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Abstract

Estimates of climate change impacts on global food production are generally based on sta-
tistical or process-based models. Process-based models can provide robust predictions of
agricultural yield responses to changing climate and management. However, applications
of these models often suffer from bias due to the common practice of re-initializing soil con-
ditions to the same state for each year of the forecast period. If simulations neglect to in-
clude year-to-year changes in initial soil conditions and water content related to agronomic
management, adaptation and mitigation strategies designed to maintain stable yields under
climate change cannot be properly evaluated. We apply a process-based crop system
model that avoids re-initialization bias to demonstrate the importance of simulating both
year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water avail-
ability. Results are contrasted with simulations using annual re-initialization, and differences
are striking. We then demonstrate the potential for the most likely adaptation strategy to off-
set climate change impacts on yields using continuous simulations through the end of the
21% century. Simulations that annually re-initialize pre-season soil carbon and water con-
tents introduce an inappropriate yield bias that obscures the potential for agricultural man-
agement to ameliorate the deleterious effects of rising temperatures and greater

rainfall variability.

Introduction

Sustainable food production under a changing climate is among the most important interna-
tional research priorities [1,2]. There is a global consensus among climate and agricultural
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scientists about the need to quantify the likely impacts of climate change on crop yields due to
their significant consequences on both food prices and the global economy [3-5].

Estimates of climate change impacts on global food production are usually based on statisti-
cal and process-based simulation models [1,6-8]. Statistical models have been useful to assess
the impacts of historic trends on yields [9]. However, they are not well suited to estimate cli-
mate change impacts on future yields because they cannot capture: 1) changes in soil carbon
and biophysical properties due to management practices (e.g., effects of long-term no tillage
practices and retention of crop residues on the soil surface), 2) the impacts of long term in-
creases in temperature (which is projected to change well outside the historically observed
range) on yields, soil carbon, and water, as well as 3) the influence of increasing atmospheric
CO, concentrations (which are similarly beyond the range of historical data) on plant growth.
Process-based agroecosystem models, on the other hand, simulate crop yields as a function
of climate, CO, concentrations, soil properties (soil organic matter content, water holding ca-
pacity, and nitrogen availability), crop genetics (cultivars, growth and development rates),
and agronomic management (tillage, planting date, fertilization, irrigation) [10-14]. For
these reasons, process-based models are predictive and tend to be more appropriate than statis-
tical models when predicting future crop yields under a changing climate as they can account
for the impact of changes in climate, soil, management and cultivars on crop yield
[3,7,8,15,16].

Most commonly, applications of process-based models to project future yields under cli-
mate change re-initialize soil water, carbon, and nutrient conditions to the same state each
year. If the purpose of the simulation is solely to assess the impact of changes in weather inde-
pendently from other variables on yield, then such an approach may be justifiable—though it
still cannot account for non-linear interactions. Such an approach should not be used to identi-
fy adaptation and mitigation strategies because soils will change through time as a consequence
of management practices. The vast majority of published studies that examine climate change
impacts on crop production have used this approach [7; 17].

Reinitializing a model specifies that soil conditions are the same each year at or near the be-
ginning of the growing season. This is a reasonable assumption for static soil properties such as
texture, but it is not reasonable for dynamic properties such as soil moisture, carbon, and nutri-
ent (nitrogen, sulfur, and phosphorus) levels, many of which are critical to accurately simulate
both short- and long-term yields. For example, soil water content at a given initialization time
can dramatically differ if fallow period rain and snowmelt fails to completely recharge the soil
profile, which is often the case in non-humid environments. Soil organic matter can change
substantially over decades in response to management [18] and climate [19] triggering con-
comitant changes in soil water, nitrogen and other nutrients. Tillage management can signifi-
cantly impact root-zone soil quality through mechanical alteration of soil structure including
compaction effects on infiltration and drainage. If simulations neglect to include year-to-year
changes in initial soil water or changes in soil conditions related to agronomic management,
adaptation and mitigation strategies designed to maintain stable yields under climate change
cannot be properly evaluated.

Here we demonstrate the importance of simulating crop yields using a continuous model
that accounts for annual carryover of soil water, nutrients, and carbon over long time periods,
such as in climate change impact and adaptation studies. This allows for a more realistic assess-
ment of management factors, such as tillage practice that might exacerbate or attenuate climate
change impacts on yields and yield stability, and thereby provide insights into long-term adap-
tation strategies. We then use the continuous model to evaluate the most likely adaptation
strategy to select different cultivars, shift planting dates, and alter plant densities.
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Methods
Study Site—High Plains, Nebraska, USA

We examine climate and soils for a representative region that is well suited for maize produc-
tion in the Northern High Plains (NHP), USA. More specifically, we chose a NHP demonstra-
tion site in Cuming County, Nebraska where the regional climate is dry sub-humid with an
average annual precipitation from 1981-2010 of 740 mm, of which 495 mm falls during an av-
erage growing season (April-September). The average annual temperature is 10°C with a
monthly maximum of 24°C in July and a monthly minimum of—6°C in January. The soil tex-
ture is silty-clay-loam with an average soil organic carbon content of 1.8%. For the decade
from 2003-2012, ~58,000 ha of maize was harvested in Cuming County, of which 24% was irri-
gated [20,21].

SALUS Crop Model

We simulated maize yields using the SALUS (System Approach to Land Use Sustainability);
[22, 23] model for a 121 year period (1979-2099). SALUS is a process-based model derived
from the well-established and validated CERES model that is designed to quantify the impact
of management strategies and their interactions with the soil-plant-atmosphere system on
yield and carbon (C), Nitrogen (N), and Phosphorous (P) dynamics. The model simulates
daily crop growth and soil, water, and nutrient conditions under different management strate-
gies for multiple years [22]. SALUS accommodates various crop rotations, planting dates, plant
populations, irrigation, fertilizer applications (organic and inorganic), and tillage practices to
simulate daily plant growth and soil processes during both the growing season and fallow peri-
ods. Growth is primarily determined by the Radiation Use Efficiency (RUE) approach and is
then reduced based on transpiration and nitrogen limitations. The effects of CO, are simulated
by adjusting RUE as a function of CO, with corresponding changes in transpiration. The soil
water balance module has advanced from the CERES models with improvements in calcula-
tions of infiltration, drainage, evapotranspiration, runoff, root growth, and water uptake [13,
24]. SALUS converts snow accumulation into precipitation that is later distributed as infiltrat-
ing water. A new cold hardiness routine accounts for the effects of very low temperatures on
winter cereals such as wheat. The model simulates SOM and N dynamics from three soil organ-
ic carbon pools (active, slow and passive) and two crop residue/fresh organic matter pools
(structural and metabolic). The soil P model incorporates inorganic and organic P dynamics,
with inorganic P divided into labile, active, and stable pools.

The SALUS model does not explicitly include sub-models to simulate pest and disease out-
breaks or the occurrence of extreme weather events such as hail. It has been tested for crop
yield (e.g. [23, 25, 26, 27, 28]), soil C dynamics (e.g. [22]), plant N uptake and phenology (e.g.
[22, 29]), nitrate leaching (e.g. [30, 31]), as well as tillage effects on soil properties [29, 32, 33].
The initial fraction of three SOC pools in the continuous runs shown in this paper was deter-
mined following the procedure described in [33].

Simulations for this study were performed for the 121 year period in both continuous and
re-initialization modes. For the continuous mode, the simulations account for changes in soil
C, N, and water content during both growing seasons and fallow periods.

In re-initialization mode, soil water, nutrient, and carbon levels were reset each year to the
initial values on January 1. In re-initialized simulations, Plant Extractable Soil Water (PESW)
—defined as the water content between the drained upper limit and the lower limit for the soil
profile)—was reset to the Drained Upper Limit—DUL—of soil water content (35% for this
silty clay loam soil). This value is representative for early season water content of the soils in
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this region, which commonly have adequate water from snowmelt and fall to early spring pre-
cipitation, with no crop water use during this period. This is a reasonable assumption as soils
drain to this moisture content during a relatively short time period after rain or snowmelt. Soil
nitrogen levels were reset to 20 kg N/ha at planting and 200 kg N/ha was added during the
growing season as inorganic fertilizer. The maize cultivar used in the study has a growing cycle
of ~120 days, and is amongst the most common type of cultivar used for this region. We also
tested a second cultivar, planted 10 days earlier (day 110 vs. 120), starting in 2035 to simulate a
likely adaptation strategy farmers are likely to adopt as climate continues to change. Two tillage
practices were compared in this study, conventional and no tillage. The Conventional Tillage
(CT) system included moldboard plowing at 25 cm before planting, with all the previous crop
residues incorporated in the soil at the time of tillage. The No Tillage (NT) treatment assumed
direct drilling of seeds, with all the previous crop residues retained on the soil surface. Rainfed
and irrigation treatments were also compared. The irrigation treatment was set to automatical-
ly supply enough water to provide 100% of the evapotranspiration demand during the
growing season.

Climate Inputs

We applied modified change factor statistical downscaling analysis [34] based on an ensemble
of the CMIP-5 GCMs [35] combined with historical weather observations from the NLDAS-2
(North American Land Data Assimilation System) forcing dataset [36]. This method preserves
the month-to-month and year-to-year variability present in the historical record, while allow-
ing both means and variance to be shifted by model forecasts. Traditional change factor (CF)
downscaling uses the difference between averages of forecast and historical weather variables
over some comparable time period, typically 30 years, to create projections of weather under a
discretely altered climate. Static change factors are calculated monthly, and applied to finer
scale weather data to create fixed-length scenarios. Here, we modify the CF method to allow
variable monthly change factors through time to create continuous scenarios spanning the his-
torical record through the end of the 21st century. Furthermore, we use ensemble GCM simu-
lations of historical climate to remove observed trends prior to downscaling.

The first step in constructing the 121 year climate scenario was to build a historical observa-
tion dataset. Historical weather observations were based on the NLDAS-2 forcing dataset [37],
which uses temporally and spatially downscaled air temperature and solar radiation from the
North American Regional Reanalysis (NARR), and precipitation from gauge stations and
NEXRAD radar. For the historical period (1979-2012), hourly NLDAS-2 values of precipita-
tion, solar radiation, and temperature were aggregated to daily precipitation, solar radiation, as
well as maximum and minimum temperature.

Next, monthly time-varying change factors for every variable were calculated using an en-
semble generated from the historical and RCP 6.0 scenarios using a single run of all models in
the Coupled Model Intercomparison Project-5 (CMIP-5) database [35, 36]. Monthly outputs
from each model were first downscaled to a common 0.25° grid using bilinear resampling.
Then, monthly averages across all models were calculated for each grid cell. Monthly averages
from the neighboring four grid cells were then bilinearly interpolated to the study site location.
A LOESS filter (calculated in R 3.0.2 with span parameter of 0.85) was used to smooth the time
series of ensemble averages of monthly GCM outputs at the interpolated station location. The
LOESS-filtered curve was then adjusted by subtracting out the bias between monthly averages
of observations and the historical CMIP-5 scenario ensemble. Finally, each monthly trend was
normalized using the mean of the historical period by subtracting the mean for daily maximum
and minimum temperature, or dividing by the mean for precipitation and solar radiation.
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Fig 1. Growing season climate of the study site from 1980 to 2099. A. Average growing season (between planting and harvest) daily maximum, mean,
and minimum temperatures, and B. total growing season precipitation. The average linear change in maximum and minimum temperatures across the 2013
to 2100 period, were 3.8°C/100y and 3.3°C/100y respectively. There is no significant trend in the growing season precipitation for this location.

doi:10.1371/journal.pone.0127333.g001

After creating the change factors for each variable, these were used to detrended the 34-year
period of historical observations, which were then replicated to create a complete continuous
de-trended 121 year weather scenario. For each variable, the monthly CFs for each year were
then subtracted from daily-aggregated historical observations (for maximum and minimum
daily temperatures), or the observations were divided by the CF (for solar radiation and precip-
itation). The output of this detrending is a daily weather series that retains inter- and intra-
annual variability due to broader climatic cycles, but without the secular trend due to global cli-
mate change. This detrended dataset was then replicated four times to create an adequate
length scenario, which was then trimmed to the 1979-2099 period.

The time-varying monthly change factors were applied to the 121 year detrended weather
scenario. For maximum and minimum daily temperatures, the CFs were added to the
detrended weather. CFs were then multiplied by precipitation and solar radiation to preserve
days with zero observed flux. Annual averages of growing season temperatures and precipita-
tion are presented in Fig 1.

The CO, inputs to the model were taken from observations for the historical period and
from the CMIP5 RCP 6.0 scenario for the period from 2013 to 2100. For this scenario, CO, in-
creases each decade from 325 in 1980, to 389 in 2010, and then to 669 in the projection to the
end of the century.

Results and Discussion

Simulated corn yields for the 121 year continuous and re-initialized no-till scenario (Fig 2)
showed similar patterns over time for the rainfed and irrigated treatments, but the yield differ-
ence between the continuous and re-initialized scenarios was much larger for the rainfed case.
Simulated irrigated yields were slightly lower when the model was run in the continuous mode
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Fig 2. Comparisons of yield between continuous and re-initialized runs for both irrigated and rainfed treatments. A. Simulated rainfed and irrigated
maize yields under projected climate with a fixed cultivar under no-till management. Continuous simulations (solid lines) vs. re-initialized on January 1 of each
year (dashed lines) are shown for the NHP site. B. Cumulative bias in yield (continuous minus re-initialized).

doi:10.1371/journal.pone.0127333.9002

relative to yields in the re-initialized model. From 2050 onward, yields declined towards
~10 Mg/ha due to increasing temperatures, inhibiting grain filling, despite slightly higher pro-
ductivity from CO, enrichment with a current cultivar.

From 2003 to 2012, the predicted no-till maize yields were 12.9 Mg/ha and 5.3 Mg/ha for ir-
rigated and rainfed treatments respectively. Over this decade, ~24% of maize acreage was irri-
gated in this county, resulting in an area weighted predicted yield of 7.14 Mg/ha. This
compares favorably with the ten year average reported yield for all farms across Cuming county
Nebraska of 7.96 Mg/ha (20-21), resulting in only ~10% error using an uncalibrated SALUS
model. In addition, simulated irrigated yields ranged from ~13 to ~15 Mg/ha for the first 50
years, which is a typical yield for irrigated Nebraska maize [38].

Yield differences between continuous and re-initialized model runs for the rainfed scenario
were substantially greater than those in the irrigated scenario (Fig 2A). The rainfed maize yields
when the model was run in the continuous mode were highly variable with values ranging
from a maximum of ~13 Mg/ha to minimum of ~2 Mg/ha. The rainfed maize yield in the re-
initialized mode had lower fluctuations than the continuous simulation, with similar high val-
ues (~13 Mg/ha) but different lower values (~5 Mg/ha). These relative year-to-year deviations
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Table 1. Summaries of yield bias (continuous minus re-initialized) for irrigated and rainfed (Rain) treatments across four 30-year periods.

Mean bias (Mg/ha) Std. dev. bias (Mg/ha) K-S p-value
Period irrigated rainfed irrigated rainfed irrigated rainfed
1980-2009 -927.4 -2814.4 790.3 2848.0 0.0017 0.026
2010-2039 -413.0 -3081.9 565.5 2861.1 0.055 0.011
2040-2069 -201.5 -2454.8 462.5 2759.2 1.0 0.026
2070-2099 0.4 -2253.0 2.2 2610.4 1.0 0.011

Mean and standard deviations (Mg/ha) were calculated for the differences in annual yields for each period. Also, the p-value for a 2-sample Kolmogorov-
Smirnov test is reported, testing the null hypothesis that the distribution in annual yields of the continuous and re-initialized yields are the same.

doi:10.1371/journal.pone.0127333.1001

result in large cumulative yield differences (Fig 2B) that demonstrate re-initialization bias to be
significant and (in this instance) positive for both irrigated and rainfed simulations.

The biases in simulated yields resulting from using re-initialized yields are summarized in
Table 1 for four 30-year periods.

As depicted in Fig 2, the difference between continuous and re-initialized yields are substan-
tially greater for the rainfed versus the irrigated treatment for all years. Additionally, the stan-
dard deviations are much larger.

300 . l . . .
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Fig 3. Predicted amount of Plant Extractable Soil Water (PESW) on the planting date (DOY 120) for rainfed maize. Red line shows the PESW for the
continuous simulation; black line shows PESW re-initialized on January 1; straight grey line shows initial PESW for the re-initialized model. The soil profile
was 150 cm thick.

doi:10.1371/journal.pone.0127333.9003
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A 2-sample Kolmogorov-Smirnov test was performed on the annual yield distributions for
each paired simulation set (continuous vs. re-initialized) with the null hypothesis that the two
distributions were equal. This test showed that for all years, the rainfed distributions are signifi-
cantly different (p<0.05), while the irrigated distributions are significantly different only in the
1980-2009 period (p<0.01). Because soil water content differences are smaller between the
simulation types in the irrigated treatment, the remaining bias is likely due to soil C and N. As
temperatures warm in these scenarios, yields become limited by higher summer temperatures,
rather than by soil C and N dynamics. The amount of PESW greatly varied over time in the
continuous simulations in which soil water content is allowed to vary as a function of the prior
year’s precipitation, runoff, recharge and crop water use. Values ranged from as low as 50 mm
in some years up to 270 mm in others, in the continuous simulations, relative to ranges of 120
mm to 210 in the simulations re-initialized on January 1. If simulations fail to account for the
soil conditions at planting time as impacted by fallow period weather, as the reinitialization
does, there would unrealistically be more or less water and nutrients available for the crops at
the beginning of each growing season, which will lead to biased results (Fig 3).

In this study, there was also less available N in the continuous simulation due to nitrate
leaching (not shown), which occurs mostly during the fallow season [31]. This effect is not rep-
resented in re-initialized simulations, where high nitrate levels are always (and unrealistically)
available each spring regardless of overwinter leaching rates. Nitrogen leaching is ignored upon
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Fig 4. Plot of yields from no-till and conventional tillage for both irrigated and rainfed maize from 1980 to 2099 with continuous simulations.

doi:10.1371/journal.pone.0127333.9004
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re-initialization because most leaching occurs in the offseason, thus in the re-initialization the
leached nitrogen is inappropriately added back to the soil profile via initial conditions.

Irrigated simulations clearly showed much higher yields (from ~6 to ~15 Mg/ha) for both
no-till and conventional tillage compared to rainfed simulations (Fig 4).

Among tillage systems, conventional tillage initially produces higher yields than no-till. The
no-till case showed higher yields during most years compared to conventional tillage after ap-
proximately 20 years of soil C accumulation,. Irrigated yields fluctuated over time with a de-
clining trend of ~ 28% over the 121 year period. In the rainfed treatment, yields for both tillage
practices showed large variability from ~2 to ~12 Mg/ha, with minor differences among the till-
age systems. The rate of decline in rainfed simulations for both tillage systems was slightly
lower.

Total soil organic carbon (SOC), depicted in Fig 5, declines through time for all the treat-
ments. Conventional tillage has a sharper decline in SOC, resulting in long term lower yields.

Declines in yields for all treatments are caused by increased temperatures, which shorten
the crop cycle. In turn, this results in lower residues being retained on the soil, which affects
the amount of C in soils, pool sizes, and decomposition rates through time [34]. Irrigated no-
till SOC decreased by ~15% over the 121 year scenario, while no-till rainfed SOC decreased by
~29%. Both conventional irrigated and rainfed scenarios experienced declines in total C by
~48% from original values by the end of the century.
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Fig 5. Projected soil carbon levels from 1980 through 2099 for treatments with rainfed and irrigated maize, and conventional and no-till agriculture.

doi:10.1371/journal.pone.0127333.9005
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Fig 6. Plot of simulated maize yields with a potential adaptation strategy (dashed lines) of switching to a new cultivar and planting 10 days earlier
in the year 2035 (vertical dashed line) to account for projected climate changes. These results are for both irrigated and rainfed no-till management from
1980 to 2099. Current management and cultivar are shown with solid lines.

doi:10.1371/journal.pone.0127333.9g006

Clearly farmers will adapt to climate change, rather than passively experiencing the extent
of simulated declines. The most likely adaptation strategy for farmers will be to change planting
dates and select cultivars that will benefit from the increased growing season length due to
early planting and a longer frost free period [39]. Proper selection of adaptation strategies re-
quires simulations that account for changes in soils as a result of different management strate-
gies and cultivars. Fig 6 demonstrates that such adaptation strategies can successfully maintain
simulated yields near levels experienced with current cultivars and planting strategies.

In particular, the results of the simulation with earlier planting (by 10 days) and adopting a
modern cultivar with higher planting density and higher kernel setting efficiency (New Cultivar
in Fig 6) demonstrated that yields can be maintained despite the negative impacts of projected
temperature increases on the critical window of kernel setting.

Conclusions

Because appropriate soil management can enhance the carryover of carbon and water, simula-
tions that annually re-initialize pre-season soil carbon and water contents introduce a yield
bias that obscures the potential for soil management to ameliorate the deleterious effects of ris-
ing temperatures and greater rainfall variability. This bias is particularly strong for rainfed
cropping systems in relatively low-carbon soils. By removing this bias it becomes possible to
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express the ability of different soil and crop management strategies to mitigate otherwise sub-
stantial challenges to food security. Rainfed cropping systems will benefit from additional soil
carbon buildup, which improves overall soil biophysical and chemical properties. Only by
using models that avoid re-initialization and thus accurately predict beginning-of-season con-
ditions based on recent and long-term soil environmental change can we appropriately evalu-
ate potential adaptation strategies for agriculture, such as earlier planting, new cultivars, and
better soil management.
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