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Abstract: The purpose of this paper is to generalize Zhu’s theorem about characters of
modules over a vertex operator algebra graded by integer conformal weights, to the set-
ting of a vertex operator superalgebra graded by rational conformal weights. To recover
SL2(Z)-invariance of the characters it turns out to be necessary to consider twisted mod-
ules alongside ordinary ones. It also turns out to be necessary, in describing the space of
conformal blocks in the supersymmetric case, to include certain ‘odd traces’ on mod-
ules alongside traces and supertraces. We prove that the set of supertrace functions, thus
supplemented, spans a finite dimensional SL2(Z)-invariant space. We close the paper
with several examples.

1. Introduction

Let g be a finite dimensional simple Lie algebra and let ĝ be the corresponding affine
Kac-Moody algebra. In [19] Kac and Peterson expressed the (normalized) characters of
the integrable ĝ-modules in terms of Jacobi theta functions. In particular they showed
that the normalized characters of the integrable modules at a fixed level k ∈ Z+ span
an SL2(Z)-invariant vector space. Later the monstrous moonshine conjecture, relating
the monster finite simple group to the modular j-function, was resolved by Borcherds
[3,4] using generalized Kac-Moody algebras and the monster vertex operator algebra of
Frenkel, Lepowsky and Meurman [12]. Later still Zhu [29] established SL2(Z)-invari-
ance of the characters of an arbitrary C2-cofinite rational vertex operator algebra with
integer conformal weights, see Theorem 1.1 below. The modular invariance of the two
prior examples can be recovered as special cases of Zhu’s result. The main result of this
paper, Theorem 1.3 below, is a generalization of Theorem 1.1.

Recall that a vertex operator algebra (VOA) consists of a vector space V , two dis-
tinguished vectors |0〉 and ω (called the vacuum and Virasoro vector, respectively), and
an assignment to each vector u ∈ V of a ‘field’ Y (u, z) = ∑

n∈Z
u(n)z−n−1, where

u(n) ∈ End V . These data are to satisfy certain axioms (see Definition 2.1).
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By definition V is C2-cofinite if V(−2)V has finite codimension in V .
If Y (ω, z) = L(z) = ∑

n∈Z
Lnz−n−2 then the operators Ln form a representation

on V of the Virasoro algebra with some central charge c. The energy operator L0 acts
semisimply. The eigenvalue of an L0-eigenvector u ∈ V is called its conformal weight
and is denoted �u . We write Vk for the set of vectors of conformal weight k.

A module over a VOA V is a vector space M together with a field

Y M (u, z) =
∑

n∈Z

uM
(n)z

−n−1 =
∑

n∈−�u+Z

uM
n z−n−�u (1.1)

assigned to each u ∈ V . These data are to satisfy certain axioms, see Definition 2.2. A
positive energy V -module is an R+-graded V -module M = ⊕ j M j , with finite dimen-
sional graded pieces, such that uM

n M j ⊆ M j−n for each u ∈ V, n ∈ −�u + Z. We say
that V is rational if it has finitely many irreducible positive energy modules and every
positive energy V -module is a direct sum of irreducible ones.

Given V as above, Zhu introduced a second VOA structure Y [u, z]=∑
n∈Z

u([n])z−n−1

on V , and a new Virasoro element ω̃ ∈ V (see Definition 2.3). Let L [0] be the new energy
operator and V[k] the set of vectors of conformal weight k with respect to ω̃.

Let H denote the complex upper half plane and set q = e2π iτ , where τ is a variable
on H. Recall the standard weight k action of the modular group SL2(Z) on holomorphic
functions on H:

[ f · A](τ ) = (cτ + d)−k f

(
aτ + b
cτ + d

)

for A =
(

a b
c d

)

∈ SL2(Z). (1.2)

Theorem 1.1 (Zhu). Let V be a C2-cofinite rational VOA with non negative integer
conformal weights. Let k ∈ Z+, u ∈ V[k], and let M be an irreducible positive energy
V -module. Then the trace function

TrM uM
0 q L0−c/24

converges to a holomorphic function SM (u, τ ) of τ ∈ H. Let C(u) denote the span of
SM (u, τ ) as M runs over the set of irreducible positive energy V -modules. Then C(u)
is a finite dimensional vector space invariant under the weight k action of SL2(Z).

Setting u = |0〉 shows that the graded characters of the irreducible positive energy
V -modules span an SL2(Z)-invariant space of weight 0. Modular forms of other integer
weights arise from traces of other elements of V .

Theorem 1.1 has been generalized in several directions. Dong, Li and Mason [6]
proved a ‘twisted’ version for a VOA V (again required to be rational, C2-cofinite, and
with integer conformal weights) together with a finite group G of its automorphisms.
We shall describe their result in some detail below.

Dong and Zhao gave further generalizations to the case of a rational C2-cofinite ver-
tex operator superalgebra (VOSA) V (see Definition 2.1) together with a finite group
G of its automorphisms. In [10] these authors dealt with the case of integer conformal
weights, and in [9] with the case in which even elements of V have conformal weights
in Z and odd elements have conformal weights in 1/2 + Z.

In the VOA setting Miyamoto [23] established SL2(Z)-invariance of traces of

intertwining operators of type
( M2

M1 M2

)
. In this context intertwining operators of type

( M3

M1 M2

)
are certain maps I : M1 → Hom(M2,M3)[[z, z−1]], where M1,M2 and M3
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are V -modules, satisfying a natural analog of the V -module condition. Theorem 1.1 is
the special case M1 = V . Later Yamauchi [27] proved a twisted version of Miyamoto’s
result. Generalization to traces of arbitrary products of intertwining operators was later
achieved by Huang [13]. Although we do not consider intertwining operators in this
paper, there is a feature in common with these other works: the appearance of modular
forms of non-integer weight.

Finally we mention some other works in the spirit of [29]. In [24] Theorem 1.1 is
generalized to nonrational VOAs [24] (see also [2] in this connection), and in [22] and
[15] Zhu’s recursion relations for n-point functions are generalized to the VOSA case.

The present paper is concerned with VOSAs graded by rational (not necessarily inte-
ger, nor half-integer) conformal weights. There are many natural examples from which
to draw motivation, some of which we review below. We do not assume positivity of
conformal weights, we work in the general supersymmetric setting, and we impose no
relation between the parity of a vector and its conformal weight. To recover SL2(Z)-
invariance of characters in this setting it turns out to be necessary to consider twisted
modules (see Definition 2.2). It is thus natural to follow [6,9, and 10] by working from
the outset in the greater generality of a VOSA together with a finite group of its auto-
morphisms, and our main result, Theorem 1.3, is a generalization of the corresponding
main theorems of those papers. Dealing with superalgebras leads naturally to the notion
of ‘odd trace’ (see below) which we extend to the VOSA setting. Some complication is
introduced into the statement of Theorem 1.3 by the interaction of the odd trace with
the twisting.

We now describe the result of [6] in more detail. Let V be a VOA and G a finite group
of its automorphisms. For g ∈ G a g-twisted V -module is a vector space M together
with fields Y M (u, z) = ∑

n uM
n z−n−�u , where the sum runs over n ∈ εu + Z (instead

of −�u + Z), where εu is a certain real number depending on u ∈ V and g. There is
an obvious notion of ‘g-rational’ VOA. Fix commuting elements g, h ∈ G, and let M
be a g-twisted V -module. Setting Y h·M (u, z) = Y M (h(u), z) equips M with another
g-twisted V -module structure denoted h · M . Suppose M is h-invariant, meaning that
h · M is equivalent to M , and let γ : M → M witness the equivalence, i.e.,

h(u)M
n = γ−1uM

n γ for all u ∈ V, n ∈ εu + Z. (1.3)

Theorem 1.2 (Dong, Li, and Mason). Let V be a C2-cofinite VOA with integer confor-
mal weights, such that Vk = 0 for sufficiently negative k. Let G be a finite group of
automorphisms of V , and suppose V is g-rational for each g ∈ G. Let k ∈ Z, u ∈ V[k],
let g, h ∈ G commute, and let M be a h-invariant irreducible positive energy g-twisted
V -module. Introduce γ : M → M as in Eq. (1.3). Then the trace function

TrM uM
0 γ q L0−c/24

converges to a holomorphic function SM (u, τ ) of τ ∈ H. Let C(g, h; u) denote the span
of SM (u, τ ) as M runs over the set of h-invariant irreducible positive energy g-twisted
V -modules. Then C(g, h; u) is a finite dimensional vector space invariant under the
weight k action (1.2) of SL2(Z) in the sense that

(
a b
c d

)

: C(g, h; u) → C(gahc, gbhd; u).

We work with superalgebras (see Sects. 2 and 7) and so there is overlap with [9] and
[10] in this respect. One difference, though, is that in those papers a subspace of a vector
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superspace is allowed to be non Z/2Z-graded, while in the present work we prefer to
allow only Z/2Z-graded subspaces.

Let A be a finite dimensional simple superalgebra, and let f : A → C be a super-
symmetric function on A, i.e., f (ab) = p(a, b) f (ba) for all a, b ∈ A. Then one of the
following is true.

• A = End(Cm|k), and f is a scalar multiple of the map a �→ STrN (a), where
N = C

m|k is the unique irreducible A-module.
• A = Qn = End(Cn)[ξ ]/(ξ2 = 1), where ξ is an odd indeterminate, and f is a scalar

multiple of the map a �→ TrN (aξ), where N = C
n + ξCn is the unique irreducible

A-module.

We shall refer to these two cases as Type I and Type II respectively. The Type II super-
algebra Qn is often called the ‘queer superalgebra’, it can be realized inside End(Cn|n)
as the set of block matrices of the form

(
A B
B A

)
, where A, B ∈ End(Cn). The super-

symmetric function on Qn , which becomes
(

A B
B A

) �→ Tr(B), is often called the ‘odd
trace’.

Now let V be a VOSA with rational conformal weights, and let G be a finite group
of its automorphisms. Fix commuting elements g, h ∈ G. An associative superalge-
bra Zhug(V ) was defined by De Sole and Kac in [5], generalizing constructions in
[7,11,20,28], and the original [29] (see Sect. 6). This Zhu algebra has the property that
there is a functorial bijection L from the set of irreducible Zhug(V )-modules to the set
of irreducible positive energy g-twisted V -modules. The automorphism h descends to
Zhug(V ) and permutes its irreducible modules. The bijection L restricts to h-invariant
modules.

Let M be a h-invariant irreducible positive energy g-twisted V -module, N the cor-
responding Zhug(V )-module, and A the corresponding simple component of Zhug(V ).
Let γ : M → M satisfy Eq. (1.3). If A is of Type I then γ is unique up to a scalar
multiple (and is pure even or odd), but if A is of Type II then γ can be chosen to be either
even or odd. Indeed if A = A0[ξ ]/(ξ2 = 1) then it turns out h(ξ) = ±ξ , and we shall
choose the parity of γ to be even (resp. odd) in the case + (resp. −). We now associate
to M the supertrace function

SM (u, τ ) =
⎧
⎨

⎩

STrM

(
u0γ σ

p(γ )
M q L0−c/24

)
if M is of Type I,

TrM

(
u0γ σ

p(γ )
M ξq L0−c/24

)
if M is of Type II,

(1.4)

where by ξ : M → M we mean the lift to M of the corresponding ξ : N → N . We now
have

Theorem 1.3 (Main Theorem). Let V be a C2-cofinite VOSA with rational conformal
weights, such that Vk = 0 for sufficiently negative k. Let G be a finite group of auto-
morphisms of V , and suppose V is g-rational for each g ∈ G. Let k ∈ Q, u ∈ V[k],
let g, h ∈ G commute, and let M be a h-invariant irreducible positive energy g-twisted
V -module. Introduce γ : M → M and SM as in (1.4). Then SM converges to a holo-
morphic function of τ ∈ H. Let C(g, h; u) denote the span of SM (u, τ ) as M runs over
the set of h-invariant irreducible positive energy g-twisted V -modules. Then C(g, h; u)
is a finite dimensional vector space invariant under the weight k action (1.2) of SL2(Z)

in the sense that
(

a b
c d

)

: C(g, h; u) → C(gahc, gbhd; u). (1.5)
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Now we make some remarks. The condition of g-rationality of V in Theorem 1.3 can
be replaced by the condition that Zhug(V ) be finite dimensional and semisimple, which
is implied by g-rationality (see [7] Thm. 8.1). In fact finite dimensionality of Zhug(V )
is already assured by C2-cofiniteness of V (see [5] Prop. 2.17(c)).

The condition of C2-cofiniteness imposed in Theorem 1.3 (and in all works cited
above), can be replaced by the weaker condition described in Remark 5.2. At the end
of the Introduction we explain an application of Theorem 1.3 made possible by this
observation.

The definition of the SL2(Z)-action involves the term γA(τ ) = (cτ + d)−k , where
k /∈ Z. We resolve the ambiguity by defining this term as a principal value, see Sect. 4.
Because of this the equation

γB(τ )
−kγA(Bτ)

−k = γAB(τ )
−k

(which is true for k ∈ Z) holds up to a multiplicative root of unity factor. Therefore
the space C(u) = ⊕g,h∈GC(g, h; u) is only a projective representation of SL2(Z) in
general. If �u ∈ Z then it is a true representation.

Let V be a VOSA of the type considered in [9], viz. �u lies in Z (resp. 1/2 + Z) for
u even (resp. odd), and let G = {1, σV } ∼= Z/2Z. If we restrict attention to u = |0〉
then odd trace functions vanish and we may ignore modules of Type II. We then recover
the result: the vector space spanned by each of the following two sets of functions is
SL2(Z)-invariant of weight 0:

• The supercharacters STrM q L0−c/24 of the 1-twisted irreducible positive energy
V -modules.

• The characters TrM q L0−c/24 and supercharacters STrM q L0−c/24 of the 1-twisted
and σV -twisted irreducible positive energy V -modules.

In the physics literature 1-twisted modules are often referred to as ‘Ramond twisted’
modules, and σV -twisted modules as ‘Neveu-Schwartz twisted’ modules.

Now we indicate the layout of the paper. Like the other generalizations of Theorem
1.1 cited above, our proof follows the pattern of the original paper of Zhu [29]. We have
made some simplifications, on the other hand some complications are forced on us by
the more general setting.

In Sect. 2 we give basic definitions pertaining to superspaces, superalgebras, VOSAs
and their modules. In Sect. 3 we collect some necessary modular form identities. In
Sect. 4 we define a certain space C(g, h) of maps V ×H → C (linear in V , holomorphic
in H) called conformal blocks, and we determine how the conformal blocks transform
under SL2(Z).

The C2-cofiniteness condition on V implies that for S ∈ C(g, h) and fixed u ∈ V , the
function S(u, τ ) satisfies a Fuchsian differential equation. Moreover there is a Frobenius
expansion of S in powers of q and log q whose coefficients are linear maps V → C. We
sketch the proofs in Sect. 5, referring to [6] for details.

In Sect. 6 we analyze the leading coefficients in the Frobenius expansion of a con-
formal block. These coefficients descend to linear maps Zhug(V ) → C. We establish
that these maps are h-supersymmetric functions on Zhug(V ) (see Section 7 for the def-
inition). In Sections 7 and 8 we construct a basis of h-supersymmetric functions on
Zhug(V ) and extend each one to a supertrace function on V , arriving at the definition
in Eq. (1.4) above.

We then prove that the SM (u, τ ) lie in C(g, h). Finally in Sect. 9 we prove that
the SM (u, τ ) span C(g, h). Theorem 1.3 is obtained by combining this result with the
modular transformation property of C(g, h) proved in Sect. 4.
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The rest of the paper is devoted to examples.
In Sect. 10 we consider the neutral free fermion VOSA V = F(ϕ) and we take

G = {1, σV }. We explicitly compute conformal blocks C(g, h; u) for u = |0〉 and u = ϕ

the weight 1/2 vector. In weight 1/2 the Type II supertrace function makes an appear-
ance; the corresponding space of conformal blocks is one dimensional and is spanned
by Dedekind’s weight 1/2 modular form η(τ).

In Sect. 11 we study the charged free fermions VOSA V = Fa
ch(ψ,ψ

∗) which is
equipped with a Virasoro field La(z) depending on the real parameter a ∈ (0, 1). This
VOSA admits a group K ∼= S1 of automorphisms. For each g, h ∈ K we write down the
supertrace of h on the unique irreducible g-twisted positive energy V -module, and we
compute transformations of these functions under SL2(Z). The results confirm Theorem
1.3 which applies when a ∈ Q and g, h have finite order.

In Sect. 12 we study the VOSA VQ associated to a positive definite integral (not nec-
essarily even) lattice Q. For G = {1, σV } we describe the 1- and σV -twisted modules
and the spaces C(g, h; |0〉).

Finally we discuss here the example of the affine Kac-Moody VOA V = Vk(sl2),
where k > −2 is a rational number (see [8,18]). This VOA admits a family of ‘perturbed’
VOA structures depending on a parameter z ∈ (0, 1) ∩ Q. This family was studied in
detail in [8] (see also [1]) and it was shown there that V (z) possesses rational (but not
integer) conformal weights, that V (z) is g0-rational for a certain finite order automor-
phism g0 (which depends on z), and that V (z) satisfies the weakened C2-cofiniteness
condition of Remark 5.2 (in the case g = g0 and arbitrary h ∈ G = 〈g0〉). It follows
then from Theorem 1.3 that the trace functions TrM u0q L0−c/24, as M runs through the
finitely many irreducible positive energy V (z)-modules, span C(g0, 1; u). This space is
invariant under the congruence subgroup 
0(N ) ⊆ SL2(Z) of matrices

(
a b
c d

)
satisfying

a ≡ d ≡ 0 (mod N ) and b ≡ c ≡ 0 (mod N ), where N is the order of G. More
refined results are possible, which we would like to deal with in future work.

2. Basic Definitions

We use the notation Z+ = {0, 1, 2, . . .}. All vector spaces and superspaces are over C.
A vector superspace U is a vector space graded by Z/2Z = {0, 1}. We call U0 and

U1 the even and odd components of U respectively. A linear map between vector su-
perspaces is always Z/2Z-graded, and a subspace is always Z/2Z-graded. We use the
following notations: p(u) = α for homogeneous u ∈ Uα , and p(u, v) = (−1)p(u)p(v).
Every vector superspace U carries a natural involution σU defined by σU (u) = (−1)p(u).
We write C

m|k for the vector superspace with a basis consisting of m even vectors and
k odd vectors.

An associative superalgebra is a vector superspace with an associative algebra struc-
ture compatible with the Z/2Z-grading. A homomorphism of superalgebras is a homo-
morphism of algebras that preserves the Z/2Z-grading. Isomorphism and automorphism
are now defined as usual. We deal with unital superalgebras in this paper. The unit ele-
ment must be even and a homomorphism of unital superalgebras must therefore be
even. A basic example of an associative superalgebra is End U , with (End U )α = {X ∈
End U |XUβ ⊆ Uα+β}, for U a vector superspace. A module over an associative super-
algebra A is a vector superspace M together with a homomorphism A → End M . Two
A-modules are equivalent if there is a Z/2Z-graded linear isomorphism between them
which intertwines with the A-action, the isomorphism may be even or odd.
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An associative superalgebra is said to be simple if it has no proper Z/2Z-graded
ideals apart from {0}, and is said to be semisimple if it is isomorphic to a direct sum of
simple superalgebras.

The commutator of operators X and Y on a vector superspace is defined to be [X,Y ] =
XY − p(X,Y )Y X . The supertrace of an operator X ∈ End U is STrU X = TrU0

X −
TrU1

X . In general STrU [X,Y ] = 0.
We write U [z] for the ring of polynomials in z with coefficients in U,U [[z]] for the

ring of formal power series, and U ((z)) for the ring of Laurent series, i.e., expressions∑
n∈Z

anzn in which finitely many negative powers of z occur. The space of formal
distributions U [[z±1]] is the set of expressions

∑
n∈Z

anzn with no restriction on the
coefficients an . Finally U {{z}} = ⊕r∈RzrU [[z±1]]. Extension to several variables is
straightforward, but note that U ((z))((w)) 
= U ((w))((z)).

We write ∂z f (z) for the z-derivative of f (z), also z(n) for zn/n!, and [zn] : f (z) for
fn the zn coefficient of f (z).

A convenient index convention for formal distributions is f (z) = ∑
n∈Z

f(n)z−n−1.
The formal residue operation Resz(·)dz : U [[z±1]] → U is defined by Resz f (z)dz =
[z−1] : f (z) = f(0). We have

Resz ∂z f (z)dz = 0 and Resz f (z)∂zg(z)dz = − Resz g(z)∂z f (z)dz.

Let f (z) ∈ U ((z)) and g(w) ∈ wC
× + w2

C[[w]]. The substitution of z = g(w) into
f (z) gives a well-defined element f (g(w)) ∈ U ((w)), and we have the formal change
of variable formula

Resz f (z)dz = Resw f (g(w))∂wg(w)dw.

The formal delta function δ(z, w) ∈ C[[z±1, w±1]] is defined by

δ(z, w) =
∑

n∈Z

znw−n−1.

The operators

iz,w : U [z±1, w±1, (z − w)±1] → U ((z))((w))

and iw,z : U [z±1, w±1, (z − w)±1] → U ((w))((z))

denote expansion of an element as Laurent series in the domains |z| > |w| and |w| > |z|,
respectively. For example,

iz,w(z − w)−1 =
∑

j∈Z+

z− j−1w j and iw,z(z − w)−1 = −
∑

j∈Z+

z jw− j−1.

An End U -valued formal distribution f (z) is called a quantum field if f (z)u ∈ U ((z))
for each u ∈ U .

For definitions regarding vertex operator superalgebras we follow the book of Kac
[18].

Definition 2.1. A vertex operator superalgebra (VOSA) is a quadruple (V, |0〉 , ω,Y )
where V is a vector superspace, |0〉 and ω are even elements of V called the vacuum
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vector and the Virasoro vector respectively, and Y : V → (End V )[[z±1]] is an injec-
tive linear map such that Y (u, z) is a quantum field for each u ∈ V . The map Y is called
the state-field correspondence, and is written

Y (u, z) =
∑

n∈Z

u(n)z
−n−1.

The operators u(n) are called the Fourier modes of u, and the operation ·(n)· : V ⊗V →
V is called the nth product. The following axioms are to be satisfied:

• Y (|0〉 , z) = IV .
• For all u, v ∈ V, n ∈ Z,

∑

j∈Z+

Y (u(n+ j)v, w)∂
( j)
w δ(z, w)

= Y (u, z)Y (v,w)iz,w(z − w)n − p(u, v)Y (v,w)Y (u, z)iw,z(z − w)n .

• If Y (ω, z) = L(z) = ∑
n∈Z

Lnz−n−2 then the operators Ln satisfy the commutation
relations of the Virasoro algebra:

[Lm, Ln] = (m − n)Lm+n + δm,−n
m3 − m

12
c,

where c ∈ R is called the central charge of V .
• L0 is diagonalizable on V with rational eigenvalues, and the eigenspaces are finite

dimensional. The L0-eigenvalue of an eigenvector u ∈ V is called the conformal
weight �u of u. Also �|0〉 = 0 and �ω = 2.

• The set of conformal weights of V is bounded below.
• Y (L−1u, z) = ∂zY (u, z) for all u ∈ V .

Let Vk = {u ∈ V |�u = k}. A convenient indexing of the modes, called the confor-
mal weight indexing, is defined by un = u(n+�u−1) (for u of homogeneous conformal
weight, then extended to all u ∈ V linearly). Hence

Y (u, z) =
∑

n∈−[�u ]
unz−n−�u ,

where here and below [α] denotes the coset α + Z of α ∈ R modulo Z.
The second axiom of Definition 2.1 is called the Borcherds identity. Expressed in

terms of modes it becomes
∑

j∈Z+

(
m +�u − 1

j

)

(u(n+ j)v)m+k x

=
∑

j∈Z+

(−1) j
(

n

j

)
[
um+n− jvk+ j−n − p(u, v)(−1)nvk− j um+ j

]
x (2.1)

for all u, v, x ∈ V, n ∈ Z,m ∈ −[�u], and k ∈ −[�v].
A useful special case of the Borcherds identity is the commutator formula

[um, vk] =
∑

j∈Z+

(
m +�u − 1

j

)

(u( j)v)m+k, (2.2)
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obtained by setting n = 0 in (2.1). The commutator formula together with the final
VOSA axiom implies that [L0, uk] = −kuk for all u ∈ V .

A homomorphism φ : V1 → V2 of VOSAs is an even linear map such that φ(|0〉1) =
|0〉2 , φ(ω1) = ω2, and φ(u(n)v) = φ(u)(n)φ(v) for all u, v ∈ V1. Homomorphisms
preserve conformal weight. Isomorphism and automorphism are defined in the obvious
way.

Definition 2.2. Let V be a VOSA and g an automorphism of V . Let μ(u) denote the
g-eigenvalue of an eigenvector u ∈ V . Pull μ(u) back to a coset [εu] in R modulo
Z via the map e2π i x : R → S1 (also define εu to be the largest non positive element
of [εu]). A g-twisted V -module is a vector superspace M together with a state-field
correspondence Y M : V → (End M){{z}},

Y M (u, z) =
∑

n∈[εu ]
uM

n z−n−�u =
∑

n∈[εu ]+[�u ]
uM
(n)z

−n−1,

satisfying the quantum field property. The following axioms are to be satisfied:

• Y M (|0〉 , z) = IM .
• For all u, v ∈ V, x ∈ M, n ∈ Z,m ∈ [εu], and k ∈ [εv],

∑

j∈Z+

(
m +�u − 1

j

)

(u(n+ j)v)
M
m+k x

=
∑

j∈Z+

(−1) j
(

n

j

)[
uM

m+n− jv
M
k+ j−n − p(u, v)(−1)nvM

k− j u
M
m+ j

]
x .

A positive energy g-twisted V -module is a g-twisted V -module M such that

• M = ⊕ j∈RM j is R-graded, each graded piece is finite dimensional, and Mk = 0
for sufficiently negative k,

• uM
n M j ⊆ M j−n for all u ∈ V, n ∈ [εu], j ∈ R+.

There is a ‘dangerous bend’ in Definition 2.2. If u ∈ V has conformal weight�u /∈ Z,
then the modes un acting on V are indexed by n ∈ −[�u], so V with its adjoint action
is an e−2π i L0 -twisted V -module, not a 1-twisted V -module as one might expect. This
issue is purely notational, and we could change notation so as to have V be a 1-twisted
V -module. We use Definition 2.2 because it is most natural in relation to the modular
transformations of conformal blocks, Eq. (1.5). Our definition coincides with the usual
one when all conformal weights of V are integers.

Definition 2.3. The Zhu VOSA structure is (V, |0〉 , ω̃,Y [u, z]), where

ω̃ = (2π i)2(ω − c

24
|0〉)

and

Y [u, z] = e2π i�u zY (u, e2π i z − 1).

If we write L[z] = Y [ω̃, z] = ∑
n∈Z

L [n]z−n−2, then

L [−2] = (2π i)2(L−2 − c/24), L [−1] = 2π i(L−1 + L0), and

L [0] = L0 −
∑

j∈Z>0

(−1) j

j ( j + 1)
L j .
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The eigenvalue ∇u of an eigenvector u with respect to L [0] is called the Zhu weight of
u. We write V[k] = {u ∈ V |∇u = k} and

Y [u, z] =
∑

n∈Z

u([n])z−n−1 =
∑

n∈−[∇u ]
u[n]z−n−∇u .

Explicitly we have

u([n])v = Resz zne2π i�u zY (u, e2π i z − 1)vdz

= (2π i)−n−1 Resw[ln(1 + w)]n(1 + w)�u−1Y (u, w)vdw,

where w = e2π i z − 1. An automorphism of the new VOSA structure is the same as
an automorphism of the old one. Vectors of homogeneous conformal weight are not
generally of homogeneous Zhu weight and vice versa.

We use the following notation below: V is a VOSA, G a finite group of automor-
phisms of V , and g, h ∈ G two commuting automorphisms. Unless otherwise stated an
element of V is a simultaneous eigenvector of g and h. For such an eigenvector u we
write μ(u) and λ(u) for its g- and h-eigenvalues respectively.

We define a right action of SL2(Z) on G × G by (g, h) · A = (gahc, gbhd), where
A = (

a b
c d

)
. Similarly (μ, λ) · A = (μaλc, μbλd). We use the standard notation Aτ for

aτ+b
cτ+d .

3. Modular Forms

In this section we recall some functions that appear in connection with modular forms
and elliptic curves. Consider the ill-defined expression

2π i
∑

n∈[ε]

′ e2π inz

1 − λqn
,

where λ is a root of unity and [ε] is a coset of Q modulo Z (also fix ε ∈ [ε] such that
−1 < ε ≤ 0, and let μ = e2π iε). By

∑′ we mean the summation over all nonsingular
terms, i.e., if [ε] = Z and λ = 1 then n = 0 is to be excluded from the sum.

To make sense of the sum we first rewrite it as

2π iδ

1 − λ
+ 2π i

∑

n∈[ε]>0

e2π inz

1 − λqn
− 2π i

∑

n∈[ε]<0

λ−1e2π inzq−n

1 − λ−1q−n
,

where

δ =
{

1 if [ε] = Z and λ 
= 1,
0 otherwise.

Then we expand in non-negative powers of q to get

2π iδ

1−λ +2π i
∑

n∈[ε]>0

e2π inz +2π i
∑

m∈Z>0

⎡

⎣
∑

n∈[ε]>0

e2π inz(λqn)m −
∑

n∈[ε]<0

e2π inz(λ−1q−n)m

⎤

⎦.
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This is still not well-defined, because of the second term. Let us re-sum the second term
using the geometric series formula. We arrive at the following formula, which we regard
as a definition:

Pμ,λ(z, q) = 2π iδ

1 − λ
− 2π i

e2π i(1+ε)z

e2π i z − 1

+2π i
∑

m∈Z>0

⎡

⎣
∑

n∈[ε]>0

e2π inz(λqn)m −
∑

n∈[ε]<0

e2π inz(λ−1q−n)m

⎤

⎦ . (3.1)

Let us write

Pμ,λ(z, q) = −z−1 +
∞∑

k=0

Pμ,λk (q)zk .

The Bernoulli polynomials Bn(γ ) are defined by

eγ z

ez − 1
=

∞∑

n=0

zn−1

n! Bn(γ ).

For example B0(γ ) = 1, B1(γ ) = γ − 1/2, B2(γ ) = γ 2 − γ + 1/6, etc. The Bernoulli
numbers are Bn = Bn(1). Using the definition of the Bernoulli polynomials and the
series expansion of e2π inz we directly obtain the following.

Lemma 3.1. For k ∈ Z+ we have

Pμ,λk (q) = δk,0
2π iδ

1 − λ
− (2π i)k+1

(k + 1)! Bk+1(1 + ε)

+
(2π i)k+1

k!
∑

m∈Z>0

⎡

⎣
∑

n∈[ε]>0

nk(λqn)m −
∑

n∈[ε]<0

nk(λ−1q−n)m

⎤

⎦ .

We now record the modular transformation properties of the functions Pμ,λk . For
(μ, λ) 
= (1, 1), our functions are essentially the same as the Q-functions of [6]. Indeed
for all k ∈ Z+,

Pμ,λk (q) = (2π i)k+1 Qk+1(μ, λ, q) when (μ, λ) 
= (1, 1).

Section 4 of [6], in particular Theorem 4.6, tells us that Pμ,λk , when summed in order of
increasing powers of q, converges to a holomorphic function of τ ∈ H. Furthermore

Pμ,λk (Aτ) = (cτ + d)k+1 P(μ,λ)·Ak (τ ). (3.2)

Sinceμ and λ are roots of unity, there exists N ∈ Z+ such thatμN = λN = 1. Therefore
Pμ,λk (Aτ) = (cτ + d)k+1 Pμ,λk (τ ) whenever A = (

a b
c d

)
satisfies a ≡ d ≡ 1 (mod N )

and b ≡ c ≡ 0 (mod N ), i.e., if A ∈ 
0(N ). Hence Pμ,λk (τ ) is a holomorphic modular
form on 
0(N ) of weight k + 1.
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Now we consider the case (μ, λ) = (1, 1). Comparing the formula of Lemma 3.1
with the Eisenstein series

Gk(τ ) = 2ζ(k) +
2(2π i)k

(k − 1)!
∞∑

n=1

σk−1(n)q
n (for k ≥ 2)

shows that P1,1
k (q) = Gk+1(τ ) for k ≥ 1. We also have P1,1

0 (q) = −π i . Therefore
Eq. (3.2) holds when (μ, λ) = (1, 1) and k ≥ 2. It is well-known that G2(q) is not a
modular form, but instead satisfies

G2(Aτ) = (cτ + d)2G2(τ )− 2π ic(cτ + d).

The function P1,1(z, q) (which we abbreviate to P(z, q) below) is closely related to the
classical Weierstrass zeta function

ζ(z, τ ) = z−1 +
∑

(m,n) 
=(0,0)

[
1

z − mτ − n
+

1

mτ + n
+

z

(mτ + n)2

]

= z−1 −
∞∑

k=4

zk−1Gk(τ ),

(the latter is the Laurent expansion about z = 0). We have

ζ(z, τ ) = −P(z, q) + zG2(q)− π i.

The Weierstrass elliptic function is ℘(z, τ ) = − ∂
∂z ζ(z, τ ), so we have

∂

∂z
P(z, q) = ℘(z, q) + G2(q). (3.3)

The Dedekind eta function is defined, for τ ∈ H, to be

η(τ) = q1/24
∞∏

n=1

(1 − qn). (3.4)

From [21] p. 253 we have the following.

Proposition 3.2.

η(τ + 1) = eπ i/12η(τ) and η(
−1

τ
) = (−iτ)1/2η(τ).

The Jacobi theta function is defined, for τ ∈ H and z ∈ C, to be

θ(z; τ) =
∑

n∈Z

eπ in2τ+2π inz . (3.5)

From [26], p. 475 we have the following.

Proposition 3.3.

θ( z
τ
; −1
τ
) = (−iτ)1/2eπ i z2/τ θ(z; τ) and θ(z; τ + 1) = θ(z + 1

2 ; τ).
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4. Conformal Blocks

Let MN be the vector space of holomorphic modular forms on 
0(N ), i.e., the vector
space of holomorphic functions f : H → C such that

• f (Aτ) = f (τ ) for all A ∈ 
0(N ),
• f (Aτ) is meromorphic at τ = i∞ for all A ∈ SL2(Z).

Definition 4.1. Let V = M|G| ⊗C V . Define O(g, h) to be the M|G|-submodule of V
generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X1(u, v) = Resz Y [u, z]vdz = u([0])v for (μ(u), λ(u)) = (1, 1),

X2(u, v) = Resz ℘(z, q)Y [u, z]vdz for (μ(u), λ(u)) = (1, 1),

u for (μ(u), λ(u)) 
= (1, 1),

X g,h
3 (u, v) = Resz Pμ(u),λ(u)(z, q)Y [u, z]vdz for (μ(u), λ(u)) 
= (1, 1).

Definition 4.2. The space C(g, h) of conformal blocks is the space of functions S :
V × H → C satisfying

CB1 S(x + y, τ ) = S(x, τ )+ S(y, τ ) for all x, y ∈ V , and S( f (τ )u, τ ) = f (τ )S(u, τ )
for all f (τ ) ∈ M|G|, u ∈ V .

CB2 S(u, τ ) is holomorphic in τ for each u ∈ V .
CB3 S(x, τ ) = 0 for all x ∈ O(g, h).
CB4 For all u ∈ V such that (μ(u), λ(u)) = (1, 1),

[

(2π i)2q
d

dq
+ ∇uG2(q)

]

S(u, τ ) = S(Resz ζ(z, q)L[z]udz, τ ). (4.1)

An equivalent form of (4.1) is

(2π i)2q
d

dq
S(u, τ ) = −S(Resz P(z, q)L[z]udz, τ ). (4.2)

4.1. Modular transformations of conformal blocks. Let K be a positive integer such that
1/K divides the conformal weight of each vector in V (the C2-cofiniteness condition
implies that K exists, see the first paragraph in the proof of Lemma 5.1 below). Let K

√
z

denote the principal K th root of z, i.e., −π/K < arg( K
√

z) ≤ π/K . In the following
theorem (cτ + d)−k is defined as the appropriate integer power of K

√
cτ + d.

Theorem 4.1. Let S ∈ C(g, h) and A ∈ SL2(Z). Define S · A : V × H → C by

[S · A](u, τ ) = (cτ + d)−k S(a, Aτ) for u ∈ V[k],
and [S · A]( f (τ )u, τ ) = f (τ )[S · A](u, τ ) for u ∈ V, f (τ ) ∈ M|G|.

Then S · A ∈ C((g, h) · A).

Proof. Fix g, h ∈ G, A ∈ SL2(Z), and let S ∈ C(g, h). It is obvious that S · A satisfies
CB1. Because S(u, τ ) is holomorphic in τ, S(u, Aτ) is too. Because cH + d is disjoint
from the branch cut, (cτ + d)−k is holomorphic in τ . Therefore S · A satisfies CB2.

Clearly (μ(u), λ(u)) = (1, 1) if and only if (μ(u), λ(u)) · A = (1, 1).
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Suppose (μ(u), λ(u)) = (1, 1). We have S(X1(u, v), τ ) = 0, hence

[S · A](X1(u, v), τ ) = (cτ + d)−∇u−∇v−1S(X1(u, v), Aτ) = 0.

Next we have

[S · A](X2(u, v), τ ) = [S · A](u([−2])v, τ ) +
∞∑

k=2

(2k − 1)G2k(τ )[S · A](u([2k−2])v, τ )

= (cτ + d)−∇u−∇v−1S(u([−2])v, Aτ)

+
∞∑

k=2

(2k − 1)G2k(τ )(cτ + d)−∇u−∇v+2k−1S(u([2k−2])v, Aτ)

= (cτ + d)−∇u−∇v−1

[

S(u([−2])v, Aτ)

+
∞∑

k=2

(2k − 1)G2k(Aτ)S(u([2k−2])v, Aτ)

]

= (cτ + d)−∇u−∇v−1S(X2(u, v), Aτ) = 0.

Now suppose (μ, λ) = (μ(u), λ(u))(g,h) 
= (1, 1) (so (μ(u), λ(u))(g,h)·A 
= (1, 1) too).
We have

[S · A](X (g,h)·A3 (u, v), τ ) = [S · A](u([−1])v, τ ) +
∞∑

k=0

P(μ,λ)·Ak (τ )[S · A](u([k])v, τ )

= (cτ + d)−∇u−∇v S(u([−1])v, Aτ)

−(cτ + d)−∇u−∇v
∞∑

k=0

P(μ,λ)·Ak (τ )(cτ +d)k+1S(u([k])v, Aτ)

= (cτ + d)−∇u−∇v
[

S(u([−1])v, Aτ)

−
∞∑

k=0

Pμ,λk (Aτ)S(u([k])v, Aτ)

]

= (cτ + d)−∇u−∇v S(X g,h
3 (u, v), Aτ)=0

(having used the transformation property (3.2) of Pμ,λk ). Finally note that [S · A](u, τ ) =
0 whenever (μ(u), λ(u)) 
= (1, 1) because the same is true for S. Thus S · A satisfies
CB3.

Let (μ(u), λ(u)) = (1, 1) again. By a calculation similar to the one above, we have

[S · A](Resz ζ(z, τ )L[z]udz, τ ) = (cτ + d)−∇u−2S(Resz ζ(z, Aτ)L[z]udz, Aτ).

On the other hand,
[

2π i
d

dτ
+ ∇uG2(τ )

]

[S · A](u, τ )

=
[

2π i
d

dτ
+ ∇uG2(τ )

]

(cτ + d)−∇u S(u, Aτ)
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=
[

−2π ic∇u(cτ + d)−∇u−1 + (cτ + d)−∇u
d(Aτ)

dτ

d

d(Aτ)

+∇uG2(τ )(cτ + d)−∇u

]

S(u, Aτ)

= (cτ + d)−∇u−2
[

−2π ic∇u(cτ + d) +
d

d(Aτ)
+ ∇uG2(τ )(cτ + d)2

]

S(u, Aτ)

= (cτ + d)−∇u−2
[

d

d(Aτ)
+ ∇uG2(Aτ)

]

S(u, Aτ).

So S · A satisfies CB4. ��

5. Differential Equations Satisfied by Conformal Blocks

We recall the crucial C2-cofiniteness condition introduced in [29]. This condition,
together with the conformal block axioms, implies the existence of an ordinary dif-
ferential equation (ODE) satisfied by the conformal blocks.

Definition 5.1. The vertex operator algebra V is said to be C2-cofinite if the subspace

C2(V ) = Span{u(−2)v|u, v ∈ V } ⊆ V

has finite codimension in V .

Lemma 5.1. If V is C2-cofinite, then the M|G|-module V/O(g, h) is finitely generated,
for each g, h ∈ G.

Proof. Since C2(V ) is a graded subspace of V (under the�-grading) there exists n0 ∈ Z+
such that Vn ⊆ C2(V ) for all n > n0. Let W = ⊕k≤n0 Vk ⊆ V .

Since �u(−2)v = �u +�v + 1, every vector in V with conformal weight greater than
n0 can be expressed in terms of −2nd products of vectors in W . Therefore all conformal
weights in V are integer multiples of 1/K for some positive integer K .

Let W = M|G|W ⊆ V . Recall that

L [0] = L0 +
∑

i≥1

α0i Li and L0 = L [0] +
∑

i≥1

β0i L [i],

for certain α0i , β0i ∈ C. Suppose u ∈ Vn , i.e., L0u = nu. Then L [0]u = nu modulo
terms with strictly lower �. Similarly if v ∈ V[n] then L0v = nv modulo terms with
strictly lower ∇. Thus ⊕k≤n Vk = ⊕k≤n V[k] for any n ∈ Q.

We will prove by induction on conformal weight (which is possible since conformal
weights are multiples of 1/K and are bounded below) that V[n] ⊆ W + O(g, h) for all
n. According to the last paragraph this holds for n ≤ n0 already.

Let n > n0, and let x ∈ V[n]. Since V = W + C2(V ) we may write x as w ∈ W plus
a sum of vectors of the form

u(−2)v = u([−2])v +
∑

j>−2

α−2, j u([ j])v,

where we assume u, v are homogeneous in the ∇-grading. It is clear that we can choose
all the pairs of vectors u, v so that ∇u + ∇v + 1 ≤ n. Therefore all the terms in the
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j-summation have ∇ < n, hence they lie in W + O(g, h) by the inductive assumption.
It suffices to show that u([−2])v ∈ W + O(g, h).

If (μ(u), λ(u)) = (1, 1) then

X2(u, v) = u([−2])v +
∞∑

k=2

(2k − 1)G2k(τ )u([2k−2])v ∈ O(g, h).

The terms in the summation have ∇ < n, hence they lie in W +O(g, h) by the inductive
assumption. Therefore u([−2])v does too.

If (μ(u), λ(u)) 
= (1, 1) then

X3(u, v) = −u([−1])v +
∞∑

k=0

Pμ(u),λ(u)k (q)u([k])v ∈ O(g, h).

Substituting L [−1]u in place of u shows that

u([−2])v −
∞∑

k=0

k Pμ(u),λ(u)k (q)u([k−1])v ∈ O(g, h)

too. As before, u([−2])v ∈ W + O(g, h). ��
Remark 5.2. Inspection of the proof of Lemma 5.1 reveals that the C2-cofiniteness con-
dition can be weakened to the following: V/C (g,h) is finite dimensional where C (g,h) is
defined to be the span of the vectors

u(−2)v for (μ(u), λ(u)) = (1, 1), and u(−1)v for (μ(u), λ(u)) 
= (1, 1).

Therefore all results of this paper hold with C2-cofiniteness replaced by this weaker
condition.

The following lemma is stated in [6].

Lemma 5.3. For any integer N ≥ 1,MN is a Noetherian ring.

Lemma 5.4. Let V be C2-cofinite, let u ∈ V , and let S ∈ C(g, h). There exists m ∈ Z+
and r0(τ ), . . . rm−1(τ ) ∈ M|G| such that

S(Lm[−2]u, τ ) +
m−1∑

i=0

ri (τ )S(L
i[−2]u, τ ) = 0. (5.1)

Proof. Let In(u) ⊆ V/O(g, h) be the M|G|-submodule generated over M|G| by the
images of u, L [−2]u, . . . Ln[−2]u. Because V/O(g, h) is a finitely generated M|G|-mod-
ule and M|G| is a Noetherian ring, V/O(g, h) is a Noetherian M|G|-module: meaning
that the ascending chain I0(u) ⊆ I1(u) ⊆ . . . stabilizes. For some m ∈ Z+ we have
Im(u) = Im−1(u), which implies

Lm[−2]u +
m−1∑

i=0

ri (τ )L
i[−2]u ∈ O(g, h)

for some ri (τ ) ∈ M|G|. Equation (5.1) follows from this formula and CB3. ��
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The axiom CB4 states an equality between S(L [−2]u, τ ) and (q d
dq )S(u, τ ) modulo

‘terms of lower order’, i.e., terms of the form S(v, τ ) with ∇v < ∇u . We use this to
convert (5.1) into an ODE satisfied by S(u, τ ). More precisely we have

Theorem 5.5. Let q = q1/|G|, and let S ∈ C(g, h). For each u ∈ V, S(u, τ ) satisfies an
ODE of the form

(q
d

dq
)m S(u, τ ) +

m−1∑

i=0

gi (q)(q
d

dq
)i S(u, τ ) +

m−1∑

j=0

∞∑

k=0

h jk(q)(q
d

dq
) j S(x jk, τ ) = 0,

where the x jk ∈ V are of strictly lower conformal weight than u and the functions gi (q)
and h jk(q) are polynomials in elements of M|G| and derivatives of G2 with respect to
q. In particular these functions are all regular at q = 0, and so the ODE has a regular
singular point there.

We write q here instead of q because the elements of M|G| can be expressed as series
in integer powers of q , rather than q. For the proof of Theorem 5.5 see Sect. 6 of [6].

For u(0) ∈ V of minimal conformal weight the ODE satisfied by S(u(0), τ ) is homo-
geneous because there are no nonzero vectors with strictly lower conformal weight. The
theory of Frobenius-Fuchs tells us that S(u(0), τ ) may be expressed in a certain form
(5.2) below. For arbitrary u ∈ V the same conclusion cannot be drawn directly because
of the presence of the inhomogeneous term. However an induction on ∇u shows that
S(u, τ ) does take the form (5.2) for all u ∈ V . The form in question is

S(u, τ ) =
p∑

i=0

(log q)i Si (u, τ ),

where Si (u, τ ) =
b(i)∑

j=1

qλi j Si j (u, τ ), (5.2)

where Si j (u, τ ) =
∞∑

n=0

Ci, j,n(u)q
n/|G|,

where λi j1 −λi j2 /∈ 1
|G|Z for 1 ≤ j1 
= j2 ≤ b(i). We call (5.2) the Frobenius expansion

of S(u, τ ).
A priori the parameters p, b(i), and λi, j in the Frobenius expansion of S(u, τ ) depend

on u. However if {u(i)} is a basis of W then the conformal blocks S(u(i), τ ) obviously
span C(g, h). This implies that C(g, h) is finite dimensional, and that the Frobenius
expansion of S(u, τ ) may be written with fixed p, b(i), λi, jr independent of u.

6. Coefficients of Frobenius Expansions

In this section we study the coefficients C p, j,0 : V → C from (5.2). First we recall the
definition of the g-twisted Zhu algebra Zhug(V ).

Definition 6.1. For u, v ∈ V, n ∈ Z let

u ◦n v = Resw w
n(1 + w)�u+εu Y (u, w)vdw

= 2π i Resz e2π i(1+εu)z(e2π i z − 1)nY [u, z]vdz.
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Let Jg ⊆ V be the span of all elements of the form

u for μ(u) 
= 1,

u ◦n v for μ(u) = μ(v) = 1 and n ≤ −2,

u ◦n v for μ(u) = μ(v)−1 
= 1 and n ≤ −1,

and (L−1 + L0)u for μ(u) = 1.

The g-twisted Zhu algebra is Zhug(V ) = V/Jg as a vector superspace, with the product
induced by ◦−1.

We denote the projection of u ∈ V to Zhug(V ) as [u] or simply u. The following
two theorems are proved in [5]; note that u([0])v in our notation is (2π i)−1[u, v]�=1 in
theirs.

Theorem 6.1. • The product ◦−1 is well-defined on Zhug(V ) and makes it into an
associative superalgebra with unit [|0〉]. We denote the product by ∗.

• The 0th Zhu product ·([0])· is well-defined on Zhug(V ) and we have

u ∗ v − p(u, v)v ∗ u = 2π iu([0])v for all u, v ∈ Zhug(V ). (6.1)

• [ω] is central in Zhug(V ).

Theorem 6.2. • There is a restriction functor � from the category of positive energy
g-twisted V -modules to the category of Zhug(V )-modules. It sends M to M0 with the
action [u] ∗ x = uM

0 x for u ∈ V and x ∈ M0.
• There is an induction functor L going in the other direction, and we have�(L(N )) ∼=

N for any Zhug(V )-module N.
• � and L are inverse bijections between the sets of irreducible modules in each cate-

gory.

The automorphism h of V descends to an automorphism of Zhug(V ), which we also
denote h.

Proposition 6.3. Let S ∈ C(g, h)with Frobenius expansion (5.2). Fix j ∈ {1, 2, . . . b(p)},
and let f = C p, j,0. We have

• f (u) = 0 for all u ∈ Jg(V ), so f descends to a map f : Zhug(V ) → C.
• f (u ∗ v) = δλ(u)λ(v),1 p(u, v)λ(u)−1 f (v ∗ u) for all u, v ∈ Zhug(V ).

Proof. By definition S(·, τ ) annihilates O(g, h). Therefore f annihilates the q0 coef-
ficient of any element of O(g, h). If u ∈ V with μ(u) 
= 1, then u ∈ O(g, h), so
f (u) = 0. If μ(u) = 1, then 2π i(L−1 + L0)u = ω̃([0])u ∈ O(g, h) is annihilated by f .
Now

[
q0

]
: X1(u, v) = X1(u, v) = u([0])v,

[
q0

]
: X2(u, v) = Resz

(
[q0] : ∂z P(z, q)− G2(q)

)
Y [u, z]vdz

= Resz

[

2π i∂z
e2π i z

e2π i z − 1
− 2ζ(2)

]

Y [u, z]vdz
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= −(2π i)2 Resz
e2π i z

(e2π i z − 1)2
Y [u, z]vdz − 2ζ(2)u([0])v

= −2π iu ◦−2 v − 2ζ(2)u([0])v,

and [q0] : X3(u, v) = Resz

(
[q0] : Pμ(u),λ(u)(z, q)

)
Y [u, z]vdz

= Resz

[
2π iδ

1 − λ(u)
− 2π i

e2π i(1+εu)z

e2π i z − 1

]

Y [u, z]vdz

= 2π iδ

1 − λ(u)
u([0])v − u ◦−1 v.

Hence f annihilates Jg , and descends to a function on Zhug(V ).
Now for the second part. Let μ(u) = μ(v) = 1. If λ(u)λ(v) 
= 1, then u ∗ v, v ∗ u

and u([0])v all lie in O(g, h) and so are annihilated by f . If λ(u) = λ(v) = 1 then f
annihilates u([0])v, hence f (u ∗ v) = p(u, v) f (v ∗ u). If λ(u)λ(v) = 1 with λ(u) 
= 1,
then f annihilates

2π i

1 − λ(u)
u([0])v − u ∗ v.

Combining this with (6.1) shows that

f (u ∗ v) = p(u, v)λ(u)−1 f (v ∗ u),

so we are done. ��

7. h-Supersymmetric Functions

Let A be a finite dimensional unital associative superalgebra carrying an automorphism
h of finite order. Let λ(a) denote the h-eigenvalue of an eigenvector a ∈ A. We consider
linear functions f : A → C satisfying

f (ab) = δλ(a)λ(b),1 p(a, b)λ(a)−1 f (ba) (7.1)

for all a, b ∈ A eigenvectors of h. We refer to these functions as h-supersymmetric
functions on A, and write Fh(A) for the space of all such functions. We also write F(A)
for F1(A) and refer to these as supersymmetric functions.

Let A be semisimple now, and let A = ⊕i∈I Ai be its decomposition into simple
components. The automorphism h permutes the Ai . The following fact is proved in
Lemma 10.7 of [6] (for algebras, but the proof carries over naturally to the Z/2Z-graded
setting).

Lemma 7.1. Fh(A) = ⊕i∈J Fh(Ai ), where the direct sum is over the subset J ⊂ I of
h-invariant simple components.

For the rest of this section let A be a simple superalgebra, i.e., having no proper
nonzero Z/2Z-graded ideals. Note that a simple superalgebra need not be simple as an
algebra. We summarize some well known (see, e.g., [17]) results about simple superal-
gebras in the following theorem.
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Theorem 7.2. Let A be a finite dimensional simple superalgebra over C. Then

• (Superalgebra Wedderburn Theorem) A is isomorphic either to End(Cm|k) or else to
Qn = End(Cn)[ξ ]/(ξ2 = 1), where ξ is an odd indeterminate. Henceforth we refer
to these cases as Type I and Type II, respectively.

• A has a unique irreducible module up to isomorphism. It is C
m|k in the Type I case,

and C
n|n = C

n + C
nξ in the Type II case, with the obvious action in each case.

• (Superalgebra Schur Lemma) Let N denote the unique up to isomorphism irreducible
A-module. Then

EndA(N ) =
{

C1 if A is Type I,

C1 + Cξ if A is Type II.

Proof. Lemma 3 of [25] states that A is either simple as an ordinary algebra or else
it is isomorphic to Qn for some n ≥ 1. In the first case A = End(N ) for some finite
dimensional vector space N which is in turn the unique irreducible A-module. Consider
the involution σA on A. There exists an invertible element (indeed an involution) b ∈ A
such that σ(a) = b−1ab for all a ∈ A. Now N decomposes into eigenspaces for b with
eigenvalues 1 and −1. We make N into a superspace by declaring these eigenspaces
even and odd respectively. Then b is just σN . Now A ∼= End(Cm|k) as a superalgebra
and N is its unique irreducible module. In the second case any irreducible A-module N
is in particular an End(Cn)-module and therefore a direct sum of copies of C

n . Since ξ
maps an even copy of C

n to an odd one, and ξ2 = 1, we deduce that A has the unique
irreducible Z/2Z-graded module N = C

n +C
nξ (observe that without the Z/2Z-graded

condition N would not be unique). This completes the proofs of the first two items.
For the third item: the Type I case follows from the usual Schur lemma by forgetting

the Z/2Z-grading. If A is of Type II let φ ∈ EndA(N )0, then φ|N0 ∈ C1 by the usual
Schur lemma and since φ commutes with ξ we have φ ∈ C1. If φ ∈ EndA(N )1 then
clearly φξ ∈ EndA(N )0 and so φ ∈ Cξ . ��

Supersymmetric functions on simple superalgebras were first considered in [16] and
are characterized as follows.

Lemma 7.3. Let A be a finite dimensional simple superalgebra, and N its unique up to
isomorphism irreducible module. The space F(A) of supersymmetric functions on A is
one dimensional and is spanned by the function

a �→ STrN (a) if A is of Type I,

a �→ TrN (aξ) if A is of Type II.

Proof. Let f be a supersymmetric function on A = End(Cm|k). Fix a Z/2Z-homoge-
neous basis e1, . . . em+k of C

m|k , where e1, . . . , em are even and em+1, . . . , em+k odd.
Define Ei j ∈ A by Ei j (ek) = δike j . If i 
= j then

f (Ei j ) = f (Eii Ei j ) = ± f (Ei j Eii ) = ± f (0) = 0.

Thus f (a) = ∑
i ki aii is a linear combination of the diagonal entries of a. We now have

f (Eii ) = f (Ei j E ji ) = ± f (E ji Ei j ) = ± f (E j j ),

where the sign ± is a + if Ei j is even (i.e., if ei and e j have the same parity) and is a −
if Ei j is odd (i.e., if ei and e j have opposite parity). Therefore, up to a scalar multiple
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ki = 1 for i = 1, . . . ,m and ki = −1 for i = m + 1, . . . ,m + k. Hence f is proportional
to STrN , where N = C

m|k is the unique irreducible A-module.
Now let f be a supersymmetric function on A = Qn . For a ∈ A0 we have f (a) =

f (ξ(ξa)) = − f ((ξa)ξ) = − f (a), hence f (a) = 0. On the other hand g : A0 →
C defined by g(a) = f (aξ) is symmetric because g(ab) = f (abξ) = f (bξa) =
f (baξ) = g(ba). Therefore g is a scalar multiple of TrN0 and f is a scalar multiple of
the map a �→ TrN0(aξ) = (1/2)TrN (aξ). ��

Now we turn to the description of h-supersymmetric functions. First we need the
following superalgebra analog of the Skolem-Noether theorem.

Lemma 7.4. Let A be a finite dimensional simple superalgebra, N its irreducible mod-
ule, and let h be an automorphism of A. There exists invertible ι ∈ EndC(N ) such that
h(a)x = ι−1aιx for all a ∈ A, x ∈ N. If A is of Type I then ι is Z/2Z-homogeneous
and is unique up to a nonzero scalar factor. If A is of Type II then ι (while not unique)
may be chosen to be Z/2Z-homogeneous of either parity.

Proof. The map (a, x) �→ h(a)x defines an irreducible action of A on N which we
denote h · N to distinguish it from the original action. By the second item of Theorem 7.2
the A-modules N and h·N are equivalent, i.e., there exists invertible ι ∈ HomA(h·N , N ).
A choice of such ι identifies HomA(h · N , N ) with EndA(N ).

Let A be of Type I. Then EndA(N ) = C1 and so ι is unique up to a nonzero scalar fac-
tor. By definition h commutes with the parity operatorσA. This implies (σN ι)

−1a(σN ι) =
(ισN )

−1a(ισN ) for all a ∈ A. Hence by the Schur lemma σN ι = εισN for some nonzero
constant ε. Since the eigenvalues of σN are ±1 we have ε = ±1 and in either case ι is
Z/2Z-homogeneous.

Let A be of Type II. There exists ι0 ∈ A0 such that h(a) = ι−1
0 aι0 for all a ∈ A0.

Since we have h(ξ)2 = h(ξ2) = h(1) = 1 and h(a)h(ξ) = h(aξ) = h(ξa) = h(ξ)h(a)
for all a ∈ A we deduce h(ξ) = ±ξ . Write h(ξ) = (−1)pξ . By the Schur lemma
HomA(h · N , N ) is two dimensional. One then easily verifies HomA(h · N , N ) =
Cι0σ

p
N + Cι0σ

p
N ξ . The claim follows. ��

To facilitate the description of h-supersymmetric functions we make the following
definition.

Definition 7.1. Let A be a finite dimensional simple superalgebra, N its irreducible
module, and let h be an automorphism of A. We define γ to be an invertible element
of EndC(N ) satisfying h(a)x = γ−1aγ x for all a ∈ A, x ∈ N. If A is of Type II we
further require that γ be even (resp. odd) if h(ξ) = ξ (resp. h(ξ) = −ξ ).

The map γ so defined is unique up to a nonzero scalar factor.

Lemma 7.5. Let A be a finite dimensional simple superalgebra, N its irreducible mod-
ule, and let h be an automorphism of A of finite order. The space Fh(A) of h-supersym-
metric functions on A is one dimensional and is spanned by the function

a �→ STrN

(
aγ σ p(γ )

N

)
if Ais of Type I,

a �→ TrN

(
aγ σ p(γ )

N ξ
)

if A is of Type II.

We shall sometimes abuse notation slightly by writing both cases as a �→ F(aγ σ p(γ )
N ),

where F ∈ F(A).
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Proof. Let A be of Type I. Since h(γ ) = γ−1γ γ = γ we have λ(γ ) = 1. Also
h(σN ) = γ−1σNγ = (−1)p(γ )σN so λ(σN ) = (−1)p(γ ). Let f ∈ Fh(A) and put
f (a) = f (aγ−1) if γ is even and f (a) = f (aγ−1σN ) if γ is odd. Then if γ is even we
have

f (ab) = f (abγ−1) = λ(a)−1δλ(a)λ(bγ−1),1 p(a, bγ−1) f (bγ−1a)

= λ(a)−1δλ(a)λ(b),1 p(a, b) f (bγ−1aγ γ−1)

= δλ(a)λ(b),1 p(a, b) f (baγ−1)

= δλ(a)λ(b),1 p(a, b) f (ba), (7.2)

while if γ is odd we have

f (ab) = f (abγ−1σN ) = λ(a)−1δλ(a)λ(bγ−1σN ),1 p(a, bγ−1σN ) f (bγ−1σN a)

= λ(a)−1δλ(a)λ(b),−1 p(a, bγ−1)(−1)p(a) f (bγ−1aσN )

= λ(a)−1δλ(a)λ(b),−1 p(a, b) f (bγ−1aγ γ−1σN )

= δλ(a)λ(b),−1 p(a, b) f (baγ−1σN )

= δλ(a)λ(b),−1 p(a, b) f (ba). (7.3)

In particular f is supersymmetric in both cases and therefore is a multiple of STrN .
Therefore f is a scalar multiple of a �→ STrN (aγ σ

p(γ )
N ). It remains to verify that the

latter function is h-supersymmetric; for this we need only show that STrN (aγ σ
p(γ )
N ) 
= 0

only when λ(a) = 1. Well, N splits into eigenspaces for γ and a maps the ε eigenspace
to the λ(a)ε eigenspace. In general STrN (b) = TrN (bσN ) vanishes unless λ(aσN ) = 1,
so STrN (aγ σ

p(γ )
N ) vanishes unless 1 = λ(a)λ(γ )λ(σN )

p(γ )+1 = λ(a).
Now let A be of Type II and assume first that h(ξ) = ξ . For f ∈ Fh(A) put

f (a) = f (aγ−1). We may repeat calculation (7.2) to deduce that f is a supersymmetric
function on A, hence a multiple of a �→ TrN (aξ). Therefore f is a scalar multiple of
a �→ TrN (aγ ξ).

The final case of h(ξ) = −ξ is a little more delicate because γ = ι0σN ξ (where
ι0 is as in the proof of Lemma 7.4) is not an element of A. For f ∈ Fh(A) we let
f (a) = f (aι−1

0 ) and repeat calculation (7.2). Since ι−1
0 aι0 = (−1)p(a)h(a) we obtain

this time

f (ab) = δλ(a)λ(b),1 p(a, b)(−1)p(a) f (ba)

for all a, b ∈ A. For a ∈ A0 we obtain

f (ξa) = −δλ(a),−1 f (aξ),

hence f (A1) = 0. For a, b ∈ A0 we obtain

f (ab) = δλ(a)λ(b),1 f (ba),

hence f is a symmetric function on A0. It follows that f is a scalar multiple of TrN0 =
(1/2)TrN . This means that f is a scalar multiple of

a �→ TrN (aι0) = TrN (aγ ξσN ) = − TrN (aγ σN ξ).

Finally we should verify that TrN (aγ σ
p(γ )
N ξ) 
= 0 only if λ(a) = 1. In the case h(ξ) = ξ

the trace vanishes unless 1 = λ(a)λ(γ )λ(ξ) = λ(a). In the case h(ξ) = −ξ the trace
reduces to TrN0(aι0) which again vanishes unless λ(a) = 1. ��
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8. Supertrace Functions

In this section we use the results of Sect. 7 to associate a supertrace function to each
pair (M, h), where M is an irreducible positive energy g-twisted V -module, and h is an
automorphism of V of finite order commuting with g. We show that this function lies in
C(g, h).

The Zhu algebra Zhug(V ) is finite dimensional (because V is C2-cofinite) and is
semisimple by assumption. Let A ⊆ Zhug(V ) be a h-invariant simple component, N its
irreducible module, and let γ : N → N be as in Definition 7.1. It follows from Theorem
6.2 that γ lifts to a grade-preserving map (which we also denote γ ) of the associated
V -module M = L(N ) satisfying

γ−1uM
n γ = h(u)M

n (8.1)

for all u ∈ V, n ∈ [εu]. In the case that A is of Type II we shall make use of the involution
ξ of M = L(N ) lifted from ξ : N → N in the same way, i.e.,

ξuM
n ξ = (−1)p(u)uM

n .

Below we shall drop the M superscripts. We sometimes refer to M as being of Type I
(resp. II) if its associated simple component Zhug(V ) is of Type I (resp II).

Definition 8.1. Let M be a positive energy g-twisted V -module and h an automorphism
of V of finite order commuting with g. For α : Mr → Mr an endomorphism of a graded
piece of M we define

TMr (α) =
⎧
⎨

⎩

STrMr

(
αγσ

p(γ )
M

)
if M is of Type I,

TrMr

(
αγσ

p(γ )
M ξ

)
if M is of Type II.

We define TM (α) = ∑
r TMr (α) whenever the sum is well-defined. Finally we define the

supertrace function associated to M and h to be

SM (u, τ ) = TM (u0q L0−c/24). (8.2)

The main theorem of this section is

Theorem 8.1. Let M be a h-invariant irreducible positive energy g-twisted V -module.
Then the supertrace function SM defined by (8.2) lies in C(g, h). Furthermore the SM ,
as M ranges over all such modules, are linearly independent.

Proof. The SM are linearly independent because the h-supersymmetric functions on
Zhug(V ) are (each is supported on a different simple component). The proof that SM ∈
C(g, h) is carried out in Propositions 8.2–8.6 below.

To summarize: in Propositions 8.2 and 8.3 we show that TM annihilates all u ∈ V
satisfying (μ(u), λ(u)) 
= (1, 1), and annihilates u([0])v for (μ(u), λ(u)) = (1, 1). In
Proposition 8.4 we establish an identity which is used in Proposition 8.5 to show that
TM annihilates the remaining elements of O(g, h). These properties pass immediately
to SM and thus CB3 is verified.

In Proposition 8.6 we use Proposition 8.4 again to show that SM satisfies CB4.
Axiom CB2 is automatic.
To verify CB1, we must show that the power series SM converges to a holomorphic

function in |q| < 1. In the presence of the C2-cofiniteness condition CB1 follows from
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the other axioms. This is because the calculations of Sect. 5 show the power series SM
formally satisfies a Fuchsian ODE and it follows that SM converges to a solution of this
ODE (see [6]). ��

Since ω ∈ V is h-invariant, γ commutes with L0 and q L0 . Since ω is in the center
of Zhug(V ) and its module N = M0 is irreducible, L0 acts on N as a scalar (called
the conformal weight of M and often denoted h(M)). Recall that [L0, uk] = −kuk . It
follows that L0 acts on Mr as the scalar h(M) + r , and that u0 commutes with L0 and
q L0 .

Proposition 8.2. We have

(a) If (μ(u), λ(u)) 
= (1, 1), then TMr (u0) = 0.
(b) For all u, v ∈ V we have TMr (u0v0) = δλ(u)λ(v),1 p(u, v)λ(u)−1TMr (v0u0).
(c) If μ(v) = μ(u)−1 and n ∈ [εu]>0, then

TMr unv−n = λ(u)−1 p(u, v)TMr+nv−nun .

Proof. We begin with (b). We observe that the work has already been done in the proof
of Lemma 7.5. Indeed TM0 is simply the h-supersymmetric function introduced in that
lemma. For r > 0 we define the superalgebra Ar to be Ar = EndC(Mr ) if M is of Type
I, and Ar = Ar

0 + ξ Ar
0, where Ar

0 = EndC((Mr )0) if M is of Type II. Now the proof of
Lemma 7.5 can be repeated, with the pair (A, N ) replaced by (Ar ,Mr ), to establish (b).

In (c) we may replace Mr and Mr+n by their direct sum because v−n annihilates Mr+n
and un annihilates Mr . The equation then follows from the same argument as for (b).

For (a): the operators un are defined for n ∈ εu + Z, so if μ(u) 
= 1 then u0 = 0 and
TMr (u0) = 0. Once again the proof that TMr (u0) = 0 only if λ(u) = 1 has been carried
out for r = 0 in the proof of Lemma 7.5, and the general case is the same. ��
Proposition 8.3. If μ(u) = 1 then

TMr (u([0])v)0 = [1 − λ(u)](2π i)−1TMr u0v0.

Proof. Assume μ(v) = 1 and λ(v) = λ(u)−1, for otherwise both sides of the equation
vanish and the result is trivially true.

The commutator formula (2.2) with m = k = 0 is

[u0, v0] =
∑

j∈Z+

(
�u − 1

j

)

(u( j)v)0 = (Resw(1 + w)�u−1Y (u, w)vdw)0.

Using the substitution w = e2π i z − 1 gives

(u([0])v)0 = (Resz Y [u, z]vdz)0 =
(

Resz e2π i�u zY (u, e2π i z − 1)vdz
)

0

= (2π i)−1
(

Resw(1 + w)�u−1Y (u, w)vdw
)

0

= (2π i)−1[u0, v0].
Now we use Proposition 8.2 (b) to simplify

TMr [u0, v0] = TMr u0v0 − p(u, v)TMr v0u0

= TMr u0v0 − δλ(v)λ(u),1 p(u, v)λ(v)−1TMr v0u0

= [1 − λ(u)]TMr u0v0.

��
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Proposition 8.4.

TM ((Resz Pμ(u),λ(u)(z, q)Y [u, z]vdz)0q L0)

=
{−TM (u0v0q L0) if (μ(u), λ(u)) = (1, 1),

0 otherwise.
(8.3)

Proof. Let ε = εu, μ = μ(u) and λ = λ(u). Assume thatμ(v) = μ−1 and λ(v) = λ−1,
for otherwise both sides of the claimed equality vanish automatically.

For any r ≥ 0, the qh(M)+r coefficient of

TM (Resz Pμ,λ(z, q)Y [u, z]vdz)0q L0

is X − Y + Z , where

X = 2π iδ

1 − λ
TMr (u([0])v)0,

Y = 2π iTMr (Resz
e2π i(1+ε)z

e2π i z − 1
Y [u, z]vdz)0,

and Z = 2π i
∑

m∈Z>0

λm
∑

n∈[ε]>0

TMr−mn (Resz e2π inzY [u, z]vdz)0

− 2π i
∑

m∈Z>0

λ−m
∑

n∈[ε]<0

TMr+mn (Resz e2π inzY [u, z]vdz)0

(8.4)

(the sum defining Z is finite since terms with |mn| > r contribute nothing).
Using the change of variable w = e2π i z − 1 and the commutator formula, we have

(
Resz e2π inzY [u, z]vdz

)

0
= (2π i)−1

(
Resw(1 + w)n+�u−1Y (u, w)vdw

)

0

= (2π i)−1
∑

j∈Z+

(
n+�u −1

j

)

(u( j)v)0 =(2π i)−1[un, v−n]

(8.5)

for any n ∈ [εu]. Now let n ∈ [εu]>0. Proposition 8.2 (c) implies that
∑

m∈Z>0

λm TMr−mn unv−n = p(u, v)λ−1
∑

m∈Z>0

λm TMr−(m−1)nv−nun

= p(u, v)
∑

m∈Z+

λm TMr−mnv−nun,

from which it follows that
∑

m∈Z>0

λm TMr−mn [un, v−n] = p(u, v)TMr v−nun . (8.6)

If n ∈ [εu]<0 then −n ∈ [εv]>0, and so
∑

m∈Z>0

λ−m TMr+mn [un, v−n] = −p(u, v)
∑

m∈Z>0

λ−m TMr−m(−n)[v−n, un]

= −TMr unv−n . (8.7)
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Combining (8.6) and (8.7) yields

Z =
∑

m∈Z>0

λm
∑

n∈[ε]>0

TMr−mn [un, v−n] −
∑

m∈Z>0

λ−m
∑

n∈[ε]<0

TMr+mn [un, v−n]

=
∑

n∈[ε]<0

TMr unv−n + p(u, v)
∑

n∈[ε]>0

TMr v−nun . (8.8)

Next we have

(Resz
e2π i(1+ε)z

e2π i z − 1
Y [u, z]vdz)0 = (Resz

e2π i(1+ε)z

e2π i z − 1
e2π i�u zY (u, e2π i z − 1)vdz)0

= (2π i)−1(Resw w
−1(1 + w)�u+εY (u, w)vdw)0

= (2π i)−1
∑

j∈Z+

(
�u + ε

j

)

(u( j−1)v)0.

Plugging this into the Borcherds identity with n = −1 and m = 1 + εu = −k yields

Y =
∑

j∈Z+

TMr

(
u− j+εv j−ε + p(u, v)v− j−1−εu j+1+ε

)
. (8.9)

Now we see that

−Y + Z =
{−TMr a0b0 if μ = 1,

0 otherwise.

If μ 
= 1 then X = δ = 0 and we are done, similarly if μ = λ = 1. Finally suppose
μ = 1 
= λ: from Proposition 8.3 we have

X − Y + Z = TMr u0v0 − TMr u0v0 = 0

as required. ��
In the two following lemmas suppose (μ(u), λ(u)) = (1, 1).

Proposition 8.5. TM (Resz ℘(z, q)Y [u, z]v, τ ) = 0.

Proof. For all u ∈ V we have (L [−1]u)0 = 2π i(L−1u + L0u)0 = 0. By Proposition 8.4
we have

0 = TM ((L [−1]u)0v0q L0)

= TM ((Resz P(z, q)Y [L [−1]u, z]vdz)0q L0)

= TM ((Resz P(z, q)∂zY [u, z]vdz)0q L0)

= −TM ((Resz ∂z P(z, q)Y [u, z]vdz)0q L0)

= −TM ((Resz(℘ (z, q) + G2(q))Y [u, z]vdz)0q L0).

By Proposition 8.3, the G2(q) term contributes nothing, so the result follows. ��

Proposition 8.6.
[
(2π i)2q d

dq + ∇uG2(q)
]

SM (u, τ ) = SM (Resz ζ(z, q)L[z]udz, τ ).
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Proof. We start with Eq. (8.3). Multiply through by q−c/24 and substitute u = ω̃ =
(2π i)2(ω − c/24 |0〉), so that u0 = (2π i)2(L0 − c/24). The right hand side is

−(2π i)2TM ((L0 − c/24)v0q L0−c/24) = −(2π i)2q
d

dq
TM (v0q L0−c/24).

The left-hand side is

TM ((Resz P(z, q)L[z]vdz)0q L0−c/24)

= TM ((Resz[−ζ(z, q) + zG2(q)− π i]L[z]vdz)0q L0−c/24)

= G2(q)∇vTM (v0q L0−c/24)

−TM ((Resz ζ(z, q)L[z]vdz)0q L0−c/24),

having used ω̃([1])v = ∇vb and Proposition 8.3. ��

9. Exhausting a Conformal Block by Supertrace Functions

Let φ,ψ ∈ C. We shall say φ is lower than ψ (and ψ is higher than φ) if the real part
of φ is strictly less than that of ψ .

Let S(u, τ ) ∈ C(g, h). In this section we show that S may be written as a linear com-
bination of supertrace functions SM (u, τ ) for M ∈ Ph(g, V ). We need the following
proposition.

Proposition 9.1. Let S ∈ C(g, h) with Frobenius expansion (5.2).

• Let j ∈ {1, 2, . . . b(p)}, then C p, j,0((ω − c
24 − λp, j ) ∗ u) = 0 for all u ∈ V g.

• Let j ∈ {1, 2, . . . b(p − 1)}, then C p−1, j,0((ω − c
24 − λp−1, j )

2 ∗ u) = 0 for all
u ∈ V g.

Proof. Recall Eq. (4.2) – the equivalent form of CB4. Equating coefficients of logp q
shows that (4.2) holds with Sp, j in place of S, that is

(2π i)2q
d

dq
Sp, j (u, τ ) = −Sp, j (Resz P(z, q)L[z]udz, τ ). (9.1)

Let us equate coefficients of qλp, j in (9.1). The left-hand side gives (2π i)2λpj C p, j,0(u),
while the right-hand side gives C p, j,0 applied to

2π i Resz
e2π i z

e2π i z − 1
L[z]udz = Resw w

−1(1 + w)�ωY ((2π i)2ω,w)udw

−(c/24)Resw w
−1(1 + w)�|0〉Y ((2π i)2 |0〉 , w)udw

= (2π i)2(ω − c/24) ∗ u.

This proves the first part.
Without loss of generality let λp, j = λp−1, j . Equating coefficients of logp−1 q in

(4.2) yields

(2π i)2q
d

dq
Sp−1, j (u, τ ) = −Sp−1, j (Resz P(z, q)L[z]udz, τ )− p(2π i)2Sp, j (u, τ ).

(9.2)
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Equating coefficients of qλp−1, j yields

C p−1, j,0((ω − c/24 − λp−1, j ) ∗ u) = pC p, j,0(u).

This, together with the first part of the proposition, implies the second part. ��
Let S have the Frobenius expansion (5.2). Following Sect. 7 we have

C p, j,0(u) =
∑

N

αN TN (u)

for some constants αN ∈ C. The sum runs over the h-invariant irreducible Zhug(V )-
modules N . Proposition 9.1 implies that αN is nonzero only for N that satisfy ω|N =
λp, j + c/24. Now consider

∑

N

αN SL(N )(u, τ ) ∈ qλp, j C[[q1/|G|]].

The coefficient of qλp, j is nothing but C p, j,0. Therefore the series

S′(u, τ ) = Sp, j (u, τ )−
∑

N

αN SL(N )(u, τ )

has lowest power of q whose exponent is higher than λp, j .
The coefficient of the lowest power of q in S′(u, τ ) descends to a h-supersymmetric

function on Zhug(V ), so we may write it as a linear combination of TN . The mod-
ules N that occur must be different than the ones used in the first iteration because ω
acts on them by some constant higher than λp, j + c/24. We subtract the corresponding
SL(N )(u, τ ) as before and repeat. The process terminates because there are only finitely
many irreducible Zhug(V )-modules. We obtain Sp, j (u, τ ) as a linear combination of
SM (u, τ ). It follows that Sp, j (u, τ ) ∈ C(g, h).

We may repeat the argument above, using the second part of Proposition 9.1, to con-
clude that Sp−1, j (u, τ ) ∈ C(g, h) also. Hence Sp−1, j satisfies (9.1) in addition to (9.2).
Together these equations imply p = 0. Thus S = ∑

j Sp, j is a linear combination of
supertrace functions.

In summary we have following explicit description of conformal blocks.

Theorem 9.2. Let V be a C2-cofinite VOSA with rational conformal weights and G a
finite group of automorphisms of V . Suppose Zhug(V ) is semisimple for each g ∈ G. Fix
commuting g, h ∈ G. For M a h-invariant positive energy g-twisted V -module, select
γ : M → M satisfying

• γ−1unγ x = h(u)n x for all u ∈ V, n ∈ [εu], x ∈ M, and
• if M is of Type II, A = A0[ξ ]/(ξ2 = 1) is the simple component of Zhug(V ) corre-

sponding to M, and h(ξ) = (−1)pξ , then additionally γ has parity p.

Then a basis of the space C(g, h) of conformal blocks is the set of functions

SM (u, τ ) =
⎧
⎨

⎩

STrM

(
u0γ σ

p(γ )
M q L0−c/24

)
if M is of Type I,

TrM

(
u0γ σ

p(γ )
M ξq L0−c/24

)
if M is of Type II,

as M runs over the set of h-invariant positive energy g-twisted V -modules.

Combining Theorem 9.2 with Theorem 4.1 on modular invariance of conformal
blocks yields Theorem 1.3.
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10. The Neutral Free Fermion VOSA

The VOSA V = F(ϕ) studied in this section is well known and goes by several names,
we call it the neutral free fermion VOSA. It is defined ([18], p. 98) to be the vector
superspace spanned by the monomials

ϕn1 · · ·ϕns |0〉 ,
where ni ∈ 1/2 + Z, n1 < . . . < ns < 0, and the monomial has parity s mod 2. The
VOSA structure is generated by the single odd field

Y (ϕ, z) =
∑

n∈Z

ϕ(n)z
−n−1 =

∑

n∈1/2+Z

ϕnz−n−1/2.

The action of the modes on V is by left multiplication, subject to the relations ϕn |0〉 = 0
for n > 0 and the commutation relation

ϕmϕn + ϕnϕm = δm,−n ⇐⇒ [Y (ϕ, z), Y (ϕ,w)] = δ(z, w).

The Virasoro vector is

ω = 1

2
ϕ−3/2ϕ−1/2 |0〉 .

The element ϕ = ϕ−1/2 |0〉 has conformal weight 1/2, and the central charge of V is
c = 1/2. This VOSA is C2-cofinite.

Let G = {1, σV } ∼= Z/2Z. In this section we explicitly compute the conformal blocks
evaluated on the vector u = |0〉 and u = ϕ. To do so we determine the g-twisted Zhu
algebras (see Sect. 6) and their modules, and then write down the supertrace functions
of Theorem 9.2.

Let g = σV . We have εϕ = −1/2 and

ϕ ◦n v = Resw w
n(1 + w)1/2−1/2Y (ϕ,w)vdw = ϕ(n)v

(Definitions 2.2 and 6.1). Therefore JσV contains all monomials except |0〉, hence
ZhuσV (V ) is either C |0〉 or 0. Since V itself is a positive energy σV -twisted V -module
and V0 = C |0〉 we have ZhuσV (V ) = C |0〉. The unique irreducible ZhuσV (V )-module
is N = C and the corresponding σV -twisted V -module is L(N ) = V .

Let h = 1. Then we can take γ = 1. Hence C(σV , 1; u) is spanned by

STrV u0q L0−c/24.

Let h = σV . Although this automorphism acts on ZhuσV (V ) as the identity and so
γ |N = N , the extension of γ to V according to Eq. (8.1) is σV . Hence C(σV , σV ; u) is
spanned by

STrV u0σV q L0−c/24 = TrV u0q L0−c/24.

Let g = 1. We have

ϕ ◦n v = Resw w
n(1 + w)1/2Y (ϕ,w)vdw,

so in Zhu1(V ) any mode ϕ(n) for n ≤ −2 is a linear combination of modes ϕ(k) for
k > n. Hence Zhu1(V ) is a quotient of C |0〉 + Cϕ. In fact Zhu1(V ) = C |0〉 + Cϕ
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which we prove below by exhibiting an irreducible positive energy 1-twisted V -module
M such that M0 is 2 dimensional. The unit element of Zhu1(V ) is |0〉 and we readily
compute that ϕ ∗ϕ = 1

2 |0〉. Therefore Zhu1(V ) ∼= C[ξ ]/(ξ2 = 1), where 1 is the image
of |0〉 and ξ is the image of

√
2ϕ.

We construct M as follows: it has basis

ϕM
n1

· · ·ϕM
ns

1,

where ni ∈ Z, n1 < . . . < ns ≤ 0 and the parity of this monomial is s mod 2. The
modes of the field

Y M (ϕ, z) =
∑

n∈Z

ϕM
n z−n−1

satisfy ϕM
n |0〉 = 0 for n ≥ 1 and ϕM

m ϕ
M
n +ϕM

n ϕ
M
m = δm,−n . Note that M0 = C1+CϕM

0 1.
The unique irreducible Zhu1(V )-module is N = M0 and the corresponding 1-twisted
V -module is L(N ) = M .

Let h = 1. According to our prescription γ = 1. Hence C(1, 1; u) is spanned by

TrM uM
0 ξq L0−c/24.

Explicitly ξ : M → M is

ξ : ϕM
n1

· · ·ϕM
ns

1 �→ √
2ϕM

n1
· · ·ϕM

ns
ϕM

0 1.

Let h = σV . In this case h|N0 = idN0 but h(ξ) = −ξ , so γN = σN ξ which extends to
γ = σMξ . Hence C(1, σV ; u) is spanned by

TrM uM
0 γ σMξq L0−c/24 = − TrM uM

0 q L0−c/24.

10.1. Conformal blocks in weights 0 and 1/2. We can evaluate the traces and super-
traces above using some simple combinatorics. In terms of the Dedekind eta function
defined by Eq. (3.4) we obtain

C(σV , 1; |0〉) is spanned by q−1/48 SCh(V )=q−1/48
∏

n≥0

(1 − qn+1/2)= η(τ/2)

η(τ )
,

C(σV , σV ; |0〉) is spanned by q−1/48 Ch(V ) = q−1/48
∏

n≥0

(1+qn+1/2)= η(τ)2

η(2τ)η(τ/2)
,

C(1, 1; |0〉)=0,

and C(1, σV ; |0〉) is spanned by q−1/48q1/16 Ch(M)=q−1/24
∏

n≥0

(1 + qn)=2
η(τ)

η(2τ)
.

The third equality is because the trace of an odd linear map vanishes, and in the fourth
we have used L0|M0 = 1/16 which follows by direct computation with the Borcherds
identity.

Theorem 1.3 implies that if f (τ ) ∈ C(g, h; |0〉) then f (Aτ) ∈ C((g, h) · A; |0〉)
for all A ∈ SL2(Z). This may be verified directly for the generators T = (

1 1
0 1

)
and

S = (
0 −1
1 0

)
using the explicit forms above together with Proposition 3.2.
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Since L [0]ϕ = L0ϕ, we have ∇ϕ = �ϕ = 1/2. If (g, h) 
= (1, 1) then C(g, h;ϕ) is
spanned by the (super)trace of an odd linear map, and so is 0. The operator ϕM

0 ξ on M
is explicitly (ignoring a factor of

√
2)

ϕM
n1

· · ·ϕM
ns

1 �→ ϕM
0 ϕ

M
n1

· · ·ϕM
ns
ϕM

0 1 = 1
2εϕ

M
n1

· · ·ϕM
ns

1,

where ε = (−1)s−1 if ns = 0 and (−1)s otherwise. Therefore

C(1, 1;ϕ) is spanned by q−1/48q1/16
∞∏

n=1

(1 − qn) = η(τ),

C(g, h; |0〉) = 0 for all other pairs (g, h).

11. The Charged Free Fermions VOSA with Real Conformal Weights

As a vector superspace, the charged free fermions VOSA V = Fa
ch(ψ,ψ

∗) ([18], p. 98)
is the span of the monomials

ψ(i1)ψ(i2) · · ·ψ(im )ψ
∗
( j1)ψ

∗
( j2) · · ·ψ∗

( jn)
|0〉 , (11.1)

where ir , js ∈ Z, i1 < . . . < im ≤ −1, j1 < . . . < jn ≤ −1, and the parity of the
monomial is (m + n) mod 2. The VOSA structure is generated by the two odd fields

Y (ψ, z) =
∑

n∈Z

ψ(n)z
−n−1 and Y (ψ∗, z) =

∑

n∈Z

ψ∗
(n)z

−n−1.

The action of the modes on V is by left multiplication, subject to the relationsψ(n) |0〉 =
ψ∗
(n) |0〉 = 0 for n ≥ 0, and the commutation relations

[ψ(m), ψ∗
(n)] = ψ(m)ψ

∗
(n) + ψ∗

(n)ψ(m) = δm+n,−1 ⇐⇒ [Y (ψ, z), Y (ψ∗, w)]=δ(z, w).
(11.2)

All other commutators vanish.
Let 0 < a < 1 be a real number. We define a Virasoro vector ([18], p. 102)

ωa = a
(
ψ(−2)ψ

∗
(−1) |0〉

)
+ (1 − a)

(
ψ∗
(−2)ψ(−1) |0〉

)
(11.3)

and write La(z) = Y (ωa, z). With respect to this choice of Virasoro vector we have

�ψ = 1 − a and �ψ∗ = a.

The central charge of V is c = −2(6a2 − 6a + 1). This VOSA is C2-cofinite. Note that
ωa may be defined for any a ∈ R and is a Virasoro vector. However if a lies outside
the interval (0, 1) then the conformal weights of V might be unbounded below and its
graded pieces might be infinite dimensional. We wish to exclude these cases.
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11.1. Twisted modules. Fix μ, λ ∈ C of unit modulus and let the automorphisms g and
h of V be defined by

g(ψ) = μ−1ψ, g(ψ∗) = μψ∗,
h(ψ) = λ−1ψ, h(ψ∗) = λψ∗,

extended to all nth products (note that the Virasoro element is indeed fixed by g and h).
Let μ = e2π iδ and λ = e2π iρ , where δ, ρ ∈ [0, 1), we do not require these to be rational
numbers. Hence g and h need not have finite order.

A g-twisted V -module M will have fields

Y M (ψ, z) =
∑

n∈−[δ]
ψM

n z−n−(1−a) and Y M (ψ∗, z) =
∑

n∈[δ]
ψ∗M

n z−n−a,

and the modes must satisfy

[ψM
m , ψ

∗M
n ] = ψM

m ψ
∗M
n + ψ∗M

n ψM
m = δm+n,0. (11.4)

Let us put M = V, ψM (z) = z−xψ(z) and ψ∗M (z) = zxψ∗(z), where x ∈ −[δ] − [a].
We may easily confirm that

ψM
n = ψ(n−a−x) and ψ∗M

n = ψ∗
(n−1+a+x)

have the correct commutation relations (11.4). Therefore M = M (g) = V is given the
structure of a g-twisted positive energy V -module (clearly irreducible too), as long as
we choose x so thatψM

n andψ∗M
n annihilate |0〉 for n > 0. This leads to the requirement

0 ≤ a + x ≤ 1.
For g 
= 1 this requirement fixes x uniquely. If g = 1 then δ = 0 and we have the

choice of putting x = 1 − a or x = −a, but both lead to the same module up to isomor-
phism. Indeed if x = 1 − a, then ψM

n = ψ(n−1) and ψ∗M
n = ψ∗

(n), so M0 = C |0〉 + Cψ .
If x = a then M0 = C |0〉 + Cψ∗. Then f : M0 → M0 defined by f (|0〉) = ψ∗ and
f (ψ) = |0〉 lifts to an equivalence from the first to the second module. It is convenient to
use the x = 1−a case, since then in all cases we have the uniform formula a +x = 1−δ.

11.2. Zhu algebras. Let g 
= 1. If εv + εψ = −1 then

ψ ◦n v = Resw w
n(1 + w)�ψ+εψY (ψ, z)vdw ∈ Jg.

It is possible to writeψ(n)v as a linear combination ofψ(k)v for k > n whenever n ≤ −1.
The same goes for ψ∗. Iterating this procedure reveals that Zhug(V ) is a quotient of
C |0〉. The existence of the positive energy g-twisted V -module exhibited above shows
that Zhug(V ) = C |0〉.

Let g = 1. The same argument as above holds but with n ≤ −2. Thus Zhu1(V ) is
a quotient of C |0〉 + Cψ + Cψ∗ + Cψ(−1)ψ

∗. Calculating the products of these four
elements reveals that their span is isomorphic to End(C1|1) via ψ �→ E21, ψ

∗ �→ E12
and ψ(−1)ψ

∗ �→ (a − 1)E11 + aE22. Since we have constructed an irreducible positive
energy 1-twisted V -module we have Zhu1(V ) ∼= End(C1|1).

Note that Theorem 1.3 has nothing to say unless g, h have finite order and a ∈ R is
chosen to lie in Q. Even so we can write down supertrace functions in general. The Zhu
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algebras are all of Type I, so there is a single supertrace function associated to (g, h)
and it is

STrM uM
0 γ q L0−c/24,

where M is the unique irreducible g-twisted positive energy V -module. Here γ = h−1,
which we see from Eq. (8.1) plus the fact that h restricts to the identity on Zhug(V ).

Now we restrict attention to u = |0〉 and write

χμ,λ(τ ) := STrM h−1q L0−c/24

for brevity. We shall express the twisted supercharacters χμ,λ(τ ) in terms of Jacobi theta
functions and derive modular transformations.

11.3. Twisted supercharacters. Recall the conformal weight h = h(M) of an irreduc-
ible V -module M , defined to be the eigenvalue of L M

0 on the lowest graded piece of M .
We use the Borcherds identity to compute

h(M) = 1
2 (δ − a)(δ + a − 1) = 1

2 [x(x − 1) + 2ax] (11.5)

for the twisted V -modules M described above.
Indeed, put u = ψ, v = ψ∗ (so that [εu] = −[δ] and [εv] = [δ]) in the Borcherds

identity (2.1). Let m = −δ, k = δ and denote by LHS(n) the left hand side of (2.1) with
these choices of u, v,m, and k. We have

LHS(−1) = (ψ(−1)ψ
∗)M

0 − (δ + a)(ψ(0)ψ
∗)M

0

and LHS(−2) = (ψ(−2)ψ
∗)M

0 −(δ + a)(ψ(−1)ψ
∗)M

0 + 1
2 (δ + a)(δ + a + 1)(ψ(0)ψ

∗)M
0 .

Rearranging and using ψ(0)ψ∗ = |0〉 yields

(ψ(−2)ψ
∗)0 = LHS(−2) + (δ + a)LHS(−1) + 1

2 (δ + a)(δ + a − 1).

The corresponding right-hand side of (2.1) is

RHS(n) =
∑

j∈Z+

(−1) j
(

n

j

)[
ψ−δ+n− jψ

∗
δ+ j−n + (−1)nψ∗

δ− jψ−δ+ j

]
.

If we apply this to |0〉, then the first term vanishes and the second term equals (−1)n .
Therefore, when applied to |0〉,

(ψ(−2)ψ
∗)0 = 1 − (δ + a) + 1

2 (δ + a)(δ + a − 1).

A similar calculation shows that, when applied to |0〉,
(ψ∗

(−2)ψ)0 = −(δ + a) + 1
2 (δ + a)(δ + a + 1).

Combining these with (11.3) yields (11.5) above (having also used a + x = 1 − δ).
Let φ(τ) = ∏∞

n=1(1 − qn), so that η(τ) = q1/24φ(τ).
Applying ψ(−n) = ψM−n+a+x to a monomial in V raises its L0-eigenvalue by n − a −

x = n − (1− δ). Similarlyψ∗
(−n) = ψ∗M−n+1−a−x raises the eigenvalue by n − δ. We have

χμ,λ(τ ) = qh(M)−c/24
∞∏

n=1

(1 − λqn−(1−δ))
∞∏

n=1

(1 − λ−1qn−δ).
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The first product is the contribution of the ψ terms, the second is that of the ψ∗ terms.
Note that when g = h = 1 the supercharacter vanishes.

Recall the Jacobi triple product identity:

∞∏

m=1

(1 − z2m)(1 + z2m−1 y2)(1 + z2m−1 y−2) =
∑

n∈Z

zn2
y2n .

Set z = q1/2, and y2 = −λqδ−1/2. We obtain

χμ,λ(τ ) = qh(M)−c/24

φ(q)

∑

n∈Z

(−λ)nqn2/2+(δ−1/2)n

= e2π i[h(M)−(c−1)/24]τ

η(τ )
θ((δ − 1

2 )τ + (ρ − 1
2 ); τ),

where θ(z; τ) is the Jacobi theta function defined by (3.5).

11.4. Modular transformations. Let A = δ− 1
2 and B = ρ − 1

2 . Using Proposition 3.3
we have

χμ,λ(τ + 1) = e2π i[h−(c−1)/24](τ+1)

η(τ + 1)
θ(A(τ + 1) + B; τ + 1)

= e2π i[h−(c−1)/24] e2π i[h−(c−1)/24]τ

eπ i/12η(τ)
θ(Aτ + (B + A + 1

2 ); τ)

= e2π i[h−c/24] e2π i[h−(c−1)/24]τ

η(τ )
θ((δ − 1

2 )τ + (δ + ρ − 1
2 ); τ).

This is proportional to χμ,λμ(τ ) the λμ-twisted supercharacter of the irreducible μ-
twisted V -module.

Using Proposition 3.3 again we have

χμ,λ(−1/τ) = e−2π i[h−(c−1)/24]/τ

η(−1/τ)
θ((Bτ − A)/τ ;−1/τ)

= e−2π i[h−(c−1)/24]/τ

(−iτ)1/2η(τ)
(−iτ)1/2eπ i(Bτ−A)2/τ θ(Bτ − A; τ)

= e−2π i ABe−2π i[h−(c−1)/24−A2/2]/τ e2π i[B2/2]τ

η(τ )
θ(Bτ − A; τ).

Recall the formula for c in terms of a, we use it to obtain

1
24 (c − 1) + 1

2 A2 = 1
8 (−4a2 + 4a − 1) + 1

2 (δ − 1
2 )

2

= 1
2 (δ − 1

2 )
2 − 1

2 (a − 1
2 )

2

= 1
2 (δ − a)(δ + a − 1) = h(M). (11.6)
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Hence

χμ,λ(−1/τ) = e−2π i AB e2π i[B2/2]τ

η(τ )
θ(Bτ − A; τ).

But by calculation (11.6) again, 1
2 B2 = h(M ′)− 1

24 (c−1), where M ′ is the irreducible λ-
twisted V -module. Therefore χμ,λ(−1/τ) is proportional to χλ,μ−1(τ ) the μ−1-twisted
supercharacter of the irreducible positive energy λ-twisted V -module.

In summary: χ1,1 = 0 and for any (λ, μ) 
= (1, 1) and A ∈ SL2(Z) we have

χμ,λ(Aτ) ∝ χ(μ,λ)·A(τ ).

If a ∈ Q our VOSA has rational conformal weights, and if μ and λ are roots of unity
then g, h lie in some finite group of automorphisms of V . In this case the modular trans-
formations we have just derived follow from Theorem 1.3. The computation holds in
general though.

12. VOSAs Associated to Integral Lattices

Let (Q, 〈·, ·〉) be a rank r integral lattice with positive definite bilinear form 〈·, ·〉. Let
h = Q ⊗Z C with the induced positive definite bilinear form 〈·, ·〉. The loop algebra
h̃ = h[t±1] is equipped with a Lie bracket as follows:

[htm, h′tn] = m
〈
h, h′〉 δm,−n .

Let S−(h) = U (h̃)/U (h̃)h[t]. We write hm for htm . Explicitly S−(h) has a basis of
monomials

h1
n1

· · · hs
ns

1,

where the hi range over a basis of h, and n1 ≤ . . . ns ≤ −1 are integers.
The twisted group algebra Cε[Q] of Q is a unital associative algebra with basis

{eα|α ∈ Q}, unit element 1 = e0, and multiplication eαeβ = ε(α, β)eα+β , where the
function ε : Q × Q → {±1} has been chosen to satisfy

• ε(0, a) = ε(a, 0) = 1 for all a ∈ Q,
• ε(a, b)ε(a + b, c) = ε(a, b + c)ε(b, c) for all a, b, c ∈ Q,
• ε(a, b) = ε(b, a)(−1)〈a,b〉+〈a,a〉〈b,b〉 for all a, b ∈ Q.

It may be shown that such ε exists.
Associated to this data there is a VOSA ([18], p. 148).

Definition 12.1. The lattice VOSA (VQ, |0〉 ,Y, ω) associated to Q is defined to be
VQ = S−(h)⊗Cε[Q] as a vector superspace, where the parity of s⊗eα is 〈α, α〉 mod 2.
The vacuum vector is |0〉 = 1 ⊗ 1. Let h ∈ h, α ∈ Q, and n ∈ Z. Define hn : VQ → VQ
by

hn(s ⊗ eα) = (hns)⊗ eα for n < 0,

hn(1 ⊗ Cε[Q]) = 0 for n > 0,

h0(1 ⊗ eα) = 〈h, α〉 1 ⊗ eα,

and [hm, h′
n] = m

〈
h, h′〉 δm,−n .
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Put h(z) = ∑
n∈Z

hnz−n−1 and


α(z) = eαzα0 exp

⎡

⎣−
∑

j<0

z− j

j
α j

⎤

⎦ exp

⎡

⎣−
∑

j>0

z− j

j
α j

⎤

⎦ ,

where by definition eα(s ⊗ eβ) = ε(α, β)(s ⊗ eα+β). The state-field correspondence is
given by Y (h ⊗ 1, z) = h(z), Y (1 ⊗ eα, z) = 
α(z), and is extended to all of VQ by
normally ordered products, i.e.,

Y (hna, w) = Resz
[
h(z)Y (u, w)iz,w(z − w)n − Y (u, w)h(z)iw,z(z − w)n

]
dz.

Finally, the Virasoro vector is

ω = 1

2

r∑

i=1

ai
(−1)b

i
(−1) |0〉 ,

where {ai } and {bi } are bases of h dual under 〈·, ·〉, i.e.,
〈
ai , b j

〉 = δi j .

Some commutators between the generating fields are
[
h(z), h′(w)

] = 〈
h, h′〉 ∂wδ(z, w),

[h(z), 
α(w)] = 〈α, h〉
α(w)δ(z, w).
There is an explicit expression for [
α(z), 
β(w)] which we will not require. The con-
formal weight of h = h−1 |0〉 ∈ S−(h) ⊗ 1 is 1, the conformal weight of 1 ⊗ eα is
〈α, α〉 /2. The central charge of V equals the rank r of Q. The lattice VOSAs are known
to be C2-cofinite.

12.1. Irreducible modules and their (super)characters. Let G = {1, σV }. It is explained
in [18] that VQ is σV -rational. If Q is an even lattice, i.e., 〈α, α〉 ∈ 2Z for all α ∈ Q,
then VQ is purely even and so σV = 1. We focus on the case Q is not even. The same
proof as in [18] shows that VQ is also 1-rational.

Let Q◦ ⊆ h be the lattice dual to Q and let δ ∈ Q◦. We define

Y δ(h, z) = h(z) + 〈δ, h〉 z−1,

Y δ(eα, z) = z〈δ,α〉
α(z).
(12.1)

Under this modified state-field correspondence V acquires the structure of a positive
energy σV -twisted V -module (the fields Y δ(u, z) involve only integer powers of z)
which depends on δ only through δ + Q. Via this construction the cosets of Q◦ modulo
Q are in bijection with the irreducible positive energy (σV -twisted) VQ-modules [18].
The Virasoro field acts on (V,Y δ) as

Lδ(z) = L(z) +
1

2
z−1

r∑

i=1

[〈
δ, bi

〉
ai (z) +

〈
δ, ai

〉
bi (z)

]
+

〈δ, δ〉
2

z−2.

From this we see that the Lδ0-eigenvalue of 1⊗eα is 〈α + δ, α + δ〉 /2. The Lδ0-eigenvalue
of h ∈ h is 1 as before.
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In a similar way the irreducible positive energy 1-twisted V -modules are exactly
(V,Y ρ) (defined as in (12.1)) but for ρ ∈ h satisfying

〈2ρ, α〉 ≡ 〈α, α〉 (mod 2) (12.2)

for every α ∈ Q.
Let {ai } be a basis of Q and let p(ai ) denote the parity of

〈
ai , ai

〉
. Let {bi } be the

basis of Q◦ dual to {ai }, and let

ρ = 1

2

∑

p(ai )=1

bi +
∑

p(ai )=0

bi .

Clearly ρ satisfies Eq. (12.2) for α ∈ {ai }. Now let α = ∑
i ki ai , where ki ∈ Z. Then

〈2ρ, α〉 =
∑

i

ki

〈
2ρ, ai

〉
and 〈α, α〉 =

∑

i, j

ki k j

〈
ai , a j

〉

but
∑

i, j

ki k j

〈
ai , a j

〉
≡

∑

i

k2
i

〈
ai , ai

〉
≡

∑

i

ki

〈
ai , ai

〉
≡

∑

i

ki

〈
2ρ, ai

〉
(mod 2),

so ρ satisfies (12.2) for all α ∈ Q. Let Q• be the set of all elements of h satisfying
(12.2) for all α ∈ Q. As we have taken Q not even, Q• 
= Q◦ and Q◦ ∪ Q• is a lattice
containing Q◦ as an index 2 sublattice.

All simple components of Zhug(V ) (and hence all irreducible V -modules) are h-
invariant for each h ∈ G. For h = 1 this is obvious, and for h = σV it follows because
each simple component has a unit element which is even and hence fixed by σV . Let us
consider C(g, h; |0〉) only, so that we may ignore any contribution of modules of Type II.
Then if h = 1 (resp. σV ) we have γ = 1 (resp. σM ). The space C(g, h; |0〉) is spanned by
STrM hq Lδ0−c/24, where M ranges over the set of irreducible g-twisted positive energy
V -modules.

The bosonic part S−(h) of the tensor product S−(h) ⊗ Cε[Q] is purely even and
q−c/24 TrS−(h) q L0 = η(τ)−r . The contribution of Cε[Q] is given in terms of classical
lattice theta functions:

�even
δ,Q (q) = TrCε [Q] q Lδ0 =

∑

α∈Q

eπ iτ 〈α+δ,α+δ〉

and �odd
δ,Q(q) = STrCε [Q] q Lδ0 =

∑

α∈Q

eπ iτ 〈α+δ,α+δ〉eπ i〈α,α〉.

We see that C(g, h; |0〉) is spanned by

�even
δ,Q (q)/η(τ)

r for δ ∈ Q◦/Q if (g, h) = (σV , σV ),

�even
δ,Q (q)/η(τ)

r for δ ∈ Q•/Q if (g, h) = (1, σV ),

�odd
δ,Q(q)/η(τ)

r for δ ∈ Q◦/Q if (g, h) = (σV , 1),

�odd
δ,Q(q)/η(τ)

r for δ ∈ Q•/Q if (g, h) = (1, 1).
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The transformation
∑

α∈Q

e−iπ〈α,α〉/τ = (disc Q)−1/2(−iτ)r/2
∑

β∈Q◦
eiπτ 〈β,β〉

of the usual lattice theta function under τ �→ −1/τ is proved using Poisson summation
[14] (here disc Q is the discriminant, defined to be the determinant of the Gram matrix
of an integral basis of Q). In the same way the SL2(Z) transformations of �even and
�odd may be deduced and it is confirmed that

(
a b
c d

) : C(g, h; |0〉) → C(gahc, gbhd; |0〉).
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