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Observation of Unidirectional Backscattering-immune 
Topological Electromagnetic States 

Zheng Wang1∗, Yidong Chong1†∗, J.D. Joannopoulos1, Marin Soljačić1 

One of the most striking phenomena in condensed-matter physics is the Quantum Hall 

Effect (QHE) arising in two-dimensional electron gases1-4 subjected to a large DC magnetic 

field.  The resulting “Chiral edge states” (CESs) are a unique class of states with 

unparalleled properties that have only been observed in electronic systems. Here we report 

the first experimental observation of electromagnetic CESs (existence first predicted by 

Haldane and Raghu5,6), exploiting a magneto-optic photonic crystal (PhC)7 fabricated in 

the microwave regime. Like their electronic counterparts, these photonic CESs can travel 

in only one direction, and we measure forward and backward transmissions differing by 

nearly 50 dB. And, just as the electronic CESs are dissipationless even in the presence of 

impurities8, we observe that even large metallic scatterers placed in the path of the 

photonic CESs do not induce reflections. Essentially, the electromagnetic waves losslessly 

"route around" the obstacles because the absence of backwards-propagating solutions 

prohibits any possibility of reflection. In both the electronic systems9-13 and photonic 

systems5-7, this unique form of unidirectional transport is a consequence of nontrivial 

topological properties of the bulk band structure. In this work we implement a photonic 

CES using a square lattice of magnetized ferrite rods that localize a unidirectional 
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waveguide mode at the edge of the structure adjacent to a metallic wall.  We believe the 

realization of CESs in photonic systems opens a wide range of exciting opportunities for 

two reasons. First, photonic systems are easily modified into any imaginable geometry 

using a variety of materials, sources, and detectors, enabling observation of this exciting 

topological phenomenon in a much more controlled and customizable fashion than 

typically possible with electronic systems. Second, the unique nature of these unidirectional 

modes may enable new classes of electromagnetic devices and experiments that would be 

impossible using conventional reciprocal photonic states alone.  

The existence of photonic CESs is predicted by an analogy between a PhC14-16 with broken time-

reversal symmetry and a QHE system5-7. In this analogy, the electromagnetic fields play the role 

of the electronic current, the variations of permittivity and permeability within the PhC play the 

roles of the periodic potential, and the gradients of the gyrotropic components of the 

permeability tensor play the role of the external DC magnetic field which breaks the time-

reversal symmetry5-7. The defining feature of a photonic CES is that its group velocity points in 

only one direction, which is determined by the sign of the time-reversal symmetry breaking field 

and the resulting unusual topological properties of the bulk band structure. To detect the possible 

presence of non-trivial topological band properties in a PhC system it is sufficient5-7 to compute 

its Chern numbers. (Although the original proposal5,6 focused on “Dirac points”, it is not 

necessary to be restricted to such band structures, and thus the use of a variety of PhC systems is 

possible7.) The Chern number of a band n of a 2D periodic PhC is an integer defined by6: 
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where the k-space integral is performed over the first Brillouin zone and the Berry connection6 is 

given by: 



3 
 

  ( ) ( ) ( ) ( )rrrk kkkkkk '
*2

'
'A nnnn

nn EErdiEEi ∇⋅=∇≡ ∫ ε
r

, 

where Enk is the periodic part of the electric field Bloch function16. Since the Chern number 

characterizes the winding number of the phase of the Bloch functions around the boundary of the 

first Brillouin zone11, it is a “global” or “topological” property of the entire band, and is very 

robust against structural perturbations10. Significantly, it can be non-zero if and only if the 

system lacks time-reversal symmetry9. One of the most exciting properties of QHE systems is 

that the Chern numbers have a direct physical consequence: a finite crystal that supports bulk 

bands with non-zero Chern numbers also supports unidirectional CESs at its boundary at 

energies within bulk band gaps opened by the applied DC magnetic field. Moreover, the number 

of CESs turns out to be equal to the sum of the Chern numbers of all the bulk bands with lower 

energy.13 Although this result has been formally proven only in a tight-binding QHE system, it is 

believed to be independent of the details of the underlying model, such as the structure of the 

lattice and the edge. Its validity in PhC systems was originally predicted by Haldane and 

Raghu5,6, and corroborated  through a formal mapping7 to a “zero-field QHE” system12 and ab 

initio numerical simulations of Maxwell’s equations7. It is important to emphasize that although 

CESs have so far been experimentally observed only in electronic (i.e. fermionic) systems, the 

phenomenon should actually be independent of the underlying particle statistics because the 

Chern number is defined in terms of single-particle Bloch functions. An experimental 

verification would therefore provide a strong support for generalizing topological band theories 

and their applications to classical and bosonic systems. 

The ability to work with PhC band structures without “Dirac points” has allowed for the 

identification of an experimentally viable PhC system7 for the observation of CESs. Our 

experimental system (Fig. 1) involves a gyromagnetic 2D-periodic PhC consisting of a square 

lattice of ferrite rods in air (details of the structure and materials used can be found in the section 

on Methods), bounded on one side by a non-magnetic metallic cladding.  The interface between 
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the PhC and the cladding acts as a confining-edge or waveguide for CESs.  (Without this 

cladding the CESs at the air edges of the PhC would simply radiate away.)  Apart from 

absorption losses and nonlinear effects, we would expect power transmission of a CES along this 

waveguide to be independent of the waveguide geometry and also immune to back-scattering 

from disorder, obstacles, and defects.   

Before we discuss the results of our measurements, we will first describe how we arrived at 

this particular choice of experimental system.  We chose rods in air for the basic PhC geometry 

because of ease of fabrication. We then performed a series of numerical simulations for a variety 

of rod sizes and lattice constants on a model 2D PhC system to optimize the band structure and 

compute corresponding band Chern numbers using material parameters appropriate to a low-loss 

ferrite (see Methods). Our numerical simulations predict that when the ferrite rods in this PhC 

are magnetized to manifest gyrotropic permeability (which breaks time-reversal symmetry), a 

gap opens up between the second and third TM bands. Moreover the second, third, and fourth 

bands of this PhC acquire Chern numbers of 1, -2, and 1 respectively. This result follows from 

the C4v symmetry of a non-magnetized crystal17.  The results of our simulations for the PhC with 

metallic cladding are presented in Fig. 2. (Similar numerical results were obtained in ref. 7, albeit 

using a different material system and geometry.) Here we show the calculated field patterns of a 

photonic CES residing in the second TM band gap (between the second and the third bands). 

Since the sum of the Chern numbers over the first and second bands is one, exactly one CES is 

predicted to exist at the interface between the PhC and metal cladding. The simulations clearly 

predict that this photonic CES is unidirectional. Since side-scattering is prohibited by the bulk 

photonic band gaps in the PhC and in the metallic cladding, the existence of the CES forces the 

feed dipole antennas (which would radiate omnidirectionally in a homogeneous medium) to 

radiate only towards the right (Fig. 2a, c).  Moreover, the lack of any backward propagating 

mode eliminates the possibility of backscattering, so that the fields can continuously navigate 

around an obstacle, as shown in Fig. 2b. Hence the scattering from the obstacle results only in a 
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change of the phase (compare Fig. 2a and Fig. 2b) of the transmitted radiation with no reduction 

in amplitude.  

In order for CESs to be readily measurable in the laboratory (where one is forced to 

employ a PhC of finite and manageable size) they must be spatially well localized, and this 

requires a large containing photonic band gap.  The sizes of the band gaps that contain CESs 

(and the frequencies at which they occur) are determined by the gyromagnetic constants of the 

ferrites constituting the PhC. Under a DC magnetic field, microwave ferrites exhibit a 

ferromagnetic resonance at a frequency determined by the strength of the external DC magnetic 
field18.  Near this frequency, the Voigt parameter, V = μxy μxx , a direct measure of the strength 

of the gyromagnetic effect, is of order unity. Such ferromagnetic resonances are among the 

strongest low-loss gyrotropic effects at room temperature and sub-Tesla magnetic fields. Using 

ferrite rods composed of vanadium-doped calcium–iron-garnet (VCIG) under a biasing magnetic 

field of 0.20 T (see Methods and supplementary information), we achieved a relative bandwidth 

of 6% for the second TM band gap (around 4.5 GHz in Fig. 3b).  As discussed earlier, this is the 

gap predicted to support a CES at the interface of the PhC with a metallic wall. Let us emphasize 

again that band gaps with trivial topological properties (i.e., zero sum for the Chern numbers of 

the bulk bands with lower frequencies), such as the first TM band gap (around 3 GHz in Fig. 3b), 

do not support CESs.  All of the insight gained from the model 2D PhC system was then 

incorporated into the final design shown in Fig. 1. To emulate the states of the 2D PhC the final 

design involved fabrication of a 3D PhC slab structure equivalent to the model 2D PhC system, 

made from gyromagnetic rods with parallel metallic plates on the top and bottom, spaced to only 

support TEM modes (identical to the TM modes in the 2D PhC, see Methods). A copper wall 

was then added at the edge of the PhC slab to provide the required cladding. 

 In our experiments the band gaps and the CES waveguide were characterized by two-port 

vector network analysis using a pair of dipole antennas labelled A and B in Fig. 1a (see 
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Methods). First, to characterize the band gap, we inserted A and B into the interior of the PhC far 

from the edges and 8 lattice constants apart. We observed the second band gap with a 50 dB 

extinction for both forward (|SBA|2) and backward (|SAB|2) transmission (Fig. 3a). Note that the 

frequency ranges of both first and second band gaps agree well with our predicted band structure 

calculations (no adjustable parameters) shown in Fig. 3b. Next, to characterize the CESs, we 

measured the transmission spectra with the apparatus as illustrated in Fig. 1a (see Methods). At 

frequencies within the second band gap, we observed a strong forward transmission, 

approximately 50 dB greater than the backward transmission at mid-gap frequencies (Fig. 3c). 

Over much of this frequency range, the backward transmission was below the noise floor of the 

network analyzer, which suggests an even greater actual contrast. This difference of more than 5 

orders of magnitude in power transmission, over a distance of only 8 lattice constants, confirms 

that backward-propagating modes are highly evanescent, as predicted.  

 We tested the robustness of the unidirectional propagation by studying the effect of a 

large obstacle on transmission. We gradually inserted a conducting barrier across the waveguide, 

blocking the direct path between A and B. The measured transmission behaviour at different 

stages of the insertion, shown in Fig. 4, remains basically the same as that of Fig. 3c: the 

transmission between 4.35 and 4.62 GHz remains strongly non-reciprocal, with a 40 to 50 dB 

difference between the forward and backward transmission. This finding agrees with the 

theoretical prediction that power transmission via CESs is fundamentally insensitive to scattering 

from arbitrarily large defects (Fig. 2b). This behaviour is a distinguishing feature of the present 

waveguide. In a conventional waveguide, insertion of such a large obstacle would cause huge 

backscattering and dramatically reduced transmission to the output. For example, in a photonic 

crystal implemented with regular dielectric rods and identical dimensions (see supplementary 

information), a similar barrier length of 1.65 lattice constants reduces forward transmission by 

four orders of magnitude.  This measurement further confirms that the backward modes are 

purely evanescent, and not merely lossy.  If lossy backward-propagating modes existed in the 



7 
 

system, a large defect would have scattered a significant portion of energy into them, essentially 

converting backscattering into loss. The forward transmission in the presence of the large defect 

would have been much smaller than in the defect-free case. Existing optical isolators, such as 

those relying on Faraday rotation or nonreciprocal phase shifts, absorb or radiate backward-

propagating light in this way. Thus, the unidirectional guiding of a CES is fundamentally 

different from how optical isolators operate. 

 The experimental establishment of topological photonic states opens up a wide range of 

exciting future opportunities. First, our realization of nontrivial topological Chern numbers in a 

classical photonic system raises the possibility of using photonic systems to realize other classes 

of topological quantum numbers that have invoked intense interest in condensed-matter physics. 

Examples include the Z2 topological number associated with the quantum spin Hall effect19-22 

and the “Hopf number” in certain 3D insulators23.  Photonic crystals are attractive for such 

investigations because one can assign parameters such as lattice constants and unit cell 

geometries in a fully controlled manner16, in contrast to most electronic systems. Second, the fact 

that the CESs in the present system are robust against disorder ensures that the design is tolerant 

towards fabrication imperfections, such as variations in the lattice constant, or the exact position 

of the guiding edge; this could enable implementation of extraordinarily robust waveguides. 

Finally, photonic CESs might prove useful in applications involving isolators24 or slow light25,26. 

In conventional slow-light systems, disorder induces backscattering that increases quadratically 

with reduced group velocity27, making them very sensitive to disorder. Although the present 

experiments have been conducted at GHz frequencies, this operating frequency can be increased 

simply by applying a stronger DC magnetic field18. Extension into the THz range might be 

achieved through metamaterials that resonantly enhance the magnetic activity28-30. Further 

extension to the optical regime is challenging, given the losses and weak gyrotropic effects in 

currently-known materials.  
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Methods Summary 

Construction of the magnetically gyrotropic PhC. The gyromagnetic PhC was implemented 

with a square array (lattice constant: 40 mm) of vanadium-doped calcium-iron-garnet (VCIG, 

TCI ceramics NG1850) rods. Balancing the need for a large Voigt parameter against the 

drawback of absorption loss in the vicinity of the ferromagnetic resonance (5.6GHz), we 

designed the rod radius to be 3.9 mm and the lattice constant a to be 40 mm in order to maximize 

the bandwidth of the band gap without suffering excessive loss.  A 16x10 array was used to 

measure the band gap of a bulk crystal and a 16x7 array is used to study the waveguide and the 

effect of scattering. The VCIG ferrite features a measured permittivity εr=14.63 and a loss 

tangent tanδ=0.00010. The saturation magnetization was measured to be Ms=1.52x105A/m, with 

a 3dB linewidth of the ferromagnetic resonance at ΔH=1.03x103A/m. By using the MIT 

cyclotron electromagnet, we applied a DC magnetic field of 0.20T along the out-of-plane z-

direction, with a spatial non-uniformity of less than 1.5%. The DC magnetic field breaks the 

time-reversal symmetry in the PhC. The magnetic field strength was measured and calibrated 

with a LakeShore 410 Gaussmeter. 

Methods 

Parallel plate waveguide for out-of-plane confinement. The unidirectional CES waveguide 

apparatus was designed to reproduce the dispersion relation and the modal profile of a 

topological edge mode of a 2D gyromagnetic PhC, using a 3D structure with a finite height. The 

out-of-plane z-confinement was achieved with two parallel horizontal copper plates, separated by 

7.0mm.  This structure is known as a “parallel plate waveguide” in microwave engineering18. It 

supports TEM modes with electric fields pointing in the out-of-plane z-direction and magnetic 

fields pointing along the x-y plane. This polarization is identical to the TM modes in 2D PhCs 

where topological modes have been proposed to exist7. Between the two plates, the 

electromagnetic fields of TEM modes are also uniform along the z-direction, identical to a 2D 
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system. This 3D structure therefore closely mimics a 2D system and is considered to be quasi-

2D. When operated below 21GHz, the waveguide supports only TEM modes. 

Single-mode microwave CES waveguide and absorbing boundaries. Similar to the case of 

conventional waveguides, if the edge waveguide has too large a cross-section area, this could 

lead to a multimode operation, causing both a unidirectional CES as well as conventional 

bidirectional modes to be present in the waveguide. To ensure that only a CES is present in the 

measurement setup, we chose the distance between the PhC and the conducting copper wall to be 

25mm, narrow enough to eliminate all bidirectional modes at the frequencies of the second band 

gap. With a 6% relative bandwidth for this band gap, a CES is confined within three lattice 

constants, even around a large scatterer. The copper scatterer has a height of 7.0 mm and a width 

of 7.2mm, with its maximum length used in this experiment was mainly limited by the finite size 

of the crystal. Microwave-absorbing foam pieces were placed along the other three edges of the 

PhC, in order to prevent the CES from circulating all the way around the boundary of the crystal.  

In addition, these foam pieces shield the system from external interference.  

Microwave transmission measurement for bulk crystals and for CESs. Two identically-

constructed antennas were inserted through the top copper plate, extending to contact the bottom 

copper plate.  These antennas, labelled A and B in Fig. 1a, were connected via coaxial cables to 

the two ports of a Hewlett-Packard 8719C vector network analyzer, which measures the 

transmission coefficients SAB and SBA. Two-port short-open-load-through (SOLT) calibrations 

were performed at the coaxial adapter. Therefore, measured S-parameters contain a frequency-

dependent insertion loss from the impedance mismatch between the antenna, the feed coax, and 

the PhC waveguide, and from the transition between the balanced parallel plates and the 

unbalanced coax cable. This loss is reciprocal and does not affect the relative ratio of the 

transmission coefficients, |SAB/ SBA|. Therefore, any substantial difference between |SAB| and |SBA| 

is an experimental signature of the unidirectionality of CESs. We extracted the forward and 

backward transmission spectra from the measured S21 and S12 parameters in a frequency sweep 
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from 1GHz to 6GHz. Each measurement was performed with an IF frequency of 20Hz and 4 

averages, with the power level normalized towards the level at the band edges. To measure bulk 

band gaps (Fig. 3a), the antennas A and B are located along the long axis of a 16 x 10 PhC, 8 

lattice constants apart (see supplementary information). For the CES waveguide (Figs. 3c and 4), 

we performed the measurement with the feed and probe antennas located between the copper 

wall and the 16 x 7 PhC, also 8 lattice constants apart (Fig. 1a). Here the metal wall is 9mm 

away from each antenna. 

Effects of material absorption loss. Most of the propagation loss in the present system may be 

attributed to two sources: the radiation losses originating from the finite width of the PhC 

cladding, and the intrinsic material absorption associated with the ferromagnetic resonance. The 

radiation loss could be further reduced simply by increasing the number of unit cells in the lateral 

direction, whereas the absorption loss could in principle be further reduced by using mono-

crystalline Yttrium-Iron-Garnet as ferrites18. The resultant attenuation length would be on the 

order of hundreds of lattice constants.  
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FIGURE LEGENDS 

Figure 1  Microwave waveguide supporting CESs. a, Schematic of the waveguide 

composed of an interface between a gyromagnetic PhC slab (blue rods) and a metal 

wall (yellow). The structure is sandwiched between two parallel copper plates (yellow) 

for z-direction confinement and surrounded with microwave absorbing foams (gray 

regions). Two dipole antennas A and B serve as feeds and/or probes.  A variable-length 

(l) metal obstacle (orange) with a full height of the waveguide (7.0 mm) is inserted 

between the antennas to study scattering. A 0.20T DC magnetic field is applied along 

the z-direction with an electromagnet (not shown). b, Top view (photograph) of the 

actual waveguide with the top plate removed.  

Figure 2  Photonic CESs and effects of a large scatterer. a, CES field distribution 

(Ez) at 4.5 GHz in the absence of the scatterer, calculated from finite-element steady-

state analysis (COMSOL Multiphysics). The feed antenna (cyan star), omnidirectional in 

homogeneous media (see supplementary information), radiates only to the right along 

the CES waveguide. Black arrows represent the direction of the power flow. b, When a 

large obstacle (3 lattice-constants long) is inserted, forward transmission remains 

unchanged since back- and side-scattering are entirely suppressed.  The calculated 

field pattern illustrates how the CES wraps around the scatterer. c, When antenna B is 

used as feed antenna, negligible power is transmitted to the left, since the backward 

modes are evanescent.  

Figure 3  CES-facilitated waveguiding in a PhC. a, Forward and backward 

transmission spectra measured using only the bulk PhC in the Fig. 1 setup (i.e. without 

the metal cladding and obstacle), with the antennas placed at the interior of the PhC, in 

a 0.20T DC magnetic field.  The bulk transmission is reciprocal, with photonic band 
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gaps at 3.3 and 4.5 GHz. b, Calculated projected PhC band structure (blue and grey 

areas). Included is the CES (red curve) that exists at the metal/PhC interface. The grey 

areas are bulk bands with ill-defined band-edges due to large absorption near the 

ferromagnetic resonance. Each band’s Chern number is labelled in white. c, Measured 

transmission spectra upon inclusion of the metal cladding and antennas placed as 

shown in Fig. 1. The resulting CES waveguide leads to a very high contrast between the 

forward and the backward transmission for frequencies in the second band gap (yellow) 

around 4.5GHz. This striking unidirectionality indicates the existence of a CES. 

Figure 4  CES transmission spectra in the presence of a large scatterer. The length 

of the obstacle (l) was gradually varied from 0.40a to 1.65a (lattice constant a=40mm) 

and induced only minor differences in the forward transmission near the mid-gap 

frequency of 4.5 GHz.  The lack of any significant changes in forward transmission and 

non-reciprocity (|SAB|<<|SBA|) with large increases in the size of the scatterer, indicate 

that the CES can travel around the obstacle without scattering or reflections, as 

predicted by simulations. The experimental parameters remained unchanged from the 

measurement in Fig. 3c. 
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