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Selling Cookies†

By Dirk Bergemann and Alessandro Bonatti*

We propose a model of data provision and data pricing. A single data 
provider controls a large database that contains information about 
the match value between individual consumers and individual firms 
(advertisers). Advertisers seek to tailor their spending to the individ-
ual match value. The data provider prices queries about individual 
consumers’ characteristics (cookies). We determine the equilibrium 
data acquisition and pricing policies. Advertisers choose positive 
and/or negative targeting policies. The optimal query price influ-
ences the composition of the targeted set. The price of data decreases 
with the reach of the database and increases with the fragmentation 
of data sales. (JEL C78, D83, L11, L82, M37)

The use of individual-level information is rapidly increasing in many economic 
and political environments, ranging from advertising (various forms of target-

ing) to electoral campaigns (identifying voters who are likely to switch or to turn 
out). In all these environments, the socially efficient match between individual and 
“treatment” may require the collection, analysis, and diffusion of highly personal-
ized data. A large number of important policy and regulatory questions are begin-
ning to emerge around the use of personal information. To properly frame these 
questions, we must understand how markets for personalized information impact the 
creation of surplus, which is the main objective of this paper.

Much of the relevant data is collected and distributed by data brokers and data 
intermediaries ranging from established companies such as Acxiom and Bloomberg, 
to more recently established companies such as Bluekai and eXelate. Perhaps the 
most prevalent technology to enable the collection and resale of individual-level 
information is based on cookies and related means of recording browsing data. 
Cookies are small files placed by a website in a user’s web browser that record infor-
mation about the user’s visit. Data providers use several partner websites to place 
cookies on user’s computers and collect information. In particular, the first time any 
user visits a partner site (e.g., a travel site), a cookie is sent to her browser, recording 
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any action taken on the site during that browsing session (e.g., searches for flights).1 
If the same user visits another partner website (e.g., an online retailer), the informa-
tion contained in her cookie is updated to reflect the most recent browsing history.

The data provider therefore maintains a detailed and up-to-date profile for each 
user, and compiles segments of consumer characteristics, based on each individual’s 
browsing behavior. The demand for such highly detailed, consumer-level informa-
tion is almost entirely driven by advertisers, who wish to tailor their spending and 
their campaigns to the characteristics of each consumer, patient, or voter.

The two distinguishing features of online markets for data are the following: 
(i) individual queries (as opposed to access to an entire database) are the actual 
products for sale,2 and (ii) linear pricing is predominantly used. In other words, 
advertisers specify which consumer segments and how many total users (“uniques”) 
they wish to acquire, and pay a price proportional to the number of users.3 These 
features are prominent in the market for cookies, but are equally representative of 
many online and offline markets for personal information.

In all these markets, a general picture emerges where an advertiser acquires very 
detailed information about a segment of “targeted” consumers, and is rather unin-
formed about a larger “residual” set. This kind of information structure, together 
with the new advertising opportunities, poses a number of economic questions. 
How is the advertisers’ willingness to pay for information determined? Which con-
sumers should they target? How should a data provider price its third-party data? 
How does the structure of the market for data (e.g., competition among sellers, data 
exclusivity) affect the equilibrium price of information? More specifically to online 
advertising markets, what are the implications of data sales for the revenues of large 
publishers of advertising space?

In this paper, we explore the role of data providers on the price and allocation of 
consumer-level information. We provide a framework that addresses general ques-
tions about the market for data and contributes to our understanding of recent prac-
tices in online advertising. We develop a simple model of data pricing that captures 
the key trade-offs involved in selling the information encoded in third-party cookies. 
However, our model also applies more broadly to markets for consumer-level infor-
mation, and it is suited to analyze several offline channels as well.

The model considers heterogeneous consumers and firms. The (potential) surplus 
is given by a function that assigns a value to each realized match between a con-
sumer and a firm (the match value function). The match values differ along a purely 
horizontal dimension, and may represent a market with differentiated products. In 
order to realize the potential match value, each firm must “invest” in contacting 
consumers. An immediate interpretation of the investment decision is advertising 

1 This type of cookie is known as third-party cookie because the domain installing it is different from the 
Website actually visited by the user. Over half of the sites examined in a study by the Wall Street Journal installed 
23 or more third-party cookies on visiting users’ computers (The Web’s New Gold Mine: Your Secrets, the Wall 
Street Journal, July 30, 2010). 

2 We formally define a database and a query in the context of our model in Subsection IB. 
3 Information based on third-party cookies can be priced in two ways: per stamp (CPS), where buyers pay for 

the right to access information about an individual user, independent of the frequency of use of that data; and per 
mille (CPM), where the price of the information is proportional to the number of advertising impressions shown 
using that data. Most data providers give buyers a choice of the pricing criterion. 
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spending that generates contacts and eventually sales. We refer to the “advertising 
technology” as the rate at which investment into contacts generates actual sales, and 
to a “cookie” as the information required to tailor advertising spending to specific 
consumers.

We maintain the two distinguishing features of selling cookies (individual que-
ries and per-user “bit” pricing) as the main assumptions. These assumptions can be 
stated more precisely as follows: 

•	 Individual queries are for sale. We allow advertisers to purchase information on 
individual consumers. This enables advertisers to segment users into a targeted 
group that receives personalized levels of advertising, and a residual group that 
receives a uniform level of advertising (possibly zero). More formally, this 
means the information structures available to an advertiser are given by specific 
partitions of the space of match values. 

•	 Individual queries are priced separately. We restrict the data provider to set a 
uniform unit price, so that the payment to the data provider is proportional to 
the number of users (“cookies”) acquired.

There exist, of course, other ways to sell information, though linear pricing of 
cookies is a natural starting point. We address these variations in extensions of our 
baseline model. In particular, we explore alternative mechanisms for selling infor-
mation, such as bundling and nonlinear pricing of data.

In Section II, we characterize the advertisers’ demand for information for a 
given price of data. We establish that advertisers purchase information on two con-
vex sets of consumers, specifically those with the highest and lowest match values. 
Advertisers do not buy information about every consumer. Instead, they estimate 
the match value within the residual group of consumers, and they exclude a con-
vex set in order to minimize the prediction error. Under further conditions, the 
data-buying policy takes the form of a single cutoff match value. However, adver-
tisers may buy information about all users above the cutoff value (positive tar-
geting) or below the cutoff value (negative targeting). Each of these data-buying 
policies alleviates one potential source of advertising mismatch: wasteful spend-
ing on low-value matches, and insufficient intensity on high-value matches. The 
optimality of positive versus negative targeting depends on the advertising tech-
nology and on the distribution of match values, i.e., on properties of the complete 
information profit function alone.

The advertising technology and the distribution of match values have implica-
tions for the cross-price externalities between the markets for data and advertising. 
In particular, a consistent pattern emerges linking the advertisers’ preferences for 
positive versus negative targeting and the degree to which a publisher of advertising 
space benefits from the availability of consumer-level data.

In Section III, we turn to the data provider’s pricing problem. We first examine 
the subtle relationship between the price of cookies and the cost of advertising. 
The cost of advertising reduces both the payoff advertisers can obtain through bet-
ter information, and their payoff if uninformed. The overall effect on the demand 
for cookies and on the monopoly price is, in general, nonmonotone. In a leading 
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example, we establish that the price for cookies is single-peaked in the cost of adver-
tising. This suggests which advertising market conditions may be more conducive 
for the data provider.

We then examine the role of market structure on the price of cookies. Surprisingly, 
concentrating data sales in the hands of a single data provider is not necessarily 
detrimental to social welfare. Formally, we consider a continuum of information 
providers, each one selling one signal exclusively. We find that prices are higher 
under data-sales fragmentation. The reason for this result is that exclusive sellers 
ignore the negative externality that raising the price of information about one con-
sumer imposes on the demand for information about all other consumers. A similar 
mechanism characterizes the effects of an incomplete database, sold by a single 
firm. In that case, the willingness to pay for information increases with the size of 
the database, but the monopoly price may, in fact, decrease. This is contrast with the 
effect of a more accurate database.

In Section IV, we enrich the set of pricing mechanisms available to the data pro-
vider. In particular, in a binary-action model, we introduce nonlinear pricing of 
information structures. We show that the data provider can screen vertically het-
erogeneous advertisers by offering subsets of the database at a decreasing marginal 
price. The optimal nonlinear price determines exclusivity restrictions on a set of 
“marginal” cookies: in particular, second-best distortions imply that some cookies 
that would be profitable for many advertisers are bought by only by a small subset 
of high-value advertisers.

The issue of optimally pricing information in a monopoly and in a competitive mar-
ket has been addressed in the finance literature, starting with seminal contributions 
by Admati and Pfleiderer (1986); Admati and Pfleiderer (1990); and Allen (1990), 
and more recently by García and Sangiorgi (2011). A different strand of the literature 
has examined the sale of information to competing parties. In particular, Sarvary 
and Parker (1997) model information-sharing among competing consulting compa-
nies; Xiang and Sarvary (2013) study the interaction among providers of information 
to competing clients; Iyer and Soberman (2000) analyze the sale of heterogeneous 
signals, corresponding to valuable product modifications, to firms competing in a 
differentiated-products duopoly; Taylor (2004) studies the sale of consumer lists that 
facilitate price discrimination based on purchase history; Calzolari and Pavan (2006) 
consider an agent who contracts sequentially with two principals, and allow the for-
mer to sell information to the latter about her relationship (contract offered, decision 
taken) with the agent. All of these earlier papers only allow for the complete sale of 
information. In other words, they focus on signals that revealed (noisy) information 
about all realizations of a payoff-relevant random variable. The main difference with 
our paper’s approach is that we focus on “bit-pricing” of information, by allowing a 
seller to price each realization of a random variable separately.

The literature on the optimal choice of information structures is rather recent. 
Bergemann and Pesendorfer (2007) consider the design of optimal information 
structures within the context of an optimal auction. There, the principal controls 
the design of both the information and the allocation rule. More recently, Kamenica 
and Gentzkow (2011) consider the design of the information structure by the prin-
cipal when the agent will take an independent action on the basis of the received 
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information. In contrast to the persuasion literature, we endogenize the agent’s 
information cost by explicitly analyzing the monopoly pricing of information rather 
than directly choosing an information structure.

In related contributions, Anton and Yao (2002); Hörner and Skrzypacz (2012); 
and Babaioff, Kleinberg, and Paes Leme (2012) derive the optimal mechanism 
for selling information about a payoff-relevant state, in a principal-agent frame-
work. Anton and Yao (2002) emphasize the role of partial disclosure; Hörner and 
Skrzypacz (2012) focus on the incentives to acquire information; and Babaioff, 
Kleinberg, and Paes Leme (2012) allow both the seller and the buyer to observe 
private signals. Finally, Hoffmann, Inderst, and Ottaviani (2014) consider targeted 
advertising as selective disclosure of product information to consumers with limited 
attention spans.

The role of specific information structures in auctions, and their implication for 
online advertising market design, are analyzed in recent work by Abraham et al. 
(2014); Celis et al. (forthcoming), and Syrgkanis, Kempe, and Tardos (2013). All 
three papers are motivated by asymmetries in bidders’ ability to access additional 
information about the object for sale. Ghosh et al. (2012) study the revenue implica-
tions of cookie-matching from the point of view of an informed seller of advertising 
space, uncovering a trade-off between targeting and information leakage. In earlier 
work, Bergemann and Bonatti (2011), we analyzed the impact that changes in the 
information structures, in particular the targeting ability, have on the competition for 
advertising space.

I.  Model

A. Consumers, Advertisers, and Matching

We consider a unit mass of uniformly distributed consumers (or “users”), 
​i  ∈ ​ [0, 1]​​ , and advertisers (or “firms”), ​j  ∈ ​ [0, 1]​​. Each consumer-advertiser pair ​​
(i, j)​​ generates a (potential) match value for the advertiser ​j​:

(1)	​ v : ​[0, 1]​ × ​[0, 1]​  →  V, ​

with ​v​(i, j)​  ∈  V  = ​ [​ v _ ​, ​ v ̅ ​]​  ⊆ ​ ℝ​+​​​.
Advertiser ​j​ must take an action ​​q​ij​​  ≥  0​ directed at consumer ​i​ to realize the 

potential match value ​v​(i, j)​​. We refer to ​q​ as the match intensity. We abstract from 
the details of the revenue-generating process associated to matching with intensity ​
q​. The complete-information profits of a firm generating a match of intensity ​q​ with 
a consumer of value ​v​ are given by

(2)	​ π​(v, q)​  ≜  vq − c · m​(q)​ .​

The matching cost function ​m : ​ℝ​+​​  → ​ ℝ​+​​​ is assumed to be increasing, continu-
ously differentiable, and convex. In the context of advertising, ​q​ corresponds to the 
probability of generating consumer ​i​’s awareness about firm ​j​’s product. Awareness ​
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q​ is generated by buying an amount of advertising space ​m​(q)​​ , which we assume can 
be purchased at a unit price ​c  >  0​. If consumer ​i​ is made aware of the product, he 
generates a net present value to the firm equal to ​v​(i, j)​​.

B. Data Provider

Initially, the advertisers do not have information about the pair-specific match 
values ​v​(i, j)​​ beyond the common prior distribution described below. By contrast, 
the monopolistic data provider has information relating each consumer to a set of 
characteristics represented by the index ​i​ , and each advertiser to a set of characteris-
tics represented by the index ​j​. The database of the data provider is simply the map-
ping (1) relating the characteristics ​​(i, j)​​ to a value of the match ​v​(i, j)​​ , essentially 
a large matrix with a continuum of rows (representing consumers) and columns 
(representing firms).

Advertisers can request information from the data provider about consumers with 
specific characteristics ​i​. Now, from the perspective of advertiser ​j,​ the only relevant 
aspect of the consumer’s characteristic ​i​ is the match value ​v​(i, j)​​. Thus, we refer to 
cookie ​v​ as the information necessary for advertiser ​j​ to identify all consumers with 
a realized match value ​v  =  v​(i, j)​​. Similarly, we refer to query ​v​ as the request by 
advertiser ​j​ to identify all consumers in the database with characteristics ​i​, such that ​
v  =  v​(i, j)​​.4

Advertisers purchase information from the data provider in order to target their 
spending. For example, if advertiser ​j​ wishes to tailor his action ​q​ to all consumers 
with value ​v​ , then he queries for the identity of all consumers with characteristics ​i​,  
such that ​v  =  v​(i, j)​​. More generally, each advertiser ​j​ can purchase information 
about any subset of consumers with match values ​v  ∈ ​ A​j​​  ⊂  V​. Thus, if advertiser ​j​ 
makes a query ​v​ (i.e., purchases the cookie ​v​ ), then the value ​v  =  v​(i, j)​​ belongs to 
the set ​​A​j​​​ , and the advertiser can target consumers with value ​v​ with a tailored level 
of match intensity. For this reason, we refer to the sets ​​A​j​​​ and ​​A​ j​ C​​ as the targeted set 
and the residual set (or complementary set), respectively.

We assume that the data about the individual consumer is sold at a constant linear 
price ​p​ per cookie.5

C. Distribution of Match Values

The (uniform) distribution over the consumer-firm pairs ​​(i, j)​​ generates a distri-
bution of values through the match value function (1). For every measurable subset ​
A​ of values in ​V​ , the resulting measure ​μ​ is given by

	​ μ​(A)​  ≜ ​ ∫ {i, j∈[0, 1]|v(i, j)∈A}​  
 
 ​​  di dj.​

4 A query v to the database thus requests the information contained in the cookie v, and in this sense we can use 
cookie and query as synonyms. To be precise, the cookie is the information technology that allows the database to 
record the characteristics of consumer ​i​ and the query retrieves the information from the database. 

5 This assumption reflects the pricing of data “per unique user” (also known as “cost per stamp”). It also matches 
the offline markets for data, where the price of mailing lists or lists of credit scores is related to the number of user 
records. 



Vol. 7 No. 3� 265bergemann and bonatti: selling cookies

Let the interval of values beginning with the lowest value be ​​A​​ v​  ≜ ​ [​ v _ ​, v]​​. The 
associated distribution function ​F : V  → ​ [0, 1]​​ is defined by

	​ F​(v)​  ≜  μ​(​A​​ v​)​ .​

By extension, we define the conditional measure for every consumer ​i​ and every 
firm  ​j​ by

	​ ​μ​i​​​(A)​  ≜ ​ ∫ {  j∈[0, 1]|v(i, j)∈A}​  
 
 ​​  dj,  and  ​μ​j​​​(A)​  ≜ ​ ∫ {i∈[0, 1]|v(i, j)∈A}​  

 
 ​​  di,​

and the associated conditional distribution functions ​​F​i​​​(v)​​ and ​​F​j​​​(v)​​. We assume that 
the resulting match values are identically distributed across consumer and across 
firms, i.e., for all ​i​ , ​j​ , and ​v​:

	​ ​F​i​​​(v)​  = ​ F​j​​​(v)​  =  F​(v)​ .​

Thus, ​F​(v)​​ represents the common prior distribution for each firm and each con-
sumer about the match values. Thus, the price of the targeted set ​​A​j​​​ is given by

(3)	​ p​(​A​j​​)​  ≜  p · μ​(​A​j​​)​ .​

Prominent examples of distributions that satisfy our symmetry assumption 
include: independently and identically distributed match values across consum-
er-firm pairs; and uniformly distributed firms and consumers around a unit-length 
circle, where match values are a function of the distance ​​|i − j|​​. In other words, 
match values differ along a purely horizontal dimension. This assumption captures 
the idea that, even within an industry, the same consumer profile can represent a high 
match value to some firms and a low match value to others firms. This is clearly true 
for consumers that differ in their geographical location, but applies more broadly as 
well.6

Figure 1, above, summarizes the timing of our model.
We note that the present model does not explicitly describe the consumer’s prob-

lem and the resulting indirect utility. To the extent that information facilitates the 

6 Consider the case of credit score data: major credit card companies are interested in reaching consumers with 
high credit-worthiness; banks that advertise consumer credit lines would like to target individuals with average 
scores, who are cash-constraint, but unlikely to default; and subprime lenders, such as used car dealers, typically 
cater to individuals with low or nonexisting credit scores, see Adams, Einav, and Levin (2009) for a description and 
model of subprime lending. 

Data provider
sets price p

Advertiser j buys
information about users
with match value v in Aj

Nature draws
match value v

Advertiser
chooses action q

If v is in Aj,
advertiser
learns v

Figure 1. Timing
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creation of valuable matches between consumers and advertisers, as a first approxi-
mation, the indirect utility of the consumer may be thought of as co-monotone with 
the realized match value ​v​. In fact, with the advertising application in mind, we may 
view ​q​ as scaling the consumer’s willingness to pay directly, or as the amount of 
advertising effort exerted by the firm, which also enters the consumer’s utility func-
tion. Thus, the profit function in (2) is consistent with the informative, as well as the 
persuasive and complementary views of advertising (see Bagwell 2007).

A more elaborate analysis of the impact of information markets on consumer 
surplus and on the value of privacy would probably have to distinguish between 
information that facilitates the creation of surplus, which is focus of present paper, 
and information that impacts the distribution of surplus. For example, additional 
information could improve the pricing power of the firm and shift surplus from the 
consumer to the firm (as for example in Bergemann, Brooks, and Morris 2013).

II.  Demand for Information

The value of information for each advertiser is determined by the incremental 
profits they could accrue by purchasing more cookies. Advertiser ​j​ is able to per-
fectly tailor his advertising spending to all consumers included in the targeted set 
​​A​j​​​. In particular, we denote the complete information demand for advertising space ​​
q​​ ∗​​(v)​​ and profit level ​​π​​ ∗​​(v)​​ by

	​​ q​​ ∗​​(v)​  ≜ ​ arg max​ 
q∈​ℝ​+​​

​   ​​ [π​(v, q)​]​,

	​ π​​ ∗​​(v)​  ≜  π​(v, ​q​​ ∗​​(v)​)​ .​

By contrast, for all consumers in the complement (or residual) set ​​A​ j​ C​​ , advertiser ​j​ 
must form an expectation over ​v​(· , j)​​ , and choose a constant level of ​q​ for all such 
consumers. Because the objective ​π​(v, q)​​ is linear in ​v​ , the optimal level of advertis-
ing ​​q​​ ∗​​(​A​ j​ C​)​​ is given by

	​ ​q​​ ∗​​(​A​ j​ C​ )​  ≜  ​arg  max​ 
​​q∈​ℝ​+​​

​   ​  E​[π​(v, q)​ | v  ∈ ​ A​ j​ C​]​  = ​ q​​ ∗​​(E[v | v ∉ ​A​j​​])​ .​

We can represent each advertiser’s information acquisition problem as the choice of 
a measurable subset ​A​ of the set of match values ​V​:

(4)	​​ max​ 
A⊆V

​   ​  ​[​∫ 
A
​ 
 
 ​​​(π​(v, ​q​​ ∗​​(v)​)​ − p)​ dF​(v)​ + ​∫ 

​A​​ C​
​ 

 
 ​​ π​(v, ​q​​ ∗​​(​A​​ C​ )​)​ dF​(v)​]​ ,​

where, by symmetry, we can drop the index ​j​ for the advertiser.
By including all consumers with match value ​v​ into the targeted set ​A,​ the adver-

tiser can raise his gross profits from the uninformed choice to the informed choice 
of ​q​ , albeit at the unit cost ​p​ per consumer. In problem (4), the total price paid by the 
advertisers to the data provider is then proportional to the measure of the targeted 
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set, or ​p · μ​(A)​​. Next, we characterize the properties of the optimal targeted set, as 
a function of the price of cookie ​p​ and of the cost of advertising ​c​. We begin with a 
simple example.

A. The Binary Action Environment

We start with linear matching costs and uniformly distributed match values; 
we then generalize the model to continuous actions and general distributions. 
Formally, let ​F​(v)​  =  v​ , with ​v  ∈ ​ [0, 1]​​ and ​c · m​(q)​  =  c · q​ , with ​q  ∈ ​ [0, 1]​​. 
The linear cost assumption is equivalent to considering a binary action environment, 
​q  ∈ ​ {0, 1}​​ , as the optimal policy will only take those two values.

In this simplified version of the model, targeting is very coarse: under complete 
information, it is optimal to contact a consumer ​v​ (i.e., to choose ​​q​​ ∗​​(v)​  =  1​) if and 
only if the match value ​v​ exceeds the unit cost of advertising ​c​. Thus, the complete 
information profits are given by

(5)	​ ​π​​ ∗​​(v)​  ≜ ​ max​ 
​
​​ ​​ {v − c, 0}​ .​

Likewise, the optimal action on the residual set is given by

	​ ​q​​ ∗​​(​A​​ C​)​  =  1  ⇔  E​[v | v  ∈ ​ A​​ C​  ]​   ≥  c.​

As we show in Proposition 1, advertisers adopt one of two mutually exclusive 
strategies to segment the consumer population: ​​(i)​​ positive targeting consists of 
buying information on the highest-value consumers, contacting them and excluding 
everyone else; ​​(ii)​​ negative targeting consists of buying information on the lowest 
value consumers, avoiding them and contacting everyone else. That is, advertisers 
choose a constant action ​q  ∈ ​ {0, 1}​​ on the targeted set ​A​ and a different constant 
action on the residual set ​​A​​ C​​. The actions differ across the targeted and the residual 
set as information about consumer ​v​ has a positive value only if it affects the adver-
tiser’s subsequent action.

The choice of the optimal targeting strategy and the size of the targeted set nat-
urally depend on the cost of contact ​c​ and on the price of information ​p​. We denote 
the optimal targeted set by ​A​(c, p)​​. This set is defined by a threshold value ​​v​​ ∗​​ that 
either determines a lower interval ​​[​ v _ ​, ​v​​ ∗​]​​ , or an upper interval ​​[​v​​ ∗​, ​ v ̅ ​]​​ , depending on 
the optimality of either negative or positive targeting, respectively. The optimality of 
a threshold strategy follows from the monotonicity of the profit in ​v​ and the binary 
action environment.

We identify the size of the targeted set by considering the willingness to pay for 
the marginal cookie under each targeting strategy. If the advertiser adopts positive 
targeting, then he purchases information on all consumers up to the threshold ​​v​​ ∗​​ that 
leaves him with nonnegative net utility, or ​​v​​ ∗​  =  c + p​. Conversely, if the advertiser 
adopts negative targeting, then at the marginal cookie, the gain from avoiding the 
contact, and thus saving ​c − v​ , is just offset by the price ​p​ of the cookie, and thus ​​
v​​ ∗​  =  c − p​. Under either targeting strategy, the advertiser trades off the magnitude 
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of the error made on the residual set with the cost of acquiring additional informa-
tion. Proposition 1 characterizes the optimal targeting strategy.

Proposition 1 (Targeting Strategy): For all ​c, p  >  0​ , the optimal targeted set  
​A​(c, p)​​ is the interval of values ​v​ given by

	​ A​(c, p)​  = ​
{

​
​[0, max ​{c − p, 0}​]​​ 

if
​ 

c  <  1/2;
​   

​[min ​{c + p, 1}​, 1]​
​ 

if
​ 

c  ≥  1/2 .
​​​

If the cost of advertising, i.e., the matching cost ​c​ , is particularly high, it is only 
profitable to bear the costs of generating awareness through advertising for very 
high-value customers, about which information is acquired from the data provider. 
Conversely, for low costs of advertising, all customers but the very low-value ones 
are profitable, about which information is purchased in order to exclude them from 
advertising.7

Proposition 1 establishes that the residual and the targeted set are both connected 
sets (intervals), and that advertisers do not buy information about every consumer. 
The binary environment illustrates some general features of optimal targeting and 
information policies. In particular, three implications of Proposition 1 extend to 
general settings: (i) the residual set is nonempty; (ii) advertisers do not necessarily 
buy the cookies of high-value consumers; and (iii) the cost ​c​ of the advertising space 
guides their strategy. At the same time, the binary environment cannot easily capture 
several aspects of the model, including the following: the role of the distribution 
of match values (and of the relative size of the left and the right tail in particular); 
the role of precise tailoring and the need for more detailed information; the deter-
minants of the advertisers’ optimal targeting strategy; and the effect of the cost of 
advertising on the demand for information.

B. The Continuous Action Environment

We now proceed to analyze the general version of our model, in which we con-
sider a continuum of actions and a general distribution of match values. It is helpful 
to first describe the demand for advertising space when the value of the match ​v​ is 
known to the advertisers. Thus, we introduce the complete information decision and 
profits. We now allow for a general differentiable, increasing, and strictly convex 
cost function ​m​(q)​​ and assume that ​​m ′ ​​(0)​  =  0​. This implies that the complete infor-
mation demand for advertising is positive for all match values.

The complete information demand for advertising space, denoted by ​​q​​ ∗​​(v)​​ , is 
characterized by the first-order condition:

(6)	​ v  =  c​m ′ ​​(​q​​ ∗​​(v)​)​ .​

7 The value ​c  =  1/2​ of the threshold, which determines the choice of targeting strategy, happens to coincide 
with the threshold value that would determine whether advertisers contact all consumers, or none, under the prior 
information. This is a special feature of the uniform distribution. 
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By contrast, if the advertiser has access to the distribution ​F​(v)​​ only, the 
prior-information demand for advertising space ​​ q ̅ ​​ is given by

(7)	​ ​ q ̅ ​  ≜ ​ q​​ ∗​​(​A​​ C​  =  V)​  = ​ q​​ ∗​​(E​[v]​)​ .​

More generally, given a targeted set ​A​ , the optimal advertising level on the residual 
set ​​A​​ C​​ satisfies the following condition:

(8)	​ E​[v | v  ∈ ​ A​​ C​]​  =  cm′​(​q​​ ∗​​(​A​​ C​)​)​​.

Thus, the continuous-action model has the two key features, that advertisers: 
(i) differentiate spending levels within the targeted set, and (ii) choose a uniform 
(strictly positive) advertising level for the residual set. Moreover, the optimal adver-
tising level on the residual set ​​q​​ ∗​​(​A​​ C​)​​ varies with the composition of the targeted 
set.8

It follows from (6) and from the strict convexity of ​m​(q)​​ that the complete 
information demand ​​q​​ ∗​​(v)​​ is strictly increasing. Since by the Envelope Theorem, 
​d​π​​ ∗​​(v)​ / dv  = ​ q​​ ∗​​(v)​​ , the realized complete information profit ​​π​​ ∗​​(v)​​ is strictly con-
vex in ​v​. In contrast, the realized profit under prior information is linear in ​v​ , and it is 
given by ​π​(v, ​ q ̅ ​)​​. Figure 2 describes the profit function under complete information ​​
π​​ ∗​​(v)​​ and prior information ​π​(v, ​ q ̅ ​)​​.

As intuitive, under prior information, the firm chooses excessive (wasteful) 
advertising to low-value consumers and insufficient advertising to higher value con-
sumers. The firm therefore has a positive willingness to pay for information, i.e., 
for cookies. The value of information for every match value ​v​ is visually described 
by the difference between the complete information and the prior information profit 
function:

(9)	​ ​π​​ ∗​​(v)​ − π​(v, ​ q ̅ ​)​ .​

Figure 2 suggests that the value of information is highest for extreme match values.9 
Consequently, the next result establishes the optimality of a convex residual set of 
cookies. Each advertising firm purchases all cookies in a set:

	​ A  = ​ [​ v _ ​, ​v​1​​]​ ∪ ​[​v​2​​, ​ v ̅ ​]​ .​

The value of the lower and upper threshold are determined by ​c​ and ​p​ , thus 
​​v​1​​  ≜ ​ v​1​​​(c, p)​​ and ​ ​v​2​​  ≜ ​ v​2​​​(c, p)​​ , respectively. Proposition 2 confirms the intuition 
that the value of information is lowest for intermediate match values and highest for 
match values on the tails.

8 These advertising policies might arguably represent the choices of a large brand marketer who wishes to fine-
tune spending on a group of consumers, while adopting “umbrella spending” on everyone else. 

9 In this example, ​cm​(q)​  = ​ q​​ 2​ / 2​ , and ​F​(v)​  =  v​ , ​v  ∈ ​ [0, 1]​​. 
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Proposition 2 (Convexity of Residual Set): For all ​c, p  >  0​ , the optimal resid-
ual set ​​A​​ C​​(c, p)​​ is a nonempty interval ​​[​v​1​​​(c, p)​, ​v​2​​​(c, p)​]​​.

Proposition 2 allows us to rewrite the firm’s problem (4) as the choice of two 
thresholds, ​​v​1​​​ and ​​v​2​​​ , that define the targeted and residual sets, in terms of the gains 
relative to the complete information solution:

(10)	​​ max​ ​v​1​​, ​v​2​​
​ ​ ​ ​ ∫ ​v​1​​​ 

​v​2​​
​​​[π​(v, ​q​​ ∗​​(​[​v​1​​, ​v​2​​]​)​)​ − ​π​​ ∗​​(v)​ + p]​ dF​(v)​, 

	 s.t. c​m ′ ​​(​q​​ ∗​​(​[​v​1​​, ​v​2​​]​)​)​  =  E​[v | v  ∈ ​ [​v​1​​, ​v​2​​]​]​ .​

In program (10), as the bounds of the residual set are stretched (e.g., as ​​v​1​​​ 
decreases), the advertiser earns a marginal benefit of ​p​ and incurs a marginal cost of 
​​π​​ ∗​​(​v​1​​)​ − ​π​​ ∗​​(​v​1​​, ​q​​ ∗​​(​[​v​1​​, ​v​2​​]​)​)​ .​ In addition, the advertiser adjusts the optimal action 
on the residual set to take the new inference problem into account. (Of course, 
this has no first-order effect on profits at the optimum.) The average match value 
​E​[v | v  ∈ ​ [​v​1​​, ​v​2​​]​]​​ determines the demand for advertising space in the residual set ​​
q​​ ∗​​(​[​v​1​​, ​v​2​​]​)​​ , which in turn affects the value of information.

Above, we described the value of information as the difference between the profit 
of an informed and an uninformed advertiser ​​π​​ ∗​​(v)​ − π​(v, ​ q ̅ ​)​​. This revenue com-
parison is conditional on the realization of the value ​v​ , and it is thus an ex post 
comparison. For the complete determination of the optimal policy, the advertiser 
has to evaluate how large these gains from information are from an ex ante point of 
view. The advertiser therefore has to weigh the likelihood of different realizations, 
represented by the distribution ​F​(v)​​ of values, and the gains from responding to the 
information, represented by the convexity of the matching cost function ​m​(q)​​. To 
understand the exact nature of these trade-offs, it is useful to begin with a “sym-
metric” environment for ​F​(v)​​ and ​m​(q)​​. In the context of negative versus positive 
targeting, this corresponds to a symmetric distribution ​F​(v)​​ around the mean ​E​[v]​​ 
and a quadratic matching cost function ​m​(q)​​ , such as in the example of Figure 2.
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Figure 2. Complete Information and Prior Information Profits
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C. Joint versus Exclusive Targeting

When matching costs are quadratic and match values are symmetrically distrib-
uted, advertisers always choose to target both low- and high-valuation consumers. In 
addition, under these symmetry conditions, the residual set (i.e., the set of excluded 
valuations) is an interval centered on the prior mean ​E​[v]​​. With a quadratic matching 
cost function, the optimal complete information matching intensity is linear in ​v​ , or ​​
q​​ ∗​​(v)​  =  v/c​. Moreover, the gains from information relative to the optimal match-
ing policy for the mean value ​​q​​ ∗​​(E​[v]​)​​ are identical for values equidistant from the 
mean, regardless of whether they are below or above the mean. The value of infor-
mation arises from adjustments of the matching intensity relative to the mean, i.e., 
increasing the matching intensity for values above the mean and decreasing the 
matching intensity for values below the mean. As the curvature of the cost function 
is constant in ​q​ when ​m​(q)​​ is quadratic, this symmetry argument holds under any 
symmetric distribution ​F​(v)​​. Proposition 3 verifies the above intuition.

Proposition 3 (Joint Targeting: Positive and Negative): With symmetrically 
distributed match values and quadratic matching costs, the optimal residual set is 
given by:

	​​ A​​ C​​(c, p)​  =  [E​[v]​ − 2 ​√ __ cp ​, E​[v]​ + 2 ​√ __ cp ​] .​

The measure of the residual set is increasing in the product of the price of infor-
mation ​p​ and the cost parameter ​c​. Thus, an increase in either one depresses the 
number of cookies acquired, and shrinks the targeted set by expanding the residual 
set toward the tails of the distribution. Figure 3 illustrates the demand for cookies 
and the resulting profit levels in the quadratic environment. The bold segment rep-
resent the active policy for value ​v​ , the dashed line the inactive policy for value ​v​.

The symmetry conditions introduced in Proposition 3 have important implica-
tions not only for the optimal location of the residual set, but also for its size. In par-
ticular, the expected match value in the residual set is equal to the prior mean ​E[v]​ , 
regardless of the measure of the residual set ​​A​​ C​​. Therefore, the quantity of signals 
purchased by the advertiser does not influence the uninformed action ​​ q ̅ ​​ , and, hence, 
it does not affect the marginal value of information at any given ​v​. This also implies 
that the willingness to pay for information about any consumer ​v​ is independent of 
the distribution of match values.

In turn, the interaction between the symmetric gains from information and the 
symmetry in the distribution suggest conditions under which either only positive or 
only negative targeting become optimal, as we establish in the next set of results.

While the residual set is always connected, as established by Proposition 2, the 
targeted set may be as well. In particular, the choice of a single (positive or nega-
tive) targeting policy depends on the value of information, and on its monotonicity 
properties over any interval. Proposition 4 establishes sufficient conditions under 
which firms demand cookies in a single interval, i.e., they choose positive or nega-
tive targeting only.
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Proposition 4 (Exclusive Targeting: Positive or Negative):

	 (i)	  If ​m″​(q)​​ and ​f ​(v)​​ are decreasing, positive targeting is optimal:

	 ​A​(c, p)​  = ​ [​v​2​​​(c, p)​, ​ v ̅ ​]​,   and ​v​2​​  > ​  v _ ​ .​

	 (ii)	 If ​m″​(q)​​ and ​f ​(v)​​ are increasing, negative targeting is optimal:

	​ A​(c, p)​  = ​ [​ v _ ​, ​v​1​​​(c, p)​]​,   and ​v​1​​  < ​  v ̅ ​ .​

The sufficient conditions in Proposition 4 for exclusive targeting are perhaps best 
understood when viewed as departures from the symmetric conditions of Proposition 
3. If, say, positive targeting is to dominate negative targeting, then the gains from 
information must be larger on the upside than on the downside of values. Recall 
that the gains from information given the realization ​v​ are equal to ​​π​​ ∗​​(v)​ − π​(v, ​ q ̅ ​)​​.  
Thus, if the curvature of the matching cost function ​​m ″ ​​(q)​​ is decreasing, the gains 
from information for realizations ​v​ equidistant from the mean ​E​[v]​​ are larger above 
the mean than below. Now, this pairwise comparison and reasoning could be undone 
by the relative likelihood of these two events. Thus, for the sufficient conditions, we 
need to guarantee that the distribution of values supports this pairwise argument, 
and hence the corresponding monotonicity requirement on the density ​f ​(v)​​. Figure 4 
shows the equilibrium profit levels under positive targeting (panel A) and negative 
targeting (panel B).10

The optimality of targeting consumers in a single interval can be traced back 
to the two sources of the value of information, i.e., wasteful advertising for low 
types and insufficient advertising for valuable consumers. Proposition 4 relates the 

10 In both panels, ​F​(v)​  =  v​ , ​v  ∈ ​ [0, 1]​​ and ​m​(q)​  = ​ q​​ b​/b​. In panel A, ​b  =  3/2​ , and in panel B, ​b  =  3​. 
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potential for mismatch risk to the properties of the match cost function. In particu-
lar, when the curvature of the matching cost function is increasing, it becomes very 
expensive to tailor advertising to high-value consumers. In other words, the risk of 
insufficient advertising is not very high, given the cost of advertising space. The firm 
then purchases cookies related to lower-valued consumers.11

When choosing a targeting strategy, the advertiser trades off the amount of learn-
ing over values in the residual set with the costs and benefits of acquiring informa-
tion about values in the targeted set. The amount of learning is related to the range 
of the residual set ​​|​v​2​​ − ​v​1​​|​​ , while the costs and benefits of information are related to 
the probability measure of the targeted set. Therefore, targeting a less likely subset 
of values requires a smaller expense (in terms of the cost of cookies) in order to gen-
erate a given amount of information. The distribution of match values then affects 
the optimality of positive versus negative targeting: for example, under a matching 
cost function with constant curvature, decreasing density ​f ​(v)​​ leads to positive tar-
geting, and vice-versa.

D. Empirical Relevance

Both positive and negative targeting strategies are relevant for online advertis-
ing markets. In particular, negative targeting is explicitly allowed as a refinement 
option by most large providers of advertising space, including Google, Yahoo!, and 
Facebook.12 Clearly, an advertiser may adopt either or both strategies, and the choice 
of a strategy in any specific context will depend on the distribution of consumer val-
ues and on the cost of advertising. For instance, in the market for credit scores, a 
credit card company may want to acquire the profiles of consumers with the lowest 
scores, and make sure not to reach out to them; or it may select a small group of high 
credit-worthiness consumers, and reach out to them more aggressively.

11 Examples of matching cost functions with concave marginal costs include power functions, ​m​(q)​  = ​ q​​ a​​ with ​
a  <  2​. Examples of convex marginal costs include those derived from the Butters (1977) exponential matching 
technology, i.e., ​m​(q)​  =  −a ln ​(1 − q)​,​ with ​a  >  0​ , and power functions ​m​(q)​  = ​ q​​ a​​ , with ​a  >  2​. 

12 For example, Facebook offers negative targeting based on third-party data as a “custom audience” selection 
criterion for advertisers. See https://developers.facebook.com/docs/ads-api/targeting and “Buy Signal: Facebook 
Widens Data Targeting,” The Wall Street Journal, April 9, 2013. 
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Within the marketing and economics literature, Pancras and Sudhir (2007) docu-
ment the use of both positive and negative targeting in the context of retail shopping. 
While the main focus of Pancras and Sudhir (2007) is on competition and informa-
tion-sharing among catalogue merchants and manufacturers, they also examine the 
pricing of data by several intermediaries.13

More recent studies provide indirect evidence in favor of adopting negative target-
ing to exploit the consumers’ purchase cycle. For example, in the context of spon-
sored-search advertising, Blake, Nosko, and Tadelis (2013) document that eBay 
obtains a positive return on investment only for consumers who have not visited the 
eBay site in the last two months. A similar pattern for the profitability of different cus-
tomers also appears in the case of (offline) direct marketing companies documented 
by Anderson and Simester (2013). In both contexts, a cost-efficient strategy for retail-
ers consists of acquiring information about consumers with recent purchases and 
appropriately reducing the amount of advertising directed at them. These consumers 
are both low-value (at this point in their purchase cycle) and low in number, relative 
to the overall population, which makes negative targeting especially profitable.14

Finally, as real-time bidding makes online data markets more integrated with the 
advertising exchanges, we can identify two contrasting forces in terms of our model. 
On the one hand, the combined sale of data and advertising favors positive targeting 
almost by construction. On the other hand, when the cost of the data is tied to the 
price paid for advertising, contacting high-value consumers becomes increasingly 
costly. If targeting through cookies results in a higher marginal cost of advertising, 
advertisers may specify lower bids for selected consumer segments (i.e., adopt neg-
ative targeting) in order to reduce their total expenditure.

E. Implications for Publishers

We conclude this section by examining the interaction between the markets for 
data and online advertising. In particular, we assess the effect of data sales on the 
demand for advertising space and the implications of vertical integration between 
publishers and data providers.

The effect of the price of data on the total demand for advertising space is unclear 
a priori. For instance, the demand for advertising space may increase or decrease in 
the amount of information available to advertisers, depending on whether the data is 
used for positive or negative targeting. To formalize this trade-off, consider the total 
demand for advertising space as a function of the targeted set ​A​(c, p)​​. Because any 
advertiser who wishes to generate match intensity ​q​ with a consumer must purchase 
an amount of space equal to ​m​(q)​​ , the total demand for advertising is given by

(11)	​ M​(A)​  ≜ ​ ∫ 
A
​ 
 
 ​​ m​(​q​​ ∗​​(v)​)​ dF​(v)​ + ​∫ 

​A​​ C​
​ 

 
 ​​ m​(​q​​ ∗​​(​A​​ C​)​)​ dF​(v)​ .​

13 Our model so far abstracts from competition among advertisers. In the working paper Bergemann and Bonatti 
(2013), we introduce pecuniary externalities through a market-clearing price of advertising space. The characteriza-
tion of the optimal targeting strategies of Proposition 4 is unchanged. 

14 While advertisers may be able to identify their own repeat shoppers, they need to purchase third-party infor-
mation about their competitors’ customers who are at a similar stage in their purchase cycle. 
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We are interested in the effect of the amount of data sold ​μ​(A)​​ on the total demand 
for advertising ​M​(A)​​. Figure 5 considers the case of negative targeting, and com-
pares the demand for advertising ​m​(q​(v)​)​​ for fixed targeted and residual sets, under 
two different matching cost functions.

As is intuitive, the total demand for advertising (i.e., the area under the solid 
lines in Figure 5) is increasing in the measure of the targeted set ​A​ when the com-
plete information demand for advertising ​m​(​q​​ ∗​​(v)​)​​ is convex in ​v​. Our next result 
formalizes the interaction of the data and advertising markets by relating the sign 
of the cross-market externality to the properties of the matching cost function. In 
Proposition 5 (as well as in Propositions 7, 8, and 9), we assume that the distribution 
of match values and the matching cost function lead to exclusive targeting (positive 
or negative). Proposition 4 provides sufficient conditions.

Proposition 5 (Market Interaction): Assume exclusive (positive or negative) tar-
geting is optimal:

	 (i)	 If ​​m ′ ​​(q)​​ is log-concave, the demand for advertising ​M​(A​(c, p)​)​​ is decreasing 
in ​p​.

	 (ii)	 If ​​m ′ ​​(q)​​ is log-convex, the demand for advertising ​M​(A​(c, p)​)​​ is increasing in ​
p​.

The proof of Proposition 5 establishes that convexity of the complete informa-
tion demand for advertising is equivalent, in terms of the primitives of our model, 
to the log-concavity of the marginal cost of matching. Furthermore, the condi-
tions in Proposition 5 are related to those for the optimality of exclusive targeting 
(Proposition 4). In particular, if positive targeting is optimal, the demand for adver-
tising space is decreasing in ​p​ (but not vice-versa).

Finally, we can leverage the results of Proposition 5 to analyze the problem a 
company (e.g., Google, Yahoo!, or Facebook) that acts as both data provider (by 
providing information that allows targeted advertising) and publisher (by allowing 
advertisers to contact consumers). In particular, under the sufficient conditions of 
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Proposition 5, the publisher wants to allow either complete access or no access to 
the data (corresponding to ​​p​​ ∗​  ∈ ​ {0,  ∞}​​). In other words, our analysis suggests 
which market conditions are conducive to the wide diffusion of user-level infor-
mation among the advertisers, and. conversely. which conditions discourage sellers 
from offering precise targeting opportunities. In particular, when the demand for 
advertising space is decreasing in ​p​ , a publisher with access to data can benefit 
from the indirect sale of information, i.e., from bundling information and advertis-
ing space in order to drive up demand for the latter.15

III.  The Price of Data

In this section, we explore the determinants of the monopoly price of data. We 
begin with the cost of advertising ​c​ , before turning to the fragmentation of data 
sales, the size of the database, and the precision of the data provider’s information. 
In the latter three cases, we highlight the role of the residual set in determining the 
willingness to pay for information, and of the ability of the monopolist to influence 
its composition.

An important implication of the demand analysis in Section II is that the adver-
tisers’ optimal targeting strategy is not influenced qualitatively by the price of data ​
p​. In particular, under the conditions of Propositions 1, 3, or 4, the price of data 
affects the size of the targeted set only. In other words, throughout this section, the 
monopolist takes the shape of the targeted set ​A​(c, p)​​ as given, and chooses the rev-
enue-maximizing price

	​ ​p​​ ∗​  = ​ arg max​ 
p
​   ​  ​[p · μ​(A​(c, p)​)​]​ .​

A. Data and Advertising: Complements or Substitutes?

From the point of view of an advertiser, the data provider and the publisher of 
advertising space are part of a value chain. It is therefore tempting to view the inter-
action of the data provider and publisher as a vertical chain (formed by strategic 
complements), and to associate with it the risk of double marginalization. This 
would suggest that an increase in the cost ​c​ of advertising would lead optimally to a 
partially offsetting decrease in the price of information ​​p​​ ∗​​(c)​​. But at closer inspec-
tion, the relationship between the price of data and that of advertising is more subtle.

The purchase of data may allow the advertiser to concentrate the purchase of 
advertising space on a smaller but highly relevant segment. Thus, from the point of 
view of the advertiser, the data provides an option whose value might be increasing 
as the advertising space becomes more expensive.

Therefore, data purchases act as strategic complements to advertising pur-
chases for high value realizations, but as strategic substitutes for low valuations, 
because after learning of a low-value consumer, the advertiser reduces his matching 

15 We could also endow the publisher with market power, i.e., allow the publisher and the data provider to coor-
dinate their actions, without qualitatively affecting this result. 
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intensity. This subtlety in the interaction already appeared in the binary environment 
of Subsection IIA, to which we now return. The following results are an immediate 
consequence of Proposition 1.

Proposition 6 (Data and Advertising):

	 (i)	 For all ​c  ∈ ​ [0, 1]​​ , the monopoly price of a cookie is

	​ ​p​​ ∗​​(c)​  = ​ (1/2)​ ​min​ 
​
​
​
 ​​ {c, 1 − c}​ .​

	 (ii)	 The equilibrium sales of cookies are given by the targeted set ​A​(c, ​p​​ ∗​​(c)​)​​:

	​ A​(c, ​p​​ ∗​​(c)​)​  = ​
{

​ 
​[0, c/2]​

​ 
if
​ 

c  <  1/2;
​   

​[​(1 + c)​ /2, 1]​
​ 

if
​ 

c  ≥  1/2 .
​​ ​

	 (iii)	 The equilibrium price, sales and profits of the data provider are single peaked 
in ​c​.

Recall the characterization of the advertiser’s optimal targeting strategy in the 
binary-action setting (Proposition 1): positive targeting is adopted when the cost of 
advertising ​c​ is sufficiently high, and negative targeting is adopted when the cost of 
advertising is low. Proposition 6 shows that both the price of the data and the prof-
its of the data provider are nonmonotone in ​c​. Intuitively, the value of information 
is highest for intermediate levels of ​c​. In the absence of information, advertisers 
choose either ​​q​0​​  =  0​ or ​​q​0​​  =  1​ , depending on the cost of the advertising space ​c​. 
In particular, for very low and very high values of ​c​ , the availability of data modifies 
there optimal action only on a limited set of consumers. Consequently, their willing-
ness to pay for information is also limited.

The binary-action environment suggests which market conditions are more con-
ducive to the profitability of a data provider. Perhaps contrary to a first intuition, 
niche markets with a high cost of advertising space and few profitable consumers 
are not necessarily the best environment. While the availability of data would have 
a large impact (demands for advertising would be nil without information), the data 
provider’s profits are constrained by the low levels of surplus downstream. Instead, 
markets with relatively large fractions of both profitable and unprofitable consumers 
yield a higher value of information, which translates into higher prices for data and 
higher provider profits.

While general results on the comparative statics of the monopoly price are harder 
to obtain in the continuous-action environment, more intuition can be obtained 
from specific examples. For instance, if joint targeting is optimal, an immediate 
implication of Proposition 3 is that the monopoly price is inversely proportional 
to the cost of advertising space. If exclusive targeting is optimal, and match values 
are uniformly distributed, the log-concavity (log-convexity) of ​​m ′ ​​(q)​​ is a sufficient 
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condition for the monopoly price to increase (decrease) with ​c​.16 Taken together, 
these partial results suggest that the nonmonotonicity of the monopoly price in 
Proposition 6 is deeply tied to changes in the optimal targeting strategy induced by 
changes in the cost of advertising space.

In the following subsections, we take the cost of advertising space as given. We 
return to our continuous-action environment in order to illustrate the role of the 
composition of the targeted and residual sets.

B. Data Sales Fragmentation

We have so far assumed a monopoly structure for the data industry. We now 
assess the consequences of competition among sellers, and of the structure of the 
data industry. In particular, we focus on the externality that each seller’s price 
imposes on the other sellers through the composition of the advertisers’ residual set. 
Our formulation follows closely the business model of the data exchange, where a 
data provider does not buy and resell information, but rather offers a platform for 
matching individual buyers and sellers, who set their own prices.17

Formally, we consider a continuum of data sellers, and we assume that each seller 
has exclusive information about one consumer segment ​i​. Thus, each seller sets the 
price for one cookie only. We seek to characterize a symmetric equilibrium of the 
pricing game. In the following discussion, we assume that positive targeting is opti-
mal (Proposition 4 provides sufficient conditions). Analogous results hold for the 
case of negative targeting, as stated in Proposition 7.

We begin by considering an advertiser’s demand for information. Suppose 
all sellers but ​j​ charge price ​​p​−j​​​. Every advertiser then chooses the targeted set 
​A  = ​ [​v​2​​, ​ v ̅ ​]​​, where the threshold value ​​v​2​​​(​p​−j​​)​​ solves the condition

	​ ​p​−j​​  = ​ π​​ ∗​​(​v​2​​)​ − π​(​v​2​​, ​q​​ ∗​​(​[​ v _ ​, ​v​2​​]​)​)​ .​

Thus, the cookie sold by seller ​j​ will have a distribution of values across advertisers 
that depends on the other sellers’ prices through their effect on the residual set. In 
particular, a symmetric price profile ​​p​−j​​​ can be summarized by the threshold ​​v​2​​​ that 
it induces. Now consider an advertiser whose match value with the cookie of seller ​
j​ is equal to ​v​. This advertiser’s willingness to pay is equal to the differential profit 
under the threshold strategy ​​v​2​​​(​p​−j​​)​​. Therefore, seller ​j​ faces the inverse demand 
function ​p​(v, ​v​2​​)​​ given by

(12)	​ p​(v, ​v​2​​)​  ≜ ​ π​​ ∗​​(v)​ − π​(v, ​q​​ ∗​​(​[​ v _ ​, ​v​2​​]​)​)​ .​

Because match values with a given seller ​v​(· , j)​​ are identically distributed, we can 
reformulate the seller’s problem as choosing a threshold ​v​ to maximize profits given 

16 In the working paper Bergemann and Bonatti (2013), we show that the conditions of Proposition 5 also deter-
mine the effect of the cost ​c​ on the advertisers’ marginal willingness to pay for any targeted set ​A​. The comparative 
statics of the monopoly price require further assumptions on the distribution of values. 

17 We may also interpret the fragmentation of data sales as a market where individual users are able to sell their 
own data. 
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the advertisers’ threshold ​​v​2​​​. A symmetric equilibrium threshold then solves the 
following problem:

	​ ​v​2​​  = ​ arg max​ 
v
​   ​  ​[p​(v, ​v​2​​)​ ​(1 − F​(v)​)​]​ .​

The key difference with the monopoly problem lies in the residual advertising 
intensity ​​q​​ ∗​​(​[​ v _ ​, ​v​2​​]​)​,​ which cannot be influenced by the price of any individual 
seller. More precisely, suppose the monopolist considers expanding the supply of 
cookies, hence, lowering the threshold ​​v​2​​​. By increasing supply, he would reduce 
the gap between complete and prior information profits for the marginal consumer 
​​v​2​​​. Naturally then, the monopolist would have to lower the price. At the same time, 
the composition of the residual set will have changed. In fact, the average value on 
the residual set will have decreased, and thus the advertising level on the residual 
set will be lower. But this means that the value of information for the marginal con-
sumer just below the targeted set has increased, and, hence, the marginal advertiser 
just below the threshold will have a higher value of information. Now, this effect 
provides an additional incentive to lower prices and expand supply for the monop-
olist. Competing sellers do not internalize the positive externality present across 
cookie sales. Higher prices under fragmented data sales are then due to the absence 
of a composition effect.

The fragmented data sales is illustrative of a more general result. Suppose we 
were to consider ​n​ symmetric data sellers, each holding information about a measure ​
1/n​ of consumers distributed identically according to ​F​(v)​​. The ​n​ sellers set prices 
simultaneously. Consider now the trade-off facing a specific seller. She knows that, 
by lowering her price, all advertisers will purchase more from her, as well as from 
everyone else. This occurs because the action ​q​ on the residual set will decrease. 
However, as for the case of fragmented sales, the composition effect is attenuated in 
equilibrium by the fact that all other sellers are holding their prices fixed. Thus, in a 
symmetric equilibrium the price is increasing in ​n .​ As the number of sellers grows 
large, the equilibrium price approaches the price under fragmentation, where the 
action on the residual set is constant.

To summarize, we obtain the following comparative statics of the equilibrium 
price.

Proposition 7 (Equilibrium under Data Fragmentation): Assume exclusive (pos-
itive or negative) targeting is optimal:

	 (i)	 The symmetric equilibrium price of cookies with a continuum of data sellers ​​
p ̅ ​​ is higher than the monopoly price ​​p​​ ∗​​.

	 (ii)	 The symmetric equilibrium price with ​n​ independent and exclusive data sell-
ers ​​p​​ ∗​​(n)​​ is increasing in ​n​ , and approaches ​​p ̅ ​​ as ​n  →  ∞​.

Clearly, if many sellers would lead to a duplication in the datasets, sellers would 
only be able to capture the incremental value of their information, thus driving 
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prices down. In particular, there will exist a critical level of duplication for which 
the monopoly and the oligopoly prices are equal.

C. Reach of the Database

So far, we implicitly assumed that the monopolist’s dataset covers all consumers, 
i.e., that it has maximal reach. We now explore the implications of limited reach on 
the monopoly price of cookies, and on the equilibrium profits of the data provider 
and the advertisers.

We assume that the data provider owns information about a fraction ​β  <  1​ of all 
consumers. Advertisers know the distribution of match values of consumers present 
in the database, and of those outside of it. In real-world data markets, consumers 
in a database may have different characteristics from those outside of it, i.e., the 
presence of a cookie on a given consumer is per se informative. For simplicity, we 
assume that the two distributions are identical, so that the measure of consumers in 
the dataset is given by ​βF​(v)​​. We then have the following result.

Proposition 8 (Reach and Demand): Assume exclusive (positive or negative) 
targeting is optimal. Then the advertisers’ marginal willingness to pay ​p​(A, β)​​ is 
increasing in ​β​ for all ​A​.

Quite surprisingly, the demand function for information shifts out as more con-
sumers are reached by the database. That is, an advertiser's marginal willingness to 
pay for information increases with ​β​. The reason behind this result can be traced 
back to the effects of a larger database on the optimal action in the residual set 
​​q​​ ∗​​(​A​​ C​)​​. When positive targeting is optimal (so that ​A  = ​ [​v​2​​, ​ v ̅ ​]​​ ), the average type 
in the residual set ​​A​​ C​​ is given by

(13)	​ E​[v | v  ∈ ​ A​​ C​]​  =  β E​[v | v  ≤ ​ v​2​​]​ + ​(1 − β)​ E​[v]​ .​

Because the average type is decreasing in ​β​ for all ​A​ , the quantity of advertising 
demanded on the residual set is decreasing in ​β​. Thus, the willingness to pay for 
information on the marginal consumer ​​v​2​​​ increases. A similar argument applies to 
the case of negative targeting. Conversely, under the conditions of Proposition 3 
(joint targeting), the quantity of advertising ​​ q ̅ ​​ demanded on the residual set is inde-
pendent of ​β​. Hence, the reach parameter ​β​ has no effect on the monopoly price.

Even under exclusive targeting, Proposition 8 does not imply that the monopoly 
price is increasing in the reach parameter ​β​. On the contrary, as the reach of the data-
base increases, the optimal monopoly price is pushed lower by two effects. First, 
the willingness to pay for any targeted set increases (Proposition 8), which makes 
raising price and restricting supply more costly. Second, the optimal action in the 
residual set is now more sensitive to the price of cookies. This is due to the compo-
sition effect: the average consumer outside the targeted set becomes less likely to 
have a high match value; as a consequence, the quantity of advertising demanded 
on the residual set decreases faster as the targeted set expands. Both these effects 
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induce the monopolist to lower price and expand supply as the database becomes 
less limited.18

Two final remarks are in order. First, a reduction in price implies an increase in 
the range of data sold by the monopolist ​​[​v​2​​, ​ v ̅ ​]​​ as the reach ​β​ increases. Therefore, 
an increase in the reach ​β​ leads to higher data sales. Thus, advertisers pay a lower 
price and access more information, which implies that their profits increase. This 
means that an increase in data availability can induce a Pareto improvement in the 
market for information.

Second, note that we have assumed in Proposition 8 that exclusive (positive or 
negative) targeting is optimal for all price levels. Informally, this means one source 
of advertising mismatch (wasteful spending or insufficient intensity) is particularly 
prominent. However, the price of information is not generally continuous or mono-
tone in the reach parameter ​β​. In particular, jumps may occur when the targeting 
policy induced by the monopolist switches from joint (both positive and negative) 
targeting for low reach values ​β​ to exclusive (positive or negative) targeting for high 
reach values ​β​.

D. Precision of the Database

We now assess the implications of the quality of the database, as measured 
by the data provider’s ability to estimate the consumer’s characteristics. Because 
advertisers are risk-neutral and the profit function (2) is linear in ​v​ , the choice of 
action ​q​ and willingness to pay for information depend only on the conditional 
expectation of the match value. It is then convenient to interpret ​v​ as a posterior 
mean. In particular, we assume the true match value is unknown to all, but the data 
provider has access to an informative signal. The data provider’s signals induce 
posterior means ​v​ distributed according to ​F​(v)​​. We then relate the precision of 
the data provider’s information to the properties of the distribution of estimated 
match values.

We model the precision of the database through the spread of the distribution of 
match values. We then assume that the distribution of values is ordered by increas-
ing variance.19 Formally, this means that ​​E​F​​​[v]​​ is constant in a spread parameter ​k​ , 
and that

(14)	​ ​F​k​​​(v)​  ≜  F​(​(v − E​[v]​)​ / σ​(k)​)​ ,  with σ′​(k)​  >  0 .​

We define the quantity of data demanded at price ​p​ as the measure of the optimal 
targeted set ​​A​k​​​(p)​​ under the distribution ​​F​k​​​(v)​​. We then derive comparative statics of 
the demand for information with respect to the precision of the database.

18 In the working paper, Bergemann and Bonatti (2013), we identify sufficient conditions on the distribution of 
values under which the monopoly price of data is decreasing in its reach. 

19 This stochastic order is a specific instance of the rotation order, see Johnson and Myatt (2006). It obtains, for 
example, when the seller observes a truth-or-noise signal of the underlying value. 
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Proposition 9 (Demand for Information):

	 (i)	 Assume joint targeting is optimal. The marginal willingness to pay ​​p​k​​​(A)​​ is 
constant in ​k​ , and the quantity of data demanded is strictly increasing in ​k​.

	 (ii)	 Assume exclusive targeting is optimal. The marginal willingness to pay 
​​p​k​​​(A)​​ is increasing in ​k​ , and the quantity of data demanded is increasing in ​
k​ if ​E​[v]​  ∉ ​A​k​​​(p)​ .​

Let us consider the cases of joint and exclusive targeting separately. Under joint 
targeting, the optimal action on the residual set ​​ q ̅ ​​ is unaffected by the spread of the 
distribution. However, as ​k​ increases, more probability mass is placed on the tails of 
the distribution, so that the total demand for information is higher. Under exclusive 
targeting, the optimal action on the residual set moves closer to ​​q​​ ∗​​(​ v ̅ ​)​​ or ​​q​​ ∗​​(​ v _ ​)​​ as 
the spread increases. The composition effect therefore raises the differential profits 
on any given ​v​ , hence, the willingness to pay for the marginal cookie. This may lead 
to a higher or lower quantity of data sold, depending on the level of purchases. In 
particular, if the cookie ​E​[v]​​ is in the residual set, then a more spread out distribution 
implies higher sales.

We now turn attention to the monopoly price of cookies. We first analyze the case 
of joint targeting. In Proposition 10, we maintain the assumptions of Proposition 3, 
namely the symmetry of ​F​(v)​​ and the quadratic profits.

Proposition 10 (Monopoly Price, Joint Targeting): If joint targeting is optimal, 
the monopoly price of a cookie is increasing in ​k​.

An important feature of the symmetric quadratic environment is that the dis-
tribution of types affects the monopolist’s problem through the quantity of data 
demanded, and not through the marginal value of information. This allows for clean 
comparative statics of the monopoly price in Proposition 10. Notice, however, that 
the monopoly quantity responds differently from the price, and it may increase or 
decrease even if the price is increasing (see Johnson and Myatt 2006 for a thorough 
discussion).

The effects of information precision on the monopoly price under exclusive tar-
geting are rather intricate. On the one hand, information precision affects advertis-
ers’ willingness to pay for the marginal cookie. On the other hand, the spread of 
the values distribution directly impacts the quantity of data sold. Under the joint 
restriction of power cost functions ​m​(q)​  = ​ q​​ b​​ and uniformly distributed types over  
​​[​(1 − k)​ / 2, ​(1 + k)​ / 2]​​ , it is possible to show that the spread ​k​ has a positive impact 
on the monopoly price and a negative impact on the quantity of data sold.20

20 This result does not depend on whether positive or negative targeting is optimal (i.e., on whether the cost 
parameter ​b  >  2​). The details are available from the authors. 
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IV.  Beyond Linear Pricing

We have focused so far on a fairly specific set of information structures 
(cookies-based) and pricing mechanisms (linear prices). We now return to the 
monopoly environment, and we generalize our analysis of data sales to address two 
closely related questions: (i) What is the optimal mechanism for a monopolist to sell 
information? (ii) Are there conditions under which pricing of individual cookies can 
implement the optimal mechanism?

Up to now, we assumed that the advertisers are symmetric in the distribution of 
the match values. Moreover, the advertisers attached the same willingness to pay 
to a consumer with match value ​v​. Thus, from an ex ante point of view, the adver-
tisers are all identical, and their common ex ante value of information is assumed 
to be known to all market participants, including the data provider. Therefore, 
it is as if the data provider has complete information about the preferences of 
the advertisers. In this setting, suppose the data provider could choose among 
unrestricted pricing mechanisms and information structures, i.e., mappings from 
consumer match values to signals for the advertisers. The data provider would 
then be able to extract the entire ex ante surplus from the advertisers, for example, 
by charging a bundle price for the entire database equal to the ex ante value of 
information.

In this section, we allow for a private information component in the advertis-
ers’ willingness to pay to match with a consumer with characteristics ​v​. Thus, we 
consider advertisers who differ in their marginal willingness to pay, denoted by ​
θ  ∈  Θ  = ​ [0, 1]​​. Extending the earlier expression (2), the net value of a match is 
now given by

	​ π​(v, q, θ)​  ≜  θvq − c · m​(q)​ .​

The marginal willingness to pay ​θ​ is private information to each advertiser and is 
distributed in the population of advertisers according to a continuous distribution 
function ​G​(θ)​​ with density ​g​(θ)​​. For this section, we return to the binary decision 
environment of Subsection IIA and restrict attention to binary decisions ​q  ∈ ​ {0, 1}​​ 
of the advertiser (or alternatively linear matching cost ​m​(q)​  =  q​). The net value of 
a match is then given by, extending the earlier expression (5):

	​ ​π​​ ∗​​(v, θ)​  ≜ ​ max​ 
​
​​ ​  ​{θv − c, 0}​ .​

Thus, for advertising to generate positive value, the realization of ​θ​ must exceed ​c​ 
as ​v  ∈ ​ [0, 1]​​.

We now explore the data provider’s ability to screen advertisers by offering dif-
ferent information structures (or “information policies”), and by pricing the amount 
of information in a nonlinear way. We begin our analysis with noiseless information 
structures, i.e., deterministic mappings from the advertiser’s payoff-relevant states ​
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v​ ​∈  V​ to a set of signals, and we characterize the optimal mechanism within this 
class.21

With binary actions, the socially efficient information policy can be induced by a 
threshold ​​v​​ ∗​​(θ)​​ that informs advertisers perfectly and without noise about the match 
value ​v​ if and only if ​v​ exceeds the threshold ​​v​​ ∗​​(θ)​​ given by

(15)	​ ​v​​ ∗​​(θ)​  = ​  c __ θ ​.​

In other words, the data provider can attain the efficient allocation of information 
through an information policy based on cookies. Under the efficient information 
policy, each advertiser receives information about every realization of ​v​, such that 
​v  ≥ ​ v​​ ∗​​(θ)​​. Consequently, advertisers adopt positive targeting, i.e., contact all con-
sumers they receive information about, and ignore the residual users.22 The expected 
gross value of the efficient information policy for an advertiser with willingness to 
pay ​θ​ is

	​ ​w​​ ∗​​(θ)​  ≜ ​ ∫ 
​ c __ θ ​
​ 
1
​​ ​(θv − c)​  dF​(v)​.​

Now consider an arbitrary noiseless information policy with threshold ​x​. The 
value of this information structure to an advertiser with willingness to pay ​θ​ is given 
by

(16)	​ w​(θ, x)​  ≜ ​ ∫ 
x
​ 
1
​​​(θv − c)​  dF​(v)​ .​

Note the submodularity property of ​w​(θ, x)​​ , namely that ​​∂​​ 2​w​(θ, x)​/∂ θ ∂ x = −v < 0​. 
Therefore, any implementable information policy leads to more data, and, hence, 
lower thresholds ​x​ , being assigned to advertisers with higher willingness to pay ​θ​. 
Given the noiseless nature of the information policy, the above problem (16) is akin 
to a nonlinear pricing problem, where the quantity variable is the amount of infor-
mation, or the number of cookies sold.

In the associated direct revelation mechanism, each advertiser communicates his 
willingness to pay, and in exchange is offered a set of cookies and a price for the 
bundle of cookies. The set of cookies is determined by the threshold ​​v​​ ∗​​(θ)​​ and, 
hence, the associated quantity of cookies is

	​ Q​(θ)​  ≜  1 − F​(​v​​ ∗​​(θ)​)​,​

and we denote the transfer payment in the direct mechanism by ​T​(θ)​​. As in the 
standard analysis of revenue-maximizing mechanisms, we impose a regularity 

21 In the working paper Bergemann and Bonatti (2013), we establish that noiseless information structures 
remain optimal even when we consider arbitrary information structures. This result requires substantial additional 
language and notation, and is thus relegated to the working paper. 

22 In this binary action setting, providing information about the complement set and inducing negative targeting 
yields an identical outcome. 
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condition, such that the local incentive conditions generate the requisite monotone 
allocation, which in this context is simply the requirement that the “virtual utility”

(17)	​ θ − ​ 
1 − G​(θ)​
 _______ 

g​(θ)​ ​ ​

is increasing in ​θ​. We maintain this restriction in Proposition 11, whose proof is in 
the working paper, Bergemann and Bonatti (2013).

Proposition 11 (Information Policy): The optimal information policy is a noise-
less information policy with threshold

(18)	​ ​v​​ ∗​​(θ)​  = ​   c ___________  
θ − ​ 

1 − G​(θ)​
 _______ 

g​(θ)​ ​
 ​  .​

Perhaps the surprising element in the determination of the information policy is 
that the distributional information about the match values (i.e., ​f ​(v)​​ or ​F​(v)​​) does 
not appear in the description of the optimal information policy. This results from the 
additivity of the utility of all types ​θ​ in the number of user contacts.23

The direct mechanism establishes some key properties of the information policy. 
In particular, ​T​(θ)​​ and ​Q​(θ)​​ are strictly increasing in ​θ​ , as shown in Proposition 12. 
A related, indirect mechanism speaks more directly to the problem of data selling 
and access to the database. Namely, the data provider could specify a nonlinear pric-
ing scheme, or conversely a price for incremental access to the database. With ​Q​(θ)​​ 
strictly increasing in ​θ​ , we can define a nonlinear pricing scheme, which associates 
every quantity ​Q​ with the transfer of the corresponding type ​​Q​​ −1​​(θ)​​:

	​ P​(Q)​  ≜  T​(​Q​​ −1​​(θ)​)​ .​

We define the price ​p​(Q)​​ as the price for incremental access to the database, or the 
marginal price that we can readily interpret as the price of an additional cookie:

	​ p​(Q)​  ≜ ​ P ′ ​​(Q)​ .​

Under slightly stronger regularity conditions than (17), Proposition 12 establishes 
that the incremental pricing ​p​(Q)​​ implements the optimal information policy. In 
fact, the data provider offer access to additional cookies at a declining price that 
mirrors the logic of quantity discounts in Maskin and Riley (1984). The proof of this 
result can be found in the working paper.

23 More specifically, the probability density at the threshold ​f  ​(​v​​ ∗​​(θ)​)​​ increases the willingness to pay and the 
information rent at the same rate. 
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Proposition 12 (Prices and Quantities):

	 (i)	 The number of cookies sold ​Q​(θ)​​ and the transfer ​T​(θ)​​ are increasing in ​θ​.

	 (ii)	 The incremental cookie price ​p​(Q)​​ is decreasing in ​Q​ and decentralizes the 
direct optimal mechanism if ​​(1 − G​(θ)​)​ / g​(θ)​​ is decreasing.

Thus, the data provider can decentralize the optimal direct mechanism by allow-
ing advertisers to access a given portion of the database, with volume discounts for 
those who demand a larger amount of cookies. This establishes an equivalent imple-
mentation of the optimal mechanism, based on advertiser self-selection of a subset 
of cookies. We can then view the (constant) monopoly price ​p​ for cookies (which 
yields a total payment ​pQ​) as a linear approximation of the optimal nonlinear tariff ​
T​(Q)​​ in this particular case.24

V.  Concluding Remarks

We analyzed the sale of individual-level information in a setting that captures 
the key economic features of the market for third-party data. Specifically, in our 
model, a monopolistic data provider determines the price to access informative sig-
nals about each consumer’s preferences.

Our first set of results characterized the demand for such signals by advertis-
ers who wish to tailor their spending to the match value with each consumer. We 
showed how properties of the complete information profit function determine the 
optimality of an information-purchasing strategy that achieves positive targeting, 
negative targeting, or both. We also explored the interaction between the markets for 
data and advertising, and we showed that a publisher of advertising space can, but 
need not, benefit from the availability of data to the advertisers.

Turning to monopoly pricing of cookies, we established that the ability to influ-
ence the composition of the advertisers’ targeted and residual sets was the key driver 
of the optimal (linear) prices. As a consequence, both the reach of the monopolist’s 
database and the concentration of data sales provide incentives to lower prices.

We then considered an environment in which advertisers differ in their willing-
ness to pay, and we showed that cookies-based pricing can be part of an (approxi-
mate) optimal mechanism for the sale of information. In particular, we showed that 
the data provider can decentralize the optimal mechanism by offering a nonlinear 
pricing schedule for cookies.

We, arguably, made progress toward understanding basic aspects of data pricing 
and data markets. We did so by making a number of simplifying assumptions. A 
more comprehensive view of data markets would require a richer environment. In 
the present model, the information supported the formation of valuable matches, 
and hence could be viewed as increasing the surplus of the consumer and the adver-
tiser at the same time. But if information could also impact the division of surplus 

24 See Rogerson (2003) for bounds on the loss in profits from simpler mechanisms such as linear pricing. 
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between them, then the value of information (and the corresponding value of pri-
vacy) would require a more subtle analysis.

In the present model neither the advertiser nor the publisher had access to any 
proprietary information about the consumers. In reality, advertisers and (more 
prominently) large publishers and advertising exchanges maintain databases of their 
own. Thus, the nature of the information sold and the power to set prices depend 
on the initial allocation of information across market participants. Moreover, online 
data transactions are inherently two-sided. Presently, we analyzed the price charged 
by the data provider to the advertisers. But there are cost of acquiring the data from 
individuals, publishers, or advertisers. Ultimately, the cost of acquiring information 
for the data provider should be related to the value of privacy, which may limit the 
availability of data or raise its price.

Appendix

Proof of Proposition 1:
Suppose the advertisers’ optimal action on the residual set is given by 

​​q​​ ∗​​(​A​​ C​)​  =  0​. The value of the marginal cookie is then given by ​max ​{0, v − c}​​ , 
which is increasing in ​v​. We show that the value of information is strictly monotone 
in ​v​. Notice that adding higher-​v​ cookies to the targeted set does not change the 
optimal action on the residual set because it lowers the expected value of a con-
sumer ​v  ∈ ​ A​​ C​​. Thus, if advertisers buy cookie ​v​ , they also buy all cookies ​v′  >  v​. 
Conversely, if the optimal action on the residual set is given by ​​q​​ ∗​​(​A​​ C​)​  =  1​ , the 
value of the marginal cookie is ​max ​{0, c − v}​​. By a similar argument, the value of 
information is strictly decreasing in ​v​: if advertisers buy cookie ​v​ , they also buy all 
cookies ​v′  <  v​.

Now consider the advertiser’s profits under positive and negative targeting. In the 
former case, the advertisers’ profits are given by

	​ ​π​+​​​(c, p)​  ≜ ​ max​ 
v
​ ​ ​ ​ ∫ 

v
​ 
1
​​​(x − c − p)​  dF​(x)​  = ​ ∫ c+p​ 

1
  ​​ ​(x − c − p)​  dF​(x)​ .​

In the latter case, profits are given by

	​ ​π​−​​​(c, p)​  ≜ ​ max​ 
v
​ ​ ​​ [​∫ 

v
​ 
1
​​​(x − c)​  dF​(x)​ − pF​(v)​]​

	 = ​ ∫ c−p​ 
1
  ​​ ​(x − c)​  dF​(x)​ − pF​(c − p)​ .​

Now consider the difference:

(19) ​​π​+​​​(c, p)​ − ​π​−​​​(c, p)​ = p​(F​(c − p)​ + F​(c + p)​ − 1)​ − ​∫ c−p​ 
c+p

​​​(v − c)​  dF​(v)​ .​

Under the uniform distribution, the second term in (19) is nil, while the first is equal 
to ​p​(2c − 1)​​ , which establishes the result. ​∎​
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Proof of Proposition 2:
Suppose toward a contradiction that the optimal residual set ​​A​​ C​​ is not an interval. 

Let ​​q​0​​  = ​ q​​ ∗​​(​A​​ C​)​​ denote the match intensity with all consumers in the residual set. 
By equation (8), we know ​​q​0​​​ is the optimal match intensity for the average type ​​
v​A​​  =  E​[v | v ∉ A]​​. Suppose ​​v​A​​  ∈  A​. Now consider two consumers with ​v″ > v′​ 
and ​​q​​ ∗​(v″  )  > ​ q​​ ∗​​(v′  )​  > ​ q​0​​​ such that the firm buys cookie ​v​′ but not ​v​″. If ​​A​​ C​​ is 
not an interval either, such a pair exists, or there exists a pair with ​v″  <  v′​ and 
​​q​​ ∗​(v″  )  < ​ q​​ ∗​​(v′  )​  < ​ q​0​​​, such that the firm buys cookie ​v′​ but not ​v​″. Consider the 
former case, and compute the change in profits obtained by swapping cookies, i.e., 
purchasing (an equal number of) cookies ​v​″ instead of cookies ​v​′. Define the differ-
ence between complete and incomplete information profits as

	​ Δ​(v, ​q​0​​)​  =  v​(​q​​ ∗​​(v)​ − ​q​0​​)​ − c​(m​(​q​​ ∗​​(v)​)​ − m​(​q​0​​)​)​,​

and notice that ​​Δ​v​​​(v, ​q​0​​)​  = ​ (​q​​ ∗​​(v)​ − ​q​0​​)​ .​ Therefore ​​q​​ ∗​(v″  )  > ​ q​​ ∗​​(v′)​  > ​ q​0​​​  
implies ​Δ​(v″, ​q​0​​)​  >  Δ​(v′, ​q​0​​)​​. Because the advertiser gains ​Δ​(v″, ​q​0​​)​​ and loses 
​Δ​(v′, ​q​0​​)​​ , it follows that the swap strictly improves profits. An identical argument 
applies to the case of ​​q​​ ∗​(v″  )  < ​ q​​ ∗​​(v′)​  < ​ q​0​​​. Finally, if ​​v​A​​ ∉ A​ , then a profitable 
deviation consists of not purchasing ​​v​A​​​: advertisers avoid paying a positive price, 
and the optimal action on the residual set does not change. ​∎​

Proof of Proposition 3:
If costs are quadratic, so are the complete information profits. By symmetry of 

the distribution, ​​v​0​​  =  E​[v | v  ∈ ​ [​v​0​​ − ε, ​v​0​​ + ε]​]​​ for any ​ε  >  0.​ The marginal 
value of information is then given by

	​ p​(v)​  = ​ π​​ ∗​​(v)​ − ​(v​q​​ ∗​​(​v​0​​)​ − cm​(​q​​ ∗​​(​v​0​​)​)​)​  = ​​ (​v​0​​ − v)​​​ 2​ / 4c .​

Solving for ​​v​0​​​ yields the optimal residual set as a function of ​p​ and ​c​. ​∎​

Proof of Proposition 4:
Consider the necessary conditions for the optimal residual set ​​A​​ C​​ to be given by 

an interior interval ​​[​v​1​​, ​v​2​​]​​. Define the expected value on the residual set,

	​ ​v​0​​  ≜  E​[v | v  ∈ ​ A​​ C​]​.​

For ease of notation, let ​π​(v)​  ≜ ​ π​​ ∗​​(v)​ .​ It follows that ​​q​0​​  ≜ ​ q​​ ∗​​(​A​​ C​)​  = ​ q​​ ∗​​(​v​0​​)​​ , and 
by the envelope theorem ​​q​0​​  =  π′​(​v​0​​)​​. The marginal value of information at ​v​ is 
then given by ​π​(v)​ − ​(π​(​v​0​​)​ + ​(v − ​v​0​​)​ π′​(​v​0​​)​)​​ , and its derivative with respect to ​
v​ is given by ​π′​(v)​ − π′​(​v​0​​)​​. Optimality of an interior residual set requires that the 
marginal value of information is equal to ​p​ at the two extremes i.e.,

	​​ ∫ ​v​1​​​ 
​v​2​​
​​​(π′​(v)​ − π′​(​v​0​​)​)​  dv  =  0 .​
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Under concavity of ​π′​(v)​​ , however, we have

	​​ ∫ ​v​1​​​ 
​v​2​​
​​​(π′​(v)​ − π′​(​v​0​​)​)​  dv  ≤ ​ ∫ ​v​1​​​ 

​v​2​​
​​ π″​(​v​0​​)​ ​(v − ​v​0​​)​  dv,​

which is nonpositive if ​f   ​(v)​​ is nondecreasing. This implies negative targeting. A 
similar last step implies positive targeting.

Finally, we relate the curvature of the profit function to that of the match cost 
function. The envelope theorem implies ​π′​(v)​  = ​ q​​ ∗​​(v)​​ , and implicit differentiation 
of the first order condition yields

	​ π″​(v)​  = ​​ (cm″​(​q​​ ∗​​(v)​)​)​​​ 
−1

​ .​

Because ​​q​​ ∗​​(v)​​ is strictly increasing, we conclude that ​π″′​(v)​  >  0​ if and only if 
​m″′​(q)​  <  0​. ​∎​

Proof of Proposition 5:
We first establish a property of the complete information demands for advertis-

ing. Differentiating ​m​(​q​​ ∗​​(v)​)​​ with respect to ​v​ , we obtain

	​ ​ 
dm​(​q​​ ∗​​(v)​)​
 _________ 

dv
 ​   = ​ m ′ ​​(​q​​ ∗​​(v)​)​ ​ d​q​​ ∗​​(v)​

 ______ 
dv

 ​   = ​ 
m′​(​q​​ ∗​​(v)​)​
 _______ 

cm″​(​q​​ ∗​​(v)​)​ ​ .​

Therefore, the demand for advertising space is convex in ​v​ if ​m″​(q)​ / m′​(q)​​ is 
decreasing in ​q​ , i.e., ​m′​(q)​​ is log-concave. Conversely, ​m​(​q​​ ∗​​(v)​)​​ is concave in ​v​ if 
​m′​(q)​​ is log-convex:

	 (i)	 We focus on the negative-targeting case ​A  = ​ [​ v _ ​, ​v​1​​]​​ , but all arguments imme-
diately extend to the case of positive targeting. Now consider the publisher’s 
revenues as a function of ​p .​ The total demand for advertising is given by

	​ M​(A)​  = ​ ∫ ​ v _ ​
​ 
​v​1​​
​​ m​(​q​​ ∗​​(v)​)​  dF​(v)​ + ​(1 − F​(​v​1​​)​)​ m​(​q​​ ∗​​(​[​v​1​​, ​ v ̅ ​]​)​)​ .​

		  Letting ​​v ̂ ​  ≜  E​[v | v  ∈ ​ [​v​1​​, ​ v ̅ ​]​]​​ , we have

   ​​    ∂ M ___ ∂ ​v​1​​
 ​  = ​ (m​(​q​​ ∗​​(​v​1​​)​)​ − m​(​q​​ ∗​​(​v ̂ ​)​)​)​ f  ​(​v​1​​)​ + ​(1 − F​(​v​1​​)​)​ m′​(​q​​ ∗​​(​v ̂ ​)​)​ ​ ∂ ​q​​ ∗​​(​v ̂ ​)​

 ______ ∂ ​v ̂ ​ ​ ​  ∂ ​v ̂ ​ ___ ∂ ​v​1​​
 ​

	 =  f ​(​v​1​​)​ ​(m​(​q​​ ∗​​(​v​1​​)​)​ − m​(​q​​ ∗​​(​v ̂ ​)​)​)​ + f ​(​v​1​​)​ ​ 
m′​(​q​​ ∗​​(​v ̂ ​)​)​
 _______ 

cm″​(​q​​ ∗​​(​v ̂ ​)​)​ ​​(​v ̂ ​ − ​v​1​​)​ .​

		  This expression is positive if and only if ​m″​(q)​/m′​(q)​​ is decreasing in ​q​ , i.e., if 
​m​(​q​​ ∗​​(v)​)​​ is convex. Because ​​v​1​​​ is decreasing in ​p​ , the publisher’s revenue ​
c · M​ is decreasing in ​p​ if ​m′​(q)​​ is log-concave.
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	 (ii)	 It is immediate to see that all results from part (i) are reversed if ​​m ′ ​​(q)​​ is 
log-convex (so that ​m″​(q)​ / m′​(q)​​ is increasing in ​q​ and ​m​(​q​​ ∗​​(v)​)​​ is concave 
in ​v​). ​∎​

Proof of Proposition 6:

	 (i)	 We know from Proposition 1 that advertisers choose the following targeted 
set:

(20)	​ A​(c, p)​  = ​
{

​
​[0, max ​{c − p, 0}​]​​ 

if
​ 

c  <  1/2;
​    

​[min ​{c + p, 1}​, 1]​
​ 

if
​ 

c  ≥  1/2 .
​​ ​

		  Thus, under the uniform distribution, the monopoly price of cookies is given 
by

	​ ​p​​ ∗​​(c)​  = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩
​ 

​arg max​ 
p
​   ​  ​[p​(c − p)​]​

​ 
if

​ 
c  <  1/2,

​    
​arg max​ 

p
​   ​  ​[p​(1 − c − p)​]​

​ 
if
​ 

c  ≥  1/2,
​​​

		  and therefore ​​p​​ ∗​​(c)​  = ​ (1 / 2)​ min ​{c, 1 − c}​​.

	 (ii)	 It follows from (20) that ​A​(c, ​p​​ ∗​​(c)​)​  = ​ [0, c / 2]​​ if ​c  <  1/2​ and ​A​(c, ​p​​ ∗​​(c)​)​  
= ​ [​(1 − c)​/2, 1]​​ if ​c  ≥  1/2​.

	 (iii)	 The single-peakedness of prices ​​p​​ ∗​​(c)​​ , sales ​μ​(A​(c, ​p​​ ∗​​(c)​)​)​​ , and hence prof-
its, is immediate from parts (i) and (ii). ​∎​

Proof of Proposition 7:

	 (i)	 For the case of positive targeting, let

	​ p​(v, x)​  =  π​(v)​ − π​(v, ​q​​ ∗​​(​[​ v _ ​, x]​)​)​ .​

		  A monopolist data provider chooses the marginal cookie ​​v​2​​​ to solve the fol-
lowing problem:

	​​ max​ 
v
​   ​ ​ [p​(v, v)​ ​(1 − F​(v)​)​]​ .​

		  The optimal ​​v​ 2​ ∗​​ is then given by the solution ​v​ to the following first-order 
condition:

	​ −p​(v, v)​ f ​(v)​ + ​(1 − F​(v)​)​ ​(∂ p​(v, v)​/∂ v +  ∂ p​(v, v)​/∂ x)​  =  0 .​
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		  Conversely, in the symmetric equilibrium with a continuum of sellers, the 
equilibrium marginal cookie ​​​v ̃ ​​2​​​ is given by the solution ​v​ to the following 
condition:

	​ −p​(v, v)​ f ​(v)​ + ​(1 − F​(v)​)​ ∂ p​(v, v)​ /  ∂ v  =  0 .​

		  However,

	​ ​ 
∂ p​(v, ​v​ 2​ ∗​)​ ________ ∂ x ​   =   − ​ 

∂ π​(v, ​q​​ ∗​​(​[​ v _ ​, x]​)​)​
  ____________ ∂ q ​  ​ ∂ ​q​​ ∗​ ____ ∂ v ​ ​ 

∂ E​[v | v  ≤  x]​
  ___________ ∂ x ​   <  0,​

		  because ​​q​​ ∗​​(v)​​ is strictly increasing in ​v​ , and therefore ​∂ π​(v, q)​ /  ∂ q  >  0​ 
for all ​q  < ​ q​​ ∗​​(v)​ .​ Therefore, the price under competition ​​p ̅ ​  ≜  p​(​​v ̃ ​​2​​, ​​v ̃ ​​2​​)​​ is 
higher than the monopoly price ​​p​​ ∗​  ≜  p​(​v​ 2​ ∗​, ​v​ 2​ ∗​)​​.

		    For the case of negative targeting, the monopolist maximizes ​p​(v, v)​ F​(v)​​ , 
where

	​ p​(v, x)​  =  π​(v)​ − π​(v, ​q​​ ∗​​(​[x, ​ v ̅ ​]​)​)​ .​

		  The monopolist’s first-order condition is then given by

	​ p​(v, v)​ f ​(v)​ + F​(v)​ ​(∂ p​(v, v)​/∂ v +  ∂ p​(v, v)​/∂ x)​  =  0 .​

		  In the symmetric equilibrium with a continuum of sellers, the equilibrium 
marginal cookie ​​​ v ̅ ​​1​​​ solves the following condition:

	​ −p​(v, v)​ f ​(v)​ + F​(v)​ ∂ p​(v, v)​ /  ∂ v  =  0 .​

		  The solution ​​​v ̃ ​​1​​​ is lower (the price is higher) than the monopolist’s threshold ​​
v​ 1​ ∗​​ since

	​ ​ 
∂ p​(v, ​​v ̃ ​​1​​)​ _________ ∂ ​​v ̃ ​​1​​

 ​   =  − ​ 
∂ π​(v, ​q​​ ∗​​(​[​​v ̃ ​​1​​, ​ v ̅ ​]​)​)​  _________________ ∂ q ​ ​  ∂ ​q​​ ∗​ ____ ∂ v ​ ​ 

∂ E​[v | v  ≥ ​​ v ̃ ​​1​​]​  ____________ ∂ ​​v ̃ ​​1​​
 ​   >  0, 

	 for all v  ≤  E​[v | v  ≥ ​​ v ̃ ​​1​​]​ .​

	 (ii)	 We look for a symmetric equilibrium in the price-setting game with ​n​ data 
providers. Let ​​p​j​​  = ​ p​2​​​ for all ​j  ≠  1​ and characterize the advertisers’ demand 
as a function of ​​(​p​1​​, ​p​2​​)​​. If positive targeting is optimal, advertisers buy 
cookies ​v  ∈ ​ [​v​1​​, ​ v ̅ ​]​​ from seller ​j  =  1​ and ​v  ∈ ​ [​v​2​​, ​ v ̅ ​]​​ from sellers ​j  ≠  1​.  
In particular, the thresholds ​​v​j​​​ , ​j  =  1, 2,​ satisfy

	​ π​(​v​j​​)​ − π​(​v​j​​, ​q​​ ∗​​(​v ̂ ​)​)​  = ​ p​j​​,​
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		  where

	​ ​v ̂ ​​(​p​1​​, ​p​2​​)​  = ​ 
E​[v | v  ≤ ​ v​1​​]​ + ​(n − 1)​ E​[v | v  ≤ ​ v​2​​]​    __________________________  n ​  .​

Note that ​​p​1​​  > ​ p​2​​​ implies ​​v​1​​  > ​ v​2​​​. Now rewrite the profit function of seller ​j  =  1​ 
as

	​ ​Π​1​​  = ​ (π​(​v​1​​)​ − π​(​v​1​​, ​q​​ ∗​​(​v ̂ ​)​)​)​ ​(1 − F​(​v​1​​)​)​ .​

At a symmetric equilibrium, where ​​v​j​​  ≡  v​ , the first-order condition of seller 1 is 
given by

  ​  ​(π​(​v​1​​)​ − π​(​v​1​​, ​q​​ ∗​​(​v ̂ ​)​)​)​ ​ 
f ​(​v​1​​)​ _______ 

1 − F​(​v​1​​)​
 ​  =  π′​(​v​1​​)​ − ​ 

∂ π​(​v​1​​, ​q​​ ∗​​(v)​)​
  ___________ ∂ ​v​1​​

 ​ 

	 − ​ ∂ ​v ̂ ​ ___ ∂ ​v​1​​
 ​ ​ 
d​q​​ ∗​​(​v ̂ ​)​
 ______ 

d​v ̂ ​ ​​ 
 ∂ π​(​v​1​​, ​q​​ ∗​​(v)​)​

  ___________ ∂ q ​  .​

Both ​d​q​​ ∗​​(​v ̂ ​)​ / d​v ̂ ​​ and ​∂ π​(​v​1​​, ​q​​ ∗​​(v)​)​ /  ∂ q​ on the right-hand side are positive. Because

	​ ​ ∂ ​v ̂ ​ ___ ∂ ​v​1​​
 ​  = ​  1 __ n ​ ​ 

∂ E​[v | v  ≤ ​ v​1​​]​  ___________ ∂ v ​ ​

is decreasing in ​n​ , the symmetric equilibrium threshold ​​v​​ ∗​​(n)​​ is increasing in ​n​ , and 
so is the price ​​p​​ ∗​​(n)​​.

The analysis under negative targeting yields similar steps and is therefore 
omitted. ​∎​

Proof of Proposition 8:
Under positive targeting, the marginal willingness to pay ​p​(v, β)​​ for a targeted set ​

A  = ​ [v, ​ v ̅ ​]​​ is given by

	​ p​(v, β)​  ≜ ​ π​​ ∗​​(v)​ − π​(v, ​q​0​​​(v, β)​)​,​

where

	​ ​q​0​​​(v, β)​  ≜ ​ q​​ ∗​​(β ​E​F​​​[v′ | v′  ≤  v]​ + ​(1 − β)​ ​E​F​​​[v′ ]​)​ .​

The derivative of the inverse demand function with respect to the reach ​β​ is given by

(21)  ​  ​ 
∂ p​(v, β)​

 _______ ∂ β ​   =  −​(v − c​m ′ ​​(​q​0​​​(v, β)​)​)​ ​q​​ ∗​′​(·)​ ​(​E​F​​​[v′ | v′  <  v]​ − ​E​F​​​[v′  ]​)​ .​
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The first two terms in (21) are positive: profits ​π​(v, ​q​0​​)​​ are increasing in ​q​ because ​​
q​0​​​(v, β)​  < ​ q​​ ∗​​(v)​​; the complete information quantity ​​q​​ ∗​​(·)​​ is strictly increasing; 
and difference of the conditional and unconditional expected values is negative. 
Therefore, the marginal willingness to pay ​p​(v, β)​​ is increasing in ​β​. ​∎​

Proof of Proposition 9:

	 (i)	 Under joint targeting, we know the optimal action on the residual set is given 
by ​​ q ̅ ​​ for all ​k​. It follows that the willingness to pay for ​v​ is independent of the 
distribution. However, as ​k​ increases, both ​​F​k​​​(​v​1​​)​​ and ​1 − ​F​k​​​(​v​2​​)​​ increase, so 
the quantity of data demanded increases.

	 (ii)	 Consider the inverse demand for data in the case of negative targeting:

	​ p​(​v​1​​)​  = ​ v​1​​​(​q​​ ∗​(​v​1​​) − ​q​​ ∗​​(​[​v​1​​, ​ v ̅ ​]​)​)​ − c​(m​(​q​​ ∗​(​v​1​​))​ − m​(​q​​ ∗​​(​[​v​1​​, ​ v ̅ ​]​)​)​)​ .​

As ​k​ increases, by second-order stochastic dominance, the conditional expectation 
​E​[v | v  > ​ v​1​​]​​ increases as well. Therefore, ​​q​​ ∗​​(​[​v​1​​, ​ v ̅ ​]​)​​ increases, and because  
​​q​​ ∗​​(​[​v​1​​, ​ v ̅ ​]​)​  > ​ q​​ ∗​​(​v​1​​)​​ , the willingness to pay ​p​(​v​1​​)​​ increases as well. Therefore, 
we know the threshold ​​v​1​​​(p, k)​​ is increasing in ​k​. If in addition, ​​v​1​​  <  E​[v]​​ , then 
​​F​k​​​(​v​1​​)​​ is increasing in ​k​ , and therefore ​​F​k​​​(​v​1​​​(p, k)​)​​ is increasing a fortiori. An iden-
tical argument applies to the case of positive targeting. ​∎​

Proof of Proposition 10:
Under the conditions of Proposition 3, the monopolist solves

(22)	​ ​max​ 
p
​ ​ ​  Π​(p, k)​  ≜  p​F​k​​​(E​[v]​ − 2​√ __ cp ​)​  =  pF​(− 2​√ __ cp ​ / σ​(k)​)​ .​

The first-order condition for this problem can be written as

	​ F​(x)​ + xf ​(x)​ / 2  =  0,​

where ​x :=  −2​√ __ cp ​ / σ​(k)​​. This implies that the optimal ​p​ is proportional to ​σ​​(k)​​​ 2​​. ​∎​
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