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tRNA-mediated codon-biased translation in
mycobacterial hypoxic persistence
Yok Hian Chionh1,2, Megan McBee1,3,w, I. Ramesh Babu3,w, Fabian Hia1, Wenwei Lin2,w, Wei Zhao1, Jianshu Cao1,4,

Agnieszka Dziergowska5, Andrzej Malkiewicz5, Thomas J. Begley6, Sylvie Alonso1,2 & Peter C. Dedon1,3,7

Microbial pathogens adapt to the stress of infection by regulating transcription, translation

and protein modification. We report that changes in gene expression in hypoxia-induced

non-replicating persistence in mycobacteria—which models tuberculous granulomas—are

partly determined by a mechanism of tRNA reprogramming and codon-biased translation.

Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by

uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective

translation of mRNAs from families of codon-biased persistence genes. For example, early

hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts

enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic

bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in

codon-biased DosR translation, with altered dosR expression revealing unanticipated effects

on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA

modifications and translation of codon-biased transcripts that enhance expression of stress

response proteins in mycobacteria.
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A
ll cells respond to environmental changes by regulating
gene expression at multiple levels. Among human
pathogens, mycobacteria have evolved a genetically

programmed mechanism of adapting to the stress of human
infection by entering a quiescent state in which cell replication is
halted or slowed in response to nutrient deprivation, hypoxia and
other stresses encountered in the granulomas that characterize
tuberculosis1–3. The mechanisms regulating the hypoxic response
in mycobacteria have been extensively studied in members of the
Mycobacterium tuberculosis (Mtb) complex, including the
Mtb surrogate, M. bovis BCG. For example, hypoxia has been
shown to modulate a transcriptional regulatory network that is
predictive of changes in lipid metabolism caused by hypoxia4.
The modest predictive power of transcriptionally based models
is likely due to the well-established poor correlation between
levels of transcripts and proteins5 and points to the potential
for translational regulatory mechanisms contributing to cell
phenotype.

Here we show how translational mechanisms play an
important role in the mycobacterial response to hypoxia. The
basis for these studies lies in our observations in budding yeast,
in which stress-specific alterations in dozens of modified
ribonucleosides in transfer RNA (tRNA) coordinately regulate
selective translation of codon-biased messenger RNAs (mRNAs)
from families of stress response genes6–10. There is emerging
speculation for the existence of a ‘code of codons’ based on
gene-specific codon usage patterns6,11,12 that can regulate
translation10,13–15. Among possible mechanisms linking
environmental changes to codon-biased translation, recent
studies have shown that the dozens of modified ribonucleosides
in tRNA form a dynamic system that responds to cellular
stress6–8,16. We have shown that stress-specific alterations in
tRNA wobble modifications, which can expand or limit tRNA
decoding capabilities17–19, facilitate decoding of cognate codons
that are over- or under-used in mRNAs, which enhances
translational elongation and leads to the selective up- and
downregulation of the codon-biased genes10,20. Given that these
mechanisms have yet to be established in prokaryotes, much less
shown to play any role in microbial pathogenesis, we identified a
role of tRNA reprogramming and selective translation of codon-
biased survival proteins in the hypoxia-induced non-replicative
state of mycobacteria.

Results
Hypoxia reprogrammes tRNA modifications in mycobacteria.
We began this mechanistic analysis by characterizing the full
repertoire of tRNA modifications in M. bovis BCG and their
behaviour under hypoxic stress. Using chromatography-coupled
mass spectrometry (LC-MS)21–23, we identified 40 distinct
ribonucleoside modifications in purified tRNA (Fig. 1a,
parameters in Supplementary Data 1). Next, we used dynamic
multiple reaction monitoring (MRM; Supplementary Data 1)22

to quantify changes in the levels of these modifications as
BCG entered and exited a non-replicating, persistent state in a
Wayne-like gradual hypoxia model of non-replicating persistence
(Supplementary Fig. 1a)24. The measurements of tRNA
modifications proved to be very precise, with variance among
biological replicates differing by an average coefficient of
variation of 17±3.8% while differences in modification levels
between time points varied with a coefficient of variation of
74±40% (Supplementary Data 2). This validates the rigour of the
method for quantifying significant hypoxia-induced changes in
tRNA modification levels. Hierarchical clustering analysis of
fold-change values for each modification (Fig. 1b, Supplementary
Data 2) distinguished the three classical phases of hypoxia-
induced persistence: aerated growth and non-replicating

persistence stages 1 and 2 (Supplementary Fig. 1a). However,
this analysis of fold-change values on days 0–21 of hypoxia (Log,
H4–21) and days 1–6 of re-aeration (R1–6) also distinguished two
transitional phases at the entry (H4) and exit (R1–3) of hypoxic
bacteriostasis (Fig. 1a, Supplementary Fig. 1a). We termed these
phases hypoxic transition (HT) and early resuscitation (ER),
respectively (Supplementary Fig. 1a). Hypoxia thus induced
distinct patterns of change in the 40 tRNA modifications in BCG,
patterns that predicted the stages of hypoxic persistence and
resuscitation.

Hypoxia regulates tRNA modifications and tRNA isoacceptors.
We next explored the link between hypoxia-altered modification
patterns in the tRNA population and translation of codon-biased
genes by defining hypoxia effects on wobble modifications in
individual tRNA species. For example, levels of 5-oxyacetyl-
uridine (cmo5U), noted for its ability to decode G-ending
codons25,26, were found to increase by 4350% in early hypoxia
in total tRNA (Fig. 1b; Supplementary Data 2). In Escherichia
coli, CmoB converts 5-hydroxyuridine (ho5U) to either
5-methoxyuridine (mo5U) or cmo5U depending upon the avail-
ability of S-carboxymethyl-S-adenosylmethionine (carboxy-SAM)
produced from SAM by CmoA27. CmoM then methylates cmo5U
to form mcmo5U (ref. 28). While this biosynthetic pathway
has not been annotated in BCG, we found homologues of cmoA
and cmoB in BCG: BCG_0612 (55% coverage of CmoA,
E value¼ 4e� 4 by blastp) and BCG_2975c (51% coverage of
CmoB, E value¼ 2e� 5 by blastp). In addition to finding ho5U,
mo5U, cmo5U and mcmo5U in BCG tRNA (Fig. 1b)8, mo5U has
been mapped to the wobble position of tRNAThr(UGU) in Bacillus
subtilis29 while mcmo5U and cmo5U have been mapped to the
same position in E. coli tRNAThr(UGU)28. Building on these
observations, we defined the wobble occupancy of tRNAThr(UGU)

in BCG and measured hypoxia-induced changes in the levels of 3
tRNAThr isoacceptors in BCG by mass spectrometric sequencing
and quantification of RNase U2-generated oligonucleotides
(Fig. 2, Supplementary Fig. 2, Supplementary Data 3)30. There
was a significant decrease in wobble ho5U in tRNAThr(UGU) at H4
accompanied by a nearly complete shift from mo5U under
aerobic conditions to cmo5U and mcmo5U at H4 and H9
(Fig. 2e). This could reflect a hypoxia-induced increase in
CmoA-catalysed formation of carboxy-SAM to shift CmoB
activity from mo5U to cmo5U; proteomic analyses discussed
shortly support this model. This hypoxic increase in wobble
cmo5U in tRNAThr(UGU) was accompanied by a significant
increase in number of copies of this tRNA (Fig. 2d) and decreases
in the levels of the other two Thr tRNA isoacceptors
(Supplementary Fig. 2). All the changes reverted to Log levels
during aerobic resuscitation (Fig. 2d,e; Supplementary Fig. 2).
These results are consistent with coordinated up- and
downregulation of specific tRNA wobble modifications and
tRNA isoacceptor levels in response to hypoxia, which raises
the question of a link to hypoxia-induced translation of mRNAs
with biased use of the cognate codons for these tRNAs.

Biased codon usage across the BCG genome. We next tested the
hypothesis that the BCG genome was organized with biased use
of synonymous codons, with codon biases linking persistence-
related genes to hypoxia-reprogrammed tRNAs. Using a gene-
specific codon counting algorithm31, we analysed codon usage
patterns in the 3,951 protein-coding genes in BCG, with the heat
map shown in Supplementary Fig. 3 revealing two groups of
genes with significantly biased use of synonymous codons. In the
91 genes in Group 1, 21 members of the 48-gene Dos regulon,
which controls the early hypoxic response4,32, were significantly
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Figure 1 | Dynamics of tRNA modifications as BCG enter and exit hypoxic non-replicating persistence. (a) Composite extracted ion chromatogram of 40

modified ribonucleosides in BCG tRNA. Full names, structures and LC-MS/MS parameters can be found in Supplementary Data 1. (b) Hierarchical

clustering analysis of changes in the relative levels of BCG tRNA modification induced by hypoxia (H) on day 0 (Log), 4, 6, 9, 14 and 18, and re-aeration (R)

on day 19 (R1), 21 (R3) and 24 (R6) (time course in Supplementary Fig. 1). Hierarchical clustering was performed on mean-centred data (n¼ 6) and

visualized as a heat map of log2 fold-changes relative to Log cultures with colour intensities subjected to standardization by RNA modification:

Standardized value ¼ Value�Row mean
Row mean

� �
=Row s:d: Relative quantification of tRNA modifications can be found in Supplementary Data 2. Modified

ribonucleosides ho5U, mo5U, cmo5U and mcmo5U relevant to the discussion in the text are highlighted in blue.
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Figure 2 | Hypoxia induces tRNAThr(UGU)remodelling. Total tRNA was digested with RNase U2 to generate oligoribonucleotides containing unique

fragments from (a) tRNA46Thr(UGU) (indicated by arrows) for LC-MS modification mapping and copy number quantification. Positions of conserved

4-thiouridine (s4U), dihydrouridine (D), pseudouridine (C), 7-methylguanosine (m7G), 5-methyluridine (m5U), wobble uridine (U* in a) and adenosine37

(A*) are shown in brown. (b) Identification of wobble occupancy variants. Maximum entropy deconvolution of MS spectra for H9 tRNA hydrolysate

(top—red trace) and a synthetic standard of UCGCCUUGUA (bottom—black trace). The peaks were identified as follows: i—CUCGCCUUGUA,

ii—CUCGCCUho5UGUm6t6A, iii—CUCGCCUmo5UGUm6t6A, iv—CUCGCCUcmo5UGUm6t6A and v—CUCGCCUmcmo5UGUm6t6A by de novo

sequencing. (c) Representative targeted fragmentation of peak iv for de novo sequencing. Mirror plot shows resolved isotope deconvoluted MS/MS spectra

of the oligonucleotide CUCGCCUcmo5UGUm6t6A (top—red trace) and synthetic standard UCGCCUUGUA (bottom—black trace). The 159.05 Da mass

shifts in w1, w2, y2 and y3 ions are consistent with m6t6A37. The 233.05 Da mass shifts in y4 and w5 ions are consistent with the sum of m6t6A37 (D159.05

Da) and cmo5U34 (D74.0 Da) modifications. The oligonucleotide sequence is denoted in standard ion fragmentation nomenclature on the top right.

Deconvoluted masses for peaks i–v and validated fragment ions are available in Supplementary Data 3. (d) Fold-changes in tRNAThr(UGU) copy numbers at

H4, H9, H18, R3 and R6 against Log. tRNA7Thr(UGU) was present at 943 (±217) copies per CFU under Log conditions as determined by selected reaction

monitoring (Supplementary Fig. 2). Data represent mean±s.e.m.; n¼4. Statistical analysis by one-way analysis of variance (ANOVA) with Dunnett’s test

versus Log: NS, not significant; Po0.05 and Po0.01 are denoted as * and ** respectively. (e) Composition of the tRNAThr(UGU) pool in terms of its wobble

occupancy variants (identified in peaks i–v), at indicated time points expressed as percentages of their sum total.
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biased with C- and G-ending codons, including higher than
average ACG usage and lower than genome average ACC usage.
Of these, nine dosR regulon genes show significant ACG/ACC
biases after correction for gene length and global codon bias by
z-transformation: BCG_0113, BCG_0114, BCG_0614, BCG_0615
(nrdZ), BCG_1772, BCG_1773c, BCG_2024c (fdxA), BCG_2013,
and BCG_3156c (dosR). Considering that there are 3,952 genes in
the BCG genome, the probability of picking the same nine genes
with this exact feature from the two data sets by random chance is
7.5� 10� 8. As illustrated in Supplementary Fig. 3b, the gene for
dosR, the transcription factor regulating activity of the Dos
regulon, was found to be highly significantly enriched in ThrACG

codons and impoverished in ThrACC codons.
These codon biases, along with the fact that G-ending codons

in 4-fold degenerate codon boxes (Leu, Val, Ser, Pro, Thr, Ala) are
read by modified wobble uridines (Supplementary Fig. 4), become
important in light of the observation that hypoxia leads to the
upregulation of wobble cmo5U in tRNAThr(UGU). Indeed, cmo5U
is noted for its ability to decode G-ending codons25,26. Similarly,
the putative CmoA homologue, BCG_0612, is heavily biased
in ACA usage (Z¼ 2.75, Po0.01)—a rare codon decoded
solely by tRNAThr(UGU) and its modified derivatives
(Supplementary Fig. 4) and preferably read during the hypoxic
transition (Fig. 2). Thus, the BCG genome contains sets of
genes with biased use of codons that are read by hypoxia-
reprogrammed tRNAs, which raises the question of selective
translation of proteins from these genes during hypoxia.

tRNA modifications are linked to global protein expression. To
test the hypothesis that the changes in the hypoxia-remodelled
tRNAThr pool correlate with translation of codon-biased mRNAs
to affect expression of Dos regulon and other proteins, we
performed iTRAQ proteomic analyses to compare changes in
protein levels across the hypoxic time course at Log, H4, H6, H9,
H14, H18, R3 and R6. By cross-validating protein identifications
between SpectrumMill and X!tandem, we were able to match
122,546 spectra to 36,751 unique peptides that mapped onto
2,455 proteins (62% proteome coverage at 4.9% peptide FDR;
Supplementary Fig. 5a,b). Of these, 965 proteins could be
consistently quantified by two or more peptides in all samples
across the time course (Po0.01; protein FDRo0.01%; no missing
values) (Supplementary Data 4), with the proteins distributed
across all major gene ontology categories (Supplementary
Fig. 5d). A scores plot from a principal component analysis
(Fig. 3a) revealed clustering of time points from the hypoxic time
course, with the clustering precisely recapitulating the five stages
of hypoxia-induced persistence and resuscitation defined earlier
by the tRNA modifications (Fig. 1b) and hypoxic growth curve
(Supplementary Fig. 1a). This clustering behaviour was driven by
groups of highly co-varying proteins that defined each time point
and stage, as shown in the loadings plot of Fig. 3b.

A mechanistic link between tRNA modification changes and
changes in protein expression appears to arise in another striking
feature that emerged from a partial least squares regression
analysis of the most significantly up- or downregulated proteins
(42-fold change, Po0.05; Supplementary Fig. 6; Supplementary
Data 4) and the codon usage patterns in their genes: pairs
of synonymous codons were significantly over- or under-
represented in the highly up- and downregulated proteins across
the hypoxia time course. For example, after 4 days of hypoxia
(H4), the genes for upregulated proteins showed a highly
significant preference for ACG over ACC and those for
downregulated proteins reversed this usage (0.83oR2o0.91 for
Factor-1, Fig. 3c,d). This behaviour was recapitulated at
other hypoxia time points, with codon choices between the

synonymous pairs AsnAAT/AsnAAC, AspGAT/AspGAC, CysTGT/
CysTGC, HisCAT/HisCAC, LysAAA/LysAAG and TyrTAT/TyrTAC

distinguishing highly up- or downregulated proteins
(Supplementary Fig. 7). The link to tRNA modification changes
is illustrated at H4 by the highly correlated increase in wobble
cmo5U in the tRNAThr(UGU) that reads ACG, the significant
increase in the number of copies of tRNAThr(UGU) (Fig. 2d), and
decreases in the levels of the other two Thr tRNA isoacceptors,
including the tRNAThr(GGU) that reads ACC (Supplementary
Fig. 2). These results support a model of stress-induced concerted
reprogramming of tRNA modifications and translation of
codon-biased mRNAs to affect phenotypic changes.

The translation model in the context of gene expression.
One question that emerges at this point is the extent to which
transcriptional pressures and mRNA levels drive codon-biased
translation. One could envision an extreme scenario in which
hypoxia induces up- and downregulation of only those transcripts
that possess the observed stage-specific codon biases in up- and
downregulated proteins, with the tRNA reprogramming merely
reflecting pressures for translating on ribosomes loaded with
these codon-biased transcripts—a purely transcription-driven
mechanism. Here we demonstrate that this is not the case in
hypoxic BCG based on two different pieces of evidence. First, we
note that DosR protein levels significantly diverge from changes
in dosR transcript levels, with mRNA levels dropping rapidly after
H4 and maximal levels of DosR reached at H9 and maintained
until re-aeration (post-H18; Supplementary Fig. 5e). In contrast,
changes in levels of tRNAThr(cmo5UGU) closely paralleled DosR
expression (Supplementary Fig. 5e). Similarly, protein con-
centrations of putative CmoA homologue that synthesizes cmo5U
in BCG increased up to 6.5-fold in early hypoxia (Supplementary
Fig. 5e), which is consistent with the shift from wobble mo5U to
cmo5U in tRNAThrUGU (Fig. 2d).

In a second more generalized analysis, we asked whether codon
usage affects protein expression of co-transcribed genes in BCG
operons. Since transcription of polycistronic mRNAs from
operons in the mycobacterial genome leads to co-transcription
of many genes, one would expect to see correlated translational
up- and downregulation for all gene partners on an operon and
no codon usage differences among translated proteins unless all
operonic gene partners shared the same codon usage patterns.
To test this idea, we mapped 229 of the 965 proteins detected in
our analysis onto 86 operons with polycistronic mRNAs. Next,
we compared the protein expression of these genes and their
co-transcribed neighbours. In 254 pair-wise comparisons, 73 gene
pairs show strong positive correlations (0.4rR2r1) while
45 pairs are anti-correlated (� 1rR2r� 0.4). Interestingly, on
tallying the codon usage differences between correlated and anti-
correlated pairs, we note that disproportionate use of ThrACG

in one member of a gene-pair relative to its neighbour is a
contributor to anti-correlated protein expression (Supplementary
Fig. 8a). Gene pairs with one partner biased in using ThrACG are
4.6 times more likely (confidence interval: 2.7–8.1, Po0.0001) to
be anti-correlated in protein expression (Supplementary Fig. 8b).
These results highlight the subtle but pervasive influence of
synonymous codon usage on gene expression and support the
idea of a link between stress-induced tRNA reprogramming and
selective translation of codon-biased stress response proteins.

Codon re-engineering supports codon-biased translation.
To further ascertain the importance of codon usage patterns in
translation efficiency and survival in the BCG hypoxic response,
we generated a series of recombinant BCG strains with dosR
engineered to use only one of four possible Thr codons: ACA,
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Figure 3 | The choice between codons ThrACG and ThrACC influences protein up- or downregulation in the BCG response to hypoxia. (a,b) Principal

component analysis was performed with fold-change data for the 965 most quantifiable proteins (loadings, b) across the hypoxia time course (scores, a).

Clustering of sample eigenvectors (Log’, H4�, H6m, H9E, H14., H18n, R3J and R6&) in the scores plot (a) and protein variables (Blue filled circle) in the

loadings plot (b) is highlighted using data eclipses, with the clusters reflecting both the growth phenotypes (acronyms defined in Supplementary Fig. 1a) and the

tRNA modification clustering in the heat map in Fig. 1b. Seventy-two per cent of observed variance can be explained by three principal components (n¼ 3, PC-1:

37%, PC-2: 24%, PC-3: 11%). (c,d) Partial least squares regression analysis of significantly up- (Orange filled square) or down- (Blue filled circle) regulated

proteins and their codon usages (Red filled circle) at H4 visualized by scores (c), and X,Y correlation loadings representing codon usage (X) against extent of

protein up- or downregulation (Y) (d). The proteins were selected blindly for PLS analysis based on statistical significance (Po0.05) and 42 fold-change

(n¼ 3; unpaired, two-tailed t-test; Supplementary Fig. 6a). Ellipse in c represents the Hoteling T2 limit at P value of 0.05 (F-test), while the ellipses in d indicate

the explained variance. Outer and inner ellipses indicate 100% and 50% explained variance, respectively. Codons contributing significantly to the regression

(cross validation, by Marten’s uncertainty test) are circled in black. 61% of observed variance can be explained by two latent factors (n¼ 3, Factor-1: 38%,

Factor-2: 23%). AG, aerated growth; ER, early resuscitation; HT, hypoxic transition; NRP, non-replicating persistence (stages 1 and 2); PLS, partial least square.
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ACC, ACG or ACU (Supplementary Fig. 9a). These are termed
DdosSR::dosSR(ACA) DdosSR::dosSR(ACC), DdosSR::dosSR(ACG)
and DdosSR::dosSR(ACT), respectively; note that dosS retains
wild-type (WT) codon usage in all constructs. dosS and dosR
belong to the same operon and RNAseq analysis confirmed
that they are co-transcribed on the same mRNA (GEO accession
study GSE66883). In aerobic exponential phase growth, these
synonymous Thr codon mutations were silent in terms of growth
rate (Fig. 4a), dosR transcription (Fig. 4b), the ratio of
transcription of dosR to its operon partner, dosS (Fig. 4c), and

translation (relative to dosS) (Fig. 4d). Knocking out both genes
(DdosSR) is deleterious for mycobacteria during hypoxia and
upon re-aeration (Fig. 4e, white bar), but their restoration in the
DdosSR::dosSR(WT) construct restored fitness (Fig. 4e orange bar;
Supplementary Fig. 9b)33. However, upon induction of hypoxia,
the translational efficiency of DosR in the synonymous Thr codon
mutants is maximally enhanced by ACG and maximally reduced
by ACC during hypoxia (Fig. 4d), while relative transcriptional
efficiency of dosR and dosS are unchanged (Fig. 4c). This again
points to a transcription-independent role for codon-biased
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Figure 4 | dosR mutants re-engineered to use synonymous Thr codons show altered dosR and hspX expression as well as altered growth phenotypes.

Notations used for each strain are explained in the main text, Supplementary Fig. 9a and Supplementary Table 3. (a,b) Strains had similar growth profiles

(a), and dosR mRNA levels under aerobic conditions (b), except for DdosSR, which served as a negative control ( n¼ 5; one-way analysis of variance

(ANOVA) with Tukey’s HSD). The dashed line in b shows mean dosR expression in wild-type (WT) BCG. (c,d) Relative efficiencies of dosR transcription
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translation in some cases. DosR protein levels were higher for
ACG-biased mutants in hypoxia than WT, but lower in
ACC- and ACT-biased mutants, possibly due to preferential
paring of mcmo5U and cmo5U with G as in ThrACG (ref. 34). We
also tracked DosR activity by measuring hspX expression. hspX is
a prominent member of the dosR regulon, and its over-expression
slows cell growth35. We found that hspX expression mirrors
that of DosR levels (R2¼ 0.75, P¼ 3.8� 10� 8; Supplementary
Fig. 9c), which implies that all four synonymous Thr codon
mutants produced functional DosR protein that was translated in
a timely manner but with differing efficiencies that reflect the
previously observed codon bias effects (enhanced with ACG,
reduced with ACC). The results of the codon re-engineering
studies thus support the model of hypoxia-induced tRNA
reprogramming linked to codon-biased translation of critical
hypoxia response proteins.

Two clear conclusions emerge regarding the effect of dosR
codon engineering on BCG survival under hypoxic conditions:
(1) dosS and dosR are critical for BCG growth and survival under
hypoxic conditions (Fig. 4e, Supplementary Fig. 9b) and (2) dosR
codon substitution with the most strongly up- and down-
regulating codons (ACG and ACC, respectively; Fig. 3d) reduced
BCG fitness during re-aeration (Fig. 4d). However, in spite of the
clear codon-dependent changes in the expression of DosR, the
master regulator of hypoxic dormancy, the survival phenotypes of
the dosR codon-engineered mutants did not behave in a
predictable manner. The ACC and ACG mutants had signifi-
cantly reduced viability during re-aeration (Fig. 4e), which
could reflect the consequences of significantly over- or under-
expressing DosR during recovery from hypoxia. The lack of a
strong correlation between DosR expression levels and hypoxic
fitness points to influences from other systems and pathways
in BCG, such as contributions from protein turnover kinetics,
other stress response pathways (for example, enduring hypoxic
response36), changes in protein secondary modifications
(for example, phosphorylation of DosR32) and other signalling
pathways, as well as transcriptional changes, all integrating in the
final phenotype. For example, given that Majumdar et al.37

suggest that levels of DosR can decrease by as much as 7.5-fold in
Mtb and still support HspX expression, we surmise that the
lowered levels of DosR in ACC mutants was still sufficient to
induce WT levels of hspX expression. These phenotypic
complexities point to the need to better understand the
integration of the many systems involved in mycobacterial
persistence, while the dosR codon re-engineering results support
the mechanistic importance of codon usage patterns in the
expression of proteins critical to the hypoxic response in BCG.

Discussion
The totality of the results lead us to propose an integrated model
for translational contributions to mycobacterial non-replicative
persistence and to cellular stress response in general. Insights into
the phenomenon of tRNA reprogramming and codon-biased
translation, as well as the phenotypes of these synonymous Thr
mutants, can be obtained by taking into account the interplay
between codon usage, codon-tRNA pairings and changes in the
tRNAThr pool (copy number, modification levels), as illustrated in
Fig. 5. ACC—the optimal codon—and ACG are the two most
abundant Thr codons in BCG and each is read by a single tRNA:
tRNAThrGGU and tRNAThrUGU, respectively. That these two
tRNAs change copy number in opposite directions in early hypoxia
(Fig. 2d, Supplementary Fig. 2f), accompanied by wobble
reprogramming (Fig. 2e, Supplementary Fig. 2g) that

amplifies ACG selectivity by tRNAThrUGU, is consistent with
hypoxia-induced upregulation of ACG-enriched proteins and

downregulation of ACC-enriched proteins (Fig. 3). These condi-
tions also explain the significantly enhanced expression of dosR in
the hypoxic ACG-biased mutant (Fig. 4c,d). Moreover, our results
with the ACG-biased mutant dosR (Fig. 4c,d) and published
observations38 link overexpression of dosR with delayed aerobic
growth. The poor fitness of the ACC mutant upon aerobic recovery
can be explained by the fact that ACC is read by a single
tRNAThrGGU isoacceptor that decreased significantly in copy
number during HT (Supplementary Fig. 2f), which reduced the
translation of ACC-biased dosR and slowed DosR accumulation
(Fig. 4d, Supplementary Table 1). The delayed stress response
encourages further growth in early hypoxia (H6 in Fig. 4e) but led
to a loss of viability that was evident upon resuscitation (Fig. 4e).
The fact that biased use of minor Thr codons, ACA and ACU, does
not lead to dramatic effects on DosR expression or survival
(Fig. 4d,e) may relate to the presence of two tRNA quasi-species
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that read each of these codons: tRNAThrGGU and
tRNAThr(cmo5UGU) for ACU and tRNAThr(cmo5UGU) and
tRNAThr(mo5UGU) for ACA (Supplementary Fig. 4). Opposing
changes in copy number and modification in these pairs of tRNAs
may negate any effect on expression of ACA- and ACU-biased
dosR and thus survival (Figs 4e and 5).

These results suggest that BCG schedules transcripts for
translation by reprogramming tRNAs to better read specific
codons over their synonymous counterparts. Critical genes, such
as dosR, use a specific set of codons that are transiently prioritized
during stress to enhance their translation. Factoring in our
previous observations in yeast7,8,10, a general model emerges in
which the balance of codon usage and timing of tRNA
modification changes in a cell is tuned to allow appropriate
translation of survival and adaptation proteins under the
right conditions (Fig. 5). It is important to point out here that,
although as we have demonstrated in yeast9 and in the
present studies, there is evidence for a disconnect between
transcript levels and codon-biased translation, the model does
not preclude contributions from transcriptional regulation.
Indeed, this translational control system would cooperate with
transcriptional mechanisms to provide a means to enhance the
expression of critical proteins for which mRNA levels may not be
optimal at the moment of a stress or for which transcript levels
are abundant. With 3,000–8,000 mRNA molecules in a bacterial
cell at any moment in time39,40 and mRNA copy numbers as low
as 0.6–2 per gene, a translational control mechanism would
compensate for non-optimal mRNA levels by scheduling the
appropriate transcripts for translation under the pressure of a
changing external environment. However, not all codon-biased
transcripts are uniformly up- or downregulated, as illustrated by
the fact that half of the proteins from ACG-enriched genes
remain unchanged at any point in the hypoxia time course
(Supplementary Table 2). This suggests that many factors
contribute to stress-induced translational changes, such as
mRNA abundance and other codon biases in the genes,
with the observed stress-specific tRNA reprogramming and
codon-biased translation enhancing translational efficiency as
part of a larger network that regulates gene expression at all levels.

So what regulatory mechanisms lead to the tRNA reprogram-
ming observed in mycobacteria in, for example, early hypoxia?
There are clearly upstream transcriptional and translational
events that are activated by hypoxia and precede the reprogram-
ming and codon-biased upregulation of DosR, including an early
increase in transcription of dosR (Supplementary Fig. 5e). The
tRNA modification pattern on day 4 is clearly different from that
of day 9 (Fig. 1b), which points to changes in gene expression that
precede activation of the Dos regulon. Further downstream, the
sensors DosS and DosT, which detect redox changes, hypoxia,
nitric oxide and carbon monoxide, are histidine kinases that
regulate DosR’s activity as a transcription factor32. It is possible
that these and other kinases affect earlier and later transcription
and translation pathways, such as upregulation of the CmoA that
converts wobble mo5U to cmo5U at day 9 of hypoxia in BCG. It is
highly likely that the gradual changes in mycobacterial phenotype
in response to hypoxic stress involve a cascade of regulatory
events that includes stage-specific tRNA reprogramming and
codon-biased translation. The codon usage, tRNA modification
and proteomics data also support the idea that the tRNA
modification reprogramming and codon-biased translation affect
a larger network of proteins than just the DosR regulon in
hypoxia and, more broadly, affect translation of other protein
classes in other types of mycobacterial stress, such as nutrient
deprivation. Of the 3,951 genes in BCG, 580 open reading frames
possess codon usage patterns significantly deviating from the
genome average (Supplementary Fig. 3), which presents a large

number of genes that have the potential to be regulated in
part by tRNA modification reprogramming during environmental
changes.

Methods
Chemicals and reagents, bacterial strains, media and growth conditions are
described in Supplementary Methods.

Identification and quantification of tRNA modifications. RNA extraction and
purification is described in Supplementary Method 2. Purified BCG tRNA (0.5 mg
per sample) was hydrolysed enzymatically as described elsewhere22. To prevent the
formation of Tris-RNA adducts, HEPES buffer (pH 8.0) was used instead of
Tris-HCl buffer (pH 8.0). Furthermore, all the enzymes were dialysed against
HEPES buffer (pH 8.0) immediately before use. Reverse phase high performance
liquid chromatography (HPLC) of the hydrolysed tRNA was performed as
previously described7,22. Neutral loss scan, molecular feature extraction (MFE) and
targeted ion fragmentation (targeted MSn) were used to identify 40 modifications
in BCG tRNA. Neutral loss scan was performed on an Agilent 6460 LC-QQQ
spectrometer with ESI Jetstream ionization, searching for compounds with loss of
ribose (� 136 m/z) or 20-O-methyl-ribose (� 146 m/z) upon fragmentation. High
accuracy masses for molecular ions and CID fragments were obtained using either
an Agilent 6520 LC-QTOF MS system with an ESI ionization or an LTQ Orbitrap
XL MS system (Thermo-Scientific). Untargeted feature finding was performed
using Molecular Feature Extraction (Agilent Workstation Qualitative Analysis
vB05.06). Molecules reproducibly observed (by retention time, molecular mass,
features of MS2 fragmentation) in all biological replicates at one time point
were validated by comparisons with commercially available standards (see
Supplementary Data 1), comparisons with theoretical molecular masses of
ribonucleosides found in ChemSpider (http://www.chemspider.com/), Modomics
(http://modomics.genesilico.pl/) and the RNA modifications database (http://
mods.rna.albany.edu/), targeted MSn, isotopic envelope analysis and salt adduct
analysis. Dynamic MRM on an Agilent 6460 LC-QQQ spectrometer was used to
quantify these modifications22. Quantitative comparisons between biological
replicates from various time points were made possible by correcting for biological
variation in total tRNA quantities by dividing raw peak area for the ribonucleoside
by the ultraviolet absorbance (in-line detector) peak areas for the four canonical
ribonucleosides and normalizing spectra signals against that of the spiked internal
standard ([15N]5-deoxyadenosine) to adjust for day-to-day fluctuation in MS
sensitivity. All mass spectrometers were operated in positive ion mode. Relative
quantification of tRNA modifications was performed as previously described22,23.

Sequencing and quantification of tRNA-specific oligonucleotides. We adapted
an liquid chromatography tandem mass spectrometry (LC-MS/MS)-based platform
to map tRNA modifications, perform label-free absolute quantification of tRNA
copy numbers and determine the extent of modification on those tRNA copies
by combining the principles of bottom-up shotgun proteomics, amide-HILIC
oligonucleotide liquid chromatography and response factor calibration outlined in
previous studies30,41,42. However, the following alterations were made. The
tRNAThr pool was characterized and quantified using Agilent 6520 QTOF and
Agilent 6460 QQQ spectrometers coupled with an Agilent 1290 infinity LC system
with online diode array for ultraviolet–visible spectrometry, operated in negative
ion mode. BCG tRNA sequences were downloaded from the Genomic tRNA
database (http://gtrnadb.ucsc.edu/) and RNase U2, T1 and A digestion products
were predicted using Mongo Oligo Mass Calculator (http://mods.rna.albany.edu/
masspec/Mongo-Oligo). Digestion products 46 nt in length were evaluated for
sequence uniqueness (by BLASTn against genomic tRNA sequences) and RNAse
U2 selected for further experiments as it generates unique products from the
anticodon stem-loop of all three tRNAs for Thr43. We eliminated sequences with
positional isomers that could be generated from RNAse U2 digests with or without
missed cleavages, and identified a unique oligonucleotide tag for every RNAThr.
RNA and DNA oligomers with the same sequences (with the exception of U4T
for DNA) were purchased and used to optimize LC and MS parameters for
maximal chromatographic separation (by retention times), sequence coverage and
signal strength of the fragments, unique transitions with high signal-to-noise ratios
(S/N410) and minimal source fragmentation.

RNase U2 (Thermo-Scientific) digestion of BCG tRNA was performed followed
by the removal of 50 and 30 phosphates by bacterial alkaline phosphatase
(Life Technologies)44. The reactions were performed in 10 mM ammonium
acetate pH 7.0 at 37 �C for 4 h (2.5 h of U2 digest and 1.5 h of dephosphorylation)
in the presence of deaminase inhibitors (0.5 mg ml� 1 coformycin, 5 mg ml� 1

tetrahydrouridine) and antioxidants (50 mM desferrioxamine, 50 mM butylated
hydroxytoluene). The enzymes were dialysed against 10 mM ammonium acetate
before use to prevent the formation of Tris-RNA adducts. The proteins were
removed by filtration (Microcon YM-10), desalted by ZipTipC18 (Millipore)
and concentrated by vacuum centrifuge. The extent of digestion and size of
products were assessed by small Bioanalyzer chips (Agilent) and by MALDI-MS
(Voyager DE, AB SCIEX) using 2,4,6-trihydroxyacetophenone (THAP) as matrix.
The RNA fragments were reconstituted in 70% acetonitrile (v/v) for LC-MS/MS.
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Amide-HILIC LC separation was performed on a TSK-gel Amide-80 column
(2.0 mm ID� 150 mm, 3 mm particle size) using a binary solvent system consisting
of 8 mM ammonium acetate in ultrapure water (solvent A) and acetonitrile
(solvent B). HPLC was performed at a flow rate of 0.1 ml min� 1. The gradient of
solvent A was as follows: 0–2 min, held at 10% (v/v); 2–3 min, 10–15%; 3–5.5 min,
15–30%; 5.5–20.5 min, 30–60%; 20.5–25 min, 60–70%; 25–28 min, 70–10%. The
HPLC column was maintained at 50 �C. QTOF mass spectrometer was operated at
gas temperature 325 �C, gas flow 8 l min� 1, nebulizer 30 p.s.i., Vcap 3,800 V,
fragmentor 250 V, skimmer 1 65 V, octapole RF peak of 750. Targeted MS2

performed every 5 V from collision energies from 25 to 45 V and products scanned
from m/z 100 to 1,500. QQQ mass spectrometer was operated at gas temperature
325 �C, gas flow 10 l min� 1, nebulizer 32 p.s.i., sheath gas temperature 300 �C,
sheath gas flow 11 l min� 1, capillary 4,000 V, Vcharging 500. For MRM, MS1
acquisition was performed at wide resolution and MS2 acquisition at unit
resolution. Dwell time per transition at 150 ms, fragmentor 130–160 V, collision
energy 30–40 V and cell accelerator voltage 5–7 V.

As the positions of BCG tRNA modifications had not been mapped, we
generated a list of potential modified oligomers by taking into account the
40 modifications identified in BCG tRNA (Fig. 1; Supplementary Data 1), predicted
modifications by tRNAmod (http://crdd.osdd.net/raghava/trnamod/) and
comparisons with tRNA sequences catalogued in Modomics (http://
modomics.genesilico.pl/). The exact masses of these potential modified oligomers
and their c1 and y1 ion fragments were calculated. Selected reaction monitoring
(SRM) worklists were created to screen the tRNA pool of Log, H18 and R6 cells for
oligomers with these predicted c1 and y1 transitions. Selected reaction monitoring
screen for c1 and y1 transitions were performed separately and in technical
duplicate on the LC-QQQ. Oligomers with matching the retention times for their
predicted c1 and y1 transitions were sequenced by targeted MS2 on the LC-QTOF
at collision energies of 0, 15, 30 and 45 V. Fragment analysis, aided by SOS45 and
RoboOligo46, enabled us to map the exact location of each modification based on
their a-B, c, w and y ions. The analysis of free bases and internal fragments (mainly
matching ion fragments with w type cuts at the 30 end or a-B type cut from the
50 end, generating a pNpf or NpNf fragment) further validated our structural
assignments47. The two strongest signals (Supplementary Fig. 2, Supplementary
Data 3) were selected to quantify and identify each modified oligomer by MRM in
the same run. Response factors for RNA oligomers against DNA oligomers of the
same sequence were computed by external calibration (Supplementary Fig. 2).
With the assumption that these response factors are applicable to modified
oligomers of the same length and sequence, we quantified the amounts of each
tRNA species by the ratios of peak areas between the quantifier transitions of the
modified RNA fragment to 1 pmol of spiked DNA oligomers of the same length
and sequence. Signal processing and data reduction procedures for oligonucleotide
mapping, scoring of de novo sequences and identity validation through the use of
synthetic oligonucleotides are described in Supplementary Methods.

iTRAQ labelling and peptide fractionation. Protein extraction and processing is
described in Supplementary Methods. Aliquots of digested protein (from 50 mg of
total protein) were split in three as technical replicates and labelled with 8-plex
iTRAQ reagents according to the manufacturer’s instructions. To avoid bias from
any one tag during analysis, labels for samples from each time point were
randomized and unblinded post-analysis. After iTRAQ labelling, the samples
were desalted with Sep-Pak Plus C18 cartridges (Waters), dried by vacuum
centrifugation and reconstituted in IPG buffer (Agilent) without glycerol.
Isoelectric focusing was performed from pH 3 to 10 over 24 wells on an Agilent
3100 OFFGEL fractionator according to the manufacturer’s protocol (OG24PE00).
All the 24 fractions were collected and analysed by nano-LC-MS/MS.

LC-MS/MS analysis of the BCG proteome. iTRAQ proteomics experiments were
performed on an Agilent 1200 nano-LC-Chip/MS interfaced to an Agilent 6510
QTOF LC/MS. The LC system consisted of a capillary pump for sample loading,
a nanoflow pump and a thermostated microwell-plate autosampler. The
HPLC-Chip configuration consisted of a 160 nl enrichment column and a
150 mm� 75 mm analytical column (G4240-62001 Zorbax 300SB-C18). Mobile
phases used were: 0.1% formic acid in water (solvent A) and 0.1% formic acid in
acetonitrile (solvent B). A 120 min long gradient LC separation was used with
10 min for column wash and equilibration between runs. The samples were loaded
into the enrichment column at 1% (v/v) B at flow rates of 3 ml min� 1. On the
nano-flow pump, the gradient of solvent B was as follows: 0–1 min, held at 1%
(v/v), flow rate from 0.4 to 0.2 ml min� 1; 1–101 min, 1–45%, flow rate held at
0.2 ml min� 1; 101–121 min, 45–75%, flow rate held at 0.2 ml min� 1; 121–122 min,
75–98%, flow rate from 0.2 to 0.4 ml min� 1; 122–126 min, held at 98%, flow rate
held at 0.4 ml min� 1; 126–127 min, 98–1%, flow rate held at 0.4 ml min� 1;
127–130 min, held at 1%, flow rate held at 0.4 ml min� 1. LC-QTOF was operated at
high resolution (4 GHz) in positive ion mode with the following source conditions:
gas temperature 325 �C, drying gas 5 l min� 1, fragmentor 225 V. Capillary voltage
was adjusted between 1,500 and 2,100 V manually to achieve a steady spray. The
data were acquired from 200 to 1,700 m/z with an acquisition rate of 4 spectra s� 1

in MS mode and from 50 to 2,200 m/z with an acquisition rate of 2 spectra s� 1 in
MS/MS mode.

LC/MS data were extracted and evaluated using the MFE algorithm in
MassHunter Qualitative Analysis software (B04.00). Test injections (three to four)
from each fraction of the first technical replicate were made to optimize injection
volumes for the second and third biological replicates for maximal extracted
molecules with peptide-like features. For each fraction, the MFE list of molecular
ions was exported and used to exclude the acquisition of spectra from these ions in
subsequent runs. As such, every fraction from each technical replicate was run
twice, first without and later with the exclusion list. Data from MassHunter
Qualitative Analysis was exported to Mass Profiler Professional (version B02.02)
for analysis of technical reproducibility. This process was repeated for all three
biological replicates. Mass spectra were processed using Spectra Mill (Agilent;
v B.04.00.127), X!Tandem (The GPM, thegpm.org; version CYCLONE
(2010.12.01.1)) and Scaffold (version Scaffold_4.3.0, Proteome Software Inc.)
as detailed in Supplementary Method 3.

Strain construction. The strains used in this study are derivatives of BCG str.
Pasteur 1173P2 and are listed in Supplementary Table 3. dosSR knockout and
complementation are constructed by published methods48–51. Briefly, primers
dosRhrFR, dosShrFR and dosRregFR (sequences in Supplementary Table 3) were
used to amplify the dosR 30 flanking region, dosS 50 flanking region and dosSR
promoter regions, respectively (Supplementary Fig. 9a). The promoter regions
encompass all identified promoter and transcription factor binding elements
identified52–54. These regions were subcloned into TOPO vector by TA cloning
(TOPO TA cloning kit, Life Technologies), propagated in TOP10 chemically
competent E. coli, and sequenced to select for vectors that correctly amplified the
PCR fragment. Inserts were excised by the appropriate restriction enzymes and
ligated into pYUB854 (for dosShrFR and dosRregFR inserts) or pMV306 (for
dosRregFR insert) vectors using the DNA Ligation Kit Mighty Mix (Takara)
according to the manufacturer’s instructions. Transfection of WT BCG
with pYUB854 containing the dosRhrFR and dosShrFR inserts generated the
DdosSR strain. DdosSR was in turn complemented with pMV306 containing
the dosRregFR insert and one of five possible dosSR constructs (synthesized by
g-blocks (IDT) and altered by site-directed mutagenesis (Genescript). This
generated the DdosSR::dosSR(WT), DdosSR::dosSR(ACA), DdosSR::dosSR(ACC),
DdosSR::dosSR(ACG) and DdosSR::dosSR(ACT) strains. Deletion at the correct
locus was verified by hygromycin resistance, gel electrophoresis of PCR products
and by quantitative PCR (qPCR). Successful complementation was determined by
kanamycin resistance, restriction mapping, sequencing and qPCR. The stability of
the secondary structures of the re-engineered dosR constructs were analysed by
mfold (http://mfold.rna.albany.edu). All sequences possessed identical 30 and 50

structures (no changes were made in the flanking dosS and BCG_3157c sequences)
and had only modest changes to local dosR secondary structures (DG0 were stable
at 28–32 kcal mol� 1 for the top five structures for all dosR sequences—wild type
and mutants).

Reverse transcription–qPCR. Quantification of targeted mRNA sequences was
performed as described in ref. 55, using primers in Supplementary Table 3. sigA
served as internal loading control.

Targeted quantification of DosS and DosR by Skyline and AQUA. Skyline, an
open source software application (http://proteome.gs.washington.edu/software/
skyline), was used to build MRM-MS experiments for the targeted quantification
of DosS and DosR protein. The standard protocol, as described in ref. 56 was
used; wherein DosS and DosR sequences were pasted unto the Skyline
document and search against a BCG background database built from
SwissProt.BCG.Pasteur.1173P2.fasta (archived on the CHORUS database, Project
ID 1107). Automated picking of precursor peptides and transitions was used with
filters set to select for singly charged, long (y3 and greater) y-ions with no m/z
overlaps with b-ions. The method containing all valid in silico predicted MRM
transitions was exported and used on an Agilent 6460 QQQ spectrometers coupled
with an Agilent 1290 infinity LC system with online diode array for ultraviolet–
visible spectrometry, operated in positive ion mode. Proteins were extracted from
samples of wild-type and mutant BCG at various stages of the hypoxia-aerobic
resuscitation time course using the method described above and separated by
reverse phase HPLC using a Zorbax 300SB-C18 (4.6� 12.5 mm, 5 mm; Agilent)
guard column for desalting before introduction to a Zorbax RRHD 300SB-C18
analytical column (2.1� 100 mm, 1.8 mm; Agilent). Reverse phase separation was
performed with the following gradient of water and acetonitrile acidified with 0.1%
(v/v) formic acid with a gradient of solvent B was as follows: 0–0.5 min, held at 1%
(v/v), flow rate from 0.3–0.1 ml min� 1; 0.5–60 min, 1–50%, flow rate held at
0.1 ml min� 1; 60–61 min, 50–2%, flow rate held at 0.1 ml min� 1; 61–63 min, held
at 2%, flow rate from 0.1 to 0.3 ml min� 1; 63–64 min, 2–1%, flow rate held at
0.3 ml min� 1. Source conditions: gas temperature 325 �C, gas flow 10 l min� 1,
nebulizer 32 p.s.i., sheath gas temperature 300 �C, sheath gas flow 11 l min� 1,
capillary 2,000 V, Vcharging 500. Columns were incubated at 40 �C.

Results were imported back into Skyline for method refinement. iTRAQ
proteomics data (from this study) was imported as a spectral libraries and
used to validate ion ratios in the absence of internal standards (Supplementary
Fig. 10a–h). The top two precursor peptides by peak area and number of
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transitions (minimum two) were selected as qualification and quantification ions
and Agilent Automated MRM Method Optimizer for Peptides used to optimize
collision energies and fragmentation voltages for their MRM transitions. Optimized
parameters for quantifiers and qualifier transitions (Supplementary Table 3)
were: QDPLSGLTDQER—collision energy 14.1 V, fragmentor 130 V;
DIATELLSGTEPATVFR—collision energy 19.9 V, fragmentor 125 V;
TLLGLLSEGLTNK—collision energy 19.1 V, fragmentor 130 V;
TIPVAGAVLR—collision energy 9.9 V, fragmentor 140 V. Cell accelerator
voltage was kept constant at 7 V.

Targeted AQUA analysis57 was performed by using a labelled peptide stock
solution—prepared by dissolving isotopically labelled versions of the two target
peptides (QDPLSGLTDQER* and DIATELLSGTEPATVFR*, where R* is U-13C6,
15N4 Arg with a Dm/z of 10) in 0.1% (v/v) formic acid and 1% (v/v) acetonitrile in
water to a final concentration of 50 fmol ml� 1—to dissolve the vacuum-dried
protein digest of each sample. The samples were analysed using the LC-QQQ using
optimized parameters. To calculate calibration curves for quantification, protein
digests from DdosSR were spiked with the indicated amounts of unlabelled
quantifier peptides and their peak area ratios relative to 100 fmol of their
corresponding AQUA peptides plotted (Supplementary Fig. 10i–l). The quantity of
each peptide (and corresponding protein) relative to Log was determined.

Analysis of codon usage within operons. A total 2,322 annotated operons in
BCG were downloaded from Door2 (http://csbl.bmb.uga.edu/DOOR/). Nine
hundred and sixty-five proteins that can be reproducibly quantified form the
iTRAQ experiment were mapped onto their respective operons using custom
Matlab (R2015a) scripts while picking out operons with more than one gene
member. We then manually validated whether these operons produced
polycistronic mRNA by comparison with RNAseq reads (NCBI Gene Expression
Omnibus study GSE66883). Pair-wise comparisons of protein expression of gene
neighbours throughout the hypoxia time course were made and their R2 coefficient
of regression statistic calculated. Gene pairs with R2 greater than 0.4 are set as
correlated while those with R2 less than � 0.4 are set as anti-correlated pairs.
gene-specific codon counting10 was used to quantify the codon usage differences
between partners within correlated and anti-correlated pairs. The difference in
codon usage frequencies were then summed and visualized (Supplementary Fig. 8).
A codon is set to be over-represented in genes with anti-correlated protein
abundance changes if its cumulative frequency is more than twice its cumulative
frequency in correlated pairs and vice versa. The strength of the association
between ACG codon usage and anti-correlated protein expression between gene
pairs is then assessed using relative risk by assuming that codon usage of a gene is
independent of protein expression correlation between operonic gene neighbour
pairs (Supplementary Fig. 8). Gene pairs in which one partner was enriched with
ThrACC and the other with ThrACG are 4.6 times (confidence interval: 2.7–8.1,
Po0.0001) more likely to be anti-correlated in protein expression.

Statistical analysis. All the experiments involved triplicate cultures, repeated at
least four independent times. The data from mass spectrometric measurements and
gene expression were deflated as fold changes against Log values. Logarithmic
transformations were used for data sets with skewed or wide distributions and
indicated in their respective figures legends. The data from bacterial growth
were curve-fitted to an order 5 polynominal curve using Excel’s LINEST function
(Microsoft). Comparisons between the two samples were made using the
appropriate two-tailed t-tests after equality of variances were tested using F-tests.
Comparisons between multiple samples were determined using one-way or
two-way analysis of variance when comparing one or two factors, respectively.
Bonferroni’s or Dunnett’s Multiple Comparison or Tukey’s HSD post hoc tests were
used where it best reflects how sample means were compared and stated in their
respective figure legends. These statistical tests were performed using Prism 5
(Graphpad). Unless otherwise stated, all the data are represented as arithmetic
means±s.e. To aid interpretation on statistical significances, Po0.05, Po0.01 and
Po0.001 are denoted as *, ** and ***, respectively. Multivariate statistical analysis
of the meta-data is described in Supplementary Methods.

Data availability. All proteomics data from this study are available through the
CHORUS mass spectrometric data repository at (https://chorusproject.org/; Project
ID 1107). Supporting RNA-Seq data is available from the Gene Expression
Omnibus data repository with accession code GSE66883. The data that support the
findings of this study are available from the corresponding author upon request.
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