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SUMMARY

Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, 

but the regulatory circuits specifying these states and enabling transitions between them are not 

well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell 
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expression profiling under different chemical and genetic perturbations. Signaling factors and 

developmental regulators show highly variable expression, with expression states for some 

variable genes heritable through multiple cell divisions. Expression variability and population 

heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. 

Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways 

drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, 

enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA 

families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional 

heterogeneity in PSCs.

INTRODUCTION

PSCs are defined by their unique capacity to differentiate into all the cell types of a 

organism, while self-renewing in culture. How they reconcile pluripotency and self-renewal 

and decide among fate choices is a topic of intense interest, with relevance to regenerative 

medicine and developmental biology. Genomic maps of the regulatory circuitry underlying 

pluripotency reveal a network of sequence-specific autoregulatory transcription factors 

(TFs) targeting self-renewal genes that are active in PSCs, as well as repressed lineage-

specific developmental regulators that exist in a poised state and are capable of driving cells 

towards differentiated fates1-5. These core TFs are thought to interact with chromatin 

modifiers, non-coding RNAs, and external signaling pathways to maintain pluripotency. 

This self-sustaining transcriptional program becomes reactivated during reprogramming of 

somatic cells to pluripotency5.

The discoveries that levels of Nanog and other key PSC regulators fluctuate over time, that 

PSCs exist in multiple interconvertible states, and that distinct subpopulations of PSCs vary 

in their capacity to self-renew or differentiate, hint at the dynamism of the PSC 

transcriptional program6-13, which may be fundamental to pluripotency14-23. Here, we apply 

single-cell analytics to PSCs subjected to a range of perturbations to systematically dissect 

the factors underlying PSC heterogeneity. By doing so, we map the structure of gene 

expression variability in PSCs and identify regulatory circuits governing transitions between 

pluripotent cell states.

The landscape of gene expression variability in PSCs

To gain insight into the distinct substates of pluripotency, we first used single-cell RNA-

Seq24, 25 to characterize the transcriptome of 183 individual mouse embryonic stem cells 

(mESCs) grown under standard culture conditions, in the presence of serum and leukemia 

inhibitory factor (LIF) (Extended Data Fig. 1, Supplementary Information, and SI 
Tables 1–3). Most cells (~92%) grouped together by principal component and cluster 

analysis, while 14 cells (8%) were characterized by reduced expression of fluctuating 

pluripotency regulators that may indicate a distinct poised state (Extended Data Fig. 2 and 

Supplementary Information).

Some transcripts were detected in the vast majority of cells examined and showed a log-

normal distribution of transcript abundance within the population, as for the core 
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pluripotency regulator Oct4 (Figure 1A). Other transcripts had bimodal expression, present 

in some cells and absent in others, as for the pluripotency regulator Esrrb (Figure 1A). 
Another set of genes displayed sporadic expression, being undetected in most cells but 

exhibiting relatively high expression in several cells, as for the lineage regulator and 

Polycomb target gene NeuroD1 (Figure 1A, Extended Data Figs. 3–4 and Supplementary 
Information). Expression distributions for 14 transcripts were validated by single-molecule 

FISH (Figure 1B, Extended Data Fig. 3). Stable and variable regulators were also 

identified in neural precursor cells derived from mESCs (Supplementary Information, 

Extended Data Fig. 4, and SI Table 4), suggesting this may be a general feature of 

progenitor cell regulatory networks.

We examined Gene Ontology (GO) categories for gene sets that showed more uniform or 

noisier expression in PSCs as compared to control gene sets. Genes involved in 

housekeeping and metabolic functions displayed relatively uniform expression, while 

previously identified targets26 of the Polycomb family of epigenetic regulators in PSCs 

exhibited greater variability (Figure 1C and Extended Data Fig. 4). The Polycomb target 

genes include many developmental regulators and signaling factors governing lineage 

specification, and are thought to exist in a repressed yet poised state with a unique chromatin 

signature in PSCs26, 27.

Certain Polycomb target genes were expressed in some cells at levels comparable to 

pluripotency regulators, up to 60 transcripts per cell, despite the presence of the repressive 

H3K27me3 chromatin mark associated with Polycomb activity (Figure 1DExtended Data 
Fig. 4, and SI Table 5). As expected, Polycomb target genes showed higher average levels 

of H3K27me3, were detected in a smaller fraction of cells, and were expressed at lower 

levels than non-Polycomb target genes (Figures 1E). However, within this set of genes, 

those with detectable expression showed lower average levels of H3K27me3 than those that 

were not detected (Student's T-Test P-value = 4.82e-5), suggesting that dynamic fluctuations 

in chromatin state are associated with sporadic expression of certain Polycomb targets in 

PSCs. This subset of Polycomb target genes may represent regulators governing inital steps 

in lineage commitment, and may therefore be subject to particularly dynamic regulation in 

PSCs.

To determine the stability of expression states over rounds of cell division, we seeded 

individual mESCs onto culture plates, allowed them to form colonies over 3–4 days, and 

quantified the level of inter- and intra-colony variability for selected genes using smFISH 

(Figure 2A). Individual colonies showed distinct expression states for Esrrb, with some 

locked into a high level, some locked into a low level, and others that displayed mixed 

expression suggesting a sudden switching between high and low states during the process of 

colony formation (Figure 2B). Other pluripotency regulators, including Nanog, Nr0b1, and 

c-myc, as well as lineage regulators and Polycomb targets NeuroD1, Otx2, Olig2, and Pax6, 

also exhibited high inter-colony variability suggestive of slow fluctuations in expression 

states (Figure 2C). As clusters of neighboring cells or entire colonies tended to be in similar 

expression states (Extended Data Fig. 5), we estimate that transitions between 

transcriptional states for these variable regulators occurs relatively infrequently with respect 

to the ES cell cycle, happening on the order of one to a few days, in line with measurements 
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of Nanog transcriptional fluctuations6, 9, 28. To confirm that ‘variable expression’ colonies 

were clonally derived, we performed time-lapse imaging to monitor colony formation over 

four days. Individual colonies formed from single cells showed substantial differences in 

growth rate and bimodal Nr0b1 expression (Figure 2D), validating our approach and 

highlighting the pronounced variability and persistence of growth rate, morphology, and 

expression state of mESCs grown in serum+LIF (serum+LIF mESCs). This expression state 

persistence extended to the protein level (Figure 2E and Extended Data Fig. 5), indicating 

that slow fluctuations in expression of certain pluripotency regulators might underlie distinct 

phenotypic responses of individual mESCs to external stimuli29.

Clustering of pluripotency regulators revealed that they partitioned into several co-expressed 

modules, with some modules positively correlated with Polycomb target expression and 

others negatively correlated (Figure 2F and Extended Data Fig. 5). Nanog, Nr0b1 (Dax1), 

and Zfp42 (Rex1) were among those showing the strongest negative correlation with 

Polycomb target gene expression. To test these associations, we examined the dependence 

of selected Polycomb target genes on individual pluripotency regulators by two-color FISH 

(Figure 2G and Extended Data Fig. 5). Consistent with the RNA-Seq data, NeuroD1 was 

more likely to be expressed at high levels in cells expressing high levels of Sox2 (which also 

functions to specify the neural lineage) and low levels of Nr0b1, while Bmp4 expression was 

positively associated with Esrrb and Otx2 expression was negatively associated with Nanog. 

Notably, the eight percent of cells separated from the main population by principal 

component analysis tended to be in low expression states for Nr0b1, Nanog, and Zfp42, and 

showed higher Polycomb target gene expression than did the majority of cells (Extended 
Data Fig. 2), suggesting that the RNA-Seq-detected correlations reflect biologically 

meaningful states in which pluripotency factor expression influences the probability of 

lineage regulator expression.

Perturbing regulatory pathways influences PSC heterogeneity and cell state

To better understand the factors governing PSC heterogeneity, we examined mPSCs 

cultured under different growth conditions13, treated with chemical inhibitors of epigenetic 

regulators, genetically modified to lack particular regulators30-34, or in different states of 

pluripotency35 (Extended Data Table 1, SI Table 6, and Extended Data Fig. 6). While 

unimodally expressed genes such as Oct4 and Rest remained relatively invariant across a 

range of perturbations, the distributions of bimodally expressed genes such as c-myc and 

Tcfcp2L1 shifted markedly in response to particular perturbations (Figure 3A). Strikingly, 

both culturing mESCs in 2i+LIF conditions13 and impairing miRNA production30, 34 

resulted in more uniform gene expression across 15 pluripotency regulators examined by 

single-cell QPCR, while knocking out PRC2 function through loss of the Polycomb-group 

(PcG) protein Eed31 resulted in greater population heterogeneity across all genes measured 

(Figure 3B).

We next performed principal component analysis on the single-cell QPCR data and applied 

an automated classification algorithm to assign cells to discrete states (Figure 3C–3E and 

Extended Data Fig. 6). Surprisingly, a large fraction of both Dgcr8−/− and Dicer knockout 

mESCs, which lack mature miRNAs due to loss-of-function of separate miRNA processing 
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factors30, 36, were assigned to the ground state suggesting that blocking external signaling 

pathways and removing miRNAs from PSCs results in common modes of self-renewal 

(Figure 3E). PSCs in most other conditions were predominantly classified as a distinct state, 

which we term the ‘transition state,’ as it is primarily associated with cells cultured under 

serum+LIF conditions and a higher probability of spontaneous differentiation. Epiblast stem 

cells (EpiSCs) were assigned to a separate state we term ‘primed,’ in keeping with the view 

of these cells as more developmentally advanced35. Genes contributing the most to the 

principal components that distinguished Dgcr8−/− and Dicer knockout mESCs in serum

+LIF and wt mESCs in 2i+LIF from mESCs in other conditions included c-myc, Lin28a, 

Bmp4, Dnmt3b and Dnmt3l, all of which showed sharply reduced expression in ground state 

cells (Figure 3F). Our perturbation analysis therefore implicates miRNAs as key mediators 

of the transition and primed states, with their absence mimicking the inhibition of the Erk 

and GSK3 signaling pathways observed in 2i culture.

2i and microRNA deficiency promote ground state self-renewal

To further investigate the apparent similarity between wild-type mESCs cultured in 2i+LIF 

conditions (2i+LIF mESCs) and Dgcr8−/− mESCs cultured in serum+LIF (Dgcr8−/− 

mESCs), we performed single-cell RNA-Seq on mESCs from each condition (SI Tables 2 
and 7–9). Gene expression changes between serum+LIF and 2i+LIF mESCs were highly 

correlated with changes between serum+LIF mESCs and Dgcr8−/− mESCs (Figure 4A, 

Extended Data Fig. 7). As a population, 2i+LIF mESCs showed reduced heterogeneity as 

compared serum+LIF mESCs, in keeping with the notion that inhibiting Erk and GSK3 

signaling drives mouse PSCs into a low-noise ground state20, 28, 37 (Figure 4B and 

Extended Data Fig. 7). By contrast, Dgcr8−/− mESCs displayed increased heterogeneity, 

consistent with a role for miRNAs in buffering gene expression noise38. When compared 

across conditions, however, individual Dgcr8−/− mESCs were more similar to 2i+LIF than 

serum+LIF mESCs, supporting a model in which removal of miRNAs drives a portion of 

Dgcr8−/− mESCs towards the ground state, and results in a similar phenotype to that 

produced by Erk and GSK3 inhibition.

While some pluripotency regulators such as Esrrb and Tbx3 increased in expression in 2i

+LIF and Dgcr8−/− mESCs, other factors traditionally associated with pluripotency (e.g. c-

myc and Lin28a) showed a sharp reduction in expression under both conditions (Figure 4C). 
DNA methyltransferases Dnmt3a, Dnmt3b, and Dnmt3l showed reduced expression in both 

2i+LIF and Dgcr8−/− mESCs, suggesting that miRNA activity may be linked to the 

reduction in DNA methylation observed in the naïve pluripotent state28, 39. Regulators 

displaying bimodal expression patterns in serum+LIF mESCs showed altered distributions 

in both 2i+LIF and Dgcr8−/− mESCs. Expression was confirmed by smFISH and 

quantitative immunofluorescence, and was recapitulated in an independent mESC line 

(Figure 4D and Extended Data Fig. 7). Thus, the pluripotency regulatory network adopts 

distinct configurations in the ground and transition states.

mESCs cultured in 2i+LIF exhibit a unique chromatin state characterized by lower levels of 

H3K27me3 at promoters and increased amounts of transcriptional pausing40. Both culture in 

2i+LIF and removal of mature miRNAs resulted in a reduction in H3K27me3 at promoters 
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(Figures 4E–4F, Extended Data Fig. 8, and SI Table 5). Therefore, Dgcr8−/− mESCs 

manifest features of ground-state self-renewal including altered gene expression, a 

reconfigured pluripotency regulatory network, increased expression of Polycomb target 

genes, and a common chromatin state.

miRNA balance and cell state

We profiled miRNA expression in two mESC lines cultured under both serum+LIF and 2i

+LIF conditions, and mouse embryonic fibroblasts (MEFs) cultured under standard 

conditions (SI Table 10). Surprisingly, while levels of ES cell-specific cell cycle regulating 

(ESCC) miRNAs36, which are known to be expressed at high levels in PSCs, remained 

elevated in both serum+LIF and 2i+LIF growth conditions, let-7 family members and 

miR-152, which act as tumor suppressors and are typically associated with differentiated 

cells41-43, were expressed at higher levels in 2i+LIF as compared to serum+LIF culture 

(Figure 5A and Extended Data Fig. 9).

Prevailing models which posit that the ESCC and let-7 miRNA families are opposing classes 

of miRNAs that act in self-reinforcing loops to stabilize self-renewing and differentiated 

states44 run contrary to our observed co-expression of ESCC and let-7 miRNAs in 2i+LIF 

mESCs. Analyzing our own and published data40, we found that targets of let-7 showed 

significantly lower expression as a group in 2i+LIF as compared to serum+LIF mESCs (p = 

1.4e-5, Mann-Whitney test), as did miR-152 predicted targets (p = 0.005), suggesting that 

these miRNAs function to repress a set of target genes under ground-state conditions (SI 
Table 9). Genes targeted by either or both let-7 and miR-152 that were downregulated in 2i

+LIF as compared to serum+LIF included c-myc, Lin28a and Lin28b, and Dnmt3b (Figure 
5B). Furthermore, predicted let-7 and miR-152 targets were more highly correlated in 

expression at a single-cell level in 2i+LIF as compared to non-target genes (Supplementary 
Information), suggesting that these genes and miRs comprise a distinct regulatory module.

Enforced expression of ESCC miRNAs can correct cell cycle defects of Dgcr8−/− mESCs, 

promote rapid proliferation of these cells, suppress inhibitors of the G1-S transition, and 

upregulate genes including c-myc and Lin2836, 44. Transfection of the prototypical ESCC 

miRNA miR-294 into Dgcr8−/− mESCs has been shown to upregulate c-myc, Lin28, 

Dnmt3b, and Dnmt3l44, which are let-7/miR-152 target genes suppressed in the ground state 

(Extended Data Fig. 9). This opposing effect of ESCC and let-7 miRNAs on a common set 

of targets suggests a role for let-7 during differentiation, where it acts to repress pluripotency 

factors sustained by ESCC miRNAs in stem cells44. However, despite the continued high 

expression of ESCC miRNAs in 2i, their targets showed elevated expression as a class in 2i 

as compared to serum (p-value = 6.412e-09, Mann-Whitney test, Extended Data Fig. 9), 

whereas let-7 and miR-152 targets were down-regulated in 2i. These findings suggest that 

enforced expression of ESCC miRNAs elevates Dgcr8−/− mESCs out of ground-state self-

renewal through indirect modulation of the c-myc / Lin28 / let-7 axis, and that in 2i let-7 and 

miR-152 oppose this effect of ESCC miRNAs through direct repression of a set of target 

genes including c-myc, Lin28, Dnmt3b, and Dnmt3l.
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Both 2i+LIF and Dgcr8−/− mESCs give rise predominantly to compact colonies uniformly 

positive for alkaline phosphatase (AP) staining, as compared to serum+LIF mESCs which 

have a greater tendency to form larger colonies that are mixed for AP staining (Figure 5C). 
Compact, uniformly AP positive colonies formed in serum+LIF culture displayed lower 

levels of c-myc expression than did AP mixed and negative colonies (Extended Data Fig. 
9). We independently knocked down Lin28a expression in serum+LIF mESCs, and forced 

let-7 expression in doxycycline-inducible ilet-7 mESCs grown in serum+LIF45. Lin28a 

blocks processing of let7 precursor miRNAs into their mature form, and knockdown of 

lin28a in mESCs grown in serum+LIF results in increased let7 levels, increased colony-

forming efficiency, and a higher proportion of smaller, uniformly AP positive colonies 

(Figure 5D and Extended Data Fig. 9). Sustained expression of let-7 in serum+LIF culture 

using the inducible system resulted in a higher proportion of smaller, uniformly AP positive 

colonies that showed lower levels of c-myc expression (Figure 5E–F and Extended Data 
Fig. 9), suggesting that let-7 is capable of activating a positive feedback circuit that 

stabilizes ground state self-renewal. Acute inhibition of let-7 family members and miR-152 

in wild-type mESCs cultured in 2i+LIF resulted in upregulation of c-myc and Lin28a 

(Figure 5G), further supporting the notion that these two miRNAs act in concert to maintain 

the ground state.

We tested the effect of reintroducing miRNAs into Dgcr8−/− mESCs on their self-renewal 

to see if ESCC-mediated elevation into the transition state could be counterbalanced by 

let-7. Transfection of stable mimics of let7 resulted in sharply reduced self-renewal 

efficiency compared to controls, and transfection of mimics of the ESCC miRNA miR-294 

also resulted in reduced self-renewal (Extended Data Fig. 9). Co-transfection of both 

miRNA family members together, however, resulted in higher self-renewal efficiency than 

did introduction of either family member alone. These results support a model in which 

expression of ESCC miRNAs alone drive PSCs into a transition state with a relatively high 

probability of spontaneous differentiation through indirect activation of c-myc and Lin28a, 

while expression of let-7 miRNAs alone can drive differentiation. However, expression of a 

balance of ESCC miRNAs along with the opposing families let-7 and miR-148/152, or 

neither as in the case of Dgcr8−/− mESCs, results in ground state self-renewal through 

either direct repression of c-myc and Lin28a by let-7 and miR-148/152, or removal of the 

activating force of ESCC miRNAs (Figure 5H).

CONCLUSION

The diverse range of conditions under which pluripotency can be induced or maintained has 

been accompanied by reports of molecular and functional variation. Here we analyzed the 

dynamic transcriptional landscape of pluripotent stem cells subject to a number of chemical 

and genetic perturbations. Applying single-cell analytics, we gleaned a number of essential 

lessons. We found that different classes of genes manifest high or low expression variability 

in PSCs, with house-keeping and metabolic gene sets showing consistent expression across 

individual cells, while genes involved in signaling pathways and development were 

considerably more variable. Moreover, expression states of variable regulatory factors were 

coupled together, implying the presence of a regulated biological network. Analysis of 
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chemical and genetic perturbations led to the discovery that depletion of miRNAs mimicked 

the transcriptional ground state of pluripotency routinely induced by culture in 2i+LIF, 

conditions that block the dominant ERK and GSK3 signaling pathways that converge on the 

c-myc / Lin28 / let-7 axis. Our data shed light on the transcriptional dynamics of the 

pluripotent state at the single cell level, and demonstrate how regulation of gene expression 

variation relates directly to the transition between pluripotency and differentiation. 

Transcriptional heterogeneity is increasingly being recognized as a key component of many 

biological processes.46-48 It will be of interest to map stable and flexible regulatory nodes in 

networks governing other progenitor and differentiated cell types to discern common 

principles underlying network architecture and gene expression variability.

Extended Data

Extended Data Figure 1. Quality control of single-cell RNA-Seq data
(A) A combination of read alignment rate (y-axis) and number of genes detected (lnTPM > 

1) (x-axis) was used to identify outlier cells (red circles) to remove from subsequent 

analysis, leaving 183 single mESCs cultured in serum+LIF, 94 mESCs cultured in 2i+LIF, 

and 84 Dgcr8KO mESCs cultured in serum+LIF that were analyzed by single-cell RNA-Seq 

in this study (blue circles). (B) Correlation in mean expression in detected cells (Mu) 

between replicate FBS+LIF plates across a range of alpha thresholds. Mu was calculated 

separately for each plate. Correlations in mu were calculated after limiting genes to those 

with alphas exceeding the specified threshold on the x-axis. (C) Maximum gene expression 

in replicate plates. Genes not reliably detected as defined in the text are colored red. (D) 
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Comparison of alpha estimates in replicate plates, limited to reliably detected genes. 

Selected lineage regulators are denoted. (E) Comparison of Mu estimates in replicate plates, 

limited to reliably detected genes. Selected housekeeping, pluripotency, and signaling genes 

are denoted. (F) (Top) Relationship between estimates of alpha (x-axis) and mu (y-axis) of 

all genes based on both plates of mESC in FBS+LIF. Undetected genes are colored yellow. 

(Bottom) Same as above except only showing reliably detected genes, and overlaid with 

density contour (red lines).

Extended Data Figure 2. Examination of mESCs cultured in serum+LIF for the presence of 
distinct subpopulations
(A) Hierarchical clustering dendogram of single-cell RNA-Seq data for 183 mESCs cultured 

in serum+LIF. (B) Principal component analysis of the 183 mESCs cultured in serum+LIF.. 

Points colored blue are those with PCA1 values < −25, which are classified as outlier cells. 

(C) Boxplots of expression of selected pluripotency regulators and the lineage regulator 

Pax3 (top), and genes associated with EpiSCs (bottom). ‘Normal’ indicates the majority of 

cells colored as grey dots in ED Figure 2B, and ‘Outliers’ indicates the distinct set of 14 

cells colored blue in ED Figure 2B. P-values for statistically significant differences are 

shown. (D) Histograms showing the expression distributions of pluripotency regulators 

previously found to fluctuate within mESC populations. Cutoffs to divide expression into 

high and low states to test for enrichment within outlier cells are indicated by dashed lines. 

(E) Average expression of Polycomb target genes within outlier cells (left), and the majority 

of the mESCs cultured in serum+LIF (right).
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Extended Data Figure 3. Correlation of single-cell expression measurements between different 
technologies
(A) Correlation between transcripts per million (TPM) measured by single-cell RNA-Seq 

and transcripts per cell measured by single-molecule FISH for 14 selected genes in mESCs 

cultured in serum+LIF. Error bars represent standard deviations of measurements. (B) 

Correlation between coefficients of variation measured by single-cell RNA-Seq and FISH 

for the 14 genes shown in (A). (C) Correlation coefficients for α (fraction detected, left) or μ 

(mean expression in detected cells, right) between single-molecule FISH and single-cell 

RNA-Seq are plotted as a function of varying the threshold level for detection by RNA FISH 

(x-axis). An RNA FISH detection threshold of 10 indicates that genes expressed at < 10 

copies per cell would not be detected by RNA FISH. Correlation for α between RNA-Seq 

and RNA FISH peaked at an RNA FISH detection threshold of > 5 transcripts per cell, 

giving an estimated single-cell RNA-Seq detection efficiency of ~20% (1 out of 5 transcripts 

detected, assuming single-molecule sensitivity for the RNA FISH method). (D) Correlation 

in α between single-cell RNA-Seq and single-molecule FISH for 14 genes measured by both 

methods, assuming a single-molecule FISH detection threshold of > 5 transcripts per cell. 

Dashed line shows linear fit to the data. The fraction of cells a gene is detected in shows 

good agreement between the two methods when taking the sensitivity of the RNA-Seq into 

account. (E) Comparison of the fraction of mESCs cultured in serum+LIF a gene was 

detected in by single-cell qPCR (x-axis) or single-cell RNA-Seq (y-axis). Single-cell RNA-

Seq showed greater sensitivity overall as compared to single-cell qPCR, but a set of genes 

was sporadically expressed as measured by both methods. Trendline indicates linear fit to 

the data. (F) Correlations of fraction detected between independent biological replicates for 

96 genes profiled by single-cell QPCR. Trendline shows linear fit to the data, and indicates 
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that the fraction of cells a gene is detected in remains consistent across independent 

biological replicates. (G) Comparison of expression distributions measured by single-cell 

RNA-Seq (light grey) and single-molecule FISH (darker grey) for pluripotency regulators 

(top) and Polycomb target genes (bottom).

Extended Data Figure 4. Expression of Polycomb target genes in ESCs and NPCs
(A) Polycomb target genes show highly variable expression in mESCs. Relationship 

between μ (mean expression in detected cells, x-axis) and coefficient of variation (standard 

deviation normalized by mean expression in all cells, y-axis) is shown for Polycomb target 

genes (purple) and non-Polycomb target genes (grey). Distributions for μ and coefficients of 

variation for the two gene sets are shown above and to the left of the graph, respectively. 

Polycomb target genes show pronounced variability in expression, even when controlling 

for expression level. (B) Expression of the neural regulators and Polycomb target genes 

Otx2 (top) and NeuroD1 (bottom) measured by RNA FISH in mESCs cultured in serum

+LIF. (left). Overall distributions within the population and representative colonies are 

shown, along with gene tracks from IGV showing ChIP-Seq reads for H3K27me3 at the 

Otx2 and NeuroD1 genes. (C) Enriched gene ontology categories among genes significantly 

upregulated (red) or downregulated (green) in neural precursor cells as compared to 

embryonic stem cells. (D) Expression changes of selected genes in neural precursor cells as 

compared to the embryonic stem cells they were derived from. As expected, neural 

regulators and ES Polycomb target genes Pax6, Prrx1, Hes1, Msx1, Pbx3, Nes, and Runx1 
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were upregulated in NPCs, while the pluripotency regulators Esrrb, Nr0b1, Pou5f1 (Oct4), 

Zfp42 (Rex1), and Nanog were downregulated. Expression of the housekeeping genes 

Gapdh and Actb, and the pluripotency and neural regulator Sox2, were relatively unchanged 

between the two cell types. (E) Expression comparison of ES Polycomb target genes that are 

detected in either mESCs or NPCs. Many Polycomb target genes that are neuronal 

regulators are detected in a higher fraction of NPCs than ESCs, while certain Polycomb 

targets such as Pax3 (a regulator of musculosketal development) are detected in a smaller 

fraction of cells. Genes are ordered in ascending order of ESC to NPC average expression 

change. (F) Histograms showing distributions of expression levels for selected housekeeping 

genes (left) and neuronal regulators (center and right) in NPCs. The neuronal regulators 

Msx1 and Runx1 show bimodal expression in NPCs. (G) Distance distributions within ESC 

(red) and NPC (blue) populations. NPCs show more population heterogeneity than ESCs. 

(H) State classification based on principal component analysis of single-cell RNA-Seq of 

NPCs. Four distinct states are identified.

Extended Data Figure 5. Fluctuations in pluripotency and lineage regulator expression
(A) RNA FISH images showing expression of Nanog (top), Nr0b1 (middle), and Esrrb 

(bottom) in individual colonies or regions of cells. (B, C) Histograms show distributions of 

fluorescence intensities within individual cells from quantitative immunofluorescence of 

Oct4 and (B) Nanog, or (C) Nr0b1, along with Nanog / Oct4 or Nr0b1 / Oct4 ratios as 

indicated. For Nanog / Oct4 images (B), Nanog staining is colored green while Oct4 staining 
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is colored red. In the panel on the left a cluster of low Nanog cells is indicated by a blue 

arrow, while a cluster of high Nanog cells is indicated by a white arrow. In the panel on the 

right, the same image is shown with DAPI staining colored blue, and groups of Oct4 

negative / Nanog negative differentiated cells that may have arisen from the low Nanog cells 

are indicated with gray arrows. For Nr0b1 / Oct4 images (C), Nr0b1 is colored green while 

Oct4 staining is colored red. A relatively high Nr0b1 colony is shown in the panel on the 

left, while a region of low Nr0b1 cells is displayed in the panel on the right. (D) Quantitative 

immunofluorescence images showing expression of Oct4 (red) and Nr0b1 (top row), Nanog 

(middle row), or Esrrb (bottom row) within individual colonies of mESCs grown in serum

+LIF. Oct4 is used as an internal reference as it shows relatively invariant expression within 

mESCs. (E) Single-cell RNA-Seq relationships for gene pairs shown in Figure 2G. 

Distributions of gene expression from RNA-Seq and RNA FISH experiments are shown. 

Dashed lines indicate divisions between high and low states for box plot shown in Figure 

2G. Single-cell RNA-Seq data shows that the subset of cells in both a high Sox2 and low 

Nr0b1 state show an increased probability of expressing NeuroD1 (LnTPM >1) as compared 

to all cells (bottom). (F) RNA-Seq (left) and RNA FISH (right) correlations between the 

pluripotency regulator Esrrb and the signaling factor Bmp4 (top) and the pluripotency 

regulator Nanog and the neural regulator Otx2 (bottom). Dashed lines indicate divisions 

between high and low states for the box plots shown on the right. (G) Correlations from 

single-cell RNA-Seq data between average Polycomb target gene expression and Zfp42 

(Rex1), Nanog, and Nr0b1 (Dax1). Dashed lines indicate divisions between high and low 

states for the box plot comparing Polycomb target expression with expression of the three 

regulators, which are all negatively associated with expression of Polycomb targets. The 

Venn diagram shows coupling between high and low states of the three regulators. Low 

Nr0b1 cells are more likely to be in a low Zfp42 and/or low Nanog state as compared to high 

Nr0b1 cells, suggesting that Nr0b1 functions to maintain Zfp42 and Nanog expression and 

repress Polycomb target genes. (H) RNA FISH images of an ESC colony hybridized with 

probes against Nanog (yellow) and Otx2 (magenta), showing inverse relationship between 

Nanog and Otx2 expression.

Kumar et al. Page 13

Nature. Author manuscript; available in PMC 2015 June 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Extended Data Figure 6. Single-cell QPCR of mESCs exposed to chemical and genetic 
perturbations
(A) Shown are the average Ct values and standard deviations for technical triplicates (error 

bars on x-axis) or biological triplicates (error bars on y-axis) across 96 genes for pools of 

100 or 10 cells or single sorted cells. Cells were sorted into PCR strips containing RT-PCR 

reagents and primer pools, reverse transcription and pre-amplification was performed, and 

cDNA was quantified on a Fluidigm BioMark PCR system. (B) Heat map of single-cell 

qPCR data for 84 genes examined across 19 different PSC perturbations and in MEFs (n = 

1,144 single cells). Unsupervised hierarchical clustering grouped genes into three clusters: 

bimodally-expressed genes (right group), ubiquitously-expressed genes (left group), and 

sporadically-expressed genes (middle group). (C) Numbers of genes showing significant 

changes in expression distributions as compared to the reference conditions of v6.5 mESCs 

cultured in serum+LIF on MEFs. Significance of changes was determined by the two-

sample Kolmogorov-Smirnov test, correcting P-values for multiple tests using the Holm 

method. (D) Selection of the state classification model that maximizes the Bayesian 

Information Criteria (BIC, y-axis). Mclust was used to generate multivariate Gaussian 

mixture models of the first three principal components of the Fluidigm qPCR-based 

expression values of individual mESCs. The models vary in the number of components (one 

to ten) and the following geometric characteristics: volume, shape, and orientation as 

described49. The best model was used to classify cells into states.

Kumar et al. Page 14

Nature. Author manuscript; available in PMC 2015 June 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Extended Data Figure 7. Gene expression changes in mESCs upon culture in 2i or removal of 
mature miRNAs
(A) Changes in expression of the pluripotency regulators shown in Figure 4C going from 

serum+LIF to 2i+LIF culture (x-axis), or between wild-type and Dgcr8KO cells cultured in 

serum+LIF (y-axis), as measured by single-cell RNA-Seq. Selected genes are highlighted. 

(B) Changes in expression of 18 commonly used housekeeping genes (ActB, Aip, Cxxc1, 

Gapdh, Gusb, Hmbs, Hprt, Ipo8, Mrpl48, Mtcp1, Pgk1, Ppia, Rpl13a, Rplp2, Rps6, Tbp, 

Ubc, and Ywhaz) between the same conditions as in A. (C) Intra- (left) and inter- (right) 

condition distances between individual cells based on single-cell RNA-Seq data for all genes 

(top), 219 transcription factors that regulate pluripotent cells as determined by CellNet50 

(middle), or lineage regulators, defined as the 256 previously determined Polycomb target 

genes in mESCs that are transcription factors (bottom). (D) Comparison of single-cell 

average expression changes going from serum+LIF to 2i+LIF culture in the present study 

(x-axis) against population-level expression changes between mESCs cultured in serum+LIF 

versus 2i+LIF measured by Marks et al.40 (y-axis). Trendline from linear fit to the data is 

shown, and selected genes that show lower expression in 2i+LIF culture in both studies are 

highlighted. (E) Single-molecule FISH showing shifts in expression of Oct4, Nanog,Nr0b1, 

and Otx2 at the RNA level between wt mESCs in serum+LIF and 2i+LIF culture conditions 

and Dgcr8KO mESCs cultured in serum+LIF. (F) Representative RNA FISH images 

showing expression of the Polycomb target gene and neural regulator Otx2 in individual 

mESC colonies under the three conditions examined. (G) Correlation between expression 

shifts between serum+LIF and 2i+LIF culture observed by single-cell RNA-Seq (x-axis) and 

RNA FISH (y-axis) for the 14 genes shown in Extended Data Figure 4A. Trendline indicates 

Kumar et al. Page 15

Nature. Author manuscript; available in PMC 2015 June 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



linear fit to the data. (H) Quantitative immunofluorescence showing changes in Nanog / 

Oct4 (left) and Nr0b1 / Oct4 (right) ratios between serum+LIF and 2i+LIF culture. Serum

+LIF data is the same shown in Extended Data Figure 9. (I) RNA FISH images of E14 

mESC colonies cultured in serum+LIF (left) or 2i+LIF (right) media and probed for Nanog 

(top) or Esrrb (bottom) expression. Both Nanog and Esrrb show bimodal expression patterns 

in E14 mESCs grown in serum+LIF, and shift towards the high expression state in 2i+LIF 

culture. White arrows indicate regions of low Nanog or Esrrb expression in mESCs grown 

in serum+LIF.

Extended Data Figure 8. Dependence of Polycomb target gene expression on culture conditions 
and miRNAs
(A) Fraction of Polycomb target genes detected in wt mESCs cultured in serum+LIF (red) or 

2i+LIF (green), or Dgcr8−/− mESCs cultured in serum+LIF (blue). (B) Correlation 

between Polycomb target gene expression and pluripotency regulator expression in different 

conditions. Displayed are the Pearson correlation coefficients (PCC) between pluripotency-

related regulator z-score and proportion of Polycomb targets detected, computed across all 

single cells. The z-score is defined as the number of standard deviations that a sample 

exceeds (z-score>0) or is less than (<0) the mean value. Z-scores for pluripotency regulators 

were computed for each condition separately. A high PCC indicates that a higher factor 

expression (relative to its mean in the condition) increases the likelihood that Polycomb 

targets will be detected as expressed (e.g., Zfx in FBS+Lif). (C) Scatter plots comparing 

amount of H3K9me3 (top) H3K27ac (middle), and RNA polymerase II (bottom) at promoter 

regions in wt mESCs cultured in serum+LIF versus 2i+LIF conditions, wt mESCs versus 
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Dgcr8KO mESCs cultured in serum+LIF, or Dgcr8KO mESCs cultured in serum+LIF 

versus wt mESCs cultured in 2i+LIF as indicated. ChIP-Seq reads at gene promoters were 

median normalized for comparison, and Polycomb target genes are indicated in green. 

Unlike H3K27me3, levels of these three factors do not show a strong decrease at Polycomb 

target genes under 2i+LIF conditions and in Dgcr8KO mESCs (compare to Figure 4E).

Extended Data Figure 9. Perturbing miRNA balance and the c-myc / Lin28 / let-7 axis
(A) Purified RNA from v6.5 mESCs and E14 mESCs cultured in either serum+LIF or 2i

+LIF conditions was extracted and reverse-transcribed with TaqMan primers specific to the 

indicated miRNAs, and then expression was profiled by QPCR. Error bars represent 

standard deviation from technical triplicate PCR reactions, and samples are normalized to a 

basket of reference small noncoding RNAs and the decrease in Ct values compared to v6.5 

mESCs grown in serum+LIF is shown. See Materials and Methods for full details. (B) Fold-

change in expression of the indicated miRNAs in wild-type mESCs cultured in serum+LIF 

or 2i+LIF, induced and uninduced iLet-7 mESCs cultured in serum+LIF, and MEFs grown 

under standard conditions. Changes are shown relative to v6.5 mESCs grown in serum+LIF. 

(C) Comparison of genes that change in expression upon introduction of the ESCC miRNA 

miR-294 to Dgcr8−/− mESCs in Melton et al.44 (y-axis) to genes that change in expression 

between serum+LIF and 2i+LIF culture in single-cell RNA-Seq data (x-axis). Genes that are 

significantly upregulated in Dgcr8−/− mESCs upon miR-294 introduction are indicated in 

blue, and those that are significantly downregulated are indicated in green. Selected genes 
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upregulated by miR-294 and downregulated in 2i+LIF culture as compared to serum+LIF 

are highlighted. As a group, genes downregulated by miR-294 show higher expression in 2i

+LIF than in serum+LIF. (D) mESC colonies staining uniformly positive for alkaline 

phosphatase show reduced levels of c-myc. Overall and colony-specific c-myc distribution in 

serum+LIF culture as measured by RNA FISH, showing uniformly positive (top), mixed 

(middle), or negative (bottom) AP staining. (E) Western blot showing reduction of Lin28a 

protein levels in ishLin28a cells upon addition of doxycycline. (F) Let-7 expression changes 

in doxycycline-inducible ilet-7 mESCs grown in serum+LIF upon induction. RT-QPCR was 

performed as in A, and Ct changes are shown relative to v6.5 mESCs in serum+LIF in a 

separate experiment from panel A. The inducible let-7 construct is detected by the let-7g 

probe. (G) Effect of miRNA transfection on self-renewal efficiency of Dgcr8KO mESCs. 

miRNA mimics were transfected into Dgcr8KO mESCs, and self-renewal efficiency was 

measured. Error bars indicate standard deviations between triplicate transfection 

experiments. Co-transfection of the ESCC miRNA miR-294 with a let7 miRNA results in 

enhanced self-renewal efficiency as compared to miR-294 alone. (H) Expression changes of 

selected genes measured by QPCR upon culture of v6.5 mESCs in serum+LIF, 2i+LIF, or 

treatment with only Erk or GSK3β inhibitors.

Extended Data Table 1

List of genetic and chemical perturbations whose effects were profiled by single-cell QPCR.

Perturbation Effect Cell line Growth media Feeders Abbreviation Ref.

Culture conditions

Standard (v6.5 MEFs) Baseline conditions v6.5 mESCs Serum+LIF Yes v6.5 on MEFs

Feeder-free Increased spontaneous differentiation v6.5 mESCs Serum+LIF No v6.5 FF

Feeder-free (E14) Increased spontaneous differentiation E14Tg2A Serum+LIF No E14 FF

Ground state Increased self-renewal efficiency v6.5 mESCs 2i+LIF No V6.5 2i+LIF 13

Ground state (E14) Increased self-renewal efficiency E14Tg2A 2i+LIF No E14 2i+LIF 13

Genetic knockouts

Polycomb repressive 
complex 2

Disruption of the PRC2 complex, 
loss of H3K27me3

Eed−/− Serum+LIF Yes Eed KO 31

DNA methyltransferases Loss of DNA methylation DnmtTKO Serum+LIF Yes DNMT TKO 33

MicroRNA processing Loss of mature miRNAs (Knockout 
of Dgcr8)

Dgrc8KO Serum+LIF Yes
No

DGCR8 KO 
on MEFS

DGCR8 KO 
FF

34

Loss of mature miRNAs (Knockout 
of Dicer)

DicerKO Serum+LIF Yes
No

Dicer KO on 
MEFs

Dicer KO FF

30

NuRD complex Disruption of the NuRD complex Mbd3−/− Serum+LIF Yes Mbd3 32

Chemical treatments

Trichostatin A HDAC inhibition v6.5 mESCs Serum+LIF Yes TSA

Valproic acid HDAC inhibition v6.5 mESCs Serum+LIF Yes VPA

BIX01294 Inhibition of G9a histone 
methyltransferase

v6.5 mESCs Serum+LIF Yes BIX

Hoechst 33342 Cell cycle analysis (cells in G0/G1 
were isolated)

v6.5 mESCs Serum+LIF Yes Hoechst

Alternate cell types
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Perturbation Effect Cell line Growth media Feeders Abbreviation Ref.

Induced pluripotent 
stem cells

Reprogrammed from somatic cells iPSCs Serum+LIF Yes iPSCs

Epiblast stem cells Primed state of pluripotency EpiSCs EpiSC growth media Yes EpiSCs 35

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gene expression variability landscape of PSCs
(A) Histograms of transcript distributions from single-cell RNA-Seq of v6.5 mESCs 

cultured in serum+LIF. Arrow indicates high NeuroD1 expressing cells. (B) Histograms and 

representative images of transcript distributions for Oct4, Esrrb, and NeuroD1 from single-

molecule FISH. (C) Gene categories showing high or low noise. (D) Sporadic expression of 

the Polycomb target gene Bmp4 within an mESC colony as measured by smFISH. (E) 

Relationship between population H3K27me3 levels, fraction of cells a gene is detected in 

(α, top), and average expression level when detected (μ, bottom). Overall trend lines are 

shown. All relevant statistical information can be found in the ‘Statistics’ section of the 

Methods.
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Figure 2. Expression states of variable genes are coupled together and persist over multiple cell 
divisions
(A) Slowly fluctuating genes show a high degree of intercolony variability. (B) Expression 

of the pluripotency regulator Esrrb within individual colonies. (C) Intra- and inter-colony 

variability in expression for selected pluripotency and lineage regulators. Average transcript 

number and standard deviation within colonies are indicated. (D) Time-lapse imaging of 

colony formation from single cells, and Nr0b1 and Oct4 expression within these colonies. 

(E) Relative Oct4 and Esrrb protein levels within mESCs cultured in serum+LIF. Groups of 

high and low Esrrb cells are indicated. (F) Correlation of pluripotency regulator polycomb 

target gene expression between individual cells. (G) Dependence of NeuroD1 expression on 

the level of Sox2 and Nr0b1 within individual cells. Dashed lines indicate high and low 

expression states, and P-values for differences between states were calculated using the 

Kolmogorov-Smirnov test.
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Figure 3. Effect of perturbations on gene expression variability and cell state
(A) Population distributions for the unimodally expressed genes Pou5f1 (Oct4) and Rest, 

and the bimodally expressed genes Tcfcp2l1 and Myc. (B) Comparison of population 

heterogeneity as measured by mean intra-condition distances. (C) Principal component 

analysis (PCA) of single-cell qPCR data. (D) PCA colored by the most likely state 

classification. (E) Cell state classification of PSCs exposed to different perturbations and 

conditions. (F) Expression heatmap of genes contributing the most to the top three principal 

components, excluding housekeeping and fibroblast genes.
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Figure 4. Dgcr8KO mESCs show evidence of ground-state self-renewal
(A) Correlation between single-cell RNA-Seq gene expression changes in different 

conditions. (B) Distances between individual cells for pluripotency regulators shown in 

panel C. (C) Heat map of single-cell RNA-Seq data for selected pluripotency regulators. (D, 

E) Single-molecule FISH (D) and quantitative immunofluorescence (E) showing a shift 

towards the high expression state of Esrrb in 2i+LIF and Dgcr8KO mESCs. (F) Promoter 

H3K27me3 levels in the three conditions examined by single-cell RNA-Seq. Polycomb 

target genes are shown in green. (H) H3K27me3 ChIP-Seq tracks from the three conditions 

profiled showing the selective loss of H3K27me3 at the Otx2 promoter in Dgcr8KO and 2i

+LIF mESCs.
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Figure 5. miRNA balance controls transitions between ground and transition states
(A) NanoString profiling of miRNAs expressed in mESCs or MEFs. (B) Expression changes 

of predicted let-7 or miR-152 target genes between conditions. (C) Representative colonies 

showing solid or mixed alkaline phosphatase (AP) staining. (D, E) Self-renewal efficiency 

of mESCs bearing a dox-inducible Lin28a shRNA construct (D) or dox-inducible let-7 (E) 

in the presence or absence of doxycycline. Mean values from two replicate experiments are 

shown. c-myc expression levels for representative iLet-7 colonies as measured by smFISH 

are shown in (E). (F) Fraction of uniformly AP positive colonies in experiments shown in 

Figures 5D and 5E. (G) Expression changes in c-myc and Lin28a induced by transfection of 

miRNA inhibitors into wild-type mESCs cultured in 2i+LIF. Error bars indicate standard 

deviations between triplicate transfection experiments. (H) Model for interplay between Erk 

signaling, miRNAs, and c-myc / Lin28 / let-7 axis in ground and transition states.
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