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Abstract This paper characterizes the optimal way for a principal to structure a
rank-order tournament in a moral hazard setting (as in Lazear and Rosen in J Polit Econ
89:841–864, 1981). We find that it is often optimal to give rewards to top performers
that are smaller in magnitude than corresponding punishments to poor performers. The
paper identifies four reasons why the principal might prefer to give larger rewards than
punishments: (1) R is small relative to P (where R is risk aversion and P is absolute
prudence); (2) the distribution of shocks to output is asymmetric and the asymmetry
takes a particular form; (3) the principal faces a limited liability constraint; and (4)
there is agent heterogeneity of a particular form.

Keywords Prizes · Tournaments

JEL Classification L22

We are grateful to two anonymous referees, Dan Kovenock (the co-editor), Philippe Aghion, George
Akerlof, Edward Glaeser, Jerry Green, Oliver Hart, Bengt Holmström, Emir Kamenica, Lawrence Katz,
Barry Nalebuff, and Emily Oster for helpful comments and discussions.

Electronic supplementary material The online version of this article
(doi:10.1007/s00199-010-0523-4) contains supplementary material, which is available to authorized users.

R. J. Akerlof
Massachusetts Institute of Technology, Cambridge, USA
e-mail: akerlof@mit.edu

R. T. Holden (B)
University of Chicago, Chicago, USA
e-mail: rholden@uchicago.edu; rholden@mit.edu

R. T. Holden
NBER, Cambridge, USA

123

http://dx.doi.org/10.1007/s00199-010-0523-4


290 R. J. Akerlof, R. T. Holden

1 Introduction

Lazear and Rosen (1981) argue that rank-order tournaments help to solve a moral haz-
ard problem faced by firms.1 Such tournaments have been interpreted as explaining
many features of firms, such as within-firm job promotions, wage increases, bonuses,
and CEO compensation; as well as “punishments ” such as firings and up-or-out pol-
icies (Lazear 1991; Prendergast 1999).

In assessing this claim, it is important to understand what optimal prize structures
look like in such tournaments (where abilities are identical and common knowledge,
agents are risk-averse,2 and there are both common and idiosyncratic shocks to output).
This paper provides a characterization of the optimal prizes in tournaments of the type
first analyzed by Lazear and Rosen (1981) and Green and Stokey (1983) (LRGS
tournaments). Our results have considerable practical significance. They allow us to
test whether aspects of employee compensation arise because of or in spite of the
moral hazard theory of tournaments.

We analyze a LRGS-style model with and without binding limited liability con-
straints for the agents. We identify conditions under which the optimal prize structure
has the property that the reward for placing i th in the tournament rather than (i + 1)th
is smaller than the optimal punishment for placing (n − i + 1)th rather than (n − i)th
(where n is the number of agents in the tournament) when i ≤ n−1

2 . In particular, this
means that the punishments for the worst performers are greater in magnitude than
the rewards for the best performers.

The particular shape of the optimal prize schedule depends crucially upon the dis-
tribution of the shocks to agents’ output. We find that a set of weights, {βi }n

i=1, which
can be calculated solely based upon the shock distribution, encapsulates the effect of
the shock distribution on the optimal prize schedule. The weight βi is equal to the
marginal change in the probability of placing i th in the tournament from a marginal
change in effort. In fact, when agents’ utility for wealth is logarithmic, the optimal
prize schedule is simply an affine transformation of the weight schedule.3

Many common noise distributions, such as the normal distribution and uniform
distribution, yield weight schedules that spike at the top and bottom. When the weight
schedule spikes at the top and bottom, and the limited liability constraint does not
bind, the optimal prize schedule gives special rewards to a few of the best perform-
ers, special punishments to a few of the worst performers, and somewhat smaller
rewards/punishments for those whose performance is neither at the top nor bottom of
the distribution.

While, often, optimal tournaments punish more than they reward, there are four
factors that lead the rewards to be large relative to the punishments. We find that the
amount of punishment relative to reward depends upon the size of R relative to P ,

1 Green and Stokey (1983) provide a general treatment of the problem with risk-averse agents.
2 Lazear and Rosen (1981) have risk-neutral agents but Green and Stokey extend this, inter alia, to risk-
averse agents.
3 When utility for wealth is logarithmic and the shock distribution is symmetric (in the sense that F(−x) =
1 − F(x)), we find that the rewards for the best performers are exactly equal to the punishments for the
worst performers.
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where R is Arrow–Pratt risk aversion and P is the coefficient of absolute prudence.
When R is sufficiently low relative to P , it may be optimal for the principal to give
larger rewards than punishments.4 If there is a limited liability constraint, this may
limit the principal’s ability to punish and lead the principal to rely more heavily upon
rewards to incentivize agents. The optimal size of rewards relative to punishments also
depends upon the distribution of the shocks to agents’ output. If the shock distribution
is asymmetric (F(−x) �= 1− F(x)) in a manner to be defined below, it may be optimal
to give large rewards relative to punishments. Finally, if the agents participating in the
tournament are heterogeneous in a manner to be defined below, the principal may wish
to give large rewards. These results speak to the importance of punishment as a tool
to the principal and in what settings it might be expected to arise.

The paper will proceed as follows. Section 2 provides a brief review of the existing
literature. Section 3 gives the basic setup of the model and states the problem of the
principal designing the tournament. Section 4 establishes the main results of the paper
(in four corollaries to Proposition 1), giving a partial characterization of the optimal
prize schedule. Intuition for the results is provided in Section 4.1. Section 5 considers
the case where the principal may offer only two prizes, providing further intuition and
applications. Section 6 contains some concluding remarks.

2 Brief literature review

Since the seminal contributions of Lazear and Rosen (1981), Green and Stokey
(1983) and Nalebuff and Stiglitz (1983) there has been a vast amount of research
on labor market tournaments, as well as tournaments between firms such as R&D
tournaments. For excellent overviews see Lazear (1991) and Prendergast (1999).

Our paper analyzes the optimal prize structure and the relative importance of
rewards versus punishments in a framework which is essentially identical to Green
and Stokey (1983). We are certainly not the first to consider optimal prize structures in
tournaments. As long ago as 1902, Francis Galton addressed this question in two prize
tournaments.5 The most important and recent paper relating to ours is Moldovanu
and Sela (2001). They consider a contest with multiple prizes where the players are
privately informed about their ability and analyze optimal prize structures within the
framework of private value all-pay auctions. This is formally similar to models ana-
lyzed by Weber (1985), Glazer and Hassin (1988), Hillman and Riley (1989), Baye
et al. (1996), Krishna and Morgan (1997), Clark and Riis (1998a), and Barut and
Kovenock (1998). Moldovanu and Sela (2001) analyze a model where risk-neutral
players have different costs of exerting effort, which is private information. The con-
test designed seeks to maximize the sum of the efforts by determining the allocation
of a fixed purse among the contestants. They show that if the contestants have linear
or concave cost of effort functions then the optimal prize structure involves allocating

4 The concept of absolute prudence is due to Kimball (1990) who analyzes its role on precautionary saving
in a dynamic model. The relationship between risk aversion and absolute prudence has been explored in
a variety of settings different from ours [see, for example, Carroll and Kimball (1996) and Caplin and
Nalebuff (1991)].
5 This is cited in Moldovanu and Sela (2001).
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the entire prize to the first-place getter. With convex costs, entry fees, or minimum
effort requirements, more prizes can be optimal.6

The central distinguishing feature of our approach is the focus on tournaments in a
moral hazard context (LRGS tournaments), where the risk faced by agents arises from
noise between effort and output.7 In Moldovanu and Sela (2001), risk arises from an
agent’s uncertainty about her relative productivity. Krishna and Morgan (1998) also
examine the LRGS context, but under somewhat restrictive assumptions: in particu-
lar, they assume a limited liability constraint but no participation constraint (which is
equivalent in our framework to a limited liability constraint sufficiently strong that it
causes the participation constraint to be non-binding.) They also restrict attention to
tournaments with four or fewer players and assume that the total purse is fixed.

An early paper on prize structures in tournaments is O’Keeffe et al. (1984) which
focuses on how to get contestants of unequal ability to compete in the “correct” tour-
nament, and what prizes to use. Two other notable papers that relate to the appropriate
use of tournaments and optimal design are Levin (2002), and Jaramillo (2004).

3 The model

3.1 Statement of the problem

Suppose there are n agents available to compete in a rank-order tournament. This
tournament is set up by a principal whose goal is to maximize her expected profits.
The principal pays a prizewi to the agent who places i th in the tournament. The profits
which accrue to the principal are equal to the sum of the outputs of the participating
agents minus the amount she pays out: π = ∑n

i=1(qi − wi ). We assume that the
principal is risk-neutral. For now, we will assume that agents are homogeneous in
ability. If agent j exerts effort e j , her output is given by q j = e j + ε j + η, where ε j

and η are random variables with mean zero and distributed according to distributions
F and G, respectively. We assume that the ε j ’s are independent of one another and η.
We will refer to η as the “common shock” to output and ε j as the “idiosyncratic
shock” to output. Since rank-order tournaments filter out the noise created by com-
mon shocks but individual contracts do not, rank-order tournaments are considered
most advantageous when common shocks are large.8

We will assume that agents have utility that is additively separable in wealth and
effort. If agent j places i th in the tournament, her utility is given by: u(wi ) − c(e j )

where u′ ≥ 0, u′′ ≤ 0, c′ ≥ 0, c′′ ≥ 0. Agents have an outside option which guaran-

6 In a setting with identical players, Schottner (2008) shows that when entry fees cannot be charged a
fixed-price tournament may dominate a first-price auction.
7 A different strand of the literature analyzes tournaments through so-called “contest success functions” ,
which specifies the probability of each player winning as a function of the vector of efforts of all players.
See, for instance, Skaperdas (1996) and Clark and Riis (1998b).
8 See Holmström (1982) for a definitive treatment of relative performance evaluation individual con-
tracts. He shows that an appropriately structured individual contract with a relative performance component
dominates a rank-order tournament for n finite. Green and Stokey (1983) prove convergence of optimal
tournaments to the individual contract second-best as n → ∞ when there are no common shocks.
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tees them Ū , so unless the expected utility from participation is at least equal to Ū ,
agents will not be willing to participate. We also assume that agents must receive a
wage of at least w̄ (which we can think of as a limited liability constraint).

The timing of events is as follows. Time 1: the principal commits to a prize schedule
{wi }n

i=1. Time 2: agents decide whether or not to participate. Time 3: individuals
choose how much effort to exert. Time 4: output is realized and prizes are awarded
according to the prize schedule set at time 1.

3.2 Solving the model

We will restrict attention to symmetric pure strategy equilibria (as do Green and
Stokey 1983; Krishna and Morgan 1998). In a symmetric equilibrium, every agent will
exert effort e∗. Furthermore, every agent has an equal chance of winning any prize.
Thus, an agent’s expected utility is

1

n

∑

i

u(wi )− c(e∗)

In order for it to be worthwhile for an agent to participate in the tournament, it is
necessary that

1

n

∑

i

u(wi )− c(e∗) ≥ Ū

An agent who exerts effort e while everyone else exerts effort e∗ receives expected
utility

U (e, e∗) =
∑

i

ϕi (e, e∗)u(wi )− c(e)

where ϕi (e, e∗) = Pr(i th place|e, e∗),

The problem faced by an agent is to choose e to maximize U (e, e∗). The first-order
condition for this problem is

c′(e) =
∑

i

∂

∂e
ϕi (e, e∗)u(wi )

By assumption, the solution to the agent’s maximization problem is e = e∗. If the
first-order condition gives the solution to the agent’s maximization problem, it follows
that

c′(e∗) =
∑

i

βi u(wi )

where βi = ∂

∂e
ϕi (e, e∗)

∣
∣
∣
∣
e=e∗
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Fig. 1 Weights for the normal

We will often refer to the βi ’s as “weights.” The βi ’s do not depend upon e∗ but sim-
ply upon the noise distribution function F . Lemma 1 gives a formula for βi and some
additional properties.

Lemma 1 1. The following is a formula for βi as a function of F and the corre-
sponding pdf, f :

βi =
(

n − 1
i − 1

) ∫

R

F(x)n−i−1(1 − F(x))i−2 ((n − i)− (n − 1)F(x)) f (x)2dx .

2. For all F,
∑

i βi = 0, β1 ≥ 0, andβn ≤ 0. If F is symmetric (F(−x) = 1−F(x)),
βi = −βn−i+1 for all i . 3. If F is a uniform distribution on [−σ

2 ,
σ
2 ], β1 =−βn = 1

σ
and βi = 0 for 1 < i < n.

Under special conditions that we will see in Sect. 4, the optimal prize schedule will
be an affine transformation of the weight schedule. More generally, when there is no
limited liability constraint, the optimal prize schedule will have a shape similar to the
weight schedule.

Lemma 1 shows that the weight schedule for the uniform distribution is completely
flat in the middle and spikes at the top and bottom. We find that many other distri-
butions have weight schedules that are relatively flat in the middle and spike at the
top and bottom. The normal distribution has this pattern. Figure 1 gives a plot of the
weights for a normal distribution with standard deviation (SD) of 1 and n = 200.

While the weights associated with uniformly distributed and normally distributed
noise are always decreasing in i , the weights need not be monotonic. When the noise
distribution is not single-peaked, non-monotonicities tend to arise. It should be noted
that, while the weights can be increasing in i over some range, the weights cannot be
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increasing over the entire range. As Lemma 1 shows, β1 > βn unless β1 = βn = 0.
As we will see in the next section, non-monotonicities in the weights lead to non-mo-
notonicities in the optimal prize schedule.

In general, the agents’ first-order condition may or may not give the solution to the
agents’ maximization problem.9 In order for the first-order condition to give the solu-
tion, the second-order condition must be satisfied. Lemma 2 gives conditions under
which the second-order condition will be satisfied at e = e∗.

Lemma 2 Suppose that F is symmetric (F(−x) = 1 − F(x)), u(wi ) − u(w j ) ≤
u(wn− j+1) − u(wn−i+1) for all i ≤ j ≤ n+1

2 , and
∑ j

i=1 γi ≥ 0 for all j ≤ n
2 ,

where γi = ∂2

∂e2 ϕi (e, e∗)
∣
∣
∣
e=e∗ . Then, the agents’ second-order condition is satisfied

at e = e∗.

The condition on the γi ’s holds when F is a uniform, normal, double exponential, or
Cauchy distribution. In the next section, we will give conditions under which the prin-
cipal will choose a prize schedule for which u(wi )−u(w j ) ≤ u(wn− j+1)−u(wn−i+1)

for all i ≤ j ≤ n+1
2 when agents act according to the first-order condition.

Now that we have elaborated the agents’ problem, we turn to the principal’s prob-
lem. We have assumed that the principal is risk neutral. This implies that the principal’s
objective is to maximize expected profits

E(π) =
∑

j

e j −
∑

i

wi = n

(

e∗ − 1

n

∑

i

wi

)

.

When the agents’ first-order condition is equivalent to the agents’ incentive compati-
bility constraint, the problem of the principal can be stated as follows:

max
wi

(

e∗ − 1

n

∑

i

wi

)

subject to

1

n

∑

i

u(wi )− c(e∗) ≥ Ū (IR)

c′(e∗) =
∑

i

βi u(wi ) (IC)

wi ≥ w̄ for all i (LL)

Substituting (c′)−1
(∑

i βi u(wi )
)

for e∗, and u−1(ui ) for wi , we can rewrite the prin-
cipal’s problem as:

9 One way to ensure that the first-order condition and the IC constraint are equivalent is to make a partic-
ular assumption on the agent’s utility function and assume that the parameterized distributions of output
are: (a) quasiconvex and (b) have the Monotone Likelihood Ratio Property (Jewitt 1988, Theorem 3). The
assumption on the utility function requires that u is a concave transformation of 1/u′.
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max
ui

(

(c′)−1

(
∑

i

βi u(wi )

)

− 1

n

∑

i

u−1(ui )

)

subject to

Ū − 1

n

∑

i

ui + (c′)−1

(
∑

i

βi u(wi )

)

≤ 0 and u−1(ui ) ≥ u−1(w̄)

The Lagrangian associated with this maximization problem is:

L =
(

(c′)−1

(
∑

i

βi ui

)

− 1

n

∑

i

u−1(ui )

)

−λ
(

Ū − 1

n

∑

i

ui + c

(

(c′)−1

(
∑

i

βi ui

)))

−
∑

i

μi

(
u−1(ui )− u−1(w̄)

)

Just as the agents’ first-order condition does not necessarily solve the agents’ max-
imization problem, the first-order conditions of the Lagrangian may not solve the
principal’s maximization problem. The following Lemma gives a condition under
which the principal will act according to the first-order conditions of the Lagrangian.

Lemma 3 If c′′′ ≤ 0, c′′
c′ ≥ c′′′

c′′ , and (u1, . . . , un, λ, μ1, . . . , μn) satisfies the Kuhn–
Tucker conditions of L, (u1, . . . , un) solves the principal’s problem.

These conditions on the cost of effort function are somewhat restrictive, but they
do hold for all functions of the form c(e) = deα for which α ≥ 2.

4 The optimal prize schedule

We will now give a partial characterization of the principal’s optimal prize schedule.
We will identify three important determinants of the optimal prize schedule: (1) the
size of R relative to P (R is risk aversion and P is absolute prudence), (2) the size of w̄
(the minimum prize that can be awarded), and (3) the shape of the noise distribution F .
In what we will think of as a base case, in which R ≥ P

2 , F is symmetric, and the
limited liability constraint is non-binding, the rewards given at the top of the prize
schedule are smaller than the punishments given at the bottom of the prize schedule.
It might be optimal to give larger rewards than punishments if R is low relative to
P, F is asymmetric, or the limited liability constraint is binding. We will develop an
intuition for these results below.

The main results of this section follow from Proposition 1. However, it may not be
immediately clear to readers what the implications of the proposition are. Corollaries
1–4 develop the main implications of the proposition.

The first-order conditions of the Lagrangian lead to the following lemma, which
tells us a great deal about the optimal prize schedule.
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Fig. 2 Optimal prize schedule

Lemma 4 Suppose w∗ = (w∗
1, . . . w

∗
n) is the optimal prize schedule and let

vi = u′(w∗
i ). If the agents act according to their first-order condition, c′′′ ≥ 0,

and c′′
c′ ≥ c′′′

c′′ , then
1
vi

− 1
vi+k

1
v j

− 1
v j+l

= βi −βi+k
β j −β j+l

whenever wi , w j , wk, wl > w̄.

Proposition 1 follows directly from Lemma 4, and relates the slope of the prize
schedule to the slope of the weight schedule. What we will find is that, under the spe-
cial condition that u is logarithmic and the limited liability constraint is non-binding,
Lemma 4 implies that the optimal prize schedule is simply an affine transformation
of the weight schedule.

What we find more generally is that the optimal prize schedule tends to look similar
to an affine transformation of the weight schedule when the limited liability constraint
is non-binding. When R is large relative to P , the optimal prize schedule differs
from an affine transformation of the weight schedule in that the prizes at the top
are revised in the direction of the median prize while the prizes at the bottom are
revised in the opposite direction from the median prize. When R is small relative
to P , the optimal prize schedule differs from an affine transformation of the weight
schedule in that the prizes at the bottom are revised in the direction of the median prize
while the prizes at the bottom are revised in the opposite direction from the median
prize.

We see this in comparing the prize schedule in Fig. 2 (a case where R is large relative
to P) to the corresponding weights shown in Fig. 1. Figure 2 shows the prize schedule
in money (as opposed to utils) in the case where n = 200, F is a normal distribution
with SD 1, c(e) = e2

2 , the utility function is CRRA with θ = 2, and there is no limited
liability constraint. We observe that the shape of the prize schedule is similar to the
shape of the weight schedule in Fig. 1 but the prizes for the best performers are revised
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in the direction of the median prize and the prizes for the worst performers are revised
in the opposite direction.

Proposition 1 is as follows.

Proposition 1 Suppose min(w∗
i , w

∗
i+k, w

∗
j , w

∗
j+l) > w̄ and min(i, i + k) ≥

max( j, j + l) (k and l can be positive or negative). Suppose further that βi −βi+k ≥ 0
and β j − β j+l ≥ 0. Let R = − u′′

u′ denote the Arrow-Pratt measure of risk aversion.

Let P = − u′′′
u′′ denote the coefficient of absolute prudence. Suppose c′′′ ≥ 0, c′′

c′ ≥ c′′′
c′′ ,

and the agents act according to their first-order condition.

(i) If R ≥ P
2 :

βi − βi+k

β j − β j+l
≤

(
u′′(w∗

j+l)

u′′(w∗
i )

)(
u′(w∗

i )

u′(w∗
j+l)

)2
βi − βi+k

β j − β j+l
≤ w∗

i − w∗
i+k

w∗
j − w∗

j+l

≤
(

u′′(w∗
j )

u′′(w∗
i+k)

) (
u′(w∗

i+k)

u′(w∗
j )

)2
βi − βi+k

β j − β j+l

(ii) If R ≤ P
2 :

(
u′′(w∗

j )

u′′(w∗
i+k)

)(
u′(w∗

i+k)

u′(w∗
j )

)2
βi − βi+k

β j − β j+l
≤ w∗

i − w∗
i+k

w∗
j − w∗

j+l

≤
(

u′′(w∗
j+l)

u′′(w∗
i )

) (
u′(w∗

i )

u′(w∗
j+l)

)2
βi − βi+k

β j − β j+l
≤ βi − βi+k

β j − β j+l

(iii) Let u∗
i = u(w∗

i ). If R ≥ P
3 :

βi − βi+k

β j − β j+l
≤

(
u′′(w∗

j+l)

u′′(w∗
i )

) (
u′(w∗

i )

u′(w∗
j+l)

)3
βi − βi+k

β j − β j+l
≤ u∗

i − u∗
i+k

u∗
j − u∗

j+l

≤
(

u′′(w∗
j )

u′′(w∗
i+k)

)(
u′(w∗

i+k)

u′(w∗
j )

)3
βi − βi+k

β j − β j+l

(iv) If R ≤ P
3 :

(
u′′(w∗

j )

u′′(w∗
i+k)

)(
u′(w∗

i+k)

u′(w∗
j )

)3
βi − βi+k

β j − β j+l
≤ u∗

i − u∗
i+k

u∗
j − u∗

j+l

≤
(

u′′(w∗
j+l)

u′′(w∗
i )

) (
u′(w∗

i )

u′(w∗
j+l)

)3
βi − βi+k

β j − β j+l
≤ βi − βi+k

β j − β j+l
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When u is logarithmic, R = P
2 . Proposition 1 implies that

w∗
i −w∗

i+k
w∗

j −w∗
j+l

= βi −βi+k
β j −β j+l

,

which means the optimal prize schedule is an affine transformation of the weight
schedule. Corollary 1 states this precisely.

Corollary 1 (1) If u(w) = log(w) (in which case R = P
2 ), c′′′ ≥ 0, c′′

c′ ≥ c′′′
c′′ ,

and the agents act according to their first-order condition, then
w∗

i −w∗
i+k

w∗
j −w∗

j+l
= βi −βi+k

β j −β j+l

wheneverwi , w j , wk, wl > w̄. If the limited liability constraint does not bind, the vec-
tor w∗ = (w∗

1, . . . , w
∗
n) is an affine transformation of the vector β = (β1, . . . , βn).

(2) If u(w) = w1/2, c′′′ ≥ 0, c′′
c′ ≥ c′′′

c′′ , and the agents act according to their first-order

condition, then
u∗

i −u∗
i+k

u∗
j −u∗

j+l
= βi −βi+k

β j −β j+l
wheneverwi , w j , wk, wl > w̄ where u∗

i = u(w∗
i ).

If the limited liability constraint does not bind, the vector u∗ = (u∗
1, . . . , u∗

n) is an
affine transformation of the vector β = (β1, . . . , βn).

Proposition 1 allows us to compare the size of rewards at the top of the optimal prize
distribution to the size of punishments at the bottom of the optimal prize distribution
(therefore, the size of w∗

i − w∗
i+1 relative to w∗

n−i − w∗
n−i+1, i ≥ n+1

2 ). In particular,

when F is symmetric, R ≥ P
2 , and there is no limited liability constraint the size of

punishments inflicted at the bottom of the prize schedule (w∗
i − w∗

i+1, i ≥ n+1
2 ) will

be larger than corresponding rewards at the top of the prize schedule (w∗
n−i −w∗

n−i+1).

When F is symmetric, R ≤ P
2 , and there is no limited liability constraint, the size of

punishments inflicted at the bottom of the prize schedule (w∗
i −w∗

i+1, i ≥ n+1
2 ) will be

smaller than corresponding rewards at the top of the prize schedule (w∗
n−i −w∗

n−i+1).

In Fig. 2, for example, (a case where R ≥ P
2 and F is symmetric) we see that the

rewards at the top of the prize schedule are small compared to the punishments at the
bottom.

Corollary 2 states this point more formally, giving conditions when ri = w∗
i −w∗

i+1
w∗

n−i −w∗
n−i+1

will be greater than or less than 1. Observe that ri ≥ 1 for all i ≥ n+1
2 means that

punishments are larger than corresponding rewards and ri ≤ 1 for all i ≥ n+1
2 means

that punishments are smaller than corresponding rewards. Corollary 2 also makes

conclusions about how ri = w∗
i −w∗

i+1
w∗

n−i −w∗
n−i+1

changes as a function of i .

Corollary 2 Let ri = w∗
i −w∗

i+1
w∗

n−i −w∗
n−i+1

and qi = u∗
i −u∗

i+1
u∗

n−i −u∗
n−i+1

. Suppose F is symmetric,

{βi } is decreasing in i, c′′′ ≥ 0, c′′
c′ ≥ c′′′

c′′ , and agents act according to their first-order
condition. Let m = max{ j : w∗

j > w̄} ∪ {0} (m is the highest integer for which
w∗

j > w̄ or 0 if w∗
1 = w̄).

(i) If R ≥ P
2 : ri ≥ 1 for m > i ≥ n+1

2 , and ri+1 ≥ ri for m > i ≥ n − m + 1.
(ii) If R ≤ P

2 : ri ≤ 1 for m > i ≥ n+1
2 , and ri+1 ≤ ri for m > i ≥ n − m + 1. (iii)

If R ≥ P
3 : qi ≥ 1 for m > i ≥ n+1

2 , and qi+1 ≥ qi for m > i ≥ n − m + 1. (iv) If
R ≤ P

3 : qi ≤ 1 for m > i ≥ n+1
2 , and qi+1 ≤ qi for m > i ≥ n − m + 1.

It follows from Corollary 2 that when R ≥ P
2 , F is symmetric, and there is no lim-

ited liability constraint, ri ≥ 1 for i ≥ n+1
2 and ri is increasing in i . These conditions
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Fig. 3 ri

hold for the prize schedule in Fig. 2. Figure 3 plots the ratios ri corresponding the
prize schedule in Fig. 2.

R ≥ P
2 for a large class of utility functions. For this reason, we think of this as

the “base case.” R ≥ P
2 for all CARA utility functions and CRRA utility functions

with θ ≥ 1.R ≥ P
3 for all CARA utility functions and CRRA utility functions with

θ ≥ 1
2 . R ≤ P

3 for CRRA utility functions with θ ≤ 1
2 , and R ≤ P

2 for CRRA utility
functions with θ ≤ 1.

Another conclusion that can be drawn from Proposition 1 is that, when the limited
liability constraint does not bind, the optimal prize schedule will be relatively flat in
the middle and spike at the top and bottom when the weight schedule has this shape.
Many common distributions, such as the normal distribution, result in weight sched-
ules with this shape. In particular, when noise is uniformly distributed, we find that
there is a special prize for first place, a special punishment for last place, and a single
prize for everyone else (the prize schedule is perfectly flat in the middle).

Corollary 3 If F is uniformly distributed, c′′′ ≥ 0, c′′
c′ ≥ c′′′

c′′ , and agents act according
to their first-order condition:

w∗
i = w∗

j , 1 < i, j < n

Limited liability
Proposition 1 suggests that a binding limited liability constraint reduces the size of

the punishment at the bottom of the prize schedule relative to the reward at the top.
Consider an example. Suppose u(w) is logarithmic and F is uniform. Corollary 1

tells us that if there is no limited liability constraint, the optimal prize schedule has
the form: wi = w for 1 < i < n, w1 = w + φ, and wn = w − φ. In this case, the
punishment at the bottom is the same as the reward at the top.
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But, suppose the limited liability constraint binds: w − φ < w̄. In this case, the
optimal prize schedule may give a larger reward at the top than punishment at the
bottom: wi = w′ for 1 < i < n, w1 = w′ + φ1, and wn = w′ − φ2 with φ1 > φ2.
The agents’ second-order condition

In the previous section, Lemma 2 gave a condition on the prize schedule under
which the agents’ second-order condition will hold for certain F at e = e∗. The fol-
lowing corollary to Proposition 1 gives us conditions under which the principal will
choose a prize schedule that meets the condition of Lemma 2.

Corollary 4 Suppose the limited liability constraint is non-binding. If F is symmetric,
{βi } is decreasing in i, R ≥ P

3 , c′′′ ≥ 0, c′′
c′ ≥ c′′′

c′′ , and agents act according to their
first-order condition:

u(w∗
i )− u(w∗

j ) ≤ u(w∗
n− j+1)− u(w∗

n−i+1) if i ≤ j ≤ n + 1

2

Therefore, when the principal assumes that agents act according to the first-order
condition, F is symmetric, {βi } is decreasing in i,

∑ j
i=1 γi ≥ 0 for j ≤ n

2 , R ≥ P
3 ,

c′′′ ≥ 0, c′′
c′ ≥ c′′′

c′′ , and the limited liability constraint is non-binding, the principal will
choose a prize schedule that satisfies the agent’s second-order condition at e = e∗.

4.1 Some intuition for the results

We have identified three key determinants of the optimal prize schedule: the size of
R relative to P , the size of the minimum prize w̄, and the noise distribution F . Let us
consider the reasons why these are important determinants.

(1) The size of R relative to P

The size of R relative to P determines how the principal balances two considerations
in the choice of the optimal prize schedule.

One consideration is how risk aversion, R, changes with wealth. If agents become
less risk averse as they become wealthier, they are less averse to upside risk than they
are to downside risk. This is a reason to give larger rewards to top performers than
punishments to poor performers.

A second consideration is how quickly the marginal utility of wealth declines. When
the marginal utility of wealth declines quickly (u′′ low), it is necessary to give much
larger monetary rewards to top performers to induce effort than punishments to poor
performers. This inclines the principal to give larger punishments than rewards.

The larger R is relative to P , the more important the second consideration is to the
principal relative to the first.

(2) Limited liability

A limited liability constraint decreases a principal’s ability to punish poor perform-
ers. As the limited liability constraint becomes more severe (w increases), the principal
becomes increasingly inclined to rely on rewards rather than punishments as a means
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of incentivizing agents. In some instances, a limited liability constraint might yield a
winner-take-all tournament in which wi = w̄ for 1 ≤ i < n and wn > w̄.

If the limited liability constraint makes the ex-ante participation constraint
non-binding, this is equivalent to the Krishna and Morgan case. They find that, in
this case, it is generally optimal for the principal to implement a winner-take-all tour-
nament.

It should be noted that, in the absence of a limited liability constraint, in cases
where R ≥ P

2 and F is symmetric, punishments for losers are typically not exorbi-
tant. Thus it is possible to imagine cases in which a limited liability constraint might
be non-binding.

(3) The noise distribution

Corollary 3 shows that, when u is logarithmic, the optimal prize schedule is an
affine transformation of the weights, βi . When F is symmetric, βi = −βn−i+1. This
means that, when F is symmetric, the optimal prize schedule rewards winners and
punishes losers equally.

But, when F is asymmetric, βi may be larger or smaller than −βn−i+1. There are
distributions F for which the weight schedule, and hence the prize schedule, is steep
for low i and flat for high i . The prize schedule in this case clearly rewards winners
more than it punishes losers.

Why does a weight schedule that is flat at the bottom lead to a prize schedule that
is flat at the bottom? Suppose, for the sake of argument, that βn−1 = βn . What this
says is that a marginal change in agent effort does not affect the probability of placing
(n − 1)th relative to nth. Therefore, placing nth rather than (n − 1)th is a matter of
luck rather than effort. In punishing agents for placing nth rather than (n − 1)th, the
principal gives a reward for luck without giving a reward for effort. Since agents are
risk averse, it is costly to the principal to reward luck. Therefore, it does not make
sense for the principal to reward agents for placing nth rather than (n − 1)th. So,
w∗

n−1 = w∗
n . If, in contrast, βn−1 > βn , punishing nth place relative to (n −1)th place

rewards effort as well as luck. So, it makes sense for the principal to punish nth place
in this case.

It should be noted that there are asymmetric F that produce weight schedules that
are steeper for high i than for low i . Such F lead to prize schedules that reward winners
less than they punish losers. Therefore, asymmetry of the noise distribution can lead
to more or less reward for winners depending upon the particular type of asymmetry.

4.2 The effect of agent heterogeneity

Agent heterogeneity can have an effect on the optimal size of rewards relative to
punishments. Whether heterogeneity increases rewards relative to punishments,
decreases rewards relative to punishments, or is neutral depends, however, on the
exact type of heterogeneity that exists. There are two leading cases: additive hetero-
geneity where agent i’s output is given by qi = ei + θi + εi + η, where θi is agent i’s
type, εi is idiosyncratic noise, and η is a common shock to output, and multiplicative
heterogeneity where agent i’s output is given by qi = θi ei + εi + η. In supplementary
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online material, we explore this issue in detail,10 but particularly in the case of mul-
tiplicative heterogeneity large rewards can be optimal. In that setting, since high θ
agents are more productive than low θ agents, the principal cares more about inducing
effort among high θ agents than low θ agents and high θ agents have a low probabil-
ity of placing at the bottom of the tournament. Therefore, high θ agents are given a
greater incentive to exert effort by rewards than by punishments and low θ agents are
given a greater incentive to exert effort by punishments than by rewards. Moreover,
the effort of high θ types is more valuable to the principal than the effort of low θ

types. This gives the principal a strong reason to rely more upon rewarding winners
than punishing losers in the multiplicative case.

5 Two-prize tournaments

In the previous section, we found that when R is large relative to P, F is symmet-
ric, and there is no limited liability constraint, the principal relies more heavily on
punishment than on reward. To examine how important punishments are relative to
rewards, we will consider what happens when the principal is limited to using just
two prizes. That is, suppose she can only give a prize w1 to the top j performers and
a prize w2 to the bottom n − j performers. When the principal is restricted in this
way, where would she like to set j? One possibility would be to set j = n

2 , so that
the top half earns one prize and the bottom half earns another. Another possibility
would be to set j = 1, which gives a special prize to the best performer. The opposite
would be to set j = n − 1, so that there is a special punishment in store for the worst
performer.

We will find that, when R ≥ P
3 and F is symmetric, it is always optimal to set

j ≥ n
2 . We also identify conditions for which it is optimal to set j = n − 1, giv-

ing a special punishment to the worst performer. This is somewhat indicative of the
importance of punishments to the principal relative to the importance or rewards.

Definition 1 We will call a tournament a “ j tournament” when the principal pays a
prize w1 to the top j performers and a prize w2 to the bottom n − j performers. Let
u1 = u(w1) and u2 = u(w2).We will call a tournament a “winner-prize tournament”
if j ≤ n

2 and a “strict winner-prize tournament” if j = 1.We will call a tournament a
“loser-prize tournament” is j ≥ n

2 and a “strict loser-prize tournament” if j = n − 1.

We will consider when the principal prefers to implement a loser-prize tournament
rather than a winner-prize tournament. To answer this question, we will compare a
j tournament and an n− j tournament that induce the same level of effort and both meet
the individual rationality constraint. It will be shown that, when R is large relative to
P, F is symmetric, and j ≤ n

2 , the payment made to agents by the principal is greater
when she uses the j tournament. When R is small relative to P, F is symmetric, and
j ≤ n

2 , the payment made to agents by the principal is smaller when she uses the
j tournament.

10 See http://www.mit.edu/~rholden/Papers.htm.
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First, we must know when a j tournament and an n − j tournament induce the
same effort. The following corollary of Lemma 1 provides the answer.

Corollary 5 If F is symmetric and agents act according to the first-order condition,
a j tournament and an n − j tournament for which u1 − u2 is the same induce the
same level of effort. This level of effort is given by

c′(e) =
⎛

⎝
j∑

i=1

βi

⎞

⎠ (u1 − u2)

Using this corollary, we will now establish the main result of this section.

Proposition 2 Suppose the principal is restricted to use a j tournament (but has a
choice over w1 andw2), that the principal is restricted to implementing a tournament
that induces effort level e, and that there is no limited liability constraint. Letπ j denote
the expected profits from the optimal choice of w1 and w2. Suppose further that F is
symmetric and agents act according to the first-order condition.

(i) If R ≥ P
3 ,

π j ≤ πn− j for j ≤ n

2

(ii) If R ≤ P
3 ,

π j ≥ πn− j for j ≤ n

2

The following is an immediate corollary.

Corollary 6 Suppose the principal is restricted to implementing a j tournament, but
can choose whatever j she likes. Suppose F is symmetric, agents act according to the
first-order condition, and there is no limited liability constraint. If u satisfies R ≥ P

3 ,
then the optimal j tournament is a loser-prize tournament (a tournament with j ≥ n

2 ).
If u satisfies R ≤ P

3 , then the optimal j tournament is a winner-prize tournament (a
tournament with j ≤ n

2 ).

So far, we have given conditions under which the optimal two-prize tournament is a
loser-prize tournament. We can go further and make comparisons between loser-prize
tournaments when we assume that the idiosyncratic noise distribution is uniform.

Proposition 3 Suppose the principal is restricted to use a j tournament, F is a sym-
metric uniform distribution, agents act according to the first-order condition, and there
is no limited liability constraint. If u satisfies R ≥ P

3 , the optimal j tournament is the
strict loser-prize tournament. If u satisfies R ≤ P

3 , the optimal j tournament is the
strict winner-prize tournament.
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When the noise distribution is not uniform, the optimal j depends upon the utility
function as well as the distributional weights. However, as mentioned above, many
distributions (including the normal distribution) have weight schedules that are sim-
ilar to the uniform distribution: they are relatively flat for 1 < i < n and spike
at the top and bottom. The strict loser-prize tournament tends to be optimal when
R > P

3 and the noise distribution has weights that look similar to those of a uniform
distribution. In the numerical examples that we have considered, we have generally
found j = n − 1 to be the optimal two-prize tournament when F is normal and
R > P

3 .11

6 Concluding remarks

This paper gives a framework and an intuition for thinking about how prizes should
be structured in rank-order tournaments created to deal with moral hazard.

We identify four key determinants of the optimal tournament prize structure: the
size of R relative to P , limited liability, the noise distribution, and agent heteroge-
neity. We find, in particular, that rewards for the best performers tend to be smaller
than punishments for the worst performers when R is large relative to P , there is no
limited liability constraint, the noise distribution is symmetric, and agents are homo-
geneous. Larger rewards for the best performers might be optimal when R is small
relative to P , there is limited liability, the noise distribution is asymmetric, or agents
are heterogeneous.

These results allow us to test whether aspects of employee compensation are
explained by the moral hazard theory of tournaments or arise for other reasons.
Within-firm job promotions, wage increases, bonuses, and CEO compensation have
often been interpreted as prizes for top performers in Lazear–Rosen rank-order tour-
naments. Our results, for example, cast some doubt on the idea that tournaments
that reward winners without punishing losers exist purely to solve a moral hazard
problem.

The key determinants of the optimal tournament prize structure identified in this
paper (the size of R relative to P , limited liability, the noise distribution, and agent
heterogeneity) are also key determinants of the optimal individual contract. Indeed,
by Green and Stokey (1983, Theorem 3), as the number of players in the tournament
grows large, the two reward schedules converge. This is a topic we address in other
work.

11 Our results in this section do not give a sense of how much the choice of j matters to the principal’s
profits. In a case where j = n − 1 is optimal, we would like to know how much worse off the principal
would be if she chose j = 1 instead. We have looked at numerical examples in order to get a sense of
the magnitude of the loss. The numerical examples we have considered suggest that the profits from the
optimal j tournament are generally close to the profits from the optimal n prize tournament. The induced
effort level is also similar. However, we find that the choice of j matters a great deal. When j is not chosen
optimally, the principal’s profit may be quite far from the profit from the optimal j tournament and the profit
from the optimal n-prize tournament. Since j = n − 1 is often the optimal j when R > P

3 , we find that
there are many cases where the optimal j = n − 1 tournament closely approximates the optimal n prize
tournament while the optimal j = 1 tournament returns a profit that is markedly worse. Therefore, in many
cases, punishing the worst performer is the most important incentive the principal has at her disposal.
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7 Appendix

Proof of Lemma 1

ϕi (e, e∗) = Pr(i th place|e, e∗) =
∫

R

(
n − 1
i − 1

)
(
F(e − e∗ + x)

)n−i

× (
1 − F(e − e∗ + x)

)i−1
f (x)dx

∂

∂e
ϕi (e, e∗) =

∫

R

(
n − 1
i − 1

)
(
F(e − e∗ + x)

)n−i−1 (
1 − F(e − e∗ + x)

)i−2

× [
(n − i)− (n − 1)

(
F(e − e∗ + x)

)]
f (x) f (e − e∗ + x)dx

βi = ∂

∂e
ϕi (e, e∗)

∣
∣
∣
∣
e=e∗

=
(

n − 1
i − 1

) ∫

R

F(x)n−i−1(1 − F(x))i−2

× ((n − i)− (n − 1)F(x)) f (x)2dx

Since
∑n

i=1 ϕi (e, e∗) = 1,
∑n

i=1
∂
∂eϕi (e, e∗) = 0. Hence,

∑n
i=1 βi = ∑n

i=1
∂
∂eϕi (e, e∗)

∣
∣
e=e∗ = 0. β1 = (n − 1)

∫

R

F(x)n−2 f (x)2dx ≥ 0 and βn = −(n − 1)
∫

R

(1 − F(x))n−2 f (x)2dx ≤ 0. If F is symmetric:

βn−i+1 =
(

n − 1
n − i

) ∫

R

F(x)i−2(1 − F(x))n−i−1 ((i − 1)− (n − 1)F(x)) f (x)2dx

= −
(

n − 1
i − 1

)∫

R

(1−F(x))i−2 F(x)n−i−1 ((n−i)− (n − 1)F(x)) f (x)2dx

= −βi

Hence, βn−i+1 = −βi for F symmetric. Suppose F is uniform on [−σ
2 ,

σ
2 ]. It follows

from the formula for βi that β1 = −βn = 1
σ

and βi = 0, 1 < i < n. 
�

Proof of Lemma 2 Suppose that F is symmetric and u(wi )−u(w j ) ≤ u(wn− j+1)−
u(wn−i+1) for all i ≤ j ≤ n+1

2 . The second-order condition of the agent’s problem is:

n∑

i=1

∂2

∂e2 ϕi (e, e∗)u(wi )− c′′(e) ≤ 0.

Since c′′ ≤ 0 by assumption, the second-order condition will hold at e = e∗

if:
∑n

i=1 γi u(wi ) ≤ 0, where γi = ∂2

∂e2 ϕi (e, e∗)
∣
∣
∣
e=e∗ . In the proof of Lemma 1, a

formula was given for ∂
∂eϕi (e, e∗). Differentiating this w.r.t. e yields
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γi = ∂2

∂e2 ϕi (e, e∗)
∣
∣
∣
∣
e=e∗

=
(

n − 1
i − 1

) ∫

R

(F(x))n−i−2 (1 − F(x))i−3

×
[

(n − i)(n − i − 1)
−2(n − i)(n − 2)F(x)+ (n − 1)(n − 2)F2(x)

]

f 3(x)dx

+
(

n − 1
i − 1

) ∫

R

F(x)n−i−1 (1−F(x))i−2 [(n−i)−(n−1)F(x)] f (x) f ′(x)dx

Since
∑n

i=1 ϕi (e, e∗) = 1,
∑n

i=1
∂2

∂e2 ϕi (e, e∗)
∣
∣
∣
e=e∗ = 0 and

∑n
i=1 γi = 0. The

formula implies that when F is symmetric, γn−i+1 = γi .
Let us define γ ′

i as follows. γ ′
i = γi for i �= n+1

2 . If i = n+1
2 , γ ′

i = 1
2γi . Notice

that, since γi = γn−i+1,
∑�n/2

i=1 γ ′
i = 1

2

∑n
i=1 γi = 0.

Let P = {i ≤ �n/2 |γ ′
i ≥ 0} and N = {i ≤ �n/2 |γ ′

i < 0}. By assumption
∑ j

i=1 γi ≥ 0 for all j ≤ n
2 . Furthermore,

∑�n/2
i=1 γ ′

i = 0. As a result, for i ∈ P it
is possible to write γ ′

i as γ ′
i = −∑

k∈N δikγ
′
k, where δik ≥ 0 for i > k, δik = 0 for

k < i, and
∑

i∈P δik = 1 for all k ∈ N.

n∑

i=1

γi u(wi ) =
�n/2∑

i=1

γ ′
i (u(wi )+ u(wn−i+1))

=
∑

i∈P

γ ′
i (u(wi )+ u(wn−i+1))+

∑

k∈N

γ ′
k(u(wk)+ u(wn−k+1))

= −
∑

i∈P

∑

k∈N

δikγ
′
k(u(wi )+ u(wn−i+1))+

∑

i∈N

γ ′
i (u(wi )+ u(wn−i+1))

=
∑

k∈N

(−γ ′
k)

(
∑

i∈P

δik(u(wi )+ u(wn−i+1))− (u(wk)+ u(wn−k+1)

)

For i ≤k ≤ n+1
2 , u(wi )− u(wk)≤u(wn−k+1)− u(wn−i+1) and u(wi )+ u(wn−i+1)≤

u(wk)+ u(wn−k+1). Since i ≤ k ≤ n+1
2 when δik > 0, it follows that

∑

k∈N

(−γk)

(
∑

i∈P

δik(u(wi )+ u(wn−i+1))− (u(wk)+ u(wn−k+1)

)

≤ 0.

Therefore,
∑n

i=1 γi u(wi ) ≤ 0. Hence, the second-order condition holds at e = e∗.

�
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Proof of Lemma 3 Let s(u1, . . . , un) = (c′)−1
(∑

i βi ui
) − 1

n

∑
i u−1(ui )

Since u′′ ≤ 0 and u′ ≥ 0, (u−1)′′(x) = −u′′(u−1(x))
(u′(u−1(x)))3

≥ 0. Therefore,− 1
n

∑
i u−1(ui )

is concave. Since
∑

i βi ui is linear in ui , (c′)−1
(∑

i βi ui
)

is concave if (c′)−1 is

concave. For simplicity of notation, let z1(x) = (c′)−1(x). z′′
1(x) = −c′′′((c′)−1(x))

(c′′((c′)−1(x)))
3 .

Therefore, (c′)−1 is concave if and only if c′′′
c′′ ≥ 0. Since c′′, c′′′ ≥ 0, (c′)−1 is indeed

concave. Since (c′)−1
(∑

i βi ui
)

and − 1
n

∑
i u−1(ui ) are both concave, s is a concave

function.
Let q(u1, . . . , un) = − 1

n

∑
i ui + c

(
(c′)−1

(∑
i βi ui

)) + Ū − 1
n

∑
i ui + Ū is

linear, and therefore both concave and convex. c
(
(c′)−1

(∑
i βi ui

))
will be convex if

c
(
(c′)−1 (x)

)
is convex since

∑
i βi ui is linear. For simplicity of notation, let z2(x) =

c
(
(c′)−1 (x)

)
. z′′

2(x) =
(
c′′((c′)−1(x))

)2−(
c′((c′)−1(x))

)(
c′′′((c′)−1(x))

)

(c′′((c′)−1(x)))
3 . Since − c′′′

c′′ ≥ − c′′
c′ ,

it follows that z′′
2 ≥ 0. Hence, c

(
(c′)−1

(∑
i βi ui

))
is convex. Since − 1

n

∑
i ui + Ū

and c
(
(c′)−1

(∑
i βi ui

))
are both convex, q is convex.

Let li (u1, . . . , un) = u−1(ui ) − u−1(w̄). From our previous analysis, it is imme-
diately clear that li is convex. Since s is concave, and q and li are convex, the Kuhn-
Tucker conditions are met. 
�
Proof of Lemma 4

L=
(

(c′)−1

(
∑

i

βi ui

)

− 1

n

∑

i

u−1(ui )

)

−λ
(

Ū − 1

n

∑

i

ui +c

(

(c′)−1

(
∑

i

βi ui

)))

−
∑

i

μi

(
u−1(ui )− u−1(w̄)

)

Let h(x) = (c′)−1(x), v(x) = u′(x), and vi = u′(wi ) = u′(u−1(ui )). When the
limited liability constraint does not bind, μi = 0. The first order condition for ui in
such a case is as follows:

βi nh′
(

∑

i

βi ui

)(

1 − λc′
(

h

(
∑

i

βi ui

)))

+ λ = 1

vi

It follows that, for any i and k, 1
vi

− 1
vi+k

= (βi − βi+k)nh′(
∑

i βi ui )(1 − λc′

(h(
∑

i βi ui ))). Similarly, for any j and l, 1
v j

− 1
v j+l

= 1
vi

− 1
vi+k

= (β j − β j+l)nh′

(
∑

i βi ui )(1 − λc′(h(
∑

i βi ui ))). Therefore,

1
vi

− 1
vi+k

1
v j

− 1
v j+l

= βi − βi+k

β j − β j+l
.


�
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Proof of Proposition 1 Let r(w) = 1
v(w)

= 1
u′(w) . r is increasing since r ′(w) =

−u′′
(u′)2 ≥ 0. r ′′ =

( −u′′
(u′)2

)
(2R − P), so r ′′ ≥ 0 if R ≥ P

2 and r ′′ ≤ 0 if R ≤ P
2 . Let us

consider two cases.
Case 1 R ≥ P

2
Since βi ≥ βi+k and r is increasing, it follows that w∗

i ≥ w∗
i+k . Because r ′′ ≥ 0,

it follows that:

r ′(w∗
i+k)(w

∗
i − w∗

i+k) ≤ r(w∗
i )− r(w∗

i+k) ≤ r ′(w∗
i )(w

∗
i − w∗

i+k)

Similarly, since β j ≥ β j+l , w
∗
j ≥ w∗

j+l and:

r ′(w∗
j+l)(w

∗
j − w∗

j+l) ≤ r(w∗
j )− r(w∗

j+l) ≤ r ′(w∗
j )(w

∗
j − w∗

j+l)

Hence,

(
r ′(w∗

i+k)

r ′(w∗
j )

)
w∗

i − w∗
i+k

w∗
j − w∗

j+l
≤ r(w∗

i )− r(w∗
i+k)

r(w∗
j )− r(w∗

j+l)
≤

(
r ′(w∗

i )

r ′(w∗
j+l)

)
w∗

i − w∗
i+k

w∗
j − w∗

j+l

And,

(
r ′(w∗

j+l)

r ′(w∗
i )

)
r(w∗

i )− r(w∗
i+k)

r(w∗
j )− r(w∗

j+l)
≤ w∗

i − w∗
i+k

w∗
j − w∗

j+l
≤

(
r ′(w∗

j )

r ′(w∗
i+k)

)
r(w∗

i )− r(w∗
i+k)

r(w∗
j )− r(w∗

j+l)

By Lemma 4,
r(w∗

i )−r(w∗
i+k )

r(w∗
j )−r(w∗

j+l )
= βi −βi+k

β j −β j+l
. Therefore,

(
r ′(w∗

j+l)

r ′(w∗
i )

)
βi − βi+k

β j − β j+l
≤ w∗

i − w∗
i+k

w∗
j − w∗

j+l
≤

(
r ′(w∗

j )

r ′(w∗
i+k)

)
βi − βi+k

β j − β j+l

r ′′ ≥ 0 and min(i, i + k) ≥ max( j, j + l) implies that:

1 ≤ r ′(w∗
j+l)

r ′(w∗
i )

≤ r ′(w∗
j )

r ′(w∗
i+k)

And,

r ′(w∗
j+l)

r ′(w∗
i )

=
(

u′′(w∗
j+l)

u′′(w∗
i )

) (
u′(w∗

i )

u′(w∗
j+l)

)2
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So,

βi − βi+k

β j − β j+l
≤

(
u′′(w∗

j+l)

u′′(w∗
i )

) (
u′(w∗

i )

u′(w∗
j+l)

)2
βi − βi+k

β j − β j+l
≤ w∗

i − w∗
i+k

w∗
j − w∗

j+l

≤
(

u′′(w∗
j )

u′′(w∗
i+k)

)(
u′(w∗

i+k)

u′(w∗
j )

)2
βi − βi+k

β j − β j+l

Case 2 R ≤ P
2

Following a similar logic, when R ≤ P
2 and min(i, i + k) ≥ max( j, j + l):

Since w∗
i ≥ w∗

i+k and r ′′ ≤ 0 (since R ≤ P
2 ), it follows that:

(
u′′(w∗

j )

u′′(w∗
i+k)

) (
u′(w∗

i+k)

u′(w∗
j )

)2
βi − βi+k

β j − β j+l
≤ w∗

i − w∗
i+k

w∗
j − w∗

j+l

≤
(

u′′(w∗
j+l)

u′′(w∗
i )

) (
u′(w∗

i )

u′(w∗
j+l)

)2
βi − βi+k

β j − β j+l
≤ βi − βi+k

β j − β j+l

Let z(x) = 1
u′(u−1(x))

. z is increasing since z′ = −u′′(u−1(x))
(u′(u−1(x)))3

≥ 0. z′′ =
( −u′′
(u′)4

)

(3R − P), so z′′ ≥ 0 if R ≥ P
3 and z′′ ≤ 0 if R ≤ P

3 . Following the same logic for
z(x) as for r(x), we find the following. R ≥ P

3 implies that:

βi − βi+k

β j − β j+l
≤

(
u′′(w∗

j+l)

u′′(w∗
i )

) (
u′(w∗

i )

u′(w∗
j+l)

)3
βi − βi+k

β j − β j+l
≤ u∗

i − u∗
i+k

u∗
j − u∗

j+l

≤
(

u′′(w∗
j )

u′′(w∗
i+k)

) (
u′(w∗

i+k)

u′(w∗
j )

)3
βi − βi+k

β j − β j+l

and R ≤ P
3 implies that

(
u′′(w∗

j )

u′′(w∗
i+k)

) (
u′(w∗

i+k)

u′(w∗
j )

)3
βi − βi+k

β j − β j+l
≤ u∗

i − u∗
i+k

u∗
j − u∗

j+l

≤
(

u′′(w∗
j+l)

u′′(w∗
i )

)(
u′(w∗

i )

u′(w∗
j+l)

)3
βi − βi+k

β j − β j+l
≤ βi − βi+k

β j − β j+l
.


�
Proof of Proposition 2 We will begin by considering the case where R ≥ P

3 . We
will compare a j tournament ( j ≤ n

2 ) and an n − j tournament that both meet the IR
constraint and lead to the same exertion of effort, e, by players in the IC constraint. We
will show that the sum of prizes paid by the principal in the j tournament exceeds the
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sum of prizes paid by the principal in the n − j tournament. Given this result, we know
that we can obtain the same effort with an n − j tournament as a j tournament while
meeting the IR constraint and paying out less in prizes. This shows that the optimal j
tournament is dominated by the optimal n − j tournament.

Following this argument, we will now consider a j tournament and an n − j tourna-
ment that both meet the IR constraint and lead to the same effort exertion. Letw1 andw2
denote the prizes paid in the j tournament and let ui = u(wi ). Similarly, let w̃1 and w̃2
denote the prizes paid in the n − j tournament and let ũi = u(w̃i ). Further, let α = j

n .

The IR constraints for the j and n − j tournaments imply that αu1 + (1 − α)u2 = ū
and (1 − α)ũ1 + αũ2 = ū where ū = Ū + c(e). Lemma 1 tells us that effort is the
same in the j and n − j tournaments when u1 − u2 = ũ1 − ũ2. These three equations
tell us that ũ1 = α

1−α u1 + 1−2α
1−α ū, ũ2 = 2ū − u1, and u2 = −α

1−α u1 + 1
1−α ū. Let W

denote the sum of prizes in the j tournament and W̃ denote the sum of prizes in the
n − j tournament. Also, let h = u−1. Then

W = αw1 + (1 − α)w2 = αh(u1)+ (1 − α)h

( −α
1 − α

u1 + 1

1 − α
ū

)

W̃ = αw̃2 + (1 − α)w̃1 = αh(2ū − u1)+ (1 − α)h

(
α

1 − α
u1 + 1 − 2α

1 − α
ū

)

Let g(x) = αh(x)+ (1 −α)h( ū−αx
1−α ) and� = u1 − ū ≥ 0.We need to show that, for

α ≤ 1
2 ,W ≥ W̃ , or g(ū + �) − g(ū − �) ≥ 0 (*). We see that g′(x) = α(h′(x) −

h′( ū−αx
1−α )). h′′(y) = −u′′(h(y))

[u′(h(y))]3 ≥ 0 since u is concave. Observe that g′(x) ≥ 0 for

x ≥ ū and g′(x) ≤ 0 for x ≤ ū since h′′ ≥ 0. Let ϕ(�) ≡ g(ū +�)− g(ū −�). A
sufficient condition for (*) is that: ϕ′(�) ≥ 0∀� ≥ 0 since ϕ(0) = 0. We see that

ϕ′(�) = α

(

h′(ū +�)− h′(ū + α

1 − α
�)

)

− α

(

h′(ū − α

1 − α
�)− h′(ū −�)

)

Let ω(θ, x, y) = α
[
(h′(x + θ)− h′(x))− (h′(y + θ)− h′(y))

]
. Then, ϕ′(�) =

ω( 1−2α
1−α , ū + α

1−α�, ū −�). Observe that 1−2α
1−α ≥ 0 since α ≤ 1

2 and ū + α
1−α� ≥

ū − �. Since, ω(0, x, y) = 0, it is sufficient to show that ∂ω
∂θ
(θ, x, y) ≥ 0 when

x ≥ y. Because, ∂ω
∂θ
(θ, x, y) = α(h′′(x + θ) − h′′(y + θ)), a sufficient condition

for ∂ω
∂θ
(θ, x, y) ≥ 0 is h′′′ ≥ 0. h′′′(y) = −3u′′

(u′)4
(
R − P

3

) ≥ 0. This proves that

W ≥ W̃ . Under the assumption that R ≤ P
3 , the argument can be replicated to show

that W ≤ W̃ . 
�
Proof of Proposition 3 Suppose R ≥ P

3 . Let us consider a j tournament and a j ′

tournament with j ′ > j ≥ n/2. Let α = j
n and α′ = j ′

n . We will compare j
and j ′ tournaments that lead to the same level of effort exertion, e, and consider the
amounts paid out in prizes by the principal. Let w1 and w2 denote the prizes paid
in the j tournament and w̃1 and w̃2 denote the prizes paid in the j ′ tournament. Let
ui = u(wi ), ũi = u(w̃i ) and let W and W̃ denote the sum of prizes in the j and
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j ′ tournaments, respectively. Before we proceed, we need to define two functions:
β(x) = β�nx and γ (x) = n

∫ x
0 β(x)dx . We see that γ ( j

n ) = ∑ j
i=1 βi . Thus, the

incentive compatibility constraints for the j and j ′ tournaments can be written as
c′(e) = γ (α)(u(w1)− u(w2)) and c′(e) = γ (α′)(u(w̃1)− u(w̃2)), respectively. Indi-
vidual rationality implies that αu1 + (1−α)u2 = ū and α′ũ1 + (1−α′)ũ2 = ū where
ū = Ū +c(e). Combining these four constraints, we can solve for W and W̃ in terms of
u1. Let us define a few functions:�(α′) = γ (α′)−γ (α)

γ (α′) +α′ γ (α)
γ (α′) , h = u−1, g(x, α′) =

βh(α′) + (1 − α′)h( ū−α′x
1−α′ ), and ψ(α′) = g( 1−�(α′)

1−α u1 + �(α′)−α
1−α ū, β). Then, we

find that W and W̃ can be expressed as follows: W̃ = ψ(α′) and W = ψ(α). Let us
considerψ ′(x). If we find thatψ ′(x) ≤ 0 for x ∈ [α, α′], then it follows that W̃ ≤ W.
This implies that the j ′ tournament dominates the j tournament.

ψ ′(x) = (ū − u1)�
′(x)

(
1

1 − x

) (

xh′(u1)+
(

1

�′(x)
− x

)

h′
(

ū − xu1

1 − x

))

+
(

h(u1)− h

(
ū − xu1

1 − x

))

Let us define

�(u) = (ū − u)�′(x)
(

1

1 − x

) (

xh′(u)+
(

1

�′(x)
− x

)

h′
(

ū − xu

1 − x

))

+
(

h(u)− h

(
ū − xu

1 − x

))

We see that �(ū) = 0. Since u1 > ū, ψ ′(x) = �(u1) ≤ 0 if �′(u) ≤ 0 for u > ū.

�′(u) =
(

ū − u

1 − x

)

x

(

h′′(u)−
1

�′(x) − x

1 − x
h′′

(
ū − xu

1 − x

))

+
(

1 − x(1 +�′(x))
1 − x

) (

h′(u)− h′
(

ū − xu

1 − x

))

Suppose it were the case that �′(x) = 1. Then,

�′(u) =
(

ū − u

1 − x

)

x

(

h′′(u)− h′′
(

ū − xu

1 − x

))

+
(

1 − 2x

1 − x

) (

h′(u)− h′
(

ū − xu

1 − x

))

Recall that we are assuming 1 > x ≥ 1
2 and u > ū. Since R ≥ P

3 , it follows that
h′′, h′′′ ≥ 0 (to see the argument, see the proof of Proposition 6). It therefore fol-
lows that the above expression is less than zero. Thus, if �′(x) = 1, ψ ′(x) < 0.
From the definition of �, it follows that �′(x) = 1 + γ ′(x)

γ (x) (1 − x). Since γ (x) =
n

∫ x
0 β(x)dx, γ ′(x) = nβ(x) = nβ�nx. Thus, �′(x) = 1 + nβ�nx

γ (x) (1 − x). Suppose
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that F is a symmetric and uniform distribution. It follows from Lemma 4 that βi = 0
for 1 < i < n. This implies that �′(x) = 1 for x ∈ [ 1

n ,
n−1

n ). Hence, when F is a
symmetric uniform distribution, the j ′ tournament dominates the j tournament where
j ′ > j ≥ n/2. If follows from this and Corollary 3 that, for F a symmetric uniform
distribution, the optimal j tournament is the strict loser prize tournament. The argu-
ment can be replicated for the case where R ≤ P

3 . 
�
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