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Abstract: A controller for stable flight and precise tracking of a multirotor unmanned aerial
vehicle (UAV) carrying a heavy slung load is presented within this paper. A novel mathematical
model for the multi-body system is derived. Based on that model, a Model Predictive Control
(MPC) scheme is designed and applied to the system. Stability and tracking ability are
demonstrated through numerical simulation. The performance of the system using the MPC
strategy is compared to a linear-quadratic regulator (LQR) control approach. The simulation
results are then verified by real flight tests, whereby the MPC is applied to a real multirotor
UAV with a heavy slung load. The system is capable of actively damping load oscillations whilst
simultaneously tracking a reference trajectory.
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1. INTRODUCTION

Due to their special flight characteristics, multirotor UAVs
are well suited to deliver loads even in a range of opera-
tional environments. Highly autonomous platforms may
also prove to be a cost effective alternative to existing de-
livery methods. However, autonomous landing in complex
and unknown terrain can become hazardous. Carrying sus-
pended loads might be a suitable approach to delivery that
can overcome such issues. Using suspended loads could also
benefit other other applications as well, particularly in the
agriculture, plant biosecurity and fire fighting sectors. For
example, close proximity measurements could be taken
by sensors placed underneath a multirotor flying at a
safe height above the plants. Their is also the possibility
of collecting gas and volatile organic compound sensor
data uninfluenced by rotor downwash. The flight control
strategies presented within this paper could be extended
to manned operations such as those used to combat fires.

Regardless of the application or platform, it is important
to ensure stable flight characteristics and precise posi-
tioning of both the vehicle and the load. The stability
and tracking performance of the system is highly affected
by the dynamics of the slung load. Aggressive flight ma-
noeuvres that result in large load oscillations can cause
instability. The Model Predictive Control (MPC) approach
directly takes the dynamics of the coupled system into
account. Constraints can be set on both the state vari-
ables and the control input. Thus, the risk of undesirable
or dangerous flight conditions is minimised. Solving an
optimal control problem (OCP) subject to the predicted
system behavior in the future, the MPC approach also

offers superior tracking of predefined, four-dimensional
trajectories.

Some research has focused on controller design for manned
helicopters carrying an external load. A simple anti-swing
controller for a conventional helicopter with a slung load is
presented by Omar [2009]. Optimal control strategies for
a helicopter slung load system are designed and simulated
in Oktay and Sultan [2013]. A cascaded control algorithm
for a quadrotor UAV with a cable suspended load is
developed by Sreenath et al. [2013]. Simulation results for
two-dimensional movement of a coupled system controlled
by several control algorithms including MPC approaches
are presented by Trachte et al. [2014].

The contributions and the structuring of this work are as
follows: A novel, three-dimensional model describing the
dynamics of a coupled system including a multirotor UAV
with heavy slung load is presented in section 2. The model
takes the coupling into account without making simplifica-
tions in that regard. Even so, a closed-form representation
of the system dynamics is obtained. Based on this model,
an MPC strategy is derived. Both the basic principle of
Model Predictive Control and the specific implementation
are set out in section 3. For the given implementation,
simulation results indicate the MPC scheme’s superior
ability for tracking a predefined, time-dependent reference
in comparison to a system using an LQR control approach.
The simulation results are shown in section 4. Feasibility
and performance of the control strategy are demonstrated
through flights tests using a real indoor quadrotor setup.
Both the experimental setup and the flight test results are
presented in section 5.
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Fig. 1. Relevant frames of references and position vectors
for a high-level control approach

2. MODELLING OF THE SYSTEM DYNAMICS

To implement an MPC controller, a model of the system
dynamics is required. The model is used to predict the
future states of the system, and should represent the true
system dynamics to ensure a useful control solution will be
obtained. Additionally, the model should be kept simple
to reduce the computational cost. The dynamics in this
case refer to the coupled system including the multirotor,
suspended load and underlying low-level controller. Ex-
perimental results for a small quadrotor prove that the
low-level controlled vehicle dynamics are sufficiently fast
(cf. Lupashin et al. [2014]). The low-level control there-
fore allows for quasi-instantaneous control of the vehicle
attitude rates, so the low-level controller dynamics can be
neglected. The multirotor and load dynamics are derived
in the following section, and are based on those presented
by Hehn and D’Andrea [2011]. However, the model pre-
sented in this paper explicitly includes the loads reactive
forces on the vehicle, and is therefore better suited for
heavy loads.

2.1 Multirotor dynamics

The inertial frame of reference is denoted by I =
{xI ,yI , zI}, where zI is the unit vector parallel to the
gravity vector. The body fixed frame of reference F =
{xF ,yF , zF} is related to the inertial frame by the rota-
tion matrix R : F → I. The inertial frame of reference
and the body fixed frame of reference are illustrated in
Fig. 1. The attitude vector is denoted by φ = (φ, θ, ψ). The
rotation matrix R as stated in equation (1) is defined by
the transposed composition of sequential rotations about
the yaw angle ψ, the pitch angle θ, and the roll angle φ.

The position vector pointing to the centre of gravity
of the vehicle is denoted by r = (x, y, z). The vectors
v = (u, v, w) and ω = (p, q, r) are the linear and angular
velocity vectors in the body fixed frame. The equations of
motion of the multirotor can be expressed as

ṙ = Rv , (2)

v̇ =−ω × v + gRTzI

+
1

mF

(
RT (fH + fD)− fT zF

)
, (3)

φ̇= Jω , (4)

where g is the gravitational acceleration and mF is the
mass of the multirotor. The aerodynamic drag force of the
vehicle is denoted by fD. The collective thrust fT of the
rotors is given by

fT =

NR∑
i=1

f i , (5)

where NR is the number of rotors of the vehicle. As the
aerodynamic drag force of the vehicle is small compared
to the thrust of the multirotor, it is neglected hereafter.
fH is the force acting on the suspension point due to the
load, which will be derived in the following subsection. The
matrix J converts the rates of the Euler angles to the body
system. It is given by:

J =
1

cos(θ)

[
cos (θ) sin (φ) sin (θ) cos (φ) sin (θ)

0 cos (φ) cos (θ) − sin (φ) cos (θ)
0 sin (φ) cos (φ)

]
(6)

Equation (3) is denoted with respect to the body fixed
frame of reference in order to comply with flight mechanics
convensions. All the other equations in this section are
denoted with respect to the inertial frame of reference.

2.2 Load dynamics

The position vector of the load with respect to the inertial
frame of reference is denoted by rL = (xL, yL, zL). vL =
(uL, vL, wL) is the inertial velocity of the load denoted
in inertial coordinates and aL is the inertial acceleration
of the load . The three-degrees-of-freedom equations of
motion are given by:

ṙL = vL , (7)

v̇L = aL . (8)

The position vector of the load with respect to the suspen-
sion point rC is given by

rC = rL − (r + RrH) , (9)

where rH denotes the displacement of the suspension point
with respect to the center of gravity of the vehicle. The
relevant position vectors for the model described in this

R =


[

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

]
︸ ︷︷ ︸

=Rx(φ)

[
cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

]
︸ ︷︷ ︸

=Ry(θ)

[
cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

]
︸ ︷︷ ︸

=Rz(ψ)



T

. (1)



section are illustrated in Fig. 1. Friction in both the
cord and the suspension point is neglected. The inertial
acceleration of the load aL is then derived by assuming
equilibrium of moments about the suspension point such
that

rC × fH = 0 , (10)

where fH describes the force acting on the multirotor due
to the load:

fH = −mLaL +mLgzI + fD,L . (11)

The aerodynamic drag force of the load is denoted by fD,L:

fD,L = −1

2
CD,LρAL ‖vL‖2 vL . (12)

CD,L is the drag coefficient of the load referred to the
relevant cross-section area of the load AL. The density
of the air is denoted by ρ. ‖· ‖2 refers to the Euclidean
norm in R3. Evaluating equation (11) assures that only
longitudinal force is transmitted by the cable.

Assuming the cable length l to be constant, a kinematic
constraint is given by:

‖(r + RrH)− rL‖2 = l . (13)

Assuming the suspension point to be located near the cen-
tre of gravity of the vehicle (rH ≈ 0), the z-component of
the load position can easily be derived from equation (13)

zL = z +
√
l2 −∆2

x −∆2
y , (14)

where ∆x = x−xL and ∆y = y−yL. Only the solution with
zL > z is taken into account. Differentiating equation (13)
twice

∆̇x∆x + ∆̇y∆y︸ ︷︷ ︸
=:H

+∆̇z∆z = 0 , (15)

∆̇2
x + ∆̈x∆x + ∆̇2

y + ∆̈y∆y + ∆̇2
z︸ ︷︷ ︸

=:G

+∆̈z∆z = 0 , (16)

the z-component of the velocity and acceleration can
eventually be written as

żL =
H

∆z
+ ż , (17)

z̈L =
G

∆z
+ z̈ , (18)

where ∆z = z − zL.

The state vector of the coupled system is therefore given
by

x = (r,v,φ, xL, yL, uL, vL) . (19)

The input vector for high-level control is then given by:

u = (ω, fT ) . (20)

Equations (2) to (11) describe the coupled system dynam-
ics for high-level control as a set of ordinary differential
equations:

F (ẋ,x,u) = 0 . (21)

As equation (21) is linear in the time derivative of the
state vector ẋ and the Jacobian matrix ∂F

∂ẋ proves to be
non singular, a closed-form representation of the system
dynamics can be obtained:

ẋ = f (x,u) . (22)

3. HIGH-LEVEL MPC APPROACH

3.1 Mathematical formulation of Model Predictive Control

This subsection deals with the mathematical formulation
of model predictive control schemes in general. Therefore,
no assumptions regarding linear models are made. The
equations presented in this section are based on the math-
ematical formulation of nonlinear model predictive con-
trol by Findeisen and Allgöwer [2002] adapted to discrete
time-setting. The discrete-time system to be controlled is
described by a nonlinear set of difference equations

xk+1 = f (xk,uk) , (23)

where the index k ∈ N0 denotes the state or control input
of the system at kth sampling instant. Both the state
vector x and the input vector u are constrained by:

u∈ U , ∀k , (24)

x ∈X , ∀k . (25)

In the simplest form the constraints U and X are given by

U := {u ∈ Rm | umin ≤ u ≤ umax} , (26)

X := {x ∈ Rn | xmin ≤ x ≤ xmax} , (27)

where m denotes the dimension of the input vector u and n
denotes the dimension of the state vector x. umin, umax and
xmin, xmax are predefined constant vectors. The control
law is represented by the discrete-time finite horizon open-
loop optimal control problem (OCP) of finding an input
sequence ū that minimises the quadratic cost functional
J (·) such that:

minūJ (xk, x̄, ū;Tc, Tp) . (28)

The cost functional is given by

J (x̄, ū;Tc, Tp) = (x̄N − x∗N ) TP (x̄N − x∗N )

+

N−1∑
j=0

[
(
x̄j − x∗j

)
TQx

(
x̄j − x∗j

)
+
(
ūj − u∗j

)T
Qu

(
ūj − u∗j

)
] (29)

subject to

x̄j+1 = f (x̄j , ūj) , x̄0 = xk , (30)

ūj =

{
∈ U , N ≤M
ūM , N > M

, (31)

x̄j ∈ X , (32)

where the index j ∈ N0 denotes the internal state vector
x̄ and the internal input vector ū at the jth prediction
instant for the kth sampling instant. Only the first element
ū0 is implemented. N = Tp/δ is the number of steps within
the prediction horizon Tp and M = Tc/δ is number of steps
within the control horizon Tc where δ is the prediction
step size. The asterisk symbol denotes references for both
state vector and input vector. The weighting matrices Qx

and Qu penalise deviations from the reference for the state
and input vectors respectively. P is the terminal weighting
matrix for deviations of the state vector at the end of
the prediction horizon. In the context of this paper, it
is assumed that the terminal penalty matrix equals the
weighting matrix for state deviations Qx. The initial value
of equation (30) xk introduces state feedback to the MPC.



Table 1. Constraints for high-level linear MPC

Constraint subject to Identifier Unit Constraint

Height above ground −z m [0, 4.0]

Roll angle φ − [−π
6
, π
6

]

Pitch angle θ − [−π
6
, π

6
]

Vehicle attitude rates p, q, r rad/s [−π, π]

Collective thrust fT N [0, 14.0 1 ]

3.2 Implementation

To obtain a linear prediction model, equation (21) is
linearised at the setpoint for steady-state hovering:

x0 = (r0, 0, . . . , 0, xL,0, yL,0, 0, 0) , (33)

u0 = (0, fT,0) . (34)

The setpoint of the position of the vehicle r0 is not relevant
for the linearisation. The setpoint of the x-component and
the y-component of the position of the load (xL,0, yL,0) is
equivalent to the setpoint of the vehicles position in the
xy-plane. The setpoint for the collective thrust fT,0 equals
the gravity force of the coupled system:

fT,0 = (mF +mL) g . (35)

Whilst the reference for the input vector is constantly
chosen identically to the input vector at the setpoint

u∗ = u0 , (36)

the reference for the state vector depends on the flight
manoeuvre to be performed. The later yields a time-
variant control law for the MPC.

The constraints for the high-level linear MPC scheme
are listed in table 1. The constraint in the z-position is
chosen with regard to the real flight experiment. Both
the limitation of the vehicle’s roll and pitch angle and
the limitation of the maximum attitude rates prevents
potentially dangerous flight manoeuvres. The weighting
matrices are given by:

Qx = diag(0.1, 0.1, 1, 10−6, . . . , 10−6,

1, 1, 10−6, 10−6) , (37)

Qu = diag(10−2, . . . , 10−2) . (38)

The term diag (·) refers to a matrix with the vector
denoted as a parameter forming the principal diagonal of
the matrix. All the other entries equal zero. Deviations in
the position of the load are penalised ten times stronger
than deviations in the position of the vehicle. This refers to
potential real world applications where it might be desired
to track the load precisely. Further controller parameters
are listed in table 2.

1 Measured maximum for the DJI F330 with 3s lithium polymer
accumulator

Table 2. High-level controller parameters

Parameter Identifier Unit Value

Update rate 1
Ts

Hz 80.000

Prediction horizon Tp s 5.0000

Prediction step size δ s 0.1000

Control horizon Tc s 5.0000

Table 3. Physical parameters of the system

Parameter Identifier Unit Value

Mass of the vehicle mF kg 0.9300

Number of rotors NR − 4

Mass of the load mL kg 0.2000

Cable length l m 1.0000

Cross-section area of
the load

AL m2 0.0142

Drag coefficient of the
load

CD,L − 1.2000

Gravitational
acceleration

g m/s2 0.9810

Density of the air ρ kg/m2 1.1840

4. SIMULATION

4.1 Simulation Environment

The simulation is set up using MATLAB and Simulink.
The nonlinear dynamics given by equation (22) are used
for the simulation model. The physical parameters for both
the linear prediction model and the nonlinear simulation
model are listed in table 3. The ACADO Toolkit is
integrated to solve the OCP emerging from the MPC
approach (cf. Houska et al. [2011]).

A linear-quadratic regulator (LQR) control approach is
implemented to compare the performance of the MPC
scheme to a more classical optimal control strategy. The
constant feedback matrix is obtained by executing the
MATLAB built-in lqr() command with the same linear
model state-space representation as used for the MPC pre-
diction model. Hence, no integral action is superinduced.
The weighting matrices are chosen identically to the ones
applied to the MPC.

4.2 Simulation Results

The simulation of an exemplary test case of tracking a
predefined trajectory is demonstrated within this paper.
The reference state vector x∗ contains non-zero elements
only where the trajectory of the vehicle and the load is
influenced directly. These elements are r∗ = (x∗, y∗, z∗).
The reference for the load’s position in the x and y-
components is equal to the reference for the vehicle’s
position. The reference trajectory is a figure-eight curve
in the xIyI-plane. The values in meters are given by:

r∗ = (2 sin (ωt) , 2 sin (ωt) cos (ωt) ,−1.5) . (39)

The frequency is ramped up from zero to ω = 0.4 rad/s
within the first four seconds of the simulation. The prede-
fined reference states spanning the prediction horizon are
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Fig. 2. Simulation, LQR: Figure-eight curve tracking
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Fig. 3. Simulation, MPC: Figure-eight curve tracking

fed to the MPC at each controller update. The state of the
simulation model is fed back to the controller without any
additional noise.

Fig. 2 shows the ground track and the x-position over
the course of time for the system using the LQR control
approach. The corresponding plots for the system subject
to the MPC approach are displayed in Fig. 3. The impact
of accelerating from a state of rest at the beginning of
the simulation can be seen in the asymmetric flight path
depicted in Subfig. 2a and 3a respectively. Because of the
higher weightings for deviations in the load’s position,
both control approaches aim to minimise the overshoot
of the load by moving the vehicle slightly inside the
reference trajectory. For the system subject to the MPC
approach, the mean deviation for the x-position of the
vehicle equals 34.6 mm, whereas the mean deviation for the
x-position of the load equals 10.3 mm. The system using
the LQR control approach lags in time by approximately
0.8 seconds (cf. Subfig. 2b). As can be seen in Subfig. 3b,
the MPC commands a more aggressive pitch rate sequence,
resulting in a higher control effort compared to the system
subject to the LQR. Although not being hit within the
test case presented, the ability to take constraints into
account gives preference to the MPC approach for real
flight applications.

5. FLIGHT TEST

5.1 Flight Test Environment

The ARCAA Indoor Flying Laboratory is set up to de-
sign and verify control algorithms for UAVs. The global
position and attitude are provided by an infrared motion
capture system via Ethernet. The velocity of the vehicle
and the load is obtained by numerical differentiation. A
nonlinear state estimator as presented in Lupashin et al.
[2014] is applied in order to both reject corrupted measure-
ments and account for system latency. The user code runs
on a desktop computer. The commands are transmitted
wirelessly to the vehicle. The core component is a soft-
ware module which is solely implemented in Simulink. On-
board the vehicle, a µ-controller decodes the radio signals
and converts the serial input to a pulse-width modulated
output, which is fed into a low-level PID controller. The
physical parameters of the real system are identical with
those of the simulated system listed in table 3. For the
flight experiment, an integral gain acting in parallel to the
MPC penalises deviations in the z-direction in order to
compensate for thrust miscalibration.
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5.2 Flight Test Results

A test flight using the same reference trajectory as defined
in subsection 4.2 is presented here. The whole flight from
take off to landing is shown in Fig. 6. The data is captured
by infrared cameras at a sampling rate of 200 Hz. A moving
average low-pass filter is applied over ten consecutive
measuring points. As the weighting matrices are chosen
equal to those used in the simulation, the controller aims
at keeping the position of the load aligned with the
reference rather than the position of the vehicle. Similar
to simulation, the impact of the stronger penalisation for
deviations in the load’s position can be seen in Subfig. 4a
on the first leg of the figure-eight curve (corresponding
to positive values for x). The overshooting of the load’s
x-position is kept below 60 mm. On the second leg the
trajectory reaches the border of the camera coverage. The
spurious measurement results in a less accurate tracking
performance. The system lags in time by under half a
second, whereby the load’s position lags in time more than
the vehicle’s position (cf. Subfig. 4b). The authors ascribe
this fact to undervaluing the aerodynamic drag force of
the load in the prediction model (cf. table 3). Nonetheless,
accurate four-dimensional tracking performance of the
MPC approach shown in simulation is verified by the flight
test results.

6. CONCLUSION

In this work, a mathematical model for the coupled system
dynamics of a multirotor UAV with heavy slung load has
been derived. Based on this model, a Model Predictive
Control scheme has been set up. Simulation results for the
test case of tracking a figure-eight curve have been dis-
cussed. For the given implementation, the MPC scheme’s
superior ability for tracking a predefined, time-dependent
reference in comparison to a system using an LQR control
approach has been shown. The feasibility of the predictive
control approach has been demonstrated in flight tests.

For outdoor use of a multirotor UAV with heavy slung
load implementing an MPC scheme as presented within
this paper, one needs to become independent from using a
motion capture system. A setup for visual load detection
using an onboard camera is presented by Zürn et al. [2016].

The feasibility of running a specially tailored MPC on an
onboard computer of a small UAV is demonstrated by Joos
and Fichter [2011].
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