , k}:

y(n−k)(t) =
cti−1

(i− 1)!
[1 + o(1)] ; (c ̸= 0) as t → +∞,

it is necessary and sufficient that c ∈ ∆Yn−k and conditions be satisfied

Yj−1 =

{
+∞, if µn−k > 0,

−∞, if µn−k < 0,
when j = 1, n− k, if i = 1;

Yj−1 =

{
+∞, if µn−k > 0,

−∞, if µn−k < 0,
when j = 1, n− k + 1, if i > 1;

+∞∫
t0

+∞∫
tk−i

· · ·
+∞∫
t1

p(τ)φ0(µ0τ
n−k+i−1) · · ·φn−k(µn−kτ

i−1) dt1 · · · dtk−i dτ < +∞,

where t0 ≥ a is chosen so that

ctn−k+i−j

(n− k + i− j)!
∈ ∆Yj−1 (j = 1, n− k − 1) for t ≥ t0.

Moreover, when these conditions are implemented, there exists an n-parameter family of such
solutions and each of them admits the following asymptotic representations as t → +∞:

y(j−1)(t) =
ctn−k+i−j

(n− k + i− j)!
[1 + o(1)] (j = 1, n− k + i− 1),

y(n−k+i−1)(t) = c+ αM(c)Wk−i+1(t)[1 + o(1)],

y(j)(t) = αM(c)Wn−j(t)[1 + o(1)] (j = n− k + i, n− 1),
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where

M(c) =

n−k+1∏
j=1

∣∣∣ c

(n− k + i− j)!

∣∣∣σk−1

, c ∈ ∆Yn−k, Wj(t) =

t∫
+∞

Wj−1(s) ds (j = 1, k − i+ 1),

W0(t) = p(t)φ0(µ0t
n−k+i−1)φ1(µ1t

n−k+i−2) · · ·φn−k(µn−kt
i−1).
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We consider the second order half-linear differential equation

(|x′|α sgnx′)′ + q(t)|x|α sgnx = 0, (A)

under the assumption that:

(a) α is a positive constant;

(b) q(t) is a continuous and integrable function on [a,∞), a > 0.

Let c be a constant such that

c ∈ (−∞, E(α)), where E(α) =
αα

(α+ 1)α+1
,

and let λ1, λ2 (λ1 < λ2) denote the real roots of the equation

|λ|1+
1
α − λ+ c = 0. (1)

It is known [2] that equation (A) possesses regularly varying solutions xi(t) such that

xi ∈ RV(λ
1
α
∗

i ), i = 1, 2,

if and only if

lim
t→∞

tα
∞∫
t

q(s)ds = c,

where use is made of the asterisk notation

uγ∗ = |u|γ sgnu, γ > 0, u ∈ R.

A question arises: Is it possible to determine precisely the asymptotic behavior at infinity of
the solutions of (A) mentioned above? It is natural to expect that the behavior of solutions would
depend heavily on the rate of decay of the function

Qc(t) = tα
∞∫
t

q(s) ds− c
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as t → ∞. The purpose of this report is to confirm the truth of this expectation by presenting
some of the results, obtained in our recent paper [3], which provide explicit asymptotic formulas
for regularly varying solutions of (A).

For conciseness of presentation we assume throughout that c is a nonzero constant in (−∞, E(α)),
in which case the real roots λi, i = 1, 2, of (1) satisfy

0 < λ1 < λ2 if c > 0, λ1 < 0 < λ2 if c < 0.

and

λ1 <
( α

α+ 1

)α
< λ2 regardless of the sign of c.

First we prove the following theorems which describe how the asymptotic behavior of the reg-
ularly varying solutions xi(t), i = 1, 2, of (A) is affected by the function Qc(t) decaying to zero as
t→ ∞.

Theorem 1. Suppose that there exists a positive continuous function ϕ(t) on [0,∞) which decreases
to 0 as t→ ∞ and satisfies

|Qc(t)| ≤ ϕ(t) for all large t.

Then, equation (A) possesses a regularly varying solution x1 ∈ RV (λ
1
α
∗

1 ) which is expressed in the
form

x1(t) = exp

{ t∫
T

(λ1 + v1(s) +Qc(s)

sα

) 1
α
∗
ds

}
, t ≥ T, (2)

for some T > a, where v1(t) satisfies

v1(t) = O(ϕ(t)) as t→ ∞. (3)

Theorem 2. Suppose that there exists a continuous slowly varying function ψ(t) on [0,∞) which
tends to 0 as t→ ∞ and satisfies

|Qc(t)| ≤ ψ(t) for all large t.

Then, equation (A) possesses a regularly varying solution x2 ∈ RV (λ
1
α
∗

2 ) which is expressed in the
form

x2(t) = exp

{ t∫
T

(λ2 + v2(s) +Qc(s)

sα

) 1
α
∗
ds

}
, t ≥ T, (4)

for some T > a, where v2(t) satisfies

v2(t) = O(ψ(t)) as t→ ∞. (5)

In the proofs of these theorems it is crucial to determine the functions vi(t) in (2) and (4) so as
to satisfy (3) and (5), respectively. This can be done by deriving the integral equations for vi(t),
i = 1, 2, via the generalized Riccati equation associated with (A) and solving them by means of the
contraction mapping principle.

It is expected that the accurate asymptotic formulas for solutions xi(t), i = 1, 2, could be
obtained from their representations (2) and (4) provided some stronger decay conditions are imposed
on Qc(t). That this is indeed the case is illustrated by the following theorems.

Theorem 3. Let ϕ(t) be a positive continuously differentiable function on [0,∞) which decreases
to 0 as t→ ∞, has the property that t|ϕ′(t)| is decreasing and satisfies

∞∫
a

ϕ(t)

t
dt = ∞,

∞∫
a

ϕ(t)2

t
dt <∞.
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Suppose that Qc(t) is one-signed and satisfies

|Qc(t)| = ϕ(t) +O(ϕ(t)2), t→ ∞.

Then, equation (A) possesses a regularly varying solution x(t) of index λ
1
α
∗

1 such that

x(t) ∼ k1t
λ

1
α ∗
1 exp

{
λ

1
α
∗

1

λ1(α− µ1)
sgnQc

t∫
a

ϕ(s)

s
ds

}
, t→ ∞,

for some constant k1 > 0, where µ1 = (α+ 1)λ
1
α
∗

1 .

Theorem 4. Let ψ(t) be a positive continuously differentiable slowly varying function on [0,∞)
which decreases to 0 as t→ ∞, has the property that t|ψ′(t)| is slowly varying and satisfies

∞∫
a

ψ(t)

t
dt = ∞,

∞∫
a

ψ(t)2

t
dt <∞.

Suppose that Qc(t) is one-signed and satisfies

|Qc(t)| = ψ(t) +O(ψ(t)2), t→ ∞.

Then, equation (A) possesses a regularly varying solution x(t) of index λ
1
α
2 such that

x(t) ∼ k2t
λ

1
α
2 exp

{
λ

1
α
−1

1

α− µ2
sgnQc

t∫
a

ψ(s)

s
ds

}
, t→ ∞,

for some constant k2 > 0, where µ2 = (α+ 1)λ
1
α
2 .

(NB) For the almost complete exposition of theory of regular variation and its applications
we refer to the treatise of Bingham et al. [1]. A comprehensive survey of results up to the year
2000 on the asymptotic analysis of second order ordinary differential equations by means of regular
variation can be found in the monograph of Marić [4].
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We are interested in the question on the existence and uniqueness of a non-trivial non-
negative (resp. positive) solution to the periodic boundary value problem

u′′ = p(t)u+ (−1)iq(t, u); u(0) = u(ω), u′(0) = u′(ω). (1i)

Here, p ∈ L([0, ω]), q : [0, ω]×R → R is a Carathéodory function, and i ∈ {1, 2}. Under a solution
to problem (1), as usually, we understand a function u : [0, ω] → R which is absolutely continuous
together with its first derivative, satisfies given equation almost everywhere and verifies periodic
conditions. A solution u to problem (1) is referred as a sign-constant solution if there exists
i ∈ {0, 1} such that (−1)iu(t) ≥ 0 for t ∈ [0, ω], and a sign-changing solution otherwise.

Definition 1. We say that the function p ∈ L([0, ω]) belongs to the set V+(ω) (resp. V−(ω)) if for
any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),

the inequality
u(t) ≥ 0 for t ∈ [0, ω]

(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)
is fulfilled.

Definition 2. We say that the function p ∈ L([0, ω]) belongs to the set V0(ω) if the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω)

has a nontrivial sign-constant solution.

Theorem 11. Let p ∈ V−(ω),

q(t, x) ≤ q0(t, x) for a.e. t ∈ [0, ω] and all x ≥ x0,

x0 ≥ 0, q0 : [0, ω]× [x0,+∞[→ R is a Carathéodory function,

q0(t, ·) : [x0,+∞[→ R is non-decreasing for a.e. t ∈ [0, ω],

lim
x→+∞

1

x

ω∫
0

|q0(s, x)|ds = 0,


(H1)
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and there exist a function α ∈ AC 1([0, ω]) satisfying

α′′(t) ≥ p(t)α(t)− q(t, α(t)) for a.e. t ∈ [0, ω], α(0) = α(ω), α′(0) ≥ α′(ω).

Then problem (11) has at least one solution u such that

u(t) ≥ α(t) for t ∈ [0, ω].

Theorem 12. Let p ̸∈ V−(ω) ∪ V0(ω) and

|q(t, x)| ≤ q0(t, x) for a.e. t ∈ [0, ω] and all x ≥ x0,

x0 > 0, q0 : [0, ω]× [x0,+∞[→ [0,+∞[ is a Carathéodory function,

q0(t, ·) : [x0,+∞[→ [0,+∞[ is non-decreasing for a.e. t ∈ [0, ω],

lim
x→+∞

1

x

ω∫
0

q0(s, x) ds = 0.


(H2)

Let, moreover,
q(t, 0) ≤ 0 for a.e. t ∈ [0, ω] (2)

and there exist a function β ∈ AC 1([0, ω]) satisfying

β(t) > 0 for t ∈ [0, ω],

β′′(t) ≤ p(t)β(t) + q(t, β(t)) for a.e. t ∈ [0, ω], β(0) = β(ω), β′(0) ≤ β′(ω). (3)

Then problem (12) has at least one solution u such that

u(t) ≥ 0 for t ∈ [0, ω], u ̸≡ 0, (4)

and, moreover,
u(tu) ≥ β(tu) for some tu ∈ [0, ω]. (5)

The following example shows that, under the assumptions of Theorem 12, problem (12) may
have a solution u satisfying (4) and (5), which is not positive.

Example 1. Consider the problem

u′′ = −u+ 3(1− sin t)
√

|u| sgnu; u(0) = u(2π), u′(0) = u′(2π). (6)

Clearly, problem (6) is a particular case of (12), where ω := 2π, p(t) := −1 for t ∈ [0, 2π], and

q(t, x) := 3(1− sin t)
√

|x| sgnx for t ∈ [0, 2π], x ∈ R.

It is not difficult to verify that p ̸∈ V−(2π)∪V0(2π)∪V+(2π), hypothesis (H2) holds with q0(t, x) :=
3(1 − sin t)

√
x , and condition (2) is fulfilled. Moreover, one can show that there exists a function

β ∈ AC 1([0, 2π]) satisfying condition (3) and

0 < β(t) ≤ 1 for t ∈ [0, 2π].

On the other hand, the function

u(t) := (1 + sin t)2 for t ∈ [0, 2π]

is a solution to problem (6), which satisfies conditions (4) and (5), however, it is not positive.
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Now we present efficient conditions guaranteeing the existence of a non-trivial sign-constant
(resp. positive) solution to problem (1i). Introduce the assumption:

q(t, x) ≥ xg(t, x) for a.e. t ∈ [0, ω] and all x ∈ ]0, δ[ ,

0 < δ ≤ +∞, g : [0, ω]×]0, δ[→ R is a locally Carathéodory function,

g(t, ·) :]0, δ[→ R is non-increasing for a.e. t ∈ [0, ω].

 (G)

Corollary 11. Let p ∈ V−(ω), hypotheses (H1) and (G) be satisfied, and

lim
x→δ−

g(t, x) ≤ 0 for a.e. t ∈ [0, ω], lim
x→0+

ω∫
0

g(s, x) ds = +∞. (7)

Then problem (11) has at least one positive solution.

Corollary 12. Let p ̸∈ V−(ω) ∪ V0(ω), q(·, 0) ≡ 0, hypotheses (H2) and (G) be satisfied, and

lim
x→0+

∫
E

g(s, x) ds = +∞ for every E ⊆ [0, ω], measE > 0. (8)

Then problem (12) has at least one non-trivial non-negative solution.
If, in addition, p ∈ V+(ω) and

q(t, x) ≥ 0 for a.e. t ∈ [0, ω] and all x ≥ 0, (9)

then problem (12) has at least one positive solution and, moreover, any solution to this problem is
either positive or non-positive.

If p ∈ V+(ω) in Corollary 12, then assumption (8) can be relaxed to

lim
x→0+

ω∫
0

g(s, x) ds = +∞. (10)

Corollary 22. Let p ∈ V+(ω), q( · , 0) ≡ 0, and hypotheses (H2) and (G) be satisfied. Let, more-
over, condition (10) hold and

lim
x→δ−

g(t, x) ≥ 0 for a.e. t ∈ [0, ω].

Then problem (12) has at least one non-trivial non-negative solution.
If, in addition, (9) holds, then problem (12) has at least one positive solution and, moreover,

any solution to this problem is either positive or non-positive.

The next statements show that, under the hypothesis

for every b > a > 0 there exists hab ∈ L([0, ω]) such that

hab(t) ≥ 0 for a.e. t ∈ [0, ω], hab ̸≡ 0,

q(t, x) ≥ hab(t) for a.e. t ∈ [0, ω] and all x ∈ [a, b],

 (N)

the assumptions p ∈ V−(ω) and p ̸∈ V−(ω)∪V0(ω) in the above-stated results are necessary for the
existence of a positive solution to problem (11) and a non-trivial non-negative solution to problem
(12), respectively.

Proposition 11. Let hypothesis (N) hold and problem (11) possess a positive solution. Then
p ∈ V−(ω).
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Proposition 12. Let hypothesis (N) hold and problem (12) possess a non-trivial non-negative
solution. Then p ̸∈ V−(ω) ∪ V0(ω).

It worth mentioning that some uniqueness type results for problem (1i) can be also proved.
However, we omit here their formulation instead of which we present consequences of the general
results for the following particular case of (1i):

u′′ = p(t)u+ (−1)ih(t)|u|λ sgnu; u(0) = u(ω), u′(0) = u′(ω), (11i)

where p, h ∈ L([0, ω]) and λ ∈ ]0, 1[ . Observe that if u is a solution to problem (11i), then the
function −u is its solution, as well.

Definition 3. We say that the function p ∈ L([0, ω]) belongs to the set D1(ω) if for any a ∈ [0, ω[ ,
the solution u to the initial value problem

u′′ = p̃(t)u; u(a) = 0, u′(a) = 1

has at most one zero in the interval ]a, a+ ω[ , where p̃ is the ω-periodic extension of the function
p to the whole real axis.

Remark 1. One can show that V−(ω) ∪ V0(ω) ∪ V+(ω) ⊂ D1(ω).

Corollary 31. Let λ ∈ ]0, 1[ and

h(t) ≥ 0 for a.e. t ∈ [0, ω], h ̸≡ 0. (12)

Then the following assertions hold:

(i) Problem (111) has a positive (resp. negative) solution if and only if p ∈ V−(ω).

(ii) If p ∈ V−(ω), then problem (111) has exactly three sign-constant solutions (positive, negative,
and trivial).

Corollary 32. Let λ ∈ ]0, 1[ and

h(t) > 0 for a.e. t ∈ [0, ω]. (13)

Then the following assertions hold:

(i) If p ∈ V−(ω) ∪ V0(ω), then problem (112) possesses only the trivial solution.

(ii) If p ∈ D1(ω) \ [V−(ω) ∪ V0(ω)], then problem (112) possesses at least three sign-constant
solutions (non-trivial non-negative, non-trivial non-positive, and trivial) and no sign-changing
solutions.

(iii) If p ̸∈ D1(ω), then problem (112) has at least three sign-constant solutions (non-trivial non-
negative, non-trivial non-positive, and trivial).

In the next statement, assumption (13) appearing in Corollary 32 is relaxed to (12).

Corollary 42. Let λ ∈ ]0, 1[ and condition (12) be fulfilled. Then the following assertions hold:

(i) If p ∈ V−(ω) ∪ V0(ω), then problem (112) possesses only the trivial solution.

(ii) If p ∈ V+(ω), then problem (112) has exactly three solutions (positive, negative, and trivial).

(iii) If p ∈ D1(ω) \ [V−(ω) ∪ V0(ω) ∪ V+(ω)], then problem (112) has no sign-changing solutions.
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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ∈ R+ := [0,+∞[ , (1)

with a piecewise continuous bounded coefficient matrix A and with the Cauchy matrix XA. To-
gether with system (1), consider the perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ∈ R+, (2)

with a piecewise continuous bounded perturbation matrix Q. For the higher exponent of system
(2), we use the notation λn(A+Q). By Rn×n we denote the set of all real n× n-matrices with the
spectral norm ∥ · ∥. By PCn(R+) we denote the linear space of all piecewise continuous matrix
functions S : R+ → Rn×n. The space of bounded elements of PCn(R+) is denoted by KCn(R+).
Lyapunov exponent of β ∈ PC1(R+) is denoted by λ[β]. We say that a function γ ∈ PC1(R+) is
strictly positive iff the condition inf

t∈J
γ(t) > 0 holds for every finite interval J ⊂ R+.

Let M be a class of perturbations. It is well known that the number Λ(M) := sup{λn(A+Q) :
Q ∈ M} is an important asymptotic characteristics for system (1) [1, p. 157], [2, p. 39]. Many
authors investigated how to find Λ(M) for various M (see, e.g. [3]– [13]). In numerous cases, an
algorithm similar to the algorithm for the computation of the sigma-exponent [3] can be constructed
for Λ(M). In some other cases [4], [5], [10]– [13], the result is similar to the formula

Ω(A) = lim
T→+∞

lim
m→∞

1

mT

m∑
k=1

ln ∥XA(kT, kT − T )∥

for the computation of the central exponent [1, p. 99], [10].
Let T be the set of all sequences τ : N0 → R, N0 := N ∪ {0}, monotonically increasing to +∞.

For arbitrary τ ∈ T, let

Ω(A, τ) = lim
k→∞

1

tk+1

k∑
i=0

ln ∥XA(ti+1, ti)∥,

where ti := τ(i), i ∈ N0.

Definition 1. A class of perturbations M is called Γ-ultimate if there exists a set Γ ⊂ T such that
the relation

Λ(M) = sup
τ∈Γ

Ω(A, τ)

is valid for every system (1).

In [14] we give sufficient conditions forM to be Γ-ultimate whenM is defined by some conditions
of the form ∥Q(t)∥ ≤ Nβ(t), where N > 0 and β is taken from a certain family K ⊂ KC1(R+).
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In the report we present an analogous condition for classes of perturbations Nn[P] ⊂ KCn(R+)
defined by integral conditions. More precisely, by Nn[P] we denote the set of perturbations Q ∈
KCn(R+) such that Q satisfies the condition

lim
t→+∞

t−1

t∫
0

p(s)∥Q(s)∥ ds = 0

for some p ∈ P, where P ⊂ PC1(R+) is a given set of nonnegative functions. In what follows, we
refer to P as a collection of weights.

For each τ ∈ T and N > 0, define the function Kτ
N : R+ → R by Kτ

N (s) = eN(s−tk) for
s ∈]tk, tk+1], k ∈ N, and Kτ

N (s) = 0 for s ≤ t0, where tk := τ(k), k ∈ N0, are the elements of the
sequence τ . Let us also put

γ(β, τ) = lim
k→∞

1

tk+1

k∑
i=m0

ln
2

sinφi
, φi = min

{
π

2
, e−2NA

ti∫
ti−1

β(s)ds

}
, i ≥ mτ ,

where τ ∈ T, β ∈ KC1(R+), mτ := min{i ∈ N : ti ≥ 1} ≥ 1, and m0 ≥ mτ is such that φi > 0 for
all i ≥ m0. If the inequality φi ≤ 0 holds for arbitrarily large i ∈ N, we put γ(β, τ) = +∞.

Finally, by T0 we denote the subset of T that consists of sequences satisfying the condition
lim

k→+∞
t−1
k tk+1 = 1 of slow growth [15] and the condition lim

k→+∞
(tk+1 − tk) = +∞.

Theorem 1. Let P be a collection of weights. If there exists a set Γ ⊂ T0 such that the equality
inf

β∈N1[P]
γ(β, τ) = 0 holds for any τ ∈ Γ, and for any p ∈ P and M > 0 there exists a sequence τ ∈ Γ

such that Kτ
M ≤ Cp with some C = C(p,M, τ) > 0, then Nn[P] is Γ-ultimate.

Let M0[θ] be the set of all perturbations satisfying the estimate ∥Q(t)∥ ≤ NQe
−σθ(t), where

NQ ≥ 0, σ > 0 are numbers depending on Q and θ : R+ → ]0,+∞[ is a fixed piecewise continuous

function increasing to +∞ such that lim
t→+∞

t−1θ(t) < +∞. It was proved in [4], [5] that

Λ(M0[θ]) = lim
δ→+0

Ω(A, η(θ, δ)), (3)

where the sequence η(θ, δ) ∈ T is defined by the recursion formula

Tk+1(δ) = Tk(δ) + δθ(Tk(δ)), k ∈ N0, (4)

with arbitrary initial condition T0(δ) ≥ 0. The sequence η(θ, δ) is called the δ-characteristic se-
quence of θ. This notion was introduced in [4], [5]. It should be stressed that relation (3) is not
valid if θ is not monotonic and η is given by (4).

In [14] we define an implicit δ-characteristic sequence of θ by the recurrence relation

tk+1 = tk + δθ(tk+1) (5)

for continuous non-monotonic functions. It occurs that in general settings of θ ∈ PC1(R+) the
appropriate definition can be given in the form

δθ(tk+1 − 0) ≥ tk+1 − tk ≥ δθ(tk+1 + 0). (6)

Obviously, (6) is equivalent to (5) if θ is continuous. If condition (6) does not define the value of
tk+1 uniquely , we consider the set Sk of all values satisfying (6) and take the minimal element. It
can be proved that the required minimal value exists if Sk is not empty.

We denote the set of all implicit δ-characteristic sequences of θ by X(θ). The element of X(θ)
corresponding to certain values of δ and t0 is denoted by ξ(θ, δ, t0). It can be easily proved that
X(θ) ⊂ T0 if lim

t→+∞
t−1θ(t) = 0 and θ(t) → +∞ as t → +∞.



International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia 101

Definition 2. A collection of weights P is said to be radical if for any ε ∈]0, 1] and p ∈ P there
exist a weight pε ∈ P and a number Rp(ε) > 0 such that pε < Rp(ε)p

ε.

Definition 3. A function q ∈ PC1(R+) is said to be moderately discontinuous if q is strictly
positive and there exists a number cq > 0 such that q(t∗ + 0) ≥ cqq(t

∗ − 0) for any discontinuity
point t∗ of q.

Theorem 2. Suppose that P is radical and each p ∈ P is left-continuous, moderately discontinuous,
and bounded away from zero by some constant Cp > 1. If for any p ∈ P the conditions λ[p] = 0
and p(t) → +∞ as t → +∞ hold, then Nn[P] is ΓP-ultimate with ΓP = {ξ(ln p, δ, tp) : p ∈ P,
; δ ∈ ]0, 1]} ⊂ T0, where the mapping P ∋ p 7→ tp ∈ R+ is arbitrary.

Corollary 1. If P is radical and each p ∈ P satisfy the conditions λ[p] = 0 and p(t) → +∞ as
t → +∞, then Nn[P] is Γ-ultimate for some appropriate Γ ⊂ T0.

Remark. It can be easily observed from the proof that the inequality

Λ(Nn[P]) ≤ sup
τ∈ΓP

Ω(A, τ)

follows from the conditions λ[p] = 0 and p(t) → +∞ as t → +∞, whereas the rest of conditions
of Theorem 2 is used only to prove the opposite relation. So we are motivated to consider some
radicalization operation on weight collections.

Corollary 2. Any collection of weights P such that each p ∈ P satisfies the conditions λ[p] = 0
and p(t) → +∞ as t → +∞ may be extended to a colection P̄ such that Nn[P̄] is Γ-ultimate for
some appropriate Γ ⊂ T0.
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1 Introduction

Here we continue the study of functional differential systems that cover many kinds of dynamic
models with aftereffect (integro-differential, delayed differential, differential difference, difference),
see [5, 3] and references therein. First we recall the description of a class of continuous-discrete
functional differential equations with linear Volterra operators and appropriate spaces where those
are considered. On the basis of the representation of general solution to the system with the use of
the Cauchy operator we consider an optimal control problem and propose sufficient and necessary
conditions for its solvability in the terms of programming control.

2 A class of Continuous-Discrete Functional Differential Systems

Fix a segment [0, T ] ⊂ R. By Ln = Ln[0, T ] we denote the space of summable functions v : [0, T ] →

Rn under the norm ∥v∥Ln =
T∫
0

|v(s)|n ds, where | · |n stands for the norm of Rn; Ln
2 = Ln

2 [0, T ] is the

space of square summable functions u : [0, T ] → Rr with the inner product (u, v) =
T∫
0

u⊥(s)v(s) ds,

where ⊥ stands for transposition.
The space ACn = ACn[0, T ] is the space of absolutely continuous functions x : [0, T ] → Rn

with the norm
∥x∥ACn = ∥ẋ∥Ln + |x(0)|n.

Let us fix a set J = {t0, t1, . . . , tµ}, 0 = t0 < t1 < · · · < tµ = T .
FDν(µ) = FDν{t0, t1, . . . , tµ} denotes the space of functions z : J → Rν under the norm

∥z∥FDν(µ) =

µ∑
i=0

|z(ti)|ν .

We consider the system under control

ẋ = T11x+ T12z + Fu+ f,

z = T21x+ T22z + g,
(1)

where the linear operators Tij , i, j = 1, 2, are defined as follows.

1.

T11 : ACn → Ln; (T11)

(T11x)(t) =
t∫

0

K1(t, s)ẋ(s) ds+A1(t)x(0), t ∈ [0, T ].



104 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

Here the kernel K1(t, s) with its elements k1ij(t, s) satisfies the condition K: k1ij(t, s), i, j = 1, . . . , n,
are measurable on the set 0 ≤ s ≤ t ≤ T and there exists a summable nonnegative function
κ( · ) ∈ L1[0, T ] such that |k1ij(t, s)| ≤ κ(t), t ∈ [0, T ], i, j = 1, . . . , n; (n×n)-matrix A1 has elements

summable on [0, T ].

2.
T12 : FDν(µ) → Ln; (T12z)(t) =

∑
{j: tj≤t}

B1
j (t)z(tj), t ∈ [0, T ], (T12)

where elements of matrices B1
j , j = 0, . . . , µ, are summable on [0, T ].

3.

T21 : ACn → FDν(µ); (T21)

(T21x)(ti) =
ti∫
0

K2
i (s)ẋ(s) ds+A2

ix(0), i = 0, 1, . . . , µ,

with measurable and essentially bounded on [0, T ] elements of matrices K2
i and constant (ν × n)-

matrices A2
i , i = 0, 1, . . . , µ.

4.

T22 : FDν(µ) → FDν(µ); (T22z)(ti) =
i−1∑
j=0

B2
ijz(tj), i = 1, . . . , µ, (T22)

with constant (ν × ν)-matrices B2
ij .

In what follows we shall use some results from [6, 2] concerning the equation

ẋ = T11x+ f (2)

and the results of [1] concerning the equation

z = T22z + g. (3)

The general solution of (2) has the form

x(t) = X(t)α+

t∫
0

C1(t, s)f(s) ds,

with arbitrary α ∈ Rn, where X( · ) is the fundamental matrix, C1( · , · ) is the Cauchy matrix.
As for equation (3), it has the immediate analogs of the above terms. Thus, the general solution

of (3) has the representation

z(ti) = Z(ti)β + (C2g)(ti), i = 1, . . . , µ,

with arbitrary β ∈ Rν , where Z( · ) is the fundamental matrix, C2( · , · ) is the Cauchy matrix.

3 An Optimal Control Problem for a Continuous-Discrete Func-
tional Differential System

Let us fix the initial state of the system (1):

x(0) = α, z(0) = β. (4)
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Next we assume that the constraints with respect to the control are formed as a system of linear
inequalities:

Gu(t) 6 γ, t ∈ [0, T ], (5)

where G is a given (N × r)-matrix; also it is assumed that the set of all solutions to the system
Gv 6 γ (that is the set of admissible control values) is nonempty and bounded in Rr. Let us denote
this set by V.

As for the aim of control, it is defined with the use of a linear bounded functional Λ : ACn ×
FDν(µ)× Lr

2 → R,
Λ(x, z, u) = l1x+ l2z + λu,

where l1 : AC
n → R, l2 : FD

ν(µ) → R, λ : Lr
2 → R are linear bounded functionals.

We need to find an admissible control u : [0, T ] → Rr under which the corresponding trajectory
of (1) with conditions (2) brings a minimal value to the objective functional Λ. Thus we consider
the optimal control problem

Λ(x, z, u) −→ minwith constraints (1), (4), (5). (6)

Let us recall the general form of l1 : l1x = ψ1x(0) +
T∫
0

φ1(s)ẋ(s) ds and λ : λu =
T∫
0

λ(s)u(s) ds.

Here ψ1 is a constant (1 × n)-vector, φ1(s) is a (1 × n)-vector with elements bounded in essence,

λ⊥( · ) ∈ Lr
2. As for l2, we put l2z =

µ∑
i=0

qiz(ti) with given (1× µ)-vectors qi, i = 0, . . . , µ.

Lemma 1. The operator T : ACn → Ln, T = T11 + T12C2T21 can be represented in the form

(T x)(t) =
t∫

0

K(t, s)ẋ(s) ds +A(t)x(0), t ∈ [0, T ],

where the kernel K(t, s) satisfies the condition K, the columns of the matrix A( · ) belongs to the
space Ln.

Remark 1. The kernel K(t, s) and the matrix A can be effectively constructed.

Lemma 2. The functional l : ACn → R, l = l1 + l2C2T21 can be represented in the form

lx = ψx(0) +

T∫
0

φ(s)ẋ(s) ds,

where ψ is a constant (1× n)-vector, φ(s) is (1× n)-vector with essentially bounded elements.

Remark 2. The vectors ψ and φ(s) can be effectively constructed.

Below we shall use the kernel K(t, s) and the function φ(s) to formulate the main result.
Now denote by ϑ : [0, T ] → (Rn)∗ the solution to the integral equation

ϑ(t) =

T∫
t

ϑ(τ)K(τ, t) dτ −
T∫
t

φ(τ)K(τ, t) dτ, t ∈ [0, T ]. (7)

The unique solvability of this equation is established in [6]. As for properties of the solution that
are generated by properties of the kernel K(t, s) as a function of the second argument, those are
studied in [7], where in particular some conditions are formulated under which the function ϑ( · )
iherits the corresponding properties of K(t, · ) (being of bounded variation, continuous, absolutely
continuous). Define the functional H : [0, T ]× (Ln)∗ × (Ln)∗ ×Rr → R by the equality

H
(
t, v( · ), w( · ), u

)
= F ∗(v − w)(t) · u− λ(t) · u.

Here the symbol ∗ stands for adjoint spaces and operators.
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Theorem. The control u(t) solves problem (6) if and only if the equality

H
(
t, ϑ( · ), φ( · ), u(t)

)
= max

u∈V
H
(
t, ϑ( · ), φ( · ), u

)
holds almost everywhere on [0, T ].

Remark 3. In the case where the matrix C(t, s) of the system ẋ = T x + f is known the function
ϑ(t) can be written in the following explicit form:

ϑ(t) =

T∫
t

φ(τ)C ′
τ (τ, t) dτ.

Let us give three explicit forms of the functional H, which correspond to the following cases
of F .

Case 1. (Fu)(t) = F (t)u(t). For such a case we have

H
(
t, v( · ), w( · ), u

)
= (v(t)− w(t)) · F (t) · u− λ(t) · u.

Here the columns of (n× r)-matrix F ( · ) are from Ln
2 .

Case 2. (Fu)(t) =
t∫
0

F (t, τ)u(τ) dτ . For this case, H has the representation

H
(
t, v( · ), w( · ), u

)
=

T∫
t

(v(s)− w(s)) · F (s, t) ds · u− λ(t) · u.

Here the kernel F (t, τ) provides the continuous action of the integral operator F from Lr
2 into Ln.

Case 3. (Fu)(t) =

{
F (t)u(t−∆) if t ∈ [∆, T ],

0 otherwise,
where ∆, 0 < ∆ < T , is a constant delay. In

such a case the functional H is defined by the equality

H
(
t, v( · ), w( · ), u

)
= χ

[0,T−∆]
(t)

(
v(t+∆)− w(t+∆)

)
· F (t+∆) · u− λ(t) · u,

χ
[0,T−∆]

( · ) is the characteristic function of the segment [0, T −∆].
It should be noted that an approach to derivation of the maximum principle on the base of the

variational derivatives, covering nonlinear systems with aftereffect, is thoroughly treated in [4]. Our
approach is based on the use of the Cauchy matrix of the linear system and allows one to formulate
the maximum principle in the terms of control only. In this case the role of the adjoint equation
is played by equation (7) whose form is unified and common for all possible kinds of aftereffect in
the frame of problem (6). The case of a functional differential system with continuous time only is
considered in [8].
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On the half-line R+ = [0,+∞[ , we consider the two-dimensional system of nonlinear ordinary
differential equations

u′ = g(t)|v|
1
α sgn v,

v′ = −p(t)|u|α sgnu,
(1)

where α > 0 and p, g : R+ → R are locally Lebesgue integrable functions.
By a solution of system (1) on the interval J ⊆ [0,+∞[ we understand a pair (u, v) of functions

u, v : J → R, which are absolutely continuous on every compact interval contained in J and satisfy
equalities (1) almost everywhere in J .

It was proved by Mirzov in [10] that all non-extendable solutions of system (1) are defined on
the whole interval [0,+∞[ . Therefore, when we are speaking about a solution of system (1), we
assume that it is defined on [0,+∞[ .

Definition 1. A solution (u, v) of system (1) is called non-trivial if u ̸≡ 0 on any neighborhood of
+∞. We say that a non-trivial solution (u, v) of system (1) is oscillatory if the function u has a
sequence of zeros tending to infinity, and non-oscillatory otherwise.

In [10, Theorem 1.1], it is shown that a certain analogue of Sturm’s theorem holds for system
(1), if the additional assumption

g(t) ≥ 0 for a.e. t ≥ 0 (2)

is satisfied. Especially, under assumption (2), if system (1) has an oscillatory solution, then any
other its non-trivial solution is also oscillatory.

On the other hand, it is clear that if g ≡ 0 on some neighborhood of +∞, then all non-trivial
solutions of system (1) are non-oscillatory. That is why it is natural to assume that inequality (2)
is satisfied and

meas
{
τ ≥ t : g(τ) > 0

}
> 0 for t ≥ 0. (3)

Definition 2. We say that system (1) is oscillatory if all its non-trivial solutions are oscillatory.

Oscillation theory for ordinary differential equations and their systems is a widely studied and
well-developed topic of the qualitative theory of differential equations. As for the results which are
closely related to those of this section, we should mention [2, 4, 5, 6, 7, 8, 9, 11, 12, 13]. Some criteria
established in these papers for the second order linear differential equations or for two-dimensional
systems of linear differential equations are generalized to the considered system (1) below.

Many results (see, e.g., survey given in [2]) have been obtained in oscillation theory of so-called
“half-linear” equation (

r(t)|u′|q−1 sgnu′
)′
+ p(t)|u|q−1 sgnu = 0 (4)

(alternatively this equation is referred as “equation with the scalar q-Laplacian”). Equation (4) is
usually considered under the assumptions q > 1, p, r : [0,+∞[→ R are continuous and r is positive.
One can see that equation (4) is a particular case of system (1). Indeed, if the function u, with
properties u ∈ C1 and r|u′|q−1 sgnu′ ∈ C1, is a solution of equation (4), then the vector function

(u, r|u′|q−1 sgnu′) is a solution of system (1) with g(t) := r
1

1−q (t) for t ≥ 0 and α := q − 1.
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Moreover, the equation

u′′ +
1

α
p(t)|u|α|u′|1−α sgnu = 0 (5)

is also studied in the existing literature under the assumptions α ∈ ]0, 1] and p : R+ → R is a
locally integrable function. It is mentioned in [6] that if u is a so-called proper solution of (5) then
it is also a solution of system (1) with g ≡ 1 and vice versa. Some oscillations and non-oscillations
criteria for equation (5) can be found, e.g., in [6, 7].

Finally, we mention the paper [1], where a certain analogy of Hartman–Wintner’s theorem is
established (origin one can find in [3, 14]), which allows us to derive oscillation criteria of Hille’s
type for system (1).

In what follows, we assume that the coefficient g is non-integrable on [0,+∞[ , i.e.,

+∞∫
0

g(s) ds = +∞. (6)

Let

f(t) :=

t∫
0

g(t) ds for t ≥ 0.

In view of assumptions (2), (3), and (6), we have

lim
t→+∞

f(t) = +∞

and there exists tg ≥ 0 such that f(t) > 0 for t > tg and f(tg) = 0. We can assume without loss
of generality that tg = 0, since we are interested in behaviour of solutions in the neighbourhood of
+∞, i.e., we have

f(t) > 0 for t > 0.

We put

cα(t) :=
α

fα(t)

t∫
0

g(s)

f1−α(s)

( s∫
0

(ξ)p(ξ) dξ

)
ds for t > 0.

Now, we formulate an analogue (in a suitable form for us) of the Hartman–Wintner’s theorem
for the system (1) established in [1].

Theorem 3 ([1, Corollary 2.5 (with ν = 1−α)]). Let conditions (2), (3), and (6) hold, and either

lim
t→+∞

cα(t) = +∞,

or
−∞ < lim inf

t→+∞
cα(t) < lim sup

t→+∞
cα(t).

Then system (1) is oscillatory.

One can see that two cases are not covered by Theorem 3, namely, the function cα(t) has
a finite limit and lim inf

t→+∞
cα(t) = −∞. Our aim is to find oscillation criteria for system (1) in the

first mentioned case. Consequently, in what follows, we assume that

lim
t→+∞

cα(t) =: c∗α ∈ R. (7)

Now we formulate main results.
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Theorem 4. Let (7) and the inequality

lim sup
t→+∞

fα(t)

ln f(t)
(c∗α − cα(t)) >

( α

1 + α

)1+α

hold. Then system (1) is oscillatory.

For better formulation of the next statement we introduce the following notations.

Q(t;α) := fα(t)

(
c∗α −

t∫
0

p(s)(s) ds

)
for t > 0,

where the number c∗α is given by (7). Moreover, we denote lower and upper limits of the function
Q( · ;α) as follows

Q∗(α) := lim inf
t→+∞

Q(t;α), Q∗(α) := lim sup
t→+∞

Q(t;α).

Oscillation criteria from the next theorem coincide with the well-known Hille’s results for the
second order linear differential equations established in [4].

Theorem 5. Let (7) hold. Let, moreover, either

Q∗(α) >
1

α

( α

1 + α

)1+α
,

or
Q∗(α) > 1.

Then system (1) is oscillatory.

Remark 6. Presented statements generalize results stated in [2, 4, 5, 6, 7, 8, 9, 11, 13] concerning
system (1) as well as equations (4) and (5). In particular, if we put α = 1, then we obtain oscillatory
criteria for linear system of differential equations presented in [13]. Moreover, the results of [6]
obtained for equation (5) are in a compliance with those above, where we put g ≡ 1. Observe also
that Theorem 5 extends oscillation criteria for equation (5) stated in [7], where the coefficient p is
suppose to be non-negative. In the monograph [2], it is noted that the assumption p(t) ≥ 0 for t

large enough can be easily relaxed to
t∫
0

p(s)ds > 0 for large t. It is worth mentioning here that we

do not require any assumption of this kind.

Finally we show an example, where we can not apply oscillatory criteria from the above men-
tioned papers, but we can use Theorem 4 succesfully.

Example 7. Let α = 2, g(t) ≡ 1, and

p(t) := t cos
( t2
2

)
+

1

(t+ 1)3
for t ≥ 0.

It is clear that the function p and its integral

t∫
0

p(s) ds = sin
( t2
2

)
− 1

2(t+ 1)2
+

1

2
for t ≥ 0

change their sign in any neighbourhood of +∞. Therefore neither of the results mentioned in
Remark 6 can be applied.
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On the other hand, we have

c2(t) =
2

t2

t∫
0

s

( s∫
0

(
ξ cos

ξ2

2
+

1

(ξ + 1)3

)
dξ

)
ds

=
1

2
−

2 cos t2

2

t2
+

3

t2
− ln(t+ 1)

t2
− 1

t2(t+ 1)
for t > 0

and thus, the function c2( · ) has the finite limit

c∗α = lim
t→+∞

c2(t) =
1

2
.

Moreover,

lim sup
t→+∞

t2

ln t
(c∗α − c2(t)) = lim sup

t→+∞

(2 cos t2

2 − 3

ln t
+

ln(t+ 1)

ln t
+

1

(t+ 1) ln t

)
= 1.

Consequently, according to Theorem 4, system (1) is oscillatory.
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Let a > 0, R− = ]−∞, 0], R+ = [0,+∞[ , and R0+ = ]0,+∞[ . On a positive semi-axis R0+, we
consider the differential system

dui
dt

= fi(t, u1, u2) (i = 1, 2) (1)

with the boundary condition
φ(u1) = c, (2)

where c is a positive constant, fi : R0+ × R2
0+ → R− (i = 1, 2) are continuous functions, and

φ : C([0, a];R+) → R+ is a continuous nondecreasing functional.
A continuously differentiable vector function (u1, u2) : R0+ → R2

0+, satisfying system (1) in
R0+, is said to be a positive solution of that system.

If the component ui of a positive solution (u1, u2) at the point 0 has the right-hand limit

ui(0+) = lim
t>0, t→0

ui(t),

then we put ui(0) = ui(0+).
A positive solution (u1, u2) of system (1) is said to be a positive solution of problem (1), (2)

if there exists u1(0+) and equality (2) is satisfied.
A positive solution (u1, u2) of system (1) is said to be a vanishing at infinity positive

solution if
lim

t→+∞
ui(t) = 0 (i = 1, 2).

If
f1(t, x, y) ≡ −y, f2(t, x, y) ≡ −f(t, x,−y),

then the differential system (1) is equivalent to the differential equation

u′′ = f(t, u, u′), (3)

and condition (2) is equivalent to the condition

φ(u) = c, (4)

respectively. Consequently, problem (1), (2) has a positive solution if and only if problem (3), (4)
has a so-called Kneser solution, i.e. a solution satisfying the inequalities

u(t) > 0, u′(t) < 0 for t ∈ R0+.

Problem (1), (2), as problem (3), (4), is said to be the nonlinear Kneser problem. These problems
are investigated in detail in the case where the functions fi (i = 1, 2) and f have no singularities
in phase variables (see, e.g., [1–6], and the references therein).



114 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

In [7], for the singular in a phase variable equation (3), sufficient conditions for the existence of
a Kneser solution satisfying the condition (4) are established. Theorems below are generalizations
of the above mentioned results for system (1).

Below everywhere it is assumed that the functions fi (i = 1, 2) on the set R0+ ×R2
0+ admit the

estimates

g10(t) ≤ −xλ1y−µ1f1(t, x, y) ≤ g1(t),

g20(t) ≤ −xλ2y−µ2f2(t, x, y) ≤ g2(t),

where λi and µi (i = 1, 2) are nonnegative constants, and gi0 : R0+ → R0+, gi : R0+ → R0+

(i = 1, 2) are continuous functions. If λi > 0 for some i ∈ {1, 2}, then

lim
x→0

fi(t, x, y) = +∞ for t > 0, y > 0.

And if µ2 > 0, then
lim
y→0

f2(t, x, y) = +∞ for t > 0, x > 0.

Consequently, in both cases system (1) has the singularity in at least one phase variable.
We use the following notation and definitions.

ν0 =
µ1

1 + µ2
, ν = 1 + λ1 + λ2ν0.

C([0, a];R) is the Banach space of continuous functions u : [0, a] → R with the norm

∥u∥C = max
{
|u(t)| : 0 ≤ t ≤ a

}
,

C([0, a];R+) =
{
u ∈ C([0, a];R) : u(t) ≥ 0 for 0 ≤ t ≤ a

}
.

A functional φ : C([0, a];R+) → R+ is said to be nondecreasing if for any u ∈ C([0, a];R+)
and u0 ∈ C([0, a];R+) the inequality

φ(u+ u0) ≥ φ(u)

holds.

Theorem 1. If

+∞∫
t

g20(s) ds < +∞, w0(t) ≡
+∞∫
t

g10(s)

( +∞∫
s

g20(τ) dτ

)ν0

ds < +∞ for t > 0,

and

w(t) ≡
+∞∫
t

w
−λ2

ν
0 (s)g2(s) ds < +∞,

+∞∫
t

g1(s)w
ν0(s) ds < +∞ for t > 0,

then system (1) has at least one vanishing at infinity positive solution.

Corollary 1. Let

lim inf
t→+∞

(t1−αg10(t)) > 0, lim sup
t→+∞

(t1−αg1(t)) < +∞, (5)

lim inf
t→+∞

(tβg20(t)) > 0, lim sup
t→+∞

(tβg2(t)) < +∞, (6)

where α and β are nonnegative constants. Then for the existence of at least one vanishing at infinity
positive solution of system (1) it is necessary and sufficient that

β >
1 + µ2

µ1
α+ 1.
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If
+∞∫
t

g2(s) ds < +∞ for t > 0,

+∞∫
0

g1(s)

( +∞∫
s

g2(τ) dτ

)
ds < +∞, (7)

then on the set R+ × R0+ we put

v0(t, x) =

[
xν + ν(1 + µ2)

ν0

+∞∫
t

g10(s)

( +∞∫
s

g20(τ) dτ

)ν0

ds

] 1
ν

,

v1(t, x) =

[
x1+λ1 + (1 + λ1)

+∞∫
t

νµ1(s, x)g1(s) ds

] 1
1+λ1

,

where

v(t, x) =

[
(1 + µ2)

+∞∫
t

ν−λ2
0 (s, x)g2(s) ds

] 1
1+µ2

for t > 0, x > 0.

Theorem 2. Let either
+∞∫
t

g10(s) ds = +∞ for t > 0,

or
+∞∫
t

g20(s) ds < +∞ for t > 0,

+∞∫
0

g10(s)

( +∞∫
s

g20(τ) dτ

)ν0

ds < +∞

and
φ(v0( · ; 0)) > c.

Then problem (1), (2) has no solution.

Theorem 3. Let along with (7) the conditions

lim
x→+∞

φ(x) = +∞

and
inf

{
φ(v1( · ;x)) : x > 0

}
< c

be satisfied. Then problem (1), (2) has at least one positive solution.

Theorems 2 and 3 yield the following propositions.

Corollary 2. Let
+∞∫
t0

g10(s) ds = +∞,

where t0 > 0. Then for the existence of at least one positive solution of problem (1), (2) for every
sufficiently large c, it is necessary and sufficient that

+∞∫
t

g20(s) ds < +∞ for t > 0,

+∞∫
0

g10(s)

( +∞∫
s

g20(τ) dτ

)ν0

ds < +∞.
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Corollary 3. Let conditions (5) and (6) hold, where α and β are nonnegative constants. Then for
the existence of at least one positive solution of problem (1), (2) for every sufficiently large c, it is
necessary and sufficient that

β >
1 + µ2

µ1
α+ 1.

Finally we note that the proofs of the above formulated theorems are based on the results of [8].
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1 Introduction and Preliminaries

We consider an autonomous system of differential equations

ẋ = F (x), x ∈ Rk (1)

that possesses m-dimensional invariant toroidal manifold Tm. For a comprehensive description of
the dynamics in the vicinity of invariant toroidal manifold it is convenient to introduce so-called
local coordinates (φ1, . . . , φm, h1, . . . , hn), n = k −m, where φ = (φ1, . . . , φm) is a point on torus
Tm and h = (h1, . . . , hn) is from Euclidean space in transversal direction to the torus. The change
of variables is performed in such a way that the invariant toroidal manifold gets a representation
h = 0, φ ∈ Tm in new coordinates. System (1) transforms into

φ̇ = a(φ, h), ḣ = f(φ, h) (2)

with f(φ, 0) ≡ 0. The last condition guarantees the existence of invariant toroidal set h = 0, φ ∈ Tm
that is called trivial.

Problems of the existence, stability and an approximate construction of non-trivial invariant
toroidal manifolds for system (2) are treated carefully in [10]. The central object of investigation
is a so-called linear extension of dynamical system on torus

φ̇ = a(φ), ḣ = A(φ)h+ f(φ), (3)

where a ∈ CLip(Tm) is an m-dimensional vector function, A, f ∈ C(Tm) are n × n square matrix
and n-dimensional vector function respectively; C(Tm) stands for a space of continuous 2π-periodic
with respect to each of the variables φj , j = 1, . . . ,m functions defined on the surface of the torus
Tm. The main ingredient in the investigation of the existence and stability analysis of non-trivial
invariant tori of system (3) is Green function introduced in [8]. The existence of such a function is
sufficient for the existence of non-trivial invariant torus for system (3). Later a numerous of works
by different authors have developed and extended this approach to a broad classes of equations
including impulsive [4, 3], stochastic [11] and infinite-dimensional [7] and equations with delay [9].
This method of investigation got a Green-Samoilenko function method name [7].

A deep connection of the existence of invariant tori and quadratic functions was explored in [1].
A Lyapunov-like approach was proposed for stability analysis of invariant tori and their robustness
properties characterization. A question of the preservation of invariant tori under perturbations of
the right-hand side was also considered. It has been proven that a sufficiently small perturbations
do not ruin the invariant torus, which enables it to become a convenient object for investigations of
quasi-periodic motions of dynamical system. As it is widely known, quasi-periodic solution may be
easily transformed into a periodic one by a small perturbation of right-hand side. The existence of
invariant tori that is a carrier of quasi-periodic trajectories ensures the existence of multi-frequency
oscillations in the system. It makes this theory well-adapted for the applications in electronics and
radiophysics with complex oscillatory processes of several frequencies.
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2 Motivation

In this paper we are interested in stability analysis of trivial invariant torus of the system

φ̇ = a(φ), ḣ = A(φ, h)h, (4)

where φ ∈ Tm, h ∈ Rn.
We begin with a simple example that demonstrates that the existing theorems for stability

analysis of invariant tori are too restrictive and set too severe constraints on the system. On the
other hand, we propose relaxed conditions that are applicable to a wide class of equations and
provide a deeper understanding of the processes in a vicinity of invariant set.

Example 1. Consider system (4) with a(φ) =

(
− sin2 φ1

2
ω

)
and A(φ, h) = −1 + λ sinφ1, where

λ > 0 is an arbitrary fixed constant value from R.

System from the example may be analyzed in two steps:

φ̇ = a(φ), ḣ = −1 · h =⇒ φ̇ = a(φ), ḣ = (−1 + λ sinφ1)h, (5)

where λ cosφ is considered as a perturbation term. The fundamental matrix Ωt
τ (φ) of the system

ḣ = −h has a form Ωt
τ (φ) = e−(t−τ). It means that system φ̇ = a(φ), ḣ = −h has an exponentially

stable trivial invariant torus h = 0, φ ∈ Tm. The previously known perturbation theorems guarantee
stability of trivial torus of system (5) in the case of a sufficiently small perturbation term, e.g. there
exists δ > 0 such that for any perturbation with ∥λ cosϕ∥ ≤ δ system (5) has an exponentially
stable trivial invariant toroidal manifold. In other words, a stability of manifold is guaranteed only
for a sufficiently small constant λ. However a numerical simulations provides an intuition that the
trivial torus is actually asymptotically stable even for large enough values of the constant parameter
λ. Indeed, for the cases of λ = 1, λ = 10, and λ = 100 a qualitative behavior of solutions to system
(5) coincide and all the trajectories tend to the invariant set as time t → ∞. This fact originate
a hypothesis that a smallness of a perturbation term is too severe constraint and can be relaxed.
This is the main motivation for this research.

Further propositions deeply rely on the results from [5, 6].

3 Results

Denoting A(φ, h) := A(φ) +A1(φ), system (4) can be represented in the following form

dφ

dt
= a(φ),

dh

dt
= [A(φ) +A1(φ, h)]h, (6)

where A1 is a perturbation term from C(Tm,Rn), ∥h∥ ≤ d ∈ R+. Let Ht
τ (φ) be a fundamental

matrix of the unperturbed system

dφ

dt
= a(φ),

dh

dt
= A(φ)h,

that depends on φ ∈ Tm as a parameter and turns into an identical matrix when t = τ , e.g.
Hτ

τ (φ) ≡ I.

Definition 1 ([2]). A point φ is called wandering if there exist its neighbourhood U(φ) and a
positive number T > 0 such that

U(φ) ∩ φt(U(φ)) = 0 for t ≥ T.
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Let W be a set of all wandering points of dynamical system and Ω = Tm \ W be a set of
nonwandering points. From the compactness of a torus it follows that the set Ω is nonempty and
compact. Since function A1(φ, h) is continuous on a compact set, there exists

sup
φ∈Ω,∥h∥≤d

A1(φ, h) = ã1.

The following proposition sets constraints on the perturbation term in order to guarantee the
exponential stability of the trivial invariant torus h = 0, φ ∈ Tm. These constraints are relaxed
comparing to the previously known [1, 10] and demand the perturbation to be small in non-
wandering set of dynamical system Ω, but not on the whole surface of the torus Tm.

Theorem 1. Let the fundamental matrix Ht
τ (φ) satisfy the estimate

∥Ht
τ (φ)∥ ≤ Ke−γ(t−τ) for t ≥ τ

with some K ≥ 1, γ > 0. Then if the following condition holds

Kã1 < γ,

then system (6) has an exponentially stable trivial invariant toroidal manifold.

Example 2 (revisited). The dynamical system on two-dimensional torus(
φ̇1

φ̇2

)
=

(
− sin2

φ1

2
ω

)

has a very simple structure of limit sets and recurrent trajectories. In particular a non-wandering
set Ω consists of only one meridian φ1 = 0:

Ω =
{
φ ∈ T2 : φ1 = 0, φ2 ∈ T1

}
.

A point that is starting on meridian spinning with constant velocity ω. All other trajectories tend
to Ω by spirals. The estimate for the perturbation term is

sup
φ∈Ω, ∥x∥≤d

λ sinφ1 = λ sin 0 = 0.

It means that the system from the example and the perturbation term satisfy the conditions of

Theorem 1 and the trivial invariant tori of system (4) with a(φ) =

(
− sin2 φ1

2
ω

)
and A(φ, h) =

−1 + λ sinφ1 is exponentially stable for an arbitrary fixed constant λ.

4 Discussion

We have proved that it is sufficient for a perturbation term to be small only in a non-wandering set
Ω in order to preserve an exponential stability of a trivial invariant torus of a perturbed system.
New theorem allows to investigate qualitative behavior of solutions of a class of nonlinear systems
that have a simple structure of limit sets and recurrent trajectories. The constraints of Theorem 1
are less restrictive than of the previously known ones. However it is worth to note that if the first
equation of the unperturbed system is φ̇ = ω = const, that is very frequent in applications, then
its non-wandering set Ω coincides with a whole torus and Theorem 1 has no advantages compared
to results from [1, 10].
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[10] A. M. Samǒılenko, Elements of the mathematical theory of multi-frequency oscillations. Mathe-
matics and its Applications (Soviet Series), 71. Kluwer Academic Publishers Group, Dordrecht,
1991.

[11] A. M. Samoilenko and O. Stanzhytskyi, Qualitative and asymptotic analysis of differential
equations with random perturbations. World Scientific Series on Nonlinear Science. Series A:
Monographs and Treatises, 78. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2011.



International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia 121

Global Attractors
for Some Class of Discontinuous Dynamical Systems

Mykola Perestyuk, Oleksiy Kapustyan, Iryna Romanjuk

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
E-mail: pmo@univ.kiev.ua, alexkap@univ.kiev.ua, romanjuk.iv@gmail.com

An autonomous evolution system is called discontinuous (or impulsive) dynamical system (DS)
if its trajectories have jumps at moments of intersection with certain surface of the phase space
[8]. Some aspects of qualitative behavior of impulsive finite-dimensional DS have been studied in
recent years [8, 5, 4]. For infinite-dimensional dissipative DS one of the most important problems
is investigation of global attractor [9]. This approach has been applied to impulsive DS in [1, 2, 7].
In this paper we propose a new concept of global attractor for discontinuous DS, which is based
on the definition of uniform attractor for non-autonomous DS [3], in particular, for systems with
impulsive perturbation at fixed moment of time [6]. Using this concept, we investigate asymptotic
behavior of a wide class of dissipative infinite-dimensional impulsive DS, generated by parabolic
equation with impulsive perturbations at non-fixed moments of time. We consider existence and
non-existence results in the case of linear equation and we also give effective sufficient conditions
for existence of global attractor in the case of weakly nonlinear parabolic equation.

Let (X, ρ) be a metric space, P (X) (β(X)) be a set of all nonempty (nonempty bounded)
subsets of X,

distX(A,B) := sup
y∈A

inf
z∈B

ρ(y, z).

A pair (X,G) is called dynamical system (DS) if

∀x ∈ X G(0, x) = x, G(t+ s, x) = G(t, G(s, x)) ∀ t, s ≥ 0.

We assume no conditions of continuity for the map x→ G(t, x).

Definition. A set Θ ⊂ X is called global attractor of DS (X,G) if

1) Θ is a compact set;

2) Θ is uniformly attracting set, i.e.,

∀B ∈ β(X) distX(G(t, B),Θ) → 0, t→ ∞;

3) Θ is minimal among closed sets satisfying 2).

Theorem 1. Suppose DS (X,G) satisfies dissipativity condition:

∃B0 ∈ β(X) ∀B ∈ β(X) ∃T = T (B) ∀ t ≥ T G(t, B) ⊂ B0.

Then DS (X,G) has global attractor if and only if

∀ {xn} ∈ β(X) ∀ {tn ↗ ∞} sequence {G(tn, xn)} is precompact.

Now we construct DS, generated by impulsive system. It is called impulsive DS and consists
of classical (continuous) DS (X,V ), a closed set M ⊂ X (impulsive set) and a map I : M → X
(impulsive map). The phase point x(t) moves along trajectories of DS (X,V ) and when it reaches
the set M at the moment τ , it jumps to a new position Ix(τ).
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We assume the following conditions hold:

M ∩ I(M) = ∅, ∀x ∈M ∃ τ = τ(x) > 0 ∀ t ∈ (0, τ) V (t, x) ̸∈M.

We define ∀x ∈M Ix = x+, ∀x ∈ X M+(x) = (
∪
t>0

V (t, x)) ∩M .

It follows from continuity of V that if M+(x) ̸= ∅, then there exists s := ϕ(x) > 0 such that

∀ t ∈ (0, s) V (t, x) ̸∈M, V (s, x) ∈M. (1)

So, for fixed x ∈ X we have:

- if M+(x) = ∅, then Ṽ (t, x) = V (t, x) ∀ t ≥ 0;

- if M+(x) ̸= ∅, then for s0 = ϕ(x), x1 = V (s0, x)

Ṽ (t, x) =

{
V (t, x), 0 ≤ t < s0,

x+1 , t = s0;

- if M+(x+1 ) = ∅, then Ṽ (t, x) = V (t− s0, x
+
1 ) ∀ t ≥ s0;

- if M+(x+1 ) ̸= ∅, then for s1 = ϕ(x+1 ), x2 = V (s1, x
+
1 )

Ṽ (t, x) =

{
V (t− s0, x

+
1 ), s0 ≤ t < s0 + s1,

x+2 , t = s0 + s1,

and so on. As a result, we obtain finite or infinite number of impulsive points {x+n }n≥1 and
corresponding moments of time {sn}n≥0 such that

V (s0, x) = x1, V (sn, x
+
n ) = xn+1, n ≥ 1.

Let us assume the following condition holds:

∀x ∈ X Ṽ (t, x) is well-defined on [0,+∞).

This condition means that either the number of impulsive points is finite or
∞∑
n=0

sn = ∞. Then [5]

the map Ṽ : R+ ×X 7→ X satisfies semigroup property and we have impulsive DS (X, Ṽ ).

We study global attractors of impulsive DS (X, Ṽ ) in the following two cases [8]:

(a) X is a Banach space, M = {x ∈ X | ∥x∥ = a}, Ix = (1 + µ)x, where a > 0, µ > 0;

(b) X is a Hilbert space, {ψk}∞k=1 is an orthonormal basis in H, M = {x ∈ X | (ψ1, x) = a},

and for x =
∞∑
k=1

ckψk, Ix = (1 + µ)c1ψ1 +
∑∞

k=2 ckψk.

At first we illustrate some interesting properties in linear case: in bounded domain Ω ⊂ Rp,
p ≥ 1 we consider the linear problem

∂y

∂t
= ∆y, (t, x) ∈ (0,∞)× Ω,

y
∣∣
∂Ω

= 0.
(2)

Let {ψi}∞i=1 be a complete and orthonormal in L2(Ω) family of eigenfunctions of −∆, i.e., −∆ψi =
λiψi, ψi ∈ H1

0 (Ω), 0 < λ1 ≤ λ2 ≤ · · · , λi → ∞, i→ ∞.
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The problem (2) in the phase space X = L2(Ω) with a norm ∥ · ∥ and a scalar product ( · , · )
generates classical DS (X,V ), where

y(t) = V
(
t,

∞∑
i=1

ciψi

)
=

∞∑
i=1

cie
−λitψi.

As ∀ t ≥ 0 ∥y(t)∥ ≤ e−λ1t∥y0∥, then DS (X,V ) has a trivial global attractor Θ = {0}.
Now let us consider impulsive DS (X, Ṽ ), where

M =
{
y ∈ X | ∥y∥ = ε

}
, Iy = (1 + µ)y, ε > 0, µ > 0. (3)

Lemma 1. For every ε > 0, µ > 0 the problem (2), (3) generates dissipative impulsive DS (X, Ṽ ),
which does not possess global attractor.

Let us consider impulsive DS (X, Ṽ ), where

M = {y ∈ X | (y, ψ1) = a}, I :M 7→ X, (4)

for y =

∞∑
i=1

ciψi, Iy = (µ+ 1)c1ψ1 +

∞∑
i=2

ciψi, a > 0, µ > 0.

Lemma 2. For every a > 0, µ > 0 the problem (2), (4) generates dissipative impulsive DS (X, Ṽ ),
which has global attractor

Θ =
∪

t∈[0,ln(1+µ)]

{
(1 + µ)ae−tψ1

}
∪ {0}. (5)

From (5) we can see that Θ∩M ̸= ∅ and ∀ t > 0 Ṽ (t,Θ) ̸⊂ Θ. But invariance property is true
in the following form:

∀ t > 0 Ṽ (t,Θ \M) ⊂ Θ \M. (6)

The main result of the work is to prove that the statements of Lemma 2 remain true in nonlinear
case.

In bounded domain Ω ⊂ Rp, p ≥ 1 we consider the problem
∂y

∂t
= ∆y − εf(y), (t, x) ∈ (0,∞)× Ω,

y
∣∣
∂Ω

= 0,
(7)

where ε > 0 is a small parameter, f ∈ C1(R), f(0) = 0,

∃C > 0 ∀ y ∈ R, f ′(y) ≥ −C, |f(y)| ≤ C. (8)

Under conditions (8) for arbitrary y0 ∈ X = L2(Ω) the problem (7) has a unique solution yε ∈
C([0,+∞);X), yε(0) = y0.

Theorem 2. For every a > 0, µ > 0 and for sufficiently small ε > 0 impulsive problem (7), (4)

generates impulsive DS (X, Ṽε), which has global attractor Θε and, moreover,

dist(Θε,Θ) → 0, ε→ 0, (9)

∀ t > 0 Ṽε(t,Θε \M) ⊂ Θε \M. (10)

Proof. For every solution of (7) yε( · ) we have

∀ t ≥ 0 (yε(t), ψ1) = e−λ1t(yε(0), ψ1)− ε

t∫
0

e−λ1(t−p)(f(yε(p)), ψ1) dp. (11)

Equality (11) allows us to estimate the moments of impulsive perturbation of every trajectory of
(7), (4) with the help of Implicit Function Theorem. Then we prove existence of global attractor
and limit equality (9). To prove invariance property (10) we consider function x 7→ ϕ(x), defined
in (1), and we show its continuity on X \M .
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1 Formulation of the Problem

We consider the nonlinear system of differential equations

u′(t) = f(t, u(t)), a.e. t ∈ [a, b] ⊂ R, (1)

with continuous f : [a, b] × Rn → Rn. Equation (1) is subject to the state-dependent impulse
condition

u(t+)− u(t−) = γ(u(t−)) for such t that g(t, u(t−)) = 0. (2)

Here γ : Rn → Rn and g : [a, b] × Rn → R are continuous, and the impulse instants t ∈ (a, b) in
(2) are unknown. These instants are called state-dependent because they depend on a solution u
through the equation g(t, u(t−)) = 0. Impulsive problem (1), (2) is investigated together with the
linear boundary condition

Au(a) + Cu(b) = d, (3)

where d is a constant vector, and A, C are constant (possibly singular) matrices satisfying the
condition rank [A,C] = n.

A left-continuous vector-function u : [a, b] → Rn is called a solution of problem (1)–(3) if there
exist p ∈ N and ti ∈ (a, b), i = 1, . . . , p, such that:

• a < t1 < t2 < · · · < tp < b,

• the restrictions u|[a,t1], u|(t1,t2], . . . , u|(tp,b] have continuous derivatives,

• u satisfies (1) for t ∈ [a, b], t ̸= ti, i = 1, . . . , p,

• u satisfies (2) for t = ti, i.e. u(ti+)− u(ti) = γ(u(ti)), g(ti, u(ti)) = 0, i = 1, . . . , p,

• u fufils the boundary conditions (3).

The set
G =

{
(t, x) ∈ [a, b]× Rn : g(t, x) = 0

}
(4)

is called a barrier.
Wee see that if u satisfies condition (2) for t = ti ∈ (a, b), then u has an intersection point

(ti, u(ti)) with the barrier G, and in addition, u has a jump of the size γ(u(ti)) at the point ti.
Most of the results in the literature devoted to boundary value problems concern fixed-times

impulses. A reason for the lack of results for state-dependent impulsive boundary value problems
lies in the fact that state-dependent impulses significantly change properties of boundary value
problems. In the book [2], state dependent impulsive boundary value problems with barriers given
explicitely in the form t = g(x) are investigated. The existence results in [2] are reached by means
of fixed point theorems or topological degree methods. But there are no constructive numerical
results for state-dependent impulsive boundary value problems in the literature. This is our main
motivation for the investigation of problem (1)–(3).
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We focus our attention to the case where p = 1, that is u has a unique intersection point with
the barrier G, and then we use the technique suggested in [3], which makes it possible to discuss the
solvability of problem (1)–(3) as well as to find approximate solutions. This approach is based on
a construction of two simple parametrized model problems (5), (6) and (7), (8). We give conditions
which guarantee that if the parameters τ , ξ, λ, η belong to some bounded sets, then solutions of
these parametrized model problems can be obtained as limits of uniformly convergent sequences of
successive approximations (10) and (12). Equations in the parametrized model problems contain
functional perturbation terms which essentially depend on the parameters and which together with
the original boundary conditions (3) and the barrier (4) generate the system of algebraic determining
equations (14). Numerical values of the parameters should be found from (14) in the bounded sets
mentioned above where the uniform convergence is guaranteed. A solution of problem (1)–(3) is
then constructed (see (13)) by means of such solutions of problems (5), (6) and (7), (8) which have
the values of parameters satisfying (14). Consequently, the infinite-dimensional problem (1)–(3) is
reduced to the finite-dimensional algebraic system (14).

In practice, we investigate system (14), where explicitly determined successive approximations
are written instead of their limits (cf. (16)). Then the solvability of (14) can be checked more
easily and we get approximate solutions of problem (1)–(3) and error estimates using for example
Maple 14. By our knowledge this is the first numerical-analytic method for this type of impulsive
problems. This method can be applied on problems with linear as well as with nonlinear boundary
conditions.

2 Construction of Solutions

Choose a compact convex set Ωa ⊂ Rn and put Ωb = {x + γ(x) : x ∈ Ωa}. Consider a scalar
parameter τ ∈ (a, b) together with vector parameters ξ, λ ∈ Ωa and η ∈ Ωb. Instead of the
impulsive boundary value problem (1)–(3) we study two auxiliary parametrized boundary value
problems on the intervals [a, τ ] and [τ, b], respectively:

x′(t) = f(t, x(t)) +
1

τ − a

(
λ− ξ −

τ∫
a

f(s, x(s)) ds

)
, (5)

x(a) = ξ, x(τ) = λ, (6)

and

y′(t) = f(t, y(t)) +
1

b− τ

(
η − (λ+ γ(λ))−

b∫
τ

f(s, y(s)) ds

)
, (7)

y(τ) = λ+ γ(λ), y(b) = η. (8)

I. Let us connect problem (5), (6) with the parametrized sequence of functions

x0(t; τ, ξ, λ) =
(
1− t− a

τ − a

)
ξ +

t− a

τ − a
λ, t ∈ [a, τ ], (9)

xm(t; τ, ξ, λ) = ξ +

t∫
a

f
(
s, xm−1(s; τ, ξ, λ)

)
ds−

− t− a

τ − a

τ∫
a

f
(
s, xm−1(s; τ, ξ, λ)

)
ds+

t− a

τ − a
(λ− ξ), t ∈ [a, τ ], m ∈ N. (10)

II. Let us connect problem (7), (8) with the parametrized sequence of functions

y0(t; τ, λ, η) =
(
1− t− τ

b− τ

)
(λ+ γ(λ)) +

t− τ

b− τ
η, t ∈ [τ, b], (11)
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ym(t; τ, λ, η) = (λ+ γ(λ)) +

t∫
τ

f
(
s, ym−1(s; τ, λ, η)

)
ds−

− t− τ

b− τ

b∫
τ

f
(
s, ym−1(s; τ, λ, η)

)
ds+

+
t− τ

b− τ

(
η − (λ+ γ(λ))

)
, t ∈ [τ, b], m ∈ N. (12)

Choose ρ ∈ Rn and assume that Oa ⊂ Rn and Ob ⊂ Rn are componentwise neighbourhoods of
Ωa and Ωb, respectively. We have proved that if f fulfils the Lipschitz conditions |f(t, x)−f(t, y)| ≤
K|x − y| on Oa and Ob with a sufficiently large vector ρ and with a sufficiently small matrix K,
then

lim
m→∞

xm(t; τ, ξ, λ) = x∞(t; τ, ξ, λ) uniformly on [a, τ ],

and

lim
m→∞

ym(t; τ, λ, η) = y∞(t; τ, λ, η) uniformly on [τ, b].

More precisely, on Oa:

ρ ≥ b− a

4
δOa(f), r(K) <

10

3(b− a)
,

where

δOa(f) =: max
[a,b]×Oa

f(t, x)− min
[a,b]×Oa

f(t, x),

and r(K) is the spectral radius of K. Similarly, on Ob.

Further, we have proved that for each τ ∈ (a, b), ξ, λ ∈ Ωa, the vector function x∞(t; τ, ξ, λ) is a
unique solution of problem (5), (6) and that for each τ ∈ (a, b), λ ∈ Ωa, η ∈ Ωb, the vector function
y∞(t; τ, λ, η) is a unique solution of problem (7), (8).

Finally, we have found such values of the parameters τ , ξ, λ, η that the solution u of (1)–(3)
can be written in the form

u(t) =

{
x∞(t; τ, ξ, λ) if t ∈ [a, τ ],

y∞(t; τ, λ, η) if t ∈ (τ, b].
(13)

It turned out that such parameters τ, ξ, λ, η fulfil the system of algebraic “determining” equa-
tions 

λ− ξ −
τ∫

a

f
(
s, x∞(s; τ, ξ, λ)

)
ds = 0,

(
η − (λ+ γ(λ))

)
−

b∫
τ

f
(
s, y∞(s; τ, λ, η)

)
ds = 0,

Aξ + Cη = d,

g(τ, λ) = 0,

(14)

and in addition,

g
(
t, y∞(t; τ, λ, η)

)
̸= 0, t ∈ (τ, b]. (15)
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The solvability of the determining system (14) can be established by studying its approximate
version 

λ− ξ −
τ∫

a

f
(
s, xm(s; τ, ξ, λ)

)
ds = 0,

(
η − (λ+ γ(λ))

)
−

b∫
τ

f
(
s, ym(s; τ, λ, η)

)
ds = 0,

Aτ + Cη = d,

g(τ, λ) = 0,

(16)

with
g
(
t, ym(t; τ, λ, η)

)
̸= 0, t ∈ (τ, b], (17)

which can be constructed explicitely for a fixed m. System (16) can be solved, for example, by

Maple 14. If the quartet (τ̂ , ξ̂, λ̂, η̂) ∈ (a, b)× Ωa × Ωa × Ωb is a root of system (16) and inequality

(17) holds, then ξ̂ is an approximation of the inital value u(a) of the solution u of problem (1)–(3),

τ̂ is an approximation of the impulse point τ of u, λ̂ is an approximation of u(τ) and λ̂ + γ(λ̂) is
an approximation of u(τ+).
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Let
G(ε0) =

{
t, ε : t ∈ R, ε ∈ [0, ε0], ε0 ∈ R+

}
.

Definition 1. We say that a function f(t, ε), in general a complex-valued, belongs to the class
Sm(ε0), m ∈ N ∪ {0} if:

1) f : G(ε0) → C;

2) f(t, ε) ∈ Cm(G(ε0)) with respect to t;

3) dkf(t, ε)/dtk = εkf∗k (t, ε) (0 ≤ k ≤ m),

∥f∥m
def
=

m∑
k=0

sup
G(ε0)

|f∗k (t, ε)| < +∞.

Definition 2. We say that a function f(t, ε, θ) belongs to the class F θm,∞(ε0) (m ∈ N∪{0}) if this
function can be represented as

f(t, ε, θ) =

∞∑
n=−∞

fn(t, ε)e
inθ,

and

1) fn(t, ε) ∈ Sm(ε0), θ ∈ R;

2)

∥f0∥m +

∞∑
n=−∞
(n ̸=0)

|n|l · ∥fn∥m < +∞ (l = 0, 1, 2, . . . ).

If the function f(t, ε, θ) is real, then f−n(t, ε) = fn(t, ε).
We denote

∥f∥m,θ =
∞∑

n=−∞
∥fn∥m.

For any f ∈ F θm,∞(ε0), we introduce the linear operators:

Γn[f(t, ε, θ)] =
1

2π

2π∫
0

f(t, ε, θ)e−inθ dθ, n ∈ Z,
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in particular,

Γ0[f(t, ε, θ)] =
1

2π

2π∫
0

f(t, ε, θ) dθ,

I[f(t, ε, θ)] =

∞∑
n=−∞
(n ̸=0)

Γn[f(t, ε, θ)]

in
einθ.

We note some properties of the functions of the class F θm,∞(ε0). Let u(t, ε, θ), v(t, ε, θ) belongs

to the class F θm,∞(ε0), and k = const.

1) u(t, ε, θ) is 2π-periodic with respect to θ.

2)

∂lu(t, ε, θ)

∂θl
∈ F θm,∞(ε0) (l = 0, 1, 2, . . . ),

∂ku(t, ε, θ)

∂tk
∈ F θk−1,∞(ε0) (k = 1, . . . ,m).

3) Γn[u(t, ε, θ)] ∈ Sm(ε0) (n ∈ Z).

4)

I[u(t, ε, θ)] ∈ F θm,∞(ε0), I
[∂u(t, ε, θ)

∂θ

]
= u(t, ε, θ)− Γ0[u(t, ε, θ)] ∈ F θm,∞(ε0).

5) ∥ku∥m,θ = |k| · ∥u∥m,θ.

6) ∥u+ v∥m,θ ≤ ∥u∥m,θ + ∥v∥m,θ.

7)

∥u∥m,θ =
m∑
k=0

∥∥∥ 1

εk
∂ku

∂tk

∥∥∥
0,θ
.

8)
∥uv∥m,θ ≤ 2m∥u∥m,θ · ∥v∥m,θ.

9) If u, v are real, then u(t, ε, θ + v(t, ε, θ)) ∈ F θm,∞(ε0).

10) The chains of includes are true:

F θ0,∞(ε0) ⊃ F θ1,∞(ε0) ⊃ · · · ⊃ F θm,∞(ε0), S0(ε0) ⊃ S1(ε0) ⊃ · · · ⊃ Sm(ε0).

Definition 3. We say that a vector f = colon (f1, . . . , fN ) belongs to the class F θm,∞(ε0) (or

Sm(ε0)) if fj ∈ F θm,∞(ε0) (relatively, fj ∈ Sm(ε0)) (j = 1, . . . , N).

Definition 4. We say that a matrix (ajk)j,k=1,N belongs to the class F θm,∞(ε0) (or Sm(ε0)) if

aj,k ∈ F θm,∞(ε0) (relatively, aj,k ∈ Sm(ε0)) (j, k = 1, . . . , N).
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Consider the system of differential equations:

dx

dt
= (Λ(t, ε) + µP (t, ε, θ))x+ f(t, ε, θ),

dθ

dt
= ω(t, ε) + µa(t, ε, θ),

(1)

where (t, ε) ∈ G(ε0), x = colon (x1, . . . , xN ), Λ = diag (λ1, . . . , λN ) ∈ Sm(ε0), P = (pjk)j,k=1,N ∈
F θm,∞(ε0), scalar real functions ω ∈ Sm(ε0), inf

G(ε0)
ω > 0, a ∈ F θm,∞(ε0), µ ∈ (0, µ0) ⊂ R+.

We study the problem of the conditions of existence of integral manifold x(t, ε, θ, µ) of the
system (1), belongs to the class F θm∗,∞(ε0), where m

∗ ≤ m.

Lemma 1. There exists µ1 ∈ (0, µ0) such that for all µ ∈ (0, µ1) there exists the real reversible
transformation

θ = φ+ µv(t, ε, φ, µ), (2)

where v ∈ Fφm,∞(ε0), reducing the system (1) to the kind

dx

dt
= (Λ(t, ε) + µQ(t, ε, φ, µ))x+ g(t, ε, φ, µ),

dφ

dt
= ω(t, ε) + µb(t, ε, µ) + µεβ(t, ε, φ, µ),

(3)

where Q = P (t, ε, φ + µv(t, ε, φ, µ)) ∈ Fφm,∞(ε0), g = f(t, ε, φ + µv(t, ε, φ, µ)) ∈ Fφm,∞(ε0), b ∈
Sm(ε0), β ∈ Fφm−1,∞(ε0).

Lemma 2. There exists µ2 ∈ (0, µ1) such that for all µ ∈ (0, µ2) there exists the chain of reversible
transformations of kind

φ = ψ1 + µεw1(t, ε, ψ1, µ), (4)

ψ1 = ψ2 + µε2w2(t, ε, ψ2, µ), (5)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψm1−2 = ψm1−1 + µεm1−1wm1−1(t, ε, ψm1−1, µ), (6)

where m1 < m, wk ∈ Fψk
m−k,∞(ε0) (k = 1, . . . ,m1 − 1), reducing the system (3) to the kind:

dx

dt
=

(
Λ(t, ε) + µRm1−1(t, ε, ψm1−1, µ)

)
x+ hm1−1(t, ε, ψm1−1, µ),

dψm1−1

dt
= ω(t, ε) + µb(t, ε, µ) + µ

m1−1∑
l=1

εkβk(t, ε, µ) + µεm1 β̃m1−1(t, ε, ψm1−1, µ),
(7)

where Rm1−1 ∈ F
ψm1−1

m−m1+1(ε0), hm1−1 ∈ F
ψm1−1

m−m1+1(ε0), βk ∈ Sm−k(ε0), β̃m1−1 ∈ F
ψm1−1

m−m1,∞(ε0)
(k = 1, . . . ,m1 − 1).

Theorem. Let the elements λj(t, ε) (j = 1, . . . , N) of matrix Λ(t, ε) in system (1) be such that

inf
G(ε0)

|Reλj(t, ε)| ≥ γ > 0 (j = 1, . . . , N).

Then there exists µ∗ ∈ (0, µ0) such that for all µ ∈ (0, µ∗) the system (1) has the integral manifold
x̃(t, ε, θ, µ) ∈ F θm1,∞(ε0), where 2m1 ≤ m (m1 ∈ N ∪ {0}).
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Proof. Based on Lemmas 1, 2, we reduce the system (1) to the kind (7). We denote

ψ = ψm1−1,

R(t, ε, ψ, µ) = Rm1−1(t, ε, ψm1−1, µ), h(t, ε, ψ, µ) = hm1−1(t, ε, ψm1−1, µ),

ω1(t, ε, µ) = ω(t, ε0) + µb(t, ε, µ) +

m1−1∑
l=1

εkβk(t, ε, µ) + εm1 β̃m1−1(t, ε, ψm1−1, µ).

Based on condition of Theorem and property 10) of the functions of class F θm,∞(ε0), we can

state that R(t, ε, ψ, µ), h(t, ε, ψ, µ) ∈ Fψm1,∞(ε0), ω1(t, ε, µ) ∈ Sm1(ε0). Then we write the system
(7) in kind

dx

dt
= (Λ(t, ε) + µR(t, ε, ψ, µ))x+ h(t, ε, ψ, µ),

dψ

dt
= ω1(t, ε, µ).

(8)

With the system (8) consider the system

dx0
dt

= Λ(t, ε)x0 + h(t, ε, ψ, µ),

dψ

dt
= ω1(t, ε, µ).

(9)

Based on the results [1] and condition of Theorem, we can state that the system (9) has the

integral manifold x0(t, ε, ψ, µ) ∈ Fψm1,∞(ε0). And there exists K ∈ (0,+∞) such that

∥x0∥m1,ψ ≤ K∥h∥m1,ψ. (10)

We seek the integral manifold of system (8) by the method of succesive approximations, defining
as an initial approximation x0, and the subsequents approximations defining from the systems:

dxs+1

dt
= Λ(t, ε)xs+1 + h(t, ε, ψ, µ) + µR(t, ε, ψ, µ)xs,

dψ

dt
= ω1(t, ε, µ), s = 0, 1, 2, . . . .

(11)

Based on inequality (10) and using the ordinary technicue of the contraction mapping principle
[2], it is easy to show that there exists µ3 ∈ (0, µ0) such that for all µ ∈ (0, µ3) all approximations xs
belong to the class Fψm1,∞(ε0), and process (11) converges by the norm ∥ · ∥m,ψ to integral manifold

x(t, ε, ψ, µ) ∈ Fψm1,∞(ε0) of the system (8).
Based on the reversibility of the transformations (2), (4)–(6), we can state the existence of the

integral manifold x̃(t, ε, θ, µ) ∈ F θm,∞(ε0) of the system (1) for sufficiently small values µ.
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The questions of determining the conditions of solvability and finding the solutions for various
types of boundary value problems remain actual for a long period of time. A vast number of scientific
works are devoted to the investigation of different aspects of the question under consideration. The
Noetherian boundary value problems have been considered and studied in [8]. The works [1] and
[4] are devoted to the study of autonomous boundary value problems.

The weakly nonlinear boundary value problems have been considered in [1, 7]. The conditions
for the solvability of boundary value problems with perturbation for systems of linear differential
equations of the first order have been studied in [7, 8]. The conditions of solvability of degenerated
boundary value problems, bifurcations and branching of their solutions are considered in [8]. In [6],
the author considers weakly perturbed boundary value problems for systems of linear differential
equations of the second order for which the conditions of solvability are found.

We study a linear inhomogeneous boundary value problem with perturbation

(P (t)x′)′ −Q(t)x− εQ1(t)x = f(t), t ∈ [a, b], (1)

lx( · , ε) = α+ εl1x( · , ε). (2)

Here, [a, b] is a segment on which we consider the linear boundary value problem with per-
turbations (1), (2), x = x(t, ε) – is a twice continuously differentiable unknown vector-function
x′′( · , ε) ∈ C2([a, b]× (0, ε0]). P (t), Q(t), Q1(t) are square matrices of dimension n. Elements of the
matrix P (t) are real, continuously differentiable on the segment [a, b] functions P (t) ∈ C1([a, b]); El-
ements of the matrices Q(t) and Q1(t) are continuous on the segment [a, b]: Q(t), Q1(t) ∈ C([a, b]).
The matrix P (t) is nondegenerated detP (t) ̸= 0. The function f(t) is a continuous n-dimensional
on the segment [a, b] vector-function f(t) ∈ C([a, b]). l, l1 are linear bounded m-dimensional
vector-functionals defined on the space n-dimensional piecewise continuous vector functions l,
l1 : C([a, b]) → Rm. α is an m-dimensional real vector α ∈ Rm; ε is a small nonnegative pa-
rameter.

To the boundary value problem with perturbation (1), (2) we put into correspondence the
generating boundary value problem

(P (t)x′)
′ −Q(t)x = f(t), t ∈ [a, b], (3)

lx( · , ε) = α. (4)

The system (3) of differential equations of second order has a general solution of the type
x(t) = X(t)c + x(t), c ∈ R2n, where X(t) is an (n × 2n)-dimensions fundamental matrix of the
homogeneous (f(t) = 0)system of second order (3) which consists of 2n linear independent solutions

of that homogeneous system (f(t) = 0) (3); The vector-function x(t) =
b∫
a
K(t, s)P−1(s)f(s) ds is a

partial solution of the system of differential equations (3); K(t, s) is the Cauchy (n×n)-dimensional
matrix [?, ?]. D is a rectangula,(m × 2n)-dimensional matrix formed under the action of the m-
dimensional functional l onto the fundamental matrix X(t), rankD = n1, n1 < min(2n,m). The
matrix D∗ is transposed to the matrix D. The (2n×m)-dimensional matrix D+ is Moore–Penrose
pseudo-inverse to the matrix D [2, 5, 6, 8]. By PD we denote the (2n × 2n)-dimensional matrix-
orthoprojector PD : R2n → N(D), N(D) = PDR

2n. The matrix N(D) is the null-space of the
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matrix D: dimN(D) = 2n− rankD = 2n− n1 = r. By PD∗ we denoted the (m×m)-measurable
matrix-orthoprojector PD∗ : Rm → N(D∗), N(D∗) = PD∗Rm. The matrix N(D∗) is the null-space
of the matrix D∗: dimN(D∗) = 2n − rankD∗ = 2n − n1 = r. Thus the matrix N(D) is of
dimension r: dimN(D) = 2n − rankD = 2n − n1 = r, and the matrix N(D∗) is of dimension d:
dimN(D∗) = m − rankD = m − n1 = d. Consequently, rankPD = r, rankPD∗ = d, this implies
that the matrix PD consists of r linearly independent columns, and the matrix PD∗ consists of d
linearly independent columns. Thus the (2n× 2n)-dimensional matrix PD can be replaced by the
(2n × r)-dimensional matrix PDr which consists of r linearly independent columns of the matrix
PD; the (m×m)-dimensional matrix PD∗ can be replaced by (d×m)-dimensional matrix PD∗

d
which

consists of d linearly independent series of the matrix PD∗ [3, 5].
For the generating boundary value problem (3), (4) the theorem below is fulfilled [5].

Theorem 1 (Critical case). Let the condition rankD = n1 < min{2n,m} be fulfilled. Then the
homogeneous (f(t) = 0, α = 0) boundary value problem (3), (4) has r, (r = 2n − n1) and only r
linearly independent solutions. The inhomogeneous boundary value problem (3), (4) is solvable if
and only if the vector-function f(t) ∈ C([a, b]) and the constant vector α ∈ Rm satisfy the condition
of solvability

PD∗
d

[
α− lx( · )

]
= 0 (d = m− n1). (5)

If these conditions are fulfilled, the boundary value problem (3), (4) has an r-parametric set of
solutions x(t, cr) = Xr(t)cr+(G[f ])(t)+X(t)D+α, t ∈ [a, b], ∀ cr ∈ Rr, where Xr(t) is the (n×n)-
matrix whose columns consist of a full system of r linearly independent solutions of the homogeneous
system of second order (3): Xr(t) = X(t)PDr ; PDr is the (2n×r)-dimensional matrix-orthoprojector
consisting of r linearly independent columns of the matrix PD; cr is an arbitrary vector column from
the space Rr; (G[f ])(t), t ∈ [a, b] is the Greens generalized operator acting onto an arbitrary vector-
function f(t) ∈ C([a, b]):

(G[f ])(t)
def
=

b∫
a

K(t, s)P−1(s)f(s) ds−X(t)D+l

b∫
a

K( · , s)P−1(s)f(s) ds.

We have to define whether there exist the conditions under fulfillment of which the boundary
value problem with perturbation (1), (2) will be solvable under the condition that its generating
boundary value problem (3), (4) has no solutions. We consider the case, where the generating
boundary value problem (3), (4) has no solutions for arbitrary inhomogeneities f(t) ∈ C([a, b]) and
α ∈ Rm; this implies that for the above problem the critical case(rankD = n1 < n) is valid, and re-
spectively, for arbitrary inhomogeneities f(t) ∈ C([a, b]), α ∈ Rm, for the generating boundary value
problem (3), (4) the solvability criterion (5) fails to be fulfilled. For the boundary value problem

(1), (2) using the (d×r)-measurable matrix B0 := PD∗
d

{
l1Xr( · )−l

b∫
a
K( · , s)P−1(s)Q1(s)Xr(s) ds

}
,

the conditions of solvability of the problem under consideration and the condition of unique-

ness of its solution, having the form of converging Laurent series x( · , ε) =
∞∑

k=−1

εkxk(t), are

found. Here, PB0 is the (r × r)-dimensional matrix-orthoprojector, PB0 : Rr → N(B0); B
∗
0
is the

(r × d)-dimensional matrix, transposed to the matrix B0, PB∗
0
is the (d × d)-dimensional matrix-

orthoprojector, PB∗
0
: Rd → N(B∗

0
); B+

0
is the (r × d)-dimensional matrix, pseudo-inverse due to

Moore–Penrose to the matrix B0 [6]. In the case, where the condition PB∗
0
= 0 is not fulfilled, for de-

termination of conditions of solvability of the problem under consideration, the (d× r)-measurable

matrix B1: B1 := PD∗
d

{
l1G1( · ) − l

b∫
a
K( · , s)P−1(s)Q1(s)G1(s) ds

}
has been constructed, where

G1(t) is the (n× r)-dimensional matrix of the type G1(t) = (G[Q1(s)Xr(s)])(t) +X(t)D+l1Xr( · ).
Here, B∗

1
is the (r × d)-dimensional matrix, transposed to the matrix B1; PB∗

1
is the (d × d)-

dimensional matrix-orthoprojector, PB∗
1
: Rd → N(B∗

1
). In the case, where the conditions PB∗

0
= 0,
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PB∗
1
PB∗

0
= 0 for the problem (1), (2) are not fulfilled, to find the conditions of solvability of that

problem, the (d × r)-dimensional matrix B1 := −PB∗
0
B1PB0 has been constructed. The following

theorem is valid.

Theorem 2. Let the generating boundary value problem (3), (4) for arbitrary inhomogeneities
f(t) ∈ C([a, b]) and α ∈ Rm have no solutions. For the boundary value problem (1), (2) the
conditions PB∗

0
̸= 0, PB∗

1
PB∗

0
̸= 0) are fulfilled.

Then the boundary value problem with perturbation (1), (2) is solvable if the condition PB
∗
1
PB∗

0
=

0 is fulfilled, and in this case, for a sufficiently small fixed ε ∈ (0, ε0] it has a solution in a form of a

part of converging Laurent’s series x( · , ε) =
∞∑

k=−3

εkxk(t), the coefficients xk, k ≥ −3 of Laurent’s

series are sought from the corresponding boundary value problems constructed after substitution of
the Laurent’s series into the problem (1), (2) and equating the corresponding coefficients for each
from powers ε.
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1 Introduction

The recent general theory of functional differential equations [2]–[5] allowed us to give a clear and
concise description of their basic properties including the properties of solution stability. At the
same time broad classes of linear hybrid functional differential systems with aftereffect (LHFDSA)
arising in many applications are not formally covered by the developed theory and remain out of
view of specialists using functional differential and difference systems with aftereffect for simula-
tion of real processes. Below we suggest hybrid functional differential analogues of fundamental
assertions of the theory of functional differential equations for problems of stability.

2 The W -method of N. V. Azbelev

First, let us consider the case when one of the equations is a linear differential one and is defined on
a set of discrete points, and the other one is a linear functional differential equation with aftereffect
(LFDEA) on a semiaxis. For this case we describe the W-method scheme of N. V. Azbelev.

Let us denote the infinite matrix with the columns y(−1), y(0), y(1), . . . , y(N), . . . of size n, by
y = {y(−1), y(0), y(1), . . . , y(N), . . .} and the infinite matrix with columns g(0), g(1), . . . , g(N), . . .
the of size n, by g = {g(0), g(1), . . . , g(N), . . .}.

Each infinite matrix
y =

{
y(−1), y(0), y(1), . . . , y(N), . . .

}
can be associated with the vector function

y(t) = y(−1)χ
[−1,0)

(t) + y(0)χ
[0,1)

(t) + y(1)χ
[1,2)

(t) + · · ·+ y(N)χ
[N,N+1)

(t) + · · · .

Similarly, each of the infinite matrices g = {g(0), g(1), . . . , g(N), . . .} can be associated with the
vector function

g(t) = g(0)χ
[0,1)

(t) + g(1)χ
[1,2)

(t) + · · ·+ g(N)χ
[N,N+1)

(t) + · · · .

Let us denote the vector function y(t) = y([t]), t ∈ [−1,∞), by y(t) = y[t] and the vector
function g(t) = g([t]), t ∈ [0,∞), by g[t].

The set of vector functions y[ · ] is denoted by ℓ0. The set of vector functions g[ · ] is denoted
by ℓ. Let (∆y)(t) = y(t) − y(t − 1) = y[t] − y[t − 1] at t ≥ 1, and (∆y)(t) = y(t) = y[t] = y(0) at
t ∈ [0, 1).

The abstract hybrid functional differential system takes the form

L11x+ L12y = ẋ− F11x− F12y = f,

L21x+ L22y = ∆y − F21x− F22y = g.
(1)

Here and below Rn is the space of vectors α = col{α1, . . . , αn} with real components and
the norm ∥α∥Rn . Assume the space L of locally summable f : [0,∞) → Rn with seminorms
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∥f∥L[0,T ] =
T∫
0

∥f(t)∥Rn dt for all the T > 0 and the space D of locally absolutely continuous

functions x : [0,∞) → Rn with seminorms

∥x∥D[0,T ] = ∥ẋ∥L[0,T ] + ∥x(0)∥Rn

for all the T > 0.
Also assume the space ℓ of vector functions

g(t) = g(0)χ
[0,1)

(t) + g(1)χ[1,2)(t) + · · ·+ g(N)χ[N,N+1)(t) + · · ·

with the seminorms ∥g∥ℓT =
T∑
i=0

∥gi∥Rn for all the T ≥ 0 and the space ℓ0 of vector functions

y(t) = y(−1)χ
[−1,0)

(t) + y(0)χ
[0,1)

(t) + y(1)χ
[1,2)

(t) + · · ·+ y(N)χ
[N,N+1)

(t) + · · ·

with the seminorms ∥y∥ℓ0T =
T∑

i=−1
∥yi∥Rn for all the T ≥ −1.

The operators L11, F11 : D → L, L12, F12 : ℓ0 → L, L21, F21 : D → ℓ, L22, F22 : ℓ0 → ℓ are
assumed to be continuous linear and Volterra.

Let L =

(
L11 L12

L21 L22

)
. Then (1) can be written as L{x, y} = col{f, g}. Suppose that for any

x(0) ∈ Rn and y(−1) ∈ Rn the Cauchy problem for the “model” system ẋ = F 0
11x + F 0

12z + z,
∆y = F 0

21z + F 0
22y + u, where the operators F 0

11 : D → L, F 0
12 : ℓ0 → L, F 0

12 : ℓ0 → L, F 0
21 : D → ℓ,

F 0
22 : ℓ0 → ℓ are assumed to be continuous linear and Volterra. Then the model system can be

written as L0{x, y} = col{z, u}. Suppose its solution can be represented as:(
x
y

)
=

(
U11 U12

U21 U22

)(
x(0)
y(−1)

)
+

(
W11 W12

W21 W22

)(
z
u

)
.

Here W : L × ℓ → D × ℓ0 is the continuous Volterra operator, the Cauchy operator for the

system, W =

(
W11 W12

W21 W22

)
, U : Rn × Rn → D × ℓ0 is the fundamental matrix for the system

U =

(
U11 U12

U21 U22

)
.

If the elements col{x, y} : [0,∞) × [−1,∞) → Rn × Rn forming the Banach space D × M0
∼= (B × Rn) × (M × Rn) (space D ⊂ D, space M0

∼= M ⊕ Rn ⊂ ℓ0, space B ⊂ L, space M ⊂ ℓ,
B,M are the Banach spaces) have certain specific properties, such as

sup
t≥0

∥x(t)∥Rn + sup
k=−1,0,1,...

∥y(k)∥Rn < ∞,

and the Cauchy problem is uniquely solvable for the equation L{x, y} = col{f, g} with the bounded
linear operator L : D ×M0 → B ×M, then the solutions of this problem have the same asymp-
totic properties. This follows from the theorem given below [6] (see [2, Theorem 2.1.1] and [1,
Theorem 1]).

Theorem. Assume W : B×M → D×M0 is the bounded Cauchy operator of the Cauchy problem
for the model equation L0{x, y} = col{f, g}, col{x(0), y(−1)} = col{0, 0} and U is the fundamental
matrix of the model equation L0{x, y} = col{0, 0}. Here L0 : D × M0 → B × M. Assume the
linear operator L : D×M0 → B×M is bounded, C is the Cauchy operator of the Cauchy problem
L{x, y} = col{f, g}, col{x(0), y(−1)} = col{0, 0} and X is the fundamental matrix of the equation
L{x, y} = col{0, 0}. Then for the equality

W{B,M}+ U{Rn,Rn} = C{B,M}+X{Rn,Rn} (2)
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to hold true it is necessary and sufficient that the operator LW (the operator WL) have a bounded
inverse

(LW)−1 : B×M → B×M
(
(WL)−1 : (D×M0)

0 → (D×M0)
0
)
,

where (D×M0)
0 = {col{x, y} ∈ D×M0 : col{x(0), y(−1)} = col{0, 0}}.

Corollary ([1], [2, pp. 36, 48]). If the operator L : D × M0 → B × M is bounded and ∥(L −
L0)W∥B×M→B×M < 1 is true or ∥W(L − L0)∥(D×M0)0→(D×M0)0 < 1 is true, then Equality (2)
holds true as well.

In the case when (2) holds true (when the solution spaces of the model equation and equation
under study coincide), we say that the equation L{x, y} = col{f, g} has the property D×M0, or,
in short, the equation is D×M0-stable.

Assume the model equation [1]–[5] and Banach spaceB with the elements of the space L (B ⊂ L,
this embedding is continuous) are selected so that the solutions of this equation possess asymptotic
properties we are interested in.

We introduce the Banach space D(L11,B) with the norm

∥x∥D(L11,B) = ∥L11x∥B + ∥x(0)∥Rn .

Assume that the operator W11 acts continuously from the space B into the space B, and the
operator U11 acts from space Rn into the space B. This condition is equivalent to the fact [1]–[5]
that the space D(L11,B) is linearly isomorphic to the Sobolev space with the norm

∥x∥
W

(1)
B [0,∞)

= ∥ẋ∥B + ∥x∥B.

Hereinafter this space is referred to as WB (WB ⊂ D, this embedding is continuous).
The equation L11x = z with the operator L11 : WB → B is D(L11,B)-stable if and only if it is

strongly B-stable. L11x = z is strongly B- stable if for any z ∈ B each solution x of this equation
has the property x ∈ B and ẋ ∈ B ([2, Ch. IV, § 4.6], [5]).

3 Reduction of LFDEA on the Semiaxis

Let us consider the scheme from Clause 2 for two equations (1). The operators L11 : D → L,
L12 : ℓ0 → L, L21 : D → ℓ, L22 : ℓ0 → ℓ are considered as reduction to pairs (WB,B), (M0,B),
(WB,M), (M0,M). These operators are assumed to be Volterra linear and bounded operators.

Assume that the general solution of the equation L22y = g for g ∈ M is the space of M0 and is
represented by the Cauchy formula

y[t] = Y22[t]y(−1) +

[t]∑
s=0

C22[t, s]g[s].

Let

(C22g)[t] =

[t]∑
s=0

C22[t, s]g[s], (Y22y(−1))[t] = Y22[t]y(−1).

Then every solution y of the second equation in (1) has the form

y = −C22L21x+ Y22y(−1) + C22g.

Substituting the first equation into (1), we obtain

L11x+ L12y = L11x− L12C22L21x+ L12Y22y(−1) + L12C22g = f,

L11x− L12C22L21x = f1 = f − L12Y22y(−1)− L12C22g.

Let L = L11 − L12C22L21, then the first equation in (1) takes the form of Lx = f1. Suppose
the Volterra operator L : (WB)

0 → B is Volterra invertible, that is (when the Cauchy problem for
Lx = f1 possesses the following property: at any f1 ∈ B its solutions are x ∈ WB). Thus, we solved
the problem, when for Equation (1) at any {f, g} ∈ B×M its solutions are {x, y} ∈ WB ×M.
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4 Reduction to a Linear Difference Equation (LDE) on a Discrete
Set of Points

Let us use the ability of the hybrid system to be reduced to a LDE defined on a discrete set of
points. For Equation (1) we use the designations given in Clauses 2 and 3.

Assume the general solution of the equation L11x = f for f ∈ L is a member of the space D
and is represented by the Cauchy formula

x(t) = X11(t)x(0) +

t∫
0

C11(t, s)f(s) ds.

Let (C11f)(t) =
t∫
0

C11(t, s)f(s) ds, (X11x(0))(t) = X11(t)x(0), then for x ∈ D the representation

x = X11x(0) + C11f holds true.
The first variable x can be estimated out of the first equation in (1)

x = −C11L12y +X11x(0) + C11f.

We use this substitution in the second equation of (1), we obtain

L21x+ L22y = −L21C11L12y + L21X11x(0) + L21C11f + L22y = g,

−L21C11L12y + L22y = g1 = g − L21X11x(0)− L21C11f.

Let L = L22−L21C11L12, then the second equation in (1) takes the form Ly = g1. Suppose the
Volterra operator L : (M0)

0 → M is Volterra invertible (when the Cauchy problem for Ly = g1 at
any g1 ∈ M its solutions are x ∈ M0). Thus, we solved the problem, when at any {f, g} ∈ B×M
for (1) its solutions are {x, y} ∈ D×M0.
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On the real axis, we consider the equation(
|u′|α sgnu′

)′
+ p(t)|u|α sgnu = 0, (1)

where p : R → R is a locally integrable function and α > 0.
A function u : I → R is said to be a solution to equation (1) on the interval I ⊆ R if it is

continuously differentiable on I, |u′|α sgnu′ is absolutely continuous on every compact subinterval
of I, and u satisfies equality (1) almost everywhere on I. In [6, Lemma 2.1], Mirzov proved that
every solution to equation (1) is extendable to the whole real axis. Therefore, speaking about
a solution to equation (1), we assume that it is defined on R. Moreover, for any a ∈ R, the initial
value problem (

|u′|α sgnu′
)′
+ p(t)|u|α sgnu = 0; u(a) = 0, u′(a) = 0

has only the solution u ≡ 0 (see [6, Lemma 1.1]). Hence, a solution u to equation (1) is said to be
non-trivial, if u ̸≡ 0 on R.

Definition 1. We say that equation (1) is conjugate on R if it has a non-trivial solution with at
least two zeros, and disconjugate on R otherwise.

It is clear that in the case α = 1, equation (1) reduces to the linear equation

u′′ + p(t)u = 0. (2)

As it is mentioned in [4], a history of the problem of conjugacy of (2) began in the paper by Hawking
and Penrose [3]. In [8], Tipler presented an interesting relevance of the study of conjugacy of (2)
to the general relativity and improved Hawking–Penrose’s criterion, showing that (2) is conjugate
on R if the inequality

lim inf
t→+∞
τ→−∞

t∫
τ

p(s) ds > 0 (3)

holds. Later, Peňa [7] proved that the same condition is sufficient also for the conjugacy of half-
linear equation (1).

The study of conjugacy of (1) on R is closely related to the question of oscillation of (1) on
the whole real axis. It is known that Sturms’s separation theorem holds for equation (1) (see [6,
Theorem 1.1]). Therefore, if equation (1) possesses a non-trivial solution with a sequence of zeros
tending to +∞ (resp. −∞), then any other its non-trivial solution has also a sequence of zeros
tending to +∞ (resp. −∞).

Definition 2. Equation (1) is said to be oscillatory in the neighbourhood of +∞ (resp. in the
neighbourhood of −∞) if every its non-trivial solution has a sequence of zeros tending to +∞ (resp.
to −∞). We say that equation (1) is oscillatory on R if it is oscillatory in the neighbourhood of
either +∞ or −∞, and non-oscillatory on R otherwise.
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Clearly, if equation (1) is oscillatory on R, then it is conjugate on R, as well. It is known that
oscillations of (1) in the neighbourhood of +∞ (resp. −∞) can be described by means of behaviour
of the Hartman–Wintner type expression

1

|t|

t∫
0

( s∫
0

p(ξ) dξ

)
ds (4)

in the neighbourhood of +∞ (resp. −∞), see [5, Theorem 12.3]. However, expression (4) is useful
also in the study of conjugacy of (1) on R. In particular, efficient conjugacy and disconjugacy
criteria for linear equation (2) formulated by means of expression (4) are given in [4]. Abd-Alla
and Abu-Risha [1] observed that for the study of conjugacy on whole real axis, it is more convenient
to consider a Hartman–Wintner type expression in a certain symmetric form, where all values of
the function p are involved simultaneously. They proved in [1], among other things, that equation
(1) with a continuous p is conjugate on R provided that p ̸≡ 0 and

lim inf
t→+∞

1

t

t∫
0

( s∫
−s

p(ξ) dξ

)
ds ≥ 0, (5)

which obviously improves Peňa’s criterion (3). Below, we generalise and supplement criterion (5)
and present further statements, which can be applied in the cases not covered by Theorems 3 and 5.

For any ν < 1, we put

c(t; ν) :=
1− ν

(1 + t)1−ν

t∫
0

1

(1 + s)ν

( s∫
−s

p(ξ) dξ

)
ds for t ≥ 0.

We start with a Hartman–Wintner type result, which guarantees that equation (1) is oscillatory
on R (not only conjugate).

Theorem 3. Let ν < 1 be such that either

lim
t→+∞

c(t; ν) = +∞,

or
−∞ < lim inf

t→+∞
c(t; ν) < lim sup

t→+∞
c(t; ν).

Then equation (1) is oscillatory on R and consequently, conjugate on R.

Remark 4. Having ν1, ν2 < 1, one can show that there exists a finite limit lim
t→+∞

c(t; ν2) if and

only if there exists a finite limit lim
t→+∞

c(t; ν1), in which case both limits are equal.

In view of Remark 4, Theorem 3 cannot be applied, in particular, if the function c( · ; 1 − α)
has a finite limit as t → +∞. A conjugacy criterion covering this case is given in the following
statement.

Theorem 5. Let p ̸≡ 0 and
0 ≤ lim

t→+∞
c(t; 1− α) < +∞.

Then equation (1) is conjugate on R.

Theorems 3 and 5 yield
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Corollary 6. Let p ̸≡ 0 and ν < 1 be such that

lim inf
t→+∞

c(t; ν) > −∞, lim sup
t→+∞

c(t; ν) ≥ 0.

Then equation (1) is conjugate on R.

Corollary 6 generalises several conjugacy criteria known in the existing literature. In particular,
[2, Theorem 2.2] can be derived from Corollary 6. Moreover, conjugacy criterion (5) given in [1,
Theorem 2.2] follows immediately from Corollary 6 with ν := 0. Corollary 6 also yields the following
half-linear extension of [4, Theorem 1].

Corollary 7. Let p ̸≡ 0 and the function

M : t 7−→ 1

|t|

t∫
0

( s∫
0

p(ξ) dξ

)
ds

have finite limits as t → ±∞. If

lim
t→+∞

M(t) + lim
t→−∞

M(t) ≥ 0,

then equation (1) is conjugate on R.

According to the above said, we conclude that neither of Theorems 3 and 5 can be applied in
the following two cases:

lim
t→+∞

c(t; 1− α) =: c(+∞) ∈ ]−∞, 0[ (6)

and
lim inf
t→+∞

c(t; ν) = −∞ for every ν < 1. (7)

The case (6)

In the first statement, we require that the function c( · ; 1−α) is at some point far enough from its
limit c(+∞).

Theorem 8. Let (6) hold and

sup

{
(1 + t)α

ln(1 + t)

[
c(+∞)− c(t; 1− α)

]
: t > 0

}
> 2

( α

1 + α

)1+α
. (8)

Then equation (1) is conjugate on R.

Remark 9. One can show that if (8) is replaced by

lim sup
t→+∞

(1 + t)α

ln(1 + t)

[
c(+∞)− c(t; 1− α)

]
> 2

( α

1 + α

)1+α
, (9)

then we can claim in Theorem 8 that equation (1) is even oscillatory on R.

Now we put

Qα(t) :=
(1 + t)1+α

t

[
c(+∞)−

t∫
−t

p(s) ds

]
, Hα(t) :=

1

t

t∫
−t

(1 + |s|)1+αp(s) ds for t > 0.



144 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

Theorem 10. Let (6) hold and

sup
{
Qα(t) +Hα(t) : t > 0

}
> 2.

Then equation (1) is conjugate on R.

Remark 11. One can show that if

lim sup
t→+∞

(
Qα(t) +Hα(t)

)
> 2,

then we can claim in Theorem 10 that equation (1) is even oscillatory on R.

The case (7)

First note that, in condition (7), the assumption that lim inf
ν→+∞

c(t; ν) = −∞ for every ν < 1 is, in

fact, not too restrictive. Indeed, let lim inf
t→+∞

c(t; ν1) = −∞ for some ν1 < 1. Then Remark 4 yields

that for any ν < 1, the function c( · ; ν) does not possess any finite limit. Consequently, if there
exists ν2 < 1 such that lim inf

t→+∞
c(t; ν2) > −∞, then equation (1) is oscillatory on R as it follows

from Theorem 3.

Proposition 12. Let condition (7) hold and there exist a number κ > α such that

lim sup
t→+∞

1

tκ

t∫
−t

(t− |s|)κp(s) ds > −∞. (10)

Then equation (1) is oscillatory on R and consequently, conjugate on R.

Finally, we give a statement which can be applied in the case, when condition (7) holds, but
(10) is violated for every κ > α, i. e.,

lim
t→+∞

1

tκ

t∫
−t

(t− |s|)κp(s) ds = −∞ for every κ > α

(it may happen as can be justified by an example).

Theorem 13. Let there exist a number κ > α such that

sup

{
1

tκ−α

t∫
−t

(t− |s|)κp(s) ds : t > 0

}
>

2

κ− α

( κ

1 + α

)1+α
.

Then equation (1) is conjugate on R.

Remark 14. Observe that Theorem 13 does not require assumption (7), it is a general statement
applicable without regard to behaviour of the function c( · ; ν).
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Let T > 0, J = [0, T ] and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).
In the literature [1, 2] the fractional differential equation

u′(t) = acDαu(t) + bu(t) + g(t), a ∈ R \ {0}, α ∈ (0, 1),

is called the Basset fractional differential equation.
We investigate the generalized Basset fractional differential equation

u′(t) = a(t)cDαu(t) + f
(
t, u(t), cDβu(t)

)
, (1)

where 0 < β < α < 1, a ∈ C(J), f ∈ C(J ×R2) and cD stands for the Caputo fractional derivative.
Further conditions on a and f will be given later.

Together with (1) we consider the periodic condition

u(0) = u(T ). (2)

We recall that the Riemann–Liouville fractional integral Iγx of order γ > 0 of a function
x : J → R is defined as [1, 2]

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s) ds,

and the Caputo fractional derivative cDγx of order γ > 0, γ ̸∈ N, of a function x : J → R as

cDγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)

(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)
ds,

where Γ is the Euler gamma function and n = [γ] + 1, [γ] means the integral part of γ.
In particular,

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0)) ds, γ ∈ (0, 1).

If x ∈ C1(J), then

cDγx(t) =

t∫
0

(t− s)−γ

Γ(1− γ)
x′(s) ds, γ ∈ (0, 1).

It is well known that Iγ : C(J) → C(J) for γ ∈ (0, 1) and IγIδx(t) = Iγ+δx(t) for γ, δ ∈ (0,∞),
x ∈ C(J).
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We say that u : J → R is a solution of problem (1), (2) if u ∈ C1(J), u satisfies (2) and (1)
holds for t ∈ J .

The solvability of the periodic problem

u′(t) = acDαu(t) + f(t, u(t)), u(0) = u(T ),

where a is a positive constant and α ∈ (0, 1), is discussed in [3].
In order to give the existence result for problem (1), (2), we introduce operators H : C(J)×R×

[0, 1] → C(J) and S : C(J)× R× [0, 1] → C(J)× R,

H(x, µ, λ)(t) = (1− λ)µ+ λ
(
a(t)x(t) + f

(
t, µ+ Iαx(t), Iα−βx(t)

))
and

S(x, µ, λ) =
(
I1−αH(x, µ, λ)(t), µ+ Iαx(t)

∣∣
t=T

)
.

The following result gives the property of S and the relation between solutions of the periodic
problem (1), (2) and fixed points of the operator S( · , · , 1).

Lemma 1. S is a completely continuous operator. If (x, µ) is a fixed point of S( · , · , 1), then

u(t) = µ+ Iαx(t) for t ∈ J

is a solution of the periodic problem (1), (2) and µ = u(0).

Lemma 2. Let the conditions

(H1) a(t) ≥ 0 for t ∈ J , a ̸= 0;

(H2) there exist positive constants c, k and l such that

f(t, x, y signx) signx > 0 for t ∈ J , |x| ≥ c, y ∈ [0,∞), (3)

|f(t, x, y)| ≤ k
(
|x|+ |y|

)
+ l for t ∈ J , x, y ∈ R,

hold. Then there exists a positive constant S such that the estimate

∥x∥ < S, |µ| < S

is fulfilled for all fixed points (x, µ) of the operator S( · , · , λ) with λ ∈ [0, 1].

Remark 1. Inequality (3) of (H2) can be written in the following equivalent form

f(t, x, y) > 0 for t ∈ J , x ≥ c, y ∈ [0,∞),

f(t, x, y) < 0 for t ∈ J , x ≤ −c, y ∈ (−∞, 0].

Theorem 1. Let (H1) and (H2) hold. Then the periodic problem (1), (2) has at least one solution.

Proof. Keeping in mind Lemma 1, we need to prove that there exists a fixed point of the operator
S( · , · , 1).

Let S > 0 be from Lemma 2 and let

Ω =
{
(x, µ) ∈ C(J)× R : ∥x∥ < S, |µ| < S

}
.

Then Lemma 2 guarantees that

S(x, µ, λ) ̸= (x, µ) for (x, µ) ∈ ∂Ω and λ ∈ [0, 1].



148 International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia

Since S(−x,−µ, 0) = −S(x, µ, 0) for (x, µ) ∈ C(J)×R, S( · , · , 0) is an odd operator. By Lemma 1,
the restriction of S to Ω × [0, 1] is a compact operator. Therefore, the Borsuk antipodal theorem
and the homotopy property give [4]

deg(I − S( · , · , 0),Ω, 0) ̸= 0,

deg
(
I − S( · , · , 0),Ω, 0

)
= deg

(
I − S( · , · , 1),Ω, 0

)
,

where “deg” stands for the Leray–Schauder degree and I is the identical operator on C(J) ×
R. Consequently, deg(I − S( · , · , 1),Ω, 0) ̸= 0, which implies the existence of a fixed point of
S( · , · , 1).

Example 1. Let φ,ψ, γ ∈ C(J) and φ(t) ≥ ε > 0, ψ ≥ 0 on J . Then the function f(t, x, y) =
φ(t)(x + sin y) + ψ(t)y + γ(t) satisfies condition (H2) for c = ∥γ∥/ε + 1, k = ∥φ∥ + ∥ψ∥ and
l = ∥φ∥ + ∥γ∥. If a ∈ C(J), a ≥ 0 on J and a ̸= 0, then Theorem 1 guarantees that the periodic
problem

u′ = a(t)cDαu+ φ(t)
(
u+ sin(cDβu)

)
+ ψ(t)cDβu+ γ(t),

u(0) = u(T )

}

has at least one solution.

If f(t, x, y) in (1) is independent of the variable y, that is, f(t, x, y) = f(t, x), then Theorem 1
gives the following result for the periodic problem

u′(t) = a(t)cDαu(t) + f(t, u(t)),

u(0) = u(T ).

}
(4)

Corollary 1. Let (H1) hold and let f ∈ C(J×R) and there exist positive constants c, k and l such
that

f(t, x) < 0 for (t, x) ∈ J × (−∞,−c], f(t, x) > 0 for (t, x) ∈ J × [c,∞),

|f(t, x)| ≤ k|x|+ l for (t, x) ∈ J × R.

Then the periodic problem (4) has at least one solution.

The following result gives the existence of a unique solution of problem (4).

Theorem 2. Let the conditions of Corollary 1 be satisfies. In addition, suppose that f(t, x) is
increasing in x for all t ∈ J and for any ℓ > 0 there exists Lℓ > 0 such that

|f(t, x)− f(t, y)| ≤ Lℓ|x− y| for t ∈ J , x, y ∈ [−ℓ, ℓ].

Then the periodic problem (4) has a unique solution.

Example 2. Let a, φ, γ ∈ C(J), a ≥ 0, φ(t) ≥ ε > 0 on J and a ̸= 0. Then the periodic problem

u′ = a(t)cDαu+ φ(t)u+ γ(t),

u(0) = u(T )

}

has a unique solution.
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The paper is devoted to the Cauchy problem for one equation of reaction-diffusion type –
for a neutral stochastic integro-differential equation in Hilbert space H = Lρ

2(Rd) (the space
with an inner product (f, g)Lρ

2(Rd) =
∫
Rd

f(x)g(x)ρ(x) dx and a corresponding norm ∥f∥Lρ
2(Rd) =√∫

Rd

∥f(x)∥2ρ(x) dx) of the form

d

(
u(t, x) +

∫
Rd

b(t, x, ξ)u(α(t)) dξ

)
=

=
(
∆xu(t, x) + f(t, u(α(t)), x)

)
dt+ σ

(
t, u(α(t)), x

)
dW (t, x), 0 < t ≤ T, x ∈ Rd,

u(t, x) = ϕ(t, x), −r ≤ t ≤ 0, x ∈ Rd, r > 0,

(1)

namely, to the investigation of existence and uniqueness of its solution. Here, d ∈ {1, 2, . . . } –

an arbitrary positive integer, T > 0 – a fixed real, ∆x =
d∑

j=1
∂2
xj
, d ∈ {1, 2, . . . }, – d-measurable

Laplacian, ∂2
xj

≡ ∂2

∂x2
j
, j ∈ {1, . . . , d}, W (t, x) – Lρ

2(Rd)-valued Wiener process, {f, σ} : [0, T ]× R×

Rd → R and b : [0, T ]×Rd ×Rd → Rd – some given functions, ϕ : [−r, 0]×Rd ×Ω → R – an initial
data and α : [0, T ] → [−r,∞) – a delay function to be specified later. It is known [5, p. 242–244]
that ∆x is an (infinitesimal) generator of an analytic (C0-)semigroup of operators {S(t), t ≥ 0}
that generates the solution u(t, x) = (S(t)g( · ))(x) =

∫
Rd

K (t, x−ξ)g( · ) dξ of a homogenous Cauchy

problem for a heat-equation

∂tu(t, x) = ∆xu(t, x), t > 0, x ∈ Rd,

u(0, x) = g(x), x ∈ Rd.
(2)

Throughout the paper we assume the following:

1) (Ω,F ,P) – a complete probability space, equipped with a normal filtration {Ft, t ≥ 0}
that generates Lρ

2(Rd)-valued nuclear Q-Wiener process W (t, x) =
∞∑
n=1

√
λn en(x)βn(t), where

{βn(t), n ∈ {1, 2, . . . }} – one-dimensional independent Brownian motions, λn > 0, n ∈
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{1, 2, . . . }, and
∞∑
n=1

λn < ∞, {en(x), n ∈ {1, 2, . . . }} – a complete orthonormal system in

Lρ
2(Rd) such that sup

n∈{1,2,... }
ess sup
x∈Rd

∥en(x)∥ ≤ 1;

2) α : [0, T ] → [−r,∞) – an increasing continuously differentiable function such that α(t∗) = 0,
0 < α′(t) ≤ 1 and 1

α′(t) ≤ c, c > 0;

3) {f, σ} : [0, T ] × R × Rd → R, b : [0, T ] × Rd × Rd → Rd – measurable in all their arguments
functions;

4) an initial data function ϕ : [−r, 0] × Rd × Ω → R is F0-measurable and such that
E sup

−r≤t≤0
∥ϕ(t)∥2

Lρ
2(Rd)

< ∞;

5) for ρ ∈ L1(Rd) there exists Cρ(T ) > 0 such that
∫
Rd

K (t, x−ξ)ρ(ξ) dξ ≤ Cρ(T )ρ(x), 0 ≤ t ≤ T ,

x ∈ Rd.

Our result-theorem is devoted to the existence and uniqueness for 0 ≤ t ≤ T of so-called mild
solution of (1), defined below, in the space B2,T,ρ. Here B2,T,ρ is the Banach space of all Lρ

2(Rd)-

valued Ft-measurable for almost all 0 ≤ t ≤ T stochastic random processes Φ: [0, T ]×Ω → Lρ
2(Rd)

that are continuous in t for almost all ω ∈ Ω, with the norm ∥Φ∥B2,T,ρ
=

√
E sup

0≤t≤T
∥Φ(t)∥2

Lρ
2(Rd)

.

Definition. A continuous stochastic random process u : [−r, T ] × Rd × Ω → R is called a mild
solution of (1) if it

1) is Ft-measurable for almost all −r ≤ t ≤ T ;

2) satisfies an integral equation of the form

u(t, x) =

∫
Rd

K (t, x− ξ)

(
ϕ(0) +

∫
Rd

b(0, ξ, ζ)ϕ(−r) dζ

)
dξ −

∫
Rd

b(t, x, ξ)u(α(t)) dξ−

−
t∫

0

(
∆x

∫
Rd

K (t− s, x− ξ)

(∫
Rd

b(s, ξ, ζ)u(α(s)) dζ

)
dξ

)
ds+

+

t∫
0

∫
Rd

K (t− s, x− ξ)f(s, u(α(s)), ξ) dξ ds+

+

t∫
0

∞∑
n=1

√
λn

(∫
Rd

K (t− s, x− ξ)σ(s, u(α(s)), ξ)en(ξ) dξ

)
dβn(s), (3)

0 ≤ t ≤ T, x ∈ Rd,

u(t, x) = ϕ(t, x), −r ≤ t ≤ 0, x ∈ Rd, r > 0; (4)

3) satisfies the condition E
T∫
0

∥u(t)∥2
Lρ
2(Rd)

dt < ∞.
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Theorem (existence and uniqueness of a mild solution in the space B2,T,ρ). Let there exist L ≥ 0
such that for {f, σ} the following conditions of linear-growth and Lipschitz by the second argument
are fulfilled:

f2(t, u, x) + σ2(t, u, x) ≤ L2(1 + u2),(
f(t, u, x)− f(t, v, x)

)2
+

(
σ(t, u, x)− σ(t, v, x)

)2 ≤ L2(u− v)2,

0 ≤ t ≤ T, {u, v} ⊂ R, x ∈ Rd,

the function b is such that sup
0≤t≤T

∥b(t,x, · )∥√
ρ( · )

∈ L2(Rd), 0 ≤ t ≤ T , x ∈ Rd, and

sup
0≤t≤T

∫
Rd

(∫
Rd

∥b(t, x, ξ)∥2

ρ(ξ)
dξ

)
ρ(x) dx < ∞,

and for ∂xb there exists a majorizing function φ : [0, T ] × Rd → [0,∞) such that ∥∂xb(t, x, ξ)∥ ≤
φ(t, ξ), 0 ≤ t ≤ T , {x, ξ} ⊂ Rd, with sup

0≤t≤T

φ(t, · )√
ρ( · )

∈ L2(Rd). Then the problem (1) has a unique for

0 ≤ t ≤ T mild solution u ∈ B2,T,ρ if

sup
0≤t≤T

∫
Rd

(∫
Rd

∥b(t, x, ξ)∥2

ρ(ξ)
dξ

)
ρ(x) dx <

1

4
.

Proof. The method of the proof is taken from [2], where authors have proved uniqueness of a
fixed point for a certain operator with the help of the classical theorem of Banach on a contractive
mapping. Our goal is to check execution of conditions of this theorem for the operator Ψ: B2,T,ρ →
B2,T,ρ, whose action is given by the rule(

Ψ(t)u( · )
)
(x) =

∫
Rd

K (t, x− ξ)

(
ϕ(0) +

∫
Rd

b(0, ξ, ζ)ϕ(−r) dζ

)
dξ −

∫
Rd

b(t, x, ξ)u(α(t)) dξ−

−
t∫

0

(
∆x

∫
Rd

K (t− s, x− ξ)

(∫
Rd

b(s, ξ, ζ)u(α(s)) dζ

)
dξ

)
ds+

+

t∫
0

∫
Rd

K (t− s, x− ξ)f(s, u(α(s)), ξ) dξ ds+

+

t∫
0

∞∑
n=1

√
λn

(∫
Rd

K (t− s, x− ξ)σ(s, u(α(s)), ξ)en(ξ) dξ

)
dβn(s) =

=

4∑
i=0

Ii(t)(x), 0 ≤ t ≤ T, x ∈ Rd.

Due to it, we need to prove that Ψ(u) ∈ B2,T,ρ for all u ∈ B2,T,ρ and to find out a condition of con-
traction. In order to prove the first item, we need to show that ∥Ij(s)∥2B2,t,ρ

= E sup
0≤s≤t

∥Ij(s)∥2Lρ
2(Rd)

,

j ∈ {0, . . . , 4}: indeed, a chain of computations, involving application of the inequality of Cauchy-
Schwartz and the theorem of Fubini, yields

∥I0(s)∥2B2,t,ρ
= E sup

0≤s≤t

∫
Rd

(∫
Rd

K (s, x− ξ)

(
ϕ(0, ξ) +

∫
Rd

b(0, ξ, ζ)ϕ(−r, ζ) dζ

)
dξ

)2

ρ(x) dx ≤



International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia 153

≤ 2E sup
0≤s≤t

∫
Rd

(∫
Rd

√
K (s, x− ξ)

√
K (s, x− ξ)ϕ(0, ξ) dξ

)2

ρ(x) dx+

+2E sup
0≤s≤t

∫
Rd

(∫
Rd

√
K (s, x− ξ)

√
K (s, x− ξ)

(∫
Rd

b(0, ξ, ζ)ϕ(−r, ζ) dζ

)
dξ

)2

ρ(x) dx ≤

≤ 2E sup
0≤s≤t

∫
Rd

(∫
Rd

K (s, x− ξ)ρ(ξ) dξ

)
ϕ2(0, x) dx+

+2E sup
0≤s≤t

∫
Rd

(∫
Rd

K (s, x− ξ)ρ(ξ) dξ

)(∫
Rd

∥b(0, x, ζ)∥∥ϕ(−r, ζ)∥ dζ
)2

dx ≤

≤ 2Cρ(T )E

∫
Rd

ϕ2(0, x)ρ(x) dx+ 2Cρ(T )E

∫
Rd

(∫
Rd

∥b(0, x, ζ)∥√
ρ(ζ)

∥ϕ(−r, ζ)∥
√

ρ(ζ) dζ

)2

ρ(x) dx ≤

≤ 2Cρ(T )E∥ϕ(0)∥2Lρ
2(Rd) + 2Cρ(T )

(∫
Rd

(∫
Rd

∥b(0, x, ζ)∥2

ρ(ζ)
dζ

)
ρ(x) dx

)
E∥ϕ(−r)∥2Lρ

2(Rd) < ∞, (5)

∥I1(s)∥2B2,t,ρ
= E sup

0≤s≤t

∫
Rd

(∫
Rd

b(s, x, ξ)u(α(s), ξ) dξ

)2

ρ(x) dx ≤

≤ E sup
0≤s≤t

∫
Rd

(∫
Rd

∥b(s, x, ξ)∥∥u(α(s), ξ)∥ dξ
)2

ρ(x) dx =

= E sup
0≤s≤t

∫
Rd

(∫
Rd

∥b(s, x, ξ)∥√
ρ(ξ)

∥u(α(s), ξ)∥
√

ρ(ξ) dξ

)2

ρ(x) dx ≤

≤
(

sup
0≤s≤t

∫
Rd

(∫
Rd

∥b(s, x, ξ)∥2

ρ(ξ)
dξ

)
ρ(x) dx

)
·E sup

0≤s≤t
∥u(α(s))∥2Lρ

2(Rd) =

=

(
sup
0≤s≤t

∫
Rd

(∫
Rd

∥b(s, x, ξ)∥2

ρ(ξ)
dξ

)
ρ(x) dx

)
×

×
(
E sup

0≤s≤t∗
∥u(α(s))∥2Lρ

2(Rd) +E sup
t∗≤s≤t

∥u(α(s))∥2Lρ
2(Rd)

)
≤

≤
(

sup
0≤s≤t

∫
Rd

(∫
Rd

∥b(s, x, ξ)∥2

ρ(ξ)
dξ

)
ρ(x) dx

)
×

×
(
E sup

−r≤s≤0
∥ϕ(s)∥2Lρ

2(Rd) +E sup
0≤s≤α(t)

∥u(s)∥2Lρ
2(Rd)

)
≤

≤
(

sup
0≤s≤t

∫
Rd

(∫
Rd

∥b(s, x, ξ)∥2

ρ(ξ)
dξ

)
ρ(x) dx

)
×

×
(
E sup

−r≤s≤0
∥ϕ(s)∥2Lρ

2(Rd) +E sup
0≤s≤t

∥u(s)∥2Lρ
2(Rd)

)
< ∞, (6)
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∥I2(s)∥2B2,t,ρ
=

= E sup
0≤s≤t

∫
Rd

( d∑
i=1

s∫
0

(
∂2
xi

∫
Rd

K (s− τ, x− ξ)

(∫
Rd

b(τ, ξ, ζ)u(α(τ), ζ) dζ

)
dξ

)
dτ

)2
ρ(x) dx ≤

≤ d

∫
Rd

d∑
i=1

E sup
0≤s≤t

( s∫
0

(
∂2
xi

∫
Rd

K (s− τ, x− ξ)

(∫
Rd

b(τ, ξ, ζ)u(α(τ), ζ) dζ

)
dξ

)
dτ

)2

ρ(x) dx =

= d

∫
Rd

d∑
i=1

E sup
0≤s≤t

( s∫
0

((∫
Rd

b(τ, x, ζ)u(α(τ), ζ) dζ

) ∫
∂B

∂xiK (s− τ, x− ξ) cos(υ, ξi) dSξ+

+

(∫
Rd

b(τ, x, ζ)u(α(τ), ζ) dζ

)∫
B

∂2
xi

K (s− τ, x− ξ) dξ+

+

∫
Rd

∂2
xi

K (s− τ, x− ξ)

(∫
Rd

(
b(τ, ξ, ζ)− b(τ, x, ζ)

)
u(α(τ), ζ) dζ

)
dξ

)
dτ

)2

ρ(x) dx =

= d

∫
Rd

d∑
i=1

E sup
0≤s≤t

( s∫
0

∫
Rd

∂2
xi

K (s−τ, x−ξ)

(∫
Rd

(
b(τ, ξ, ζ)−b(τ, x, ζ)

)
u(α(τ), ζ) dζ

)
dξ dτ

)2

ρ(x) dx ≤

≤ d

∫
Rd

d∑
i=1

E sup
0≤s≤t

( s∫
0

∫
Rd

C

(s− τ)µ∥x− ξ∥d+2−2µ
×

×
(
sup
y∈Rd

∫
Rd

∣∣∂yb(τ, y, ζ)∥x− ξ∥u(α(τ), ζ)
∣∣ dζ) dξ dτ

)2

ρ(x) dx ≤

≤ d

∫
Rd

d∑
i=1

E sup
0≤s≤t

(∫
Rd

C

∥x− ξ∥d+1−2µ
×

×
( s∫

0

∫
Rd

φ(τ,ζ)√
ρ(ζ)

∥u(α(τ), ζ)∥
√

ρ(ζ) dζ

(s− τ)
µ
2

1

(s− τ)
µ
2

dτ

)
dξ

)2

ρ(x) dx ≤

≤ d

∫
Rd

d∑
i=1

(∫
Rd

dξ

∥x− ξ∥d+1−2µ

)2(
sup
0≤s≤t

s∫
0

dτ

(s− τ)µ

)
×

×
(
E sup

0≤s≤t

s∫
0

1

(s− τ)µ

(∫
Rd

φ2(τ, ζ)

ρ(ζ)
dζ

)
∥u(α(τ))∥2Lρ

2(Rd) dτ

)
ρ(x) dx ≤

≤ d

∫
Rd

d∑
i=1

(∫
Rd

dξ

∥x− ξ∥d+1−2µ

)2(
sup
0≤s≤t

s∫
0

dτ

(s− τ)µ

)2

×

×
(
E sup

0≤τ≤s
∥u(α(τ))∥2Lρ

2(Rd)

)(
sup

0≤τ≤s

∫
Rd

φ2(τ, ζ)

ρ(ζ)
dζ

)
ρ(x) dx ≤

≤ d2C2

(∫
Rd

dξ

∥x− ξ∥d+1−2µ

)2 t2−2µ

(1− µ)2

(∫
Rd

ρ(x) dx

)(
sup

0≤τ≤t

∫
Rd

φ2(τ, ζ)

ρ(ζ)
dζ

)
×
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×
(
E sup

−r≤τ≤0
∥ϕ(τ)∥2Lρ

2(Rd) +E sup
0≤τ≤t

∥u(τ)∥2Lρ
2(Rd)

)
< ∞,

1

2
< µ < 1, C > 0, (7)

∥I3(s)∥2B2,t,ρ
= E sup

0≤s≤t

∫
Rd

( s∫
0

∫
Rd

K (s− τ, x− ξ)f(τ, u(α(τ), ξ), ξ) dξ dτ

)2

ρ(x) dx ≤

≤ tE sup
0≤s≤t

∫
Rd

( s∫
0

(∫
Rd

√
K (s−τ, x−ξ)

√
K (s−τ, x−ξ) f

(
τ, u(α(τ), ξ), ξ

)
dξ

)2

dτ

)
ρ(x) dx ≤

≤ tE sup
0≤s≤t

s∫
0

∫
Rd

(∫
Rd

K (s− τ, x− ξ)ρ(ξ) dξ

)
f2

(
τ, u(α(τ), x), x

)
dx dτ ≤

≤ Cρ(T )tE

t∫
0

∫
Rd

f2
(
τ, u(α(τ), x), x

)
ρ(x) dx dτ ≤

≤ L2Cρ(T )t

(
t

∫
Rd

ρ(x) dx+E

t∫
0

∥u(α(τ))∥2Lρ
2(Rd) dτ

)
=

= L2Cρ(T )t

(
t

∫
Rd

ρ(x) dx+E

t∗∫
0

∥∥u(α(τ))∥∥2
Lρ
2(Rd)

1

α′(τ)
α′(τ) dτ+

+E

t∫
t∗

∥∥u(α(τ))∥∥2
Lρ
2(Rd)

1

α′(τ)
α′(τ) dτ

)
≤

≤ L2Cρ(T )t

(
t

∫
Rd

ρ(x) dx+ cE

0∫
−r

∥ϕ(τ)∥2Lρ
2(Rd) dτ + cE

α(t)∫
0

∥u(τ)∥2Lρ
2(Rd) dτ

)
≤

≤ L2Cρ(T )t
2

(∫
Rd

ρ(x) dx+ cE sup
−r≤τ≤0

∥ϕ(τ)∥2Lρ
2(Rd) + cE sup

0≤τ≤t
∥u(τ)∥2Lρ

2(Rd)

)
< ∞, (8)

∥I4(s)∥2B2,t,ρ
=

=

∫
Rd

E sup
0≤s≤t

( s∫
0

∞∑
n=1

√
λn

(∫
Rd

K (s− τ, x− ξ)σ(τ, u(α(τ), ξ), ξ)en(ξ) dξ

)
dβn(τ)

)2

ρ(x) dx ≤

≤ 4

∞∑
n=1

λn×

×E

t∫
0

(∫
Rd

(∫
Rd

√
K (s− τ, x− ξ)

√
K (s− τ, x− ξ)σ(τ, u(α(τ), ξ), ξ)en(ξ) dξ

)2

ρ(x) dx

)
dτ ≤

≤ 4
∞∑
n=1

λnE

t∫
0

(∫
Rd

(∫
Rd

K (s− τ, x− ξ)ρ(ξ) dξ

)
σ2(τ, u(α(τ), x), x)e2n(x) dx

)
dτ ≤

≤ 4Cρ(T )
∞∑
n=1

λn ·E
t∫

0

(∫
Rd

σ2(τ, u(α(τ), x), x)e2n(x)ρ(x) dx

)
dτ ≤
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≤ 4L2Cρ(T )

( ∞∑
n=1

λn

)
t

(∫
Rd

ρ(x) dx+ cE sup
−r≤τ≤0

∥ϕ(τ)∥2Lρ
2(Rd) + cE sup

0≤τ≤t
∥u(τ)∥2Lρ

2(Rd)

)
< ∞. (9)

Thus estimates (5)–(9) imply that for u ∈ B2,T,ρ, ∥Ψ(u)∥2B2,T,ρ
≤ 5

4∑
i=0

∥Ii(t)∥2B2,T,ρ
< ∞, – that is

Ψ is well defined. The second step is to prove that the operator under consideration has a unique
fixed point. Indeed, taking into account estimates (6)–(9), for any {u, v} ⊂ B2,t,ρ we conclude

∥Ψ(u)−Ψ(v)∥2B2,t,ρ
=

∥∥∥ 4∑
i=1

Ii(s)(u)−
4∑

i=1

Ii(s)(v)
∥∥∥2
B2,t,ρ

=

=
∥∥∥ 4∑

i=1

(
Ii(s)(u)− Ii(s)(v)

)∥∥∥2
B2,t,ρ

≤ 4

4∑
i=1

∥∥Ii(s)(u)− Ii(s)(v)
∥∥2
B2,t,ρ

≤

≤ 4

(
sup
0≤s≤t

∫
Rd

(∫
Rd

∥b(s, x, ξ)∥2

ρ(ξ)
dξ

)
ρ(x) dx+

+ d2C2

(∫
Rd

dξ

∥x− ξ∥d+1−2µ

)2 t2−2µ

(1− µ)2

(∫
Rd

ρ(x) dx

)(
sup

0≤τ≤t

∫
Rd

φ2(τ, ζ)

ρ(ζ)
dζ

)
+

+ L2Cρ(T )ct
2 + 4L2Cρ(T )

( ∞∑
n=1

λn

)
ct

)
∥u− v∥2B2,t,ρ

= γ(t)∥u− v∥2B2,t,ρ
.

Because of the assumption of the theorem, the first term of γ is less than one. Therefore, by
choosing small 0 ≤ t1 ≤ T , we conclude that 0 ≤ γ(t1) ≤ 1. It means that Ψ, defined in the Banach
space B2,t1,ρ, is contractive, and therefore, by the theorem of Banach on a contractive mapping,
has a unique fixed point – the solution u ∈ B2,t1,ρ of the equation Ψ(u) = u that can be obviously
presented in the form (3) and satisfies (4), that is a mild solution in B2,t1,ρ of (1) on the interval
[0, t1]. This procedure can be repeated finitely many steps on other sufficiently small intervals
[t1, t2], [t2, t3], . . . , [tn−2, tn−1], [tn−1, T ] – components of the entire interval [0, T ] – and, as a result,
we get the solution as a union of the solutions on these intervals.
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Let Rn be the n-dimensional vector space; suppose that O ⊂ Rn and U ⊂ Rr are open sets. Let
0 < τ1 < τ2 and a < t01 < t02 < t1 < b be given numbers with t02 + τ2 < t1; let the n-dimensional
function f(t, x, y, u) be continuous on I × O2 × U and continuously differentiable with respect to
(x, y, u), where I = [a, b]. Furthermore, Φ is the set of continuous initial functions φ : I1 → O,
where I1 = [τ̂ , b], τ̂ = a− τ2 and Ω is the set of measurable control functions u : I → U with clu(I)
is compact set and clu(I) ⊂ U .

To each initial data µ = (t0, τ, x0, φ(t), u(t)) ∈ Λ = (t01, t02) × (τ1, τ2) × O × Φ × Ω we assign
the delay functional differential equation

ẋ(t) = f
(
t, x(t), x(t− τ), u(t)

)
(1)

with the discontinuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0), x(t0) = x0. (2)

Definition 1. Let µ = (t0, τ, x0, φ(t), u(t)) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ [τ̂ , t1] is called
a solution of equation (1) with the initial condition (2) or a solution corresponding to µ and defined
on the interval [τ̂ , t1] if it satisfies condition (2) and is absolutely continuous on the interval [t0, t1]
and satisfies equation (1) almost everywhere on [t0, t1].

Let µ0 = (t00, τ0, x00, φ0(t), u0(t)) ∈ Λ be a fixed initial data. Introduce the following notations:
δµ = (δt0, δτ, δx0, δφ(t), δu(t)) ∈ Λ − µ0 = {δµ = µ − µ0 : µ ∈ Λ}, δµ is called variation of the
initial data µ0 and Λ− µ0 is called the set of variations. Next,

∥δµ∥ = |δt0|+ |δτ |+ |δx0|+ ∥δφ∥+ ∥δu∥,

where
∥δφ∥ = sup

{
|δφ(t)| : t ∈ I1

}
, ∥δu∥ = sup

{
|δu(t)| : t ∈ I

}
.

Let the solution x(t;µ0) is defined on [τ̂ , t1]. Then there exists number ε1 > 0 such that for any
δµ ∈ Λε1 = {δµ ∈ Λ − µ0 : ∥δµ∥ ≤ ε1} there exists solution x(t;µ0 + δµ) defined on the interval
[τ̂ , t1], [1].

Theorem 1. Let the solution x(t;µ0) be defined on [τ̂ , t1] and let the function φ0(t) be absolutely
continuous. Moreover, let there exist the finite limits

lim
w→w0

f(w, u0(t)) = f−
0 , w = (t, x, y) ∈ (t01, t00]×O2
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and
lim

(w1,w2)→(w11,w12)

[
f(w1, u0(t))− f(w2, u0(t))

]
= f−

1 , w1, w2 ∈ (t00, t00 + τ0]×O2,

where

w0 =
(
t00, φ0(t00), φ0(t00 − τ0)

)
,

w11 =
(
t00 + τ0, x0(t00 + τ0), x00

)
, w12 =

(
t00 + τ0, x0(t00 + τ0), φ0(t00)

)
.

Then there exist numbers ε2 ∈ (0, ε1) and δ > 0 such that on the interval [t1 − δ, t1] ⊂ (t00 + τ0, t1]
for arbitrary δµ ∈ Λ−

ε2 = {δµ ∈ Λε2 : δt0 ≤ 0, δτ ≤ 0} we have

x(t;µ0 + δµ) = x(t;µ0) + δx−(t; δµ) + o(t; δµ),

where

δx−(t; δµ) = Y (t00; t)δx0 −
[
Y (t00; t)f

−
0 + Y (t00 + τ0; t)f

−
1

]
δt0 − Y (t00 + τ0; t)f

−
1 δτ + γ(t; δµ)

and

γ(t; δµ) = Y (t00; t)δx0 −
[ t∫
t00

Y (s; t)f0y[s]ẋ0(s− τ0) ds

]
δτ+

+

t00∫
t00−τ0

Y (s+ τ0; t)f0y[s+ τ0]δφ(s) ds+

t∫
t00

Y (s; t)f0u[s]δu(s) ds. (3)

Here
ẋ0(t) = φ̇0(t), t ∈ (t00 − τ0, t00), f0y[s] = fy

(
s, x0(s), x0(s− τ0), u0(s)

)
;

Y (ξ; t) is the n × n-matrix function satisfying the linear functional differential equation with ad-
vanced argument

Ys(s; t) = −Y (s; t)f0x[s]− Y (s+ τ0; t)f0y[s+ τ0], s ∈ [t00, t]

and the condition

Y (s; t) =

{
E for s = t,

Θ for s > t,

E is the identity matrix and Θ is the zero matrix.

Theorem 2. Let the solution x(t;µ0) be defined on [τ̂ , t1] and let the function φ0(t) be absolutely
continuous. Moreover, let there exist the finite limits

lim
w→w0

f(w, u0(t)) = f+
0 , w ∈ [t00, t00 + τ0)×O2

and
lim

(w1,w2)→(w11,w12)

[
f(w1, u0(t))− f(w2, u0(t))

]
= f+

1 , w1, w2 ∈ [t00 + τ0, t1)×O2.

Then there exist numbers ε2 ∈ (0, ε1) and δ > 0 such that on the interval [t1 − δ, t1] for arbitrary
δµ ∈ Λ+

ε2 = {δµ ∈ Λε2 : δt0 ≥ 0, δτ ≥ 0} we have

x(t;µ0 + δµ) = x(t;µ0) + δx+(t; δµ) + o(t; δµ),

where

δx+(t; δµ) = −
[
Y (t00; t)f

+
0 + Y (t00 + τ0; t)f

+
1

]
δt0 − Y (t00 + τ0; t)f

+
1 δτ + γ(t; δµ).



International Workshop QUALITDE – 2015, December 27 – 29, 2015, Tbilisi, Georgia 159

Theorem 3. Let the assumptions of Theorems 1 and 2 be fulfilled. Moreover, let

f−
0 = f+

0 := f0, f−
1 = f+

1 := f1.

Then there exist numbers ε2 ∈ (0, ε1) and δ > 0 such that on the interval [t1 − δ, t1] for arbitrary
δµ ∈ Λε2 we have

x(t;µ0 + δµ) = x(t;µ0) + δx(t; δµ) + o(t; δµ), (4)

where
δx(t; δµ) = −

[
Y (t00; t)f0 + Y (t00 + τ0; t)f1

]
δt0 − Y (t00 + τ0; t)f1δτ + γ(t; δµ). (5)

Some Comments

Theorems 1 and 2 correspond to cases when the variations at the point t00 are performed on the
left and on the right, respectively. Theorem 3 corresponds to the case when at the point t00 two-
sided variation is performed. The function δx(t; δµ) in the formula (4) is called the coefficient of
sensitivity. The expression (5) is called representation of the sensitivity coefficient. The summand

−
[
Y (t00 + τ0; t)f1 +

t∫
t00

Y (s : t)f0y[s]ẋ0(s− τ0) ds

]
δτ

in formula (5) (see (3)) is the effect of perturbation of the delay τ0.The expression

−
[
Y (t00; t)f0 + Y (t00 + τ0; t)f1

]
δt0

in formula (5) (see again (3)) is the effect of the discontinuous initial condition (2) and perturbation
of the initial moment t00. The expression

Y (t00; t)δx0 +

t00∫
t00−τ0

Y (s+ τ0; t)f0y[s+ τ0]δφ(s) ds+

t∫
t00

Y (s; t)f0u[s]δu(s) ds

in formula (5) (see (3)) is the effect of perturbations of initial vector x00, initial function φ0(t) and
control function u0(t). It is clear that (5) can be rewrite in the form

δx(t; δµ) = δx1(t; δµ) + δx2(t; δµ),

where

δx1(t; δµ) = Y (t00; t)[δx0 − f0δt0]+

+

t00∫
t00−τ0

Y (s+ τ0; t)f0y[s+ τ0]δφ(s) ds+

t∫
t00

Y (s; t)
[
f0u[s]δu(s)− f0y[s]ẋ0(s− τ0)δτ

]
ds

and
δx2(t; δµ) = −Y (t00 + τ0; t)f1[δτ + δt0].

On the basis of the Cauchy formula on representation of solutions of the linear delay functional
differential equation we get that the function δx1(t; δµ) on the interval [t00, t1] satisfies the equation

δ̇x(t) = f0x[t]δx(t) + f0y[t]δx(t− τ0)− f0y[t]ẋ0(t− τ0)δτ + f0u[t]δu(t)

with the initial condition

δx(t) = δφ(t), t ∈ [τ̂ , t00), δx(t00) = δx0 − f0δt0,
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and δx2(t; δµ) on the interval [t00 + τ0, t1] satisfies the equation

δ̇x(t) = f0x[t]δx(t) + f0y[t]δx(t− τ0)

with the initial condition

δx(t) = 0, t ∈ [t00, t00 + τ0), δx(t00 + τ0) = −f1(δτ + δt0).

Thus, if δx1(t; δµ) and δx2(t; δµ) are solutions of the above considered linear differential equations
with the corresponding initial conditions, then their sum will the coefficient of sensitivity on the
interval [t1 − δ, t1]. Sensitivity analysis for various classes of functional differential equations are
considered in [2–4].
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We consider the second order half-linear differential equations

(
p(t)φ(x′(t))

)′ ± m∑
i=1

qi(t)φ(x(gi(t)))±
n∑

j=1

rj(t)φ(x(hj(t))) = 0, t = a, (A±)

(φ(ξ) = |ξ|α−1ξ = |ξ|α sgn ξ, α > 0, ξ ∈ R, Doubles sign correspondence)

for which the following conditions are always assumed to hold:

(a) p, qi, rj : [a,∞) → (0,∞), a = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n are continuous functions;

(b) p(t) satisfies
∞∫
a

dt

p(t)
1
α

< ∞,

and π(t) is defined by

π(t) =

∞∫
t

ds

p(s)
1
α

. (1)

By a positive solution on an interval J of the differential equation (A±) we mean a function
x : J → (0,∞) which is continuously differentiable on J together with p(t)φ(x′(t)) and satisfies
(A±) there.

Since the publication of the book ( [8]) of Marić in the year 2000, the class of regularly varying
functions in the sense of Karamata ( [4]) is a well-suited framework for the asymptotic analysis of
nonoscillatory solutions of second order linear differential equation of the form

x′′(t) = q(t)x(t), q(t) > 0.

The study of asymptotic analysis of nonoscillatory solutions of functional differential equation
with deviating arguments in the framework of regularly varying functions was first attempted by
Kusano and Marić ( [5,6]). They established a sharp condition for the existence of a slowly varying
solution of the second order functional differential equation with retarded argument of the form

x′′(t) = q(t)x(g(t))

and the following functional differential equation with both retarded and advanced arguments of
the form

x′′(t)± q(t)x(g(t))± r(t)x(h(t)) = 0,

where q, r : [a,∞) → (0,∞) are continuous functions, g, h are continuous and increasing with
g(t) < t, h(t) > t for t = a and lim

t→∞
g(t) = ∞.
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The Definitions and Properties of Regularly Varying Functions

Definition 1. A measurable function f : [a,∞) → (0,∞) is said to be a regularly varying of index
ρ if it satisfies

lim
t→∞

f(λt)

f(t)
= λρ for any λ > 0, ρ ∈ R.

Proposition 1 (Representation Theorem). A measurable function f : [a,∞) → (0,∞) is regularly
varying of index ρ if and only if it can be written in the form

f(t) = c(t) exp

{ t∫
t0

δ(s)

s
ds

}
, t = t0,

for some t0 > a, where c(t) and δ(t) are measurable functions such that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

The totality of regularly varying functions of index ρ is denoted by RV(ρ). The symbol SV is
used to denote RV(0) and a member of SV=RV(0) is referred to as a slowly varying function. If
f ∈ RV(ρ), then f(t) = tρL(t) for some L ∈SV. Therefore, the class of slowly varying functions is
of fundamental importance in the theory of regular variation. In addition to the functions tending
to positive constants as t → ∞, the following functions

N∏
i=1

(logi t)
mi (mi ∈ R), exp

{ N∏
i=1

(logi t)
ni

}
(0 < ni < 1), exp

{ log t

log2 t

}
,

where log1 t = log t and logk t = log logk−1 t for k = 2, 3, . . . , N , also belong to the set of slowly
varying functions.

Proposition 2. Let L(t) be any slowly varying function. Then, for any γ > 0,

lim
t→∞

tγL(t) = ∞ and lim
t→∞

t−γL(t) = 0.

For the most complete exposition of the theory of regular variation and its applications the
reader is referred to the book of Bingham, Goldie and Teugels ( [1]).

The Definitions and Properties of Generalized Regularly Varying
Functions

Definition 2. A measurable function f : [a,∞) → (0,∞) is said to be slowly varying with respect
to 1/π(t) if the function f ◦ (1/π(t))−1 is slowly varying in the sense of Karamata, where the
function π(t) is defined by (1) and (1/π(t))−1 denotes the inverse function of 1/π(t). The totality
of slowly varying functions with respect to 1/π(t) is denoted by SV 1

π
.

Definition 3. A measurable function g : [a,∞) → (0,∞) is said to be regularly varying function
of index ρ with respect to 1/π(t) if the function g ◦ (1/π(t))−1 is regularly varying of index ρ in the
sense of Karamata. The set of all regularly varying functions of index ρ with respect to 1/π(t) is
denoted by RV 1

π
(ρ).

Of fundamental importance is the following representation theorem for the generalized slowly
and regularly varying functions, which is an immediate consequence of Proposition 1.
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Proposition 3.

(i) A function f(t) is slowly varying with respect to 1/π(t) if and only if it can be expressed in
the form

f(t) = c(t) exp

{ t∫
t0

δ(s)

p(s)
1
απ(s)

ds

}
, t = t0 (2)

for some t0 > a, where c(t) and δ(t) are measurable functions such that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ(t) = 0.

(ii) A function g(t) is regularly varying of index ρ with respect to 1/π(t) if and only if it has the
representation

g(t) = c(t) exp

{ t∫
t0

δ(s)

p(s)
1
απ(s)

ds

}
, t = t0 (3)

for some t0 > a, where c(t) and δ(t) are measurable functions such that

lim
t→∞

c(t) = c ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If the function c(t) in (2) (or (3)) is identically a constant on [t0,∞), then the function f(t) (or
g(t)) is called normalized slowly varying (or normalized regularly varying of index ρ) with respect
to 1/π(t). The totality of such functions is denoted by n-SV 1

π
(or n-RV 1

π
(ρ)).

It is easy to see that if g ∈RV 1
π
(ρ) (or n-RV 1

π
(ρ)), then g(t) = (1/π(t))ρL(t) for some L ∈SV 1

π

(or n-SV 1
π
).

Proposition 4. Let L ∈SV 1
π
. Then, for any γ > 0,

lim
t→∞

( 1

π(t)

)γ
L(t) = ∞ and lim

t→∞

( 1

π(t)

)−γ
L(t) = 0.

Main Result

In our previous paper ( [3,7]) we have studied the problem of nonoscillation and asymptotic analysis
of the half-linear differential equation involving nonlinear Sturm–Liouville type differential operator
of the type

(p(t)φ(x′(t)))′ ± q(t)φ(x(t)) = 0 (B±)

and the half-linear functional differential equation with deviating arguments of the mixed type

(φ(x′(t)))′ ± q(t)φ(x(g(t)))± r(t)φ(x(h(t))) = 0, (C±)

where the functions p(t), q(t), r(t), g(t) and h(t) are just as in the above equations.

Theorem A (J. Jaroš, T. Kusano and T. Tanigawa, [3]). Suppose that (1) holds. The equation
(B±) have a normalized slowly varying solution with respect to 1/π(t) and a normalized regularly
varying solution of index −1 with respect to 1/π(t) if and only if

lim
t→∞

1

π(t)

∞∫
t

π(s)α+1q(s) ds = 0.
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Theorem B (J. Manojlović and T. Tanigawa, [7]). Suppose that

lim
t→∞

g(t)

t
= 1 and lim

t→∞

h(t)

t
= 1

hold. Then, the equation (C±) have a slowly varying solution and a regularly varying solution of
index 1 if and only if

lim
t→∞

tα
∞∫
t

q(s) ds = lim
t→∞

tα
∞∫
t

r(s) ds = 0.

Aim of this talk is to establish a sharp condition of the existence of a normalized slowly varying
solution with respect to 1/π(t) and a normalized regularly varying solution of index −1 with respect
to 1/π(t) of the equation (A±). Our main result is the following

Theorem. Suppose that

lim
t→∞

π(gi(t))

π(t)
= 1 for i = 1, 2, . . . ,m

and

lim
t→∞

π(hj(t))

π(t)
= 1 for j = 1, 2, . . . , n

hold. The equation (A±) possesses a normalized slowly varying solution with respect to 1/π(t) and
a normalized regularly varying solution of index −1 with respect to 1/π(t) if and only if

lim
t→∞

1

π(t)

∞∫
t

π(s)α+1qi(s) ds = 0 for i = 1, 2, . . . ,m

and

lim
t→∞

1

π(t)

∞∫
t

π(s)α+1rj(s) ds = 0 for j = 1, 2, . . . , n.
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On Asymptotics of Solutions for

Sufficiently Non-Linear Differential Equations of the Second Order
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E-mail: lena@gavrilovka.com.ua

We consider the differential equation

y′′ = α0p(t)φ1(y)φ2(y
′), (1)

where α0 ∈ {−1, 1}, p : [a, ω[→ ]0,+∞[ is a continuous function, φi : ∆(Y 0
i ) → ]0,+∞[ (i = 1, 2)

are twice continuously differentiable functions, where ∆(Y 0
i ) is some one-sided neighborhood of the

point Y 0
i , Y

0
i equals either zero or ±∞. For these functions the following conditions are satisfied:

lim
z→Y 0

1
z∈∆(Y 0

1 )

zφ′
1(z)

φ1(z)
= λ (λ ∈ R), (2)

φ′
2(z) ̸= 0 for z ∈ ∆(Y 0

2 ), lim
z→Y 0

2
z∈∆(Y 0

2 )

φ2(z) = Φ0
2, Φ0

2 ∈ {0,+∞}, lim
z→Y 0

2
z∈∆(Y 0

2 )

φ′′
2(z)φ2(z)

[φ′
2(z)]

2
= 1. (3)

Conditions (2), (3) define that the function φ1(z) is regularly or slowly varying as z → Y 0
1 , and

φ2(z) is rapidly varying as z → Y 0
2 (see, E. Seneta [1]).

For power-functions and regularly varying nonlinearities φi (i = 1, 2), the asymptotics of solu-
tions for (1) are investigated in [2–10].

For equations of the type (1), in [11] the following class of monotonous solutions was introduced.
A solution y of the equation (1) is called Pω(Λ0)-solution, where −∞ ≤ Λ0 ≤ +∞, if it is

defined on some interval [t0, ω[⊂ [a, ω[ and satisfies the conditions

lim
t↑ω

y(t) = Y 0
1 , lim

t↑ω
φ2(y

′(t)) = Φ0
2, lim

t↑ω

φ′
2(y

′(t))

φ2(y′(t))

y′′(t)y(t)

y′(t)
= Λ0.

Earlier, in case Λ0 ∈ R \ {0}, the asymptotics of Pω(Λ0)-solutions of (1) were established in [11].
Present work is devoted to the establishment of asymptotics, as well as sufficient and necessary

conditions for the existence of Pω(Λ0)-solutions of (1), when Λ0 = 0. In order to formulate the
main result, we introduce auxiliary definitions and notations.

We determine that slowly varying function θ : ∆(U0) → ]0,+∞[ , U0 ∈ {0,±∞} satisfies the
condition S if for any continuously differentialble function l : ∆(U0) → ]0,+∞[ such that

lim
z→U0

z∈∆(U0)

z l′(z)

l(z)
= 0,

the following asymptotic representation is valid

θ(zl(z)) = θ(z)[1 + o(1)] when z → U0 (z ∈ ∆(U0)).

We introduce numbers

µ0i =

{
1, if Y 0

i = +∞, or Y 0
i = 0 and ∆(Y 0

i ) is right neighborhood of 0,

−1, if Y 0
i = −∞, or Y 0

i = 0 and ∆(Y 0
i ) is left neighborhood of 0

(i = 1, 2).
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These numbers define the signs of Pω(0)-solutions of (1) and their derivatives in some left
neighborhood of ω.

We also define the functions

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
J(t) =

t∫
A

p(τ)φ1

(
µ01|πω(τ)|

)
dτ,

where A ∈ {ω, a} and it is chosen so that the integral J tends either to zero or to ∞ as t ↑ ω.
In addition, we introduce the numbers

A∗
1 =

{
1, if ω = ∞,

−1, if ω <∞,
A∗

2 =

{
1, if A = a,

−1, if A = ω.

Since the function φ1(z) is regularly varying of the λ-order as z → Y 0
1 , the following represen-

tation is valid:
φ1(z) = |z|λθ1(z),

where the function θ1(z) is slowly varying as z → Y 0
1 .

Theorem 1. Let the function θ1(z) satisfy the condition S. Then for the existence of Pω(0)-
solutions of (1) it is necessary and sufficient that

lim
t↑ω

πω(t)J
′(t)

J(t)
= 0 (4)

and the following conditions to be satisfied

A∗
1 > 0 when Y 0

1 = ±∞, A∗
1 < 0 when Y 0

1 = 0,

A∗
2 > 0 when Φ0

2 = 0, A∗
2 < 0 when Φ0

2 = ±∞,
(5)

µ01µ
0
2A

∗
1 > 0 and α0µ

0
2A

∗
2 > 0. (6)

Moreover, each solution of that kind admits the following asymptotic representation as t ↑ ω:

y(t)

y′(t)
= πω(t)[1 + o(1)],

1

|y′|λφ′
2(y

′(t))
= −α0J(t)[1 + o(1)],

and there exists a one-parametric family of these solutions if there is only one positive number
among A∗

1, A
∗
2, and a two-parametric family of these solutions if both numbers A∗

1, A
∗
2 are positive.

Theorem 2. Let the functions θ1(z), |ψ−1(z)| satisfy the condition S. Then each Pω(0)-solution of
the differential equation (1) (in case of its existence) admits the following asymptotic representations
as t ↑ ω:

y(t) = µ01
∣∣πω(t)ψ−1

(
µ02|J(t)|

)∣∣ [1 + o(1)],

1

φ′
2(y

′(t))
= −µ02|J(t)|

∣∣ψ−1
(
µ02|J(t)|

)∣∣λ[1 + o(1)].

These results could be illustrated for the equation

y′′ = α0p(t)|y|λ| ln |y||γe−σ|y′|δ |y′|1−δ, (7)

where α0 ∈ {1,−1}, δ, σ ∈ R \ {0}, λ, γ ∈ R, p : [a, ω[→ ]0,+∞[ is a continuous function.
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For this equation φ1(z) = |z|λ lnγ |z|, φ2(z) = e−σ|z|δ |z|1−δ. The function φ1(z) is regularly
varying of the λ-order as z → Y 0

2 . For δ > 0, the function φ2(z) is rapidly varying as z → ±∞,
and for δ < 0, the function φ2(z) is rapidly varying as z → 0.

For (7), the Pω(0)-solution is

lim
t↑ω

yy′′(t)

|y′(t)|2−δ
= 0.

For the existence of Pω(0)-solution for the equation (7), it is necessary and sufficient the condi-
tions (4)–(6) to be satisfied. Moreover, each solution of that kind admits the following asymptotic
representation as t ↑ ω

y(t) = µ01|πω(t)|
∣∣∣ 1
σ

ln |σδJ(t)|
∣∣∣ 1δ [1 + o(1)],

y′(t) = µ02

∣∣∣∣ 1σ ln |σδJ(t)|+ λ

σδ
ln

∣∣∣ 1
σ

ln |σδJ(t)|
∣∣∣+ o(1)

∣∣∣∣ 1δ ,
and there exists a one-parametric family of such solutions if there is only one positive number
among A∗

1, A
∗
2, and there exists a two-parametric family of such solutions if both numbers A∗

1, A
∗
2

are positive.
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