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ABSTRACT

Aziz, H. M. Abdul. Ph.D., Purdue University, December 2014. Integrating Pro-
Environmental Behavior with Transportation Network Modeling: User and System
Level Strategies, Implementation, and Evaluation. Major Professor: Satish V.
Ukkusuri.

Personal transport is a leading contributor to fossil fuel consumption and green-

house (GHG) emissions in the U.S. The U.S. Energy Information Administration

(EIA) reports that light-duty vehicles (LDV) are responsible for 61% of all transporta-

tion related energy consumption in 2012, which is equivalent to 8.4 million barrels of

oil (fossil fuel) per day. The carbon content in fossil fuels is the primary source of GHG

emissions that links to the challenge associated with climate change. Evidently, it is

high time to develop actionable and innovative strategies to reduce fuel consumption

and GHG emissions from the road transportation networks. This dissertation inte-

grates the broader goal of minimizing energy and emissions into the transportation

planning process using novel systems modeling approaches. This research aims to find,

investigate, and evaluate strategies that minimize carbon-based fuel consumption and

emissions for a transportation network. We propose user and system level strategies

that can influence travel decisions and can reinforce pro-environmental attitudes of

road users. Further, we develop strategies that system operators can implement to

optimize traffic operations with emissions minimization goal. To complete the frame-

work we develop an integrated traffic-emissions (EPA-MOVES) simulation framework

that can assess the effectiveness of the strategies with computational efficiency and

reasonable accuracy.

The dissertation begins with exploring the trade-off between emissions and travel

time in context of daily travel decisions and its heterogeneous nature. Data are

collected from a web-based survey and the trade-off values indicating the average
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additional travel minutes a person is willing to consider for reducing a lb. of GHG

emissions are estimated from random parameter models. Results indicate that dif-

ferent trade-off values for male and female groups. Further, participants from high-

income households are found to have higher trade-off values compared with other

groups. Next, we propose personal mobility carbon allowance (PMCA) scheme to re-

duce emissions from personal travel. PMCA is a market-based scheme that allocates

carbon credits to users at no cost based on the emissions reduction goal of the system.

Users can spend carbon credits for travel and a market place exists where users can

buy or sell credits. This dissertation addresses two primary dimensions: the change

in travel behavior of the users and the impact at network level in terms of travel time

and emissions when PMCA is implemented. To understand this process, a real-time

experimental game tool is developed where players are asked to make travel decisions

within the carbon budget set by PMCA and they are allowed to trade carbon cred-

its in a market modeled as a double auction game. Random parameter models are

estimated to examine the impact of PMCA on short-term travel decisions. Further,

to assess the impact at system level, a multi-class dynamic user equilibrium model is

formulated that captures the travel behavior under PMCA scheme. The equivalent

variational inequality problem is solved using projection method. Results indicate

that PMCA scheme is able to reduce GHG emissions from transportation networks.

Individuals with high value of travel time (VOTT) are less sensitive to PMCA scheme

in context of work trips. High and medium income users are more likely to have non-

work trips with lower carbon cost (higher travel time) to save carbon credits for work

trips.

Next, we focus on the strategies from the perspectives of system operators in trans-

portation networks. Learning based signal control schemes are developed that can

reduce emissions from signalized urban networks. The algorithms are implemented

and tested in VISSIM micro simulator. Finally, an integrated emissions-traffic sim-

ulator framework is outlined that can be used to evaluate the effectiveness of the

strategies. The integrated framework uses MOVES2010b as the emissions simulator.
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To estimate the emissions efficiently we propose a hierarchical clustering technique

with dynamic time warping similarity measures (HC-DTW) to find the link driving

schedules for MOVES2010b. Test results using the data from a five-intersection corri-

dor show that HC-DTW technique can significantly reduce emissions estimation time

without compromising the accuracy. The benefits are found to be most significant

when the level of congestion variation is high.

In addition to finding novel strategies for reducing emissions from transporta-

tion networks, this dissertation has broader impacts on behavior based energy pol-

icy design and transportation network modeling research. The trade-off values can

be a useful indicator to identify which policies are most effective to reinforce pro-

environmental travel choices. For instance, the model can estimate the distribution of

trade-off between emissions and travel time, and provide insights on the effectiveness

of policies for New York City if we are able to collect data to construct a representa-

tive sample. The probability of route choice decisions vary across population groups

and trip contexts. The probability as a function of travel and demographic attributes

can be used as behavior rules for agents in an agent-based traffic simulation. Finally,

the dynamic user equilibrium based network model provides a general framework for

energy policies such carbon tax, tradable permit, and emissions credits system.
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CHAPTER 1. INTRODUCTION

1.1 Background and motivation

Road transportation is an excitingly complex system that brings together elements

from diverse dimensions and at the same time directly impacts our economy, energy

resources, and the environment. Transportation sector consumes a large portion of

fossil fuel and also acts as a significant contributor of greenhouse gas (GHG) emis-

sions. Road transportation sector contributes 28% (Of which, fossil fuel constitutes

about 92%)of the total energy consumption in the United States. The U.S. Energy

Information Administration reports that light-duty vehicles (LDVs) are responsible

for 61% of all transportation related energy consumption in 2012. This is equivalent

to 8.4 million barrels of oil (fossil fuel) per day. Evidently road transportation sector

is a major player in context of the global challenges: climate change and peak oil

crisis, and there is a timely need to find effective strategies to minimize emissions and

energy consumption from road transportation.

Further, vehicles traveling on road networks are a major source of air pollutants

including carbon monoxide (CO), nitrogen oxides (NOx), particulate matters (PM),

and volatile organic compounds (VOCs). In 2011, the transportation sector alone is

responsible for about 76% of the total CO emissions and 50% of the total NOx [1]

emissions in the United States. Further, the US Environmental protection agency

(EPA) reports transportation sector as the fastest growing source of greenhouse gas

(GHG) emissions indicating 47% net increase from 1990 to 2003 [2].

Different policies and technological advancements exist aiming at reducing the ve-

hicular emissions. However, each has its own limitations and challenges. For instance,

regulating the emissions rates of vehicles cannot cap the total amount of emissions or



2

concentration of a particular pollutant on any link of the network. A vehicle meet-

ing the emissions standard can emit even more compared with the vehicle without

meeting the standard [3],[4]. Researchers and technologists are still debating over

the life cycle cost of using zero-emissions vehicles like the electric vehicles. A similar

situation arises in the use of biofuels that may not be a sustainable choice because of

its high dependency on the corn production and for the transportation cost.

Emissions and energy consumptions also depend on travel choices made by the

road users. Travel choices can be short term (e.g., choice of mode of transportation,

route, departure time, etc.) or long term (e.g., car ownership, residential location

choice, travel patterns, and so on). Although household level GHG emissions, either

for travel or household utilities are individually insignificant, collectively they make a

big difference. Even a moderate change in behavior by altering millions of household

level transportation choices will lead to significant reductions in GHG emissions. It

has been found that household emissions can be reduced by 20% (approximately

123 million metric tons of CO2) by altering energy consumption behavior and use

of technologies without compromising the household well being [5]. Previous studies

[6, 7, 8, 9] show that route choice decisions can have significant impact on the amount

of emissions and energy consumptions in daily trips. Moreover, researchers [10, 11]

underscore the effect of mode and departure time choices on travel related GHG

emissions. This dissertation primarily focuses on these two important dimensions of

the short-term travel decisions: route and departure time choice for daily travel.

The goal of this dissertation is to find and to critically analyze user and system

level strategies that influence travel related choices to reduce emissions and energy

consumptions from transportation networks. First, we explore the heterogeneous trip

decision making process of the road users accounting for emissions and fuel consump-

tion. Then, user and system level strategies to reduce emissions and fuel consumption

are proposed using the insights gained from the behavioral dynamics. Finally, we

evaluate the strategies through an integrated emissions-traffic simulation framework.
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Energy and emissions related policies are designed to bring changes in the be-

havior of the users in the system. Pro-environmental behavior of the road users

may reinforce the policies to get the desired level of success. However some forms

of financial incentive or disincentive are needed to achieve the desired policy goals.

Designing effective policies requires a close look at the question of what drives behav-

ioral change. Traditional transportation network modeling techniques do not focus

on the energy and environmental aspects of travel and the key focus is travel time in

most cases. Moreover, the primary goals are not linked with the bigger challenges like

climate change and energy crisis. This dissertation integrates the pro-environmental

behavior aspects into the network modeling and frames the system goals as inher-

ent components of the broader challenges of minimizing energy and emissions from

transportation network.

1.2 Dissertation objectives

This section describes the primary objectives of this dissertation. We discuss the

motivation behind each objective and outline the general research goals.

1.2.1 Objective-1

The first objective is to explore the impact of providing information about emis-

sions for short-term travel choices. Technological advancement in communications

allows the users of transportation systems to obtain, process, and use information

in their daily trip makings. The dynamics of sustainable travel decisions (e.g., that

lead to minimize vehicular emissions for the trip and the road network) can be better

explained through the temporal evolution in route and departure time choices.

Moreover, it is important to account for the inherent mechanism of trade-off be-

tween travel time and emissions. The least emissions path does not always coincide

with least travel time path ([12], [13], [14], [15]). The non-monotone relationship be-

tween average speed and vehicular emissions is identified as the major cause([14],[4])



4

behind this. The least emissions path often leads to excessively high travel time that

will not be acceptable to most travelers. Note that, it is possible to have alternative

route that can yield less emissions than the least travel time path with acceptable

increase in the travel time. Now, the question of interest is that what will be the

level of trade-off between travel time and emissions a traveler makes considering the

increase in travel time. This can be explained through considering some cases as

follows:

• Case 1: A traveler can choose a route with less emissions over less travel time

route or adjust departure time because of her consciousness towards sustain-

ability (inherently environment friendly).

• Case 2: A traveler can choose a route with less emissions or adjust departure

time only when the difference in travel time between the least travel time route

and alternative route with less emissions is below certain threshold value.

• Case 3: The change in behavior can take place only when relevant information

is available. For instance, departing seven minutes earlier than usual can save

four units of carbon emissions for the trip with acceptable travel time- this

information can increase the likelihood of adjusting departure time.

The travel time and emissions level highly depend on the congestion of the network

which is not deterministic. The travel time for the same route and departure time

can differ for different days of a week, different weeks of a month, or different months

of a year. To capture this dynamics, we seek to understand the behavior of users at

different network conditions and different information provision through observing a

series of travel decision making (i.e., the same trip for a month). Table 1.1 illustrates a

route choice scenario where users are provided with information about trip emissions.

The CO2 emissions are obtained by following EPA guidelines (also see section 3.2.2)

and considering congestion effects.

The route with least emissions (option B) has 17 minutes of travel time, which is

a significant increase from the least travel time route A. Route A is the most attrac-
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Table 1.1.: Route Choice Scenario

Route Travel time Emissions

(minutes) (lbs of CO2 )

A 10 20

B 17 9

B̂ 13 12

tive option to the users in terms of minimizing travel time. An individual does not

necessarily desire higher emissions for the trip, however an increase of 7 minutes of

travel time (option B) may not be acceptable for her. Now, route B̂ has travel time

3 minutes higher than route A, and emissions 3 lbs higher than route B could be a

choice for a user who is willing to minimize emissions within acceptable additional

travel time for the trip. Our hypothesis is that, users will perceive path B as a sig-

nificantly high travel time route and may not switch to it. However route B̂ could

be a choice with acceptable trade-off between travel time and emissions for a certain

group of users. The research questions are as follows:

Q1: What is the likelihood that a user will choose a route with less emissions (not

necessarily the least-emissions route) over the least travel time route?

Q2: How to find the trade-off between emissions and travel time accounting for the

variation of taste across the users?

The trade-off between emissions and travel time is not homogeneous. The trade-off

values will be different for different types of road users. Again for the same person,

an additional 5 minutes may not be acceptable in the morning commute, however

may be acceptable in work-to-home return trip. Therefore, it is necessary to account
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for heterogeneity across individuals in the population and within the same individual

at different trip types.

Table 1.2 shows an example of departure time choice scenario. Assuming flexibility

in the departure time choice an individual can leave earlier or later from her commute

from work to home. Departing at a later time can have the benefits of reduced travel

time because the congestion may become light. Also, the flow becomes smooth as

congestion dissipates and accordingly the speed variations are lower. This results into

lower emissions for the trip [16, 17]. Table 1.2 shows that, delaying the departure time

by five minutes reduces the travel time by one minute, whereas the CO2 emissions

are reduced by 4 lbs. This is because the speed variation becomes smaller (congestion

dissipating vs. congestion free) in the latter case. Considering 20 minutes schedule

delay (difference between preferred and actual departure) may not be acceptable to

all users. Therefore, we also have a trade-off phenomenon in this case.

Table 1.2.: Departure Time Scenario*

Option Departure Travel time Schedule delay Emissions

(minutes) (minutes) (lbs of GHG)

1 5:30 pm 25 15 12

2 5:35 pm 24 20 8

*preferred departure at 5:15 pm

The research questions of interest are:

Q3: What is the likelihood that a user will adjust her departure time to have less

emissions (compared to the least schedule delay option) in the trip?

Q4: How to find the trade-off between schedule delay (departing early or late) and

emissions accounting for the heterogeneity across the users?
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The focus here is on two specific short-term travel decision contexts:

(a) Route choice: (i) Week day morning peak hour home-to-work commute with trip

length ranging from 21 to 29 minutes, (ii) Weekend home based recreational trips

(assuming, travel alternatives available with less emissions compared with least

travel time route)

(b) Departure time choice: Work-to-home trip during afternoon peak hour (assuming

the user has flexibility to adjust departure time)

To conclude, the goals for this research are as follows:

(I) To understand how road users make a trade-off between emissions and travel

time while making a short term travel related decision (route or departure time

choice).

(II) To explore the heterogeneity in trade-off values at different trip contexts (work

vs. non-work) and choice scenarios (route vs. departure time).

(III) To apply the insights from the estimated econometrics models (when emis-

sions related information are provided to users) for designing policies to reduce

emissions from road networks.

1.2.2 Objective-2

The second objective is to develop and analyze a carbon allowance scheme focusing

on personal travel. Recently proposed Personal Carbon Allowance (PCA) schemes

are designed on intrinsic incentives aiming at reduced dependency on fossil fuels and

capping GHG emissions to a certain level [18]. Each eligible individual in the system

gets equal share of carbon units and spends the units for energy consumption for

relevant services. Users can sell the leftover units in a market. Demand and avail-

ability of carbon units determine the unit price in the market. Two key advantages
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of these schemes are: guaranteed level of emissions reduction and revenue neutral

market mechanism. With a similar concept we propose a carbon allowance scheme,

namely the personal mobility carbon allowance (PMCA) scheme that only deals with

the travel activities limited to road transportation. Road users will behave differently

when PMCA or similar systems will be in effect. In addition to travel time, the car-

bon budget will be a significant factor in their travel decisions. The entire perspective

of network modeling and transport planning will be changed.

Now we extend the travel choice problem to the context of PMCA system. Con-

sider the following scenario where users make travel decisions within PMCA system

and the anticipated amount of carbon credits to be charged is available as pre-trip

information.

Table 1.3.: Route Choice Scenario under PMCA system

Route Travel time Carbon credits

(minutes) (units )

A 10 10

B 17 5

C 13 7

However the PMCA system affects the travel behavior in an entirely different

manner due to the existence of carbon market and initial carbon allocation mech-

anism. The users have to buy carbon credits from the market with real money in

case the initial free quota is diminished. At different conditions describing the price

and availability of carbon credits, the decision making process of the users will be

different. The remaining budget, market price of the credits, and pro-environmental

attitudes are few of the influencing factors. Similar scenario can be constructed for

the departure time choice.

The PMCA system describes a market where users can buy and sell carbon credits.

The travel decisions are highly affected by the availability and market price of carbon
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credits in the market. Therefore, it is necessary to explore the dynamics of the market

mechanism and apply the insights to understand the decision making process of the

users.

The specific research goals are as follows:

(I) To develop a carbon allowance scheme for personal travel,

(II) To explore the travel decision making patterns under PMCA scheme,

(III) To understand the impact of carbon market on travel decision making patterns.

1.2.3 Objective-3

The third objective is to formulate and solve dynamic user equilibrium based net-

work models accounting for travel behavior under PMCA scheme. It is important to

investigate the dynamics in user behavior, and to estimate the resulting state of the

traffic networks under PMCA schemes. This dissertation aims to develop method-

ologies that can analyze the transportation network states under tradable schemes

such as PMCA. Our goal is to develop a multi-user class dynamic user equilibrium

model, namely the PMCA-DUE model, incorporating the market based carbon reduc-

tion strategy described as personal mobility carbon allowance scheme. The PMCA

schemes requires a new generalized cost function and corresponding equilibrium con-

dition accounting for the carbon budget and conditions in the carbon market. More-

over, it is necessary to include the effects of initial allocation of carbon credits, value

of travel time, and number of trips in generalized cost function. To conclude the goals

are:

(I) To develop a multi-class dynamic user equilibrium model accounting the for the

travel behavior under personal mobility carbon allowance (PMCA) scheme,

(II) To explore and investigate the flow redistribution (path level) under the PMCA

system accounting for several dimensions of heterogeneity across the users,
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(III) To examine the change in travel costs and carbon consumption at OD, user

class, and path levels under PMCA system at different allocation levels.

1.2.4 Objective-4

The fourth objective is to develop signal control schemes that can reduce emissions

from road networks. The number of stops made near the signalized intersections and

stopped delay due to red light contribute significantly to vehicular emissions in urban

road networks. In 2011, [19] 56 billion lbs of CO2 released into the atmosphere be-

cause of clogged roads. Our system level goal is to design signal control schemes that

can minimize emissions near the signalized intersections. Since traffic environment is

inherently dynamic and changes over time, there is a scope to learn for its elements

(e.g., signal controllers) through interaction with the environment. Later, controllers

can adjust the actions towards a desired state of the system. Among different learn-

ing techniques, reinforcement learning (RL) is one of the widely used sample based

learning techniques applied to solve the traffic control problem. In RL-based schemes,

the agent (i.e., signal controller) learns from the interaction with environment, which

is often modeled as Markov Decision Process (MDP). The key advantages of RL al-

gorithms are: the ability to learn from the environment and scalability in terms of

implementation as no direct optimization is generally involved. The interactive na-

ture of reinforcement learning algorithms requires a communication interface where

the agents (vehicles and controllers) can send and receive information. This also fits

well into the recently developed concept of connected vehicle (CV) environment. The

goals are as follows:

(I) To develop signal control algorithms that can minimize emissions and energy

consumptions in transportation road networks,

(II) To apply learning based technique for traffic signal control that can incorporate

stopped delay and queue size related goals in the reward function,
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(III) To design the algorithms such a way that the benefits (such as information

sharing among signal controllers) of connected vehicle environment can be uti-

lized.

1.2.5 Objective-5

The final objective of this dissertation is to develop a policy evaluation framework

that integrates traffic and emissions simulators. Like any engineering system, the

evaluation of policies is an indispensable part. This research quantifies the emissions

of the system in a rigorous manner to find the effectiveness of both user and system

level strategies (for instance, finding whether the total carbon emissions is reduced

after changing the signal settings of a network). To evaluate all the strategies, one

needs to quantify the emissions from the road network. We aim to develop a frame-

work that integrates traffic and emissions simulator. The traffic simulator can be

any micro-level simulation that provides second-by-second vehicle activity data. The

framework uses EPA developed MOtor Vehicle Emissions Simulator (MOVES) tool

to estimation vehicular emissions. Further, our goal is to develop a link driving sched-

ule finding technique based on similarity based clustering that overcomes the general

limitations of current approaches. The research goals are as follows:

(I) To provide an evaluation framework integrating traffic and emissions simulator,

(II) To develop an efficient technique to find link driving schedules using the tra-

jectories obtained from traffic simulation,

(III) To develop a tool to assess the effectiveness of user and system level strategies

proposed in this dissertation.
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1.3 Contributions

The dissertation has several broader impacts regarding transportation energy pol-

icy and planning literature. The key contributions of this dissertation are as follows:

• Trade-off between emissions and travel time: This dissertation explores

the heterogeneous trade-off between travel time and emissions in different con-

texts of daily travel (e.g., route choice, departure time, and so on) through

econometric models.

• Policy design for green transportation: The insights gained from the col-

lected data and the results of the models can help to design effective policies

accounting for the behavioral heterogeneity across the population.

• Experimental game tool to investigate carbon reduction schemes: This

dissertation develops an experimental game tool to understand the travel deci-

sion making patterns and market mechanism under carbon allowance schemes.

The tool can be used to analyze similar schemes such as carbon tax, mileage

based fees, and emissions credit system.

• Network level traffic equilibrium models This dissertation develops dy-

namic equilibrium models that rigorously analyze the congestion and emissions

level of traffic networks under the personal mobility carbon allowance scheme.

The developed model accounts for multiple user classes characterized based on

value of travel time, income level, relative priority to carbon consumption, and

conditions in the carbon trading market of PMCA.

• Learning based signal control for sustainable mobility: Learning based

signal control schemes aiming at reducing emissions are developed. The algo-

rithms utilizes the communication facility of the connected vehicle environment.

• Integrated traffic-emissions tool: This dissertation provides an integrated

framework to assess effectiveness of user and system level carbon reduction

strategies from road networks.
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1.4 Dissertation organization

The rest of the dissertation is organized as follows: chapter 2 provides a critical

review of the existing literature on effect of emissions related information on travel

choices, tradable systems for road networks, signal control algorithms to reduce emis-

sions, and emissions quantification and monitoring tools. Chapter 3 describes the

econometric modeling approach to estimate the trade-off between emissions and travel

time patterns. Chapter 4 proposes the PMCA scheme and describes an experimental

game approach to collect and analyze the data. Chapter 5 presents the dynamic user

equilibrium model incorporating the travel behavior under PMCA scheme. Chapter

6 develops the signal control schemes aiming at cutting down emissions. Chapter 7

describes the integrated emissions-traffic simulator framework and the link driving

schedule finding technique. Finally, chapter 8 summarizes the findings and contribu-

tions of this dissertation along with future directions.
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CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

This chapter presents critical review of the existing literature relevant to the research

in this dissertation. The goal of this chapter is to position the proposed research in

the current literature in terms of needs and significant contributions.

2.2 Effect of Descriptive Information on Travel Choices

The number of studies aiming at exploring the effect of travel time information

on route and departure time choice through studying the behavioral dynamics is

significant and major studies include (but not limited to) [20],[21], [22],[23], [24],[25].

These works established the fact that travel information can influence the route and

departure time choice decisions of the travelers. Chorus [26] has an excellent review of

the works and major findings. On the other hand, studies to understand the behavior

of travelers when information related to vehicular emissions is available are quite few.

However, there are studies that show the effect of information on pro-environmental

behavior in context of energy and environment.

2.2.1 Information and Pro-environmental Behavior

Schultz et al. [27] reported a residential energy use study in California. 290 house-

holds were given information about their energy use and the average energy use in the

neighborhood households. The households with above average energy consumption

reduced their residential energy use. However, there was also a boomerang effect.

The households with energy use below average actually raise their consumption. To
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counteract the boomerang effect the researchers added injunctive messages: smiley

emoticons for households with below average and frowning emoticons for the house-

holds above average or near average energy consumption. This strategy worked and

the consumption levels were restated.

In the study of Heath and Gifford [28], the cost of bus use was reduced by the

introduction of a universal-pass to university students. Offering the pass assumed

to influence attitudes and perceived behavioral control, and thus intention to change

behavior. The study reported 7% decrease in driving alone while bus use was increased

by 11%.

Taniguchi et al. [29] investigated the effect of traveler feedback programs (TFP) in

Japan. TFPs give travelers (at household level) feedback or feed-forward information

that include, GHG emissions from car use, personalized recommendations on car use,

travel information (e.g., timetables or maps related to alternative travel options for

commuting or shopping) and so on. They reported that TFPs in residential areas of

Japan reduced car use by 7.3% to 19.1% and increased public transport use by 30%

to 68.9% on average. Based on the effectiveness of TFP techniques it was concluded

that goal setting can bring significant changes in travel behavior from car use to more

sustainable transport. Later, Grling and Fuji [30] found similar results in context of

the TFPs and its impact on travel behavior.

In an online article, Thompson [31] reports an experiment with Southern Cal-

ifornia Edison customers aimed at reducing residential energy consumption. They

provided two types of personalized feedback (to different groups). One was timely e-

mails and text messages regarding energy use. The second was an ambient orb, which

was placed in the house and glowed red during high energy use and green during low

energy use. Whereas the former did not lead to significant change in energy use, the

latter led to a 40% reduction during peak periods.

From the studies discussed above we conclude that, providing information can

influence pro-environmental behavior of the individuals.
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2.2.2 Willingness-to-pay for emissions

Findings from various studies also indicate the willingness-to-pay of individuals for

environmental causes. In the study of Ortuzar and Rodrguez [32], a stated preference

ranking experiment is designed to estimate the willingness-to-pay (WTP) for reducing

the amount of atmospheric pollution in a group-based residential location context.

WTPs were derived for reductions in the number of days of alert and hence the amount

of pollutant concentration at a given location. The WTP came out at about 1% of

the family income for reducing one contingence day per year; this is approximately

60% higher than an estimate reported for the city of Edmonton, Canada, but the

average PM10 concentration in Santiago is about six times higher.

Saphores et al. [33] asked households whether or not they were willing to pay

nothing, 1%, 5%, or 10% more for green cell phones and computers relative to con-

ventional. They found the average household is willing to pay only a 1% premium.

Choudhury et al.[34] estimated WTP for a variety of environmental improvement

scenarios and found that while subjects with higher income have a higher willingness

to pay for environmental improvement, this is mostly caused by their lower cost

sensitivity rather than their environmentalism. Achtnicht [35] studied car purchase

behavior in Germany, and from this estimated a willingness to pay of $0.22 per pound

of CO2 savings (Euro 349 per tonne).

We can conclude that, individuals (or households) will be willing to pay for the

sake of environmental causes such as less emissions, green technologies, and so on.

2.2.3 Influence of information

Studies exploring the impact of emissions related information in context of daily

travel choices are few. Gaker et al. [36] designed three computer experiments for un-

dergraduate students (N = 312) of University of California, Berkeley: (a) personalized

information and route choice, (b) social influences and auto ownership, and (c) social

influence, and pedestrian safety. The insights suggest high prospects of using behav-
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ioral economics and great potential for influencing transport behavior. Trip specific

information regarding greenhouse gas emissions has significant likelihood to increase

sustainable behavior. The study quantified the value of green at around $0.24/lb of

greenhouse gas avoided. Making the appropriate unit conversions and estimating a

single value of green by using the data from both experiments, it was found that the

subjects value reducing their environmental impact at $0.24/lb of greenhouse gas.

In a second study, Gaker et al. [37] found that subjects are willing to adjust their

behavior to reduce emissions, exhibiting an average willingness to pay for emissions

reduction, or value of green (VoG), of 15 cents per pound of CO2 saved. Some

conclusions from their study were:

• Individual cannot always process the emissions related information and accord-

ingly the decision process is affected.

• The estimated VoG was consistent across context (the wide range of transport

decisions that we presented) and presentation (e.g., whether the information

was presented in tons or pounds, or whether a social reference point of the

emissions of an average person was provided)

• Heterogeneity across individuals was present in terms of VoG.

2.2.4 Summary

The above discussion identifies several aspects where significant contributions can

be made. Although these studies are among the first few that aim to address the

effect of emissions related information on travel choices. However, scopes exist to

improve and contribute:

• The trade-off between travel time and emissions is not directly addressed.

• Only route choice context is considered, although departure time choice is a

critical dimension of choice.



18

• The heterogeneity across individuals is not addressed and variation in travel

context has not been considered.

2.3 Carbon allowance schemes

2.3.1 Tradable systems

The idea of tradable allowances (or permits) was initially described in Coase

[38]. Dales [39] proposed a system of auctioned property rights for the use of nat-

ural resources and later Montgomery [40] showed its economic efficient properties.

Tradable allowance systems minimize and equalize the marginal cost of compliance

across firms without requiring detail information as the market determines the price

(Tietenberg[41]). Cap and trade schemes are a special form of tradable allowance

systems with an upper limit on total emissions featuring the ability to trade between

the users. A well known example is the US sulfur dioxide allowance trading system

that requires a coal-fired power plant must own or purchase allowances to pollute the

air with SO2 in order to produce electricity.

The European Union Emission Trading Scheme, Chicago Climate Exchange, and

the New England Regional GHG Initiative, Global Warming Solutions Act of 2006

(AB32), and the Kyoto Protocol (Perrels[42]) all apply cap and trade systems to re-

duce GHG emissions. Fleming [43] first proposed personal tradable carbon permits or

domestic tradable quotas (DTQ). Later it was extended to involve all individuals and

organizations ([43], [18]) and termed as Tradable Energy Quotas (TEQs). Starkey

and Anderson [44] at the Tyndall Centre for Climate Change Research evaluated the

feasibility and appropriateness of the DTQ model and identified the potential for

further work. Hillman et al. [45] proposed a domestic carbon rationing and trading

scheme for individuals. Other works include Fawcett [46], Niemeier et al.[47], Ti-

etenberg [41], and so on. Verhoef et al. [48] introduced tradable permits in context
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of road transportation sector. Studies by Kockelman and Kalmanjie [49], Raux[50],

Wadud [51] are some examples of the qualitative research. Studies aiming at rigor-

ous mathematical analysis include (but not limited to) Nagurney and Dhanda [52],

Nagurney [53], Yang and Wang [54], Wang et al. [55], Nie [56], Wang and Yang [57],

Wu et al. [58], and Nie and Yin [59].

2.3.2 Market based approaches

Researchers applied marginal cost pricing (MCP) techniques for emissions pricing

previously. Yin and Lawphongpanich [4] provided pricing schemes that yield a traffic

flow distribution with minimum emissions and also provided a bound on the percent

reduction of the emissions by the charging scheme. Recently [60] analyzes emissions

reduction scheme with tolls and rebates. They proves the existence of non-negative

tolls for acyclic networks even when the link emissions function is not monotone.

Researchers also focused on the environmental issues for road networks through gen-

eralized traffic equilibrium model with emissions standards as the side constraints

[[61], [62], [63]]. Clearly, traditional marginal cost pricing based schemes are investi-

gated by researchers aiming at emissions reduction. Nevertheless, opportunities still

exist to explore the possibility of tradable credit schemes as effective instruments to

reduce emissions and examine the state of transportation network.

2.3.3 Tradable mobility credits

Further, trading schemes are rigorously analyzed as an alternative to tolls on

road links [54, 56, 59, 64]. These studies provide insights on the resulting state of

the transportation systems in terms of flow distribution and travel time. In most

cases, the focus is not on emissions or energy consumption. Only exceptions are the

works by [4, 60] that apply marginal cost pricing technique to determine the exter-

nalities from emissions and by [65] that provides a tradable emissions credit scheme

for transportation network. However, the user behavior patterns are not obtained



20

from experimental settings, rather based on empirical studies or established princi-

ples. Carbon tax is another market based strategy to reduce carbon consumption. A

key criticism of carbon tax is the inability to account for heterogeneity in the popula-

tion [47]. A progressive tax at optimal level theoretically can attain success. However

determining the carbon tax at optimal level requires full information and most cases

it is challenging. Further carbon tax does not encourage the behavioral changes in

the energy consumption behavior (either travel or household) and equity issues arise

more often. An alternative to carbon tax is the personal carbon trading scheme.

2.3.4 Personal carbon allowance

The downstream carbon trading schemes aiming at reduction of GHG emissions

and energy consumptions at household level (travel and utility) [43, 45, 47] are argued

to be successful . One class of these schemes, namely personal carbon allowance

(PCA), is found to be promising by the researchers that can cut down GHG emissions

in a cost effective way [44, 66, 67, 68]. Most existing studies do not focus on personal

travel in depth. For instance, cumulative trips, total vehicle miles traveled, total

expenditure for travel, etc. are considered, however no investigation on changes in

travel behavior is done either at individual or at system level. This research outlines

a personal travel focused carbon allowance scheme, namely the personal mobility

carbon allowance scheme, that can effectively reduce carbon consumption from the

system by influencing travel behavior.

2.3.5 Summary

The above discussions indicate that improvements can be made in several direc-

tions:



21

• The data collection for conceptual tradable credit or carbon allowance system

is challenging. Innovative ways such as developing experimental games can be

a potential directions,

• Only a few studies model the dynamics of the auction market which is an

important element in the scheme,

• Network levels models are not available in the literature that can assess the

impact of carbon allowance schemes for the entire system.

2.4 Signal control schemes with emissions objective

Researchers in the past ([69], [70],[71], [16]) evaluated emissions from the on-road

vehicles for different traffic conditions at signalized intersections . Studies ([72], [6],

[73]) accentuate on the effect of number of stops and driving styles as major factors

of on-road emissions. Traffic signal timing plans directly influence the number of

stops made by the vehicles and also affects the driving style (frequent deceleration or

stopping at all intersections). It is important to devise signal timing plans with emis-

sions minimization objectives, which will also save fuel. Previous studies ([74], [75])

underscore the importance of proper implementation and evaluation of signal control

plans in order to reduce significant amount of GHG emissions and fuel consumption.

Different approaches to optimize signal timing plans to reduce emissions include

(but not limited to) simulation based approach, mathematical optimization, learning

based approaches, coordinated signal network, and so on. Stevanovic et al. [75] inte-

grated VISSIM and CMEM to optimize and evaluate signal control schemes in terms

of fuel consumption and emissions. Park et al. [76] applied stochastic optimization

to find sustainable signal timing plans. Umedu et al. Umedu et al. [77] applied

self-learning techniques to reduce GHG emissions reduction. With the advancements

in the connected vehicle technologies, researchers also deploy and evaluate specific

control algorithms aiming at emissions reduction ([78],[79]).
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The connected vehicle environment offers potential scopes to design signal control

strategies that can yield significant reduction in GHG emissions and fuel consumption

of on-road vehicles for signalized intersections. This dissertation particularly focuses

on the control algorithms that use connected vehicle technologies and aim at reducing

emissions.

2.5 Assessment of strategies

One major goal of this thesis is to quantify the emissions from the network and

evaluate the proposed emissions reduction strategies. For the integration part we

will be using EPA regulated micro-level emissions simulator MOVES2010b. Current

literature has only a few works that put efforts to integrate traffic simulators with

emissions models. In particular, integration between MOVES and traffic simulator

has been attempted by only a few including integration of MOVES with DYNAMEQ

[80], with DYNUS-T [81], and more recently the integration of MOVES with TRAN-

SIM by FHWA. Recent works by Song et al.[82], Xie et al. [83], and Hao et al.[84]

also aim to provide an integrated framework for traffic simulation and emissions es-

timation.

2.6 Summary and conclusions

This chapter presents critical review of literature on key aspects of this thesis:

effect of emissions related information on travel choices, tradable credit systems in the

context of personal transport, and signal optimization approaches to reduce emissions.

The discussions in the earlier sections suggest that,

• Trade-off between travel time and emissions in the context of daily travel choices

(route and departure time choice)still have not been understood and explored

at a significant level
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• Carbon allowance for personal travel has a lot of prospects and requires devel-

opment of analytical models within the frameworks of transportation network

modeling

• Market mechanism (price setting and credit availability) in tradable systems

requires in-depth understanding

• Learning based approaches offers a promising platform to design control schemes

with emissions minimization objectives

• Finally, it is necessary to have an assessment tool to evaluate the strategies.

Accordingly, this dissertation aims to address all these potential gaps in the current

literature and expect to make significant contributions.
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CHAPTER 3. GREEN CHOICES IN TRAVEL ACTIVITIES

3.1 Introduction

Recent advances in information and communications technology (ICT) allow the road

users to obtain, process, and use information in their travel decision making processes.

Providing information related to travel time and emissions for a travel alternative

(e.g., route and departure time choice) can influence the travel decision [20, 21, 37].

Studies show that the travel alternative with least emissions does not always co-

incide with the travel alternative with minimum travel time [6, 12, 13, 15]. The

non-monotone relationship between speed and emissions leads to conflicting travel

time and emissions objectives for the road users [4, 6, 85]. If a user is willing to make

a travel decision that leads to lower emissions compared with the least travel time

route, she may have to travel additional minutes. In the context of route choice, least

emissions route can have excessively high travel time that may not be acceptable to

most travelers. Again, it is possible to have an alternative route that offers less emis-

sions compared with the least emissions route and acceptable travel time compared

with the least travel time route. The notion of acceptable travel time is heterogeneous

and it varies across population and decision contexts. Our particular interest is to

explore the level of acceptability in terms of the trade-off between the travel time and

emissions.

The research goals are discussed in chapter 1 and a literature review is conducted

at section 2.2 in chapter 2. This chapter describes the data collection, methodology,

estimation results, and contributions of this study.



25

3.2 Design of experiments and Data

Experiments are useful tools to collect data when it is challenging to find suitable

data from real world. In our case, we need to observe travel decisions made by

users for similar trips (purpose, length, and time of day) over several weeks. This is

challenging in terms of time, facilitation, and cost. For example, the American Time

Use Survey (ATUS) reports activity only for a single day with details of the trip

decisions and the expenses are quite high. To collect data in an efficient manner we

design web-based experiments using the Qualtrics tool. Experiments are commonly

used to collect data for behavioral and economic analyses [86, 87, 88]. Using students

as subjects often raise questions regarding bias and validity of the results. A recent

study by [89] conclude that students are appropriate subject pool for the study of

social behavior. Their study critically analyzes behavioral data obtained from both

representative sample and self-selected students to reach this conclusion. Please see

section 3.6.2 for further discussion.

We collect data from the Purdue undergraduate students. First, we collect gen-

eral information of the participants that include age, gender, household income, and

general questions about daily travel (e.g., are you willing to use bike for your trip

from the place where you live to work if there is a safe bike route available?). Second,

we present hypothetical daily travel scenarios that include route and departure time

choices. The web-based experiments are carefully designed so that the hypothetical

travel scenarios mimic real world situations. Note that the methodology is based on

stated-preference technique which is one form of experiment [88]. We denote this

as experiment because the participants have to take decisions in carefully designed

repeating contexts instead of single-shot surveys.

Before releasing the web-based experiments to the subjects, we arranged a session

that explains the scenarios.

• We discussed about the congestion on the network (Indianapolis, IN) during

the morning and afternoon rush hours. The purpose was to give the students

an idea of the network conditions who are not familiar with the network. Also,
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we show the maps of the alternative routes (using Google maps) so that they

can visualize the travel scenarios

• We asked questions about work commute. Since the subjects are students,

we presented to them a scenario where they have an internship that requires

morning commute on weekdays. Many undergraduate students do internship at

different engineering firms in summer and have the schedule similar to a regular

worker.

• For each scenario we provided information on: average travel time, emissions,

variation in travel time, and schedule delay (in case of departure time choice).

We describe the methodologies used to compute these attributes. The next few

sections have details.

3.2.1 Travel time and variation in travel time

The origins and destinations in the presented scenarios are real world geographic

locations (see appendix). For instance, we asked to make route choice decision for a

trip from a residential area in Indianapolis, IN to Indiana Department of Transporta-

tion (INDOT) office for a morning home-to-work commute. Travel time information

are based on Google maps, Map Quest, and Bing. The variations are captured using

the time-of-day map in Google maps that shows travel time variation based on the

time of the day.

3.2.2 Quantifying GHG emissions

The emissions are based EPA guidelines and findings from literature. The base

line emissions factor used is 423 g of CO2 per mile. The factor is adjusted based on

the real world travel time profile. Google maps can provide travel time variation on

each link of a network. The distribution of travel time can be used to compute the

time dependent emissions for the links and thereafter the emissions for the routes.
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The travel condition of the network (please see the network in appendix) determines

the speed profiles of the routes. For the same network several scenarios with different

travel time and emissions value (i.e., different congestion levels) were presented in

the experiment. We also follow the work of [16] to consider the effect of speed.

For instance, the emissions rate is significantly different while traveling at 55 mph

compared to 65 mph.

3.2.3 Sample description

After distributing the web-based experiments we had 120 participants for the

study. Each participant has to answer 15 route and 14 departure time choice ques-

tions. The questions are segmented randomly (e.g., few questions on route choice and

then few questions on departure time choices). The study uses 95 observations after

accounting for inconsistent and missing data. Also we have to discard some route

and departure time choice responses due to incomplete information. For instance,

one respondent filled out the demographic information but did not complete all the

questions in the route choice experiment. Finally, we have (95 × 10) or 950 observa-

tions for route choice and (95 × 8) or 760 observations for the departure time choice

scenarios.

In our sample, 98% individuals are licensed drivers. We have male and female

share as 76% and 24% respectively. 45% indicate they do not use the transit service

any time in the week. 35% show preference to use bike for daily commute to work

with the condition of safe bike route. 39% of the participants are from high income

households (defined to have annual income more $90,000).
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3.3 Methodology

Random-parameter models are estimated using the tool NLOGIT. Each partici-

pant makes choices for a series of travel scenarios. The same unobserved attributes

affect the choice making of an individual for repeated travel scenarios. Therefore,

correlations exist in the error terms for same individual making a series of choices.

The random parameter models account for the correlation in the repeated observa-

tions and treats as panel data (i.e., there are 95 groups of observations each can

have 15 route choice scenarios for which the error terms are correlated). Moreover,

the heterogeneity across individuals is accommodated by considering parameters as

random variables. In addition,random-parameter logit models overcome the inherent

limitations of multinomial logit models with fixed parameters.

3.3.1 Random-Parameter Model

We follow the approach as described in [90] and [91] and details can be found in

[92]. Consider a function determining the outcome probabilities of the travel choice

scenarios as:

Zni = βiXni + εni (3.1)

Here, Zni is the propensity function for any individual n chooses the travel al-

ternative (either a route or a departure time) i. Xni is the vector of the observable

characteristics. Xni is the generalized term used for alternative specific attributes

and individual specific attributes.βi is the vector of parameters to be estimated and

εni is the disturbance (error) terms that are extreme value type-I distributed. The

probability can be expressed as (standard multinomial logit):

Pn(i) =
exp(βiXni)∑
i exp(βiXni)

(3.2)
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Now, a model with mixing distribution can be defined for which we can describe

a density function for vector βi. The probability can be expressed as [92]:

P̂n
m

(i) =

∫
X

exp(βiXni)∑
i exp(βiXni)

f(β|π)dβ (3.3)

Now, the probability for K repeated observations for each individual can be ex-

pressed as

Pm
n (i) =

∫
X

K∏
k

exp(βiXni)∑
i∈Ik exp(βiXni)

f(β|π)dβ (3.4)

Note that, Ik is used to account for repeated observations. The probabilities Pm
n (i)

are the weighted average of the standard probabilities where the density function

f(β|π)dβ determines the weights. The model reduces to a standard multinomial logit

model with f(β|π)dβ = 1. Different distributions such as uniform, triangular, weibull,

log-normal or normal can be used to define the density function. Most commonly used

are normal and log-normal distributions to define f(β|π)dβ.

Now the log-likelihood function can be written as [92]:

LL =
N∑
n=1

(
I∑
i=1

δni ln[Pm
n (i)]) (3.5)

Note that δni = 1, when the choice outcome is i for individual n. The mixed logit

probabilities Pm
n (i) are not straightforward to compute and we follow the simulation

approach. Equation 4.5 is referred to as the simulated likelihood function as the

probabilities are approximated by drawing the values from the density function and

averaged to estimate the simulated probability. Simulated probabilities are obtained

through Halton sequence (Halton draws). Existing studies [[93], [94]] suggest using

Halton sequence is efficient in simulatedbased likelihood approach. The estimates

reported here are obtained with 800 Halton draws and the estimates are found to be

consistent.
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3.3.2 Estimating Trade-off

The trade-off between travel time and emissions is computed using the concept of

marginal rates of substitution [92]. If we take the ratio of the estimated coefficients

for travel time and emissions from the random parameter model, it will give us the

marginal rate of substitution between time and emissions. This implies that the

trade-off between the attributes (in our case emissions and time) that keeps the same

value for the defined function as in equation 5.27. Also note that, the trade-off will

be different for different persons and also will be different for the same individual

at different contexts (e.g, work trip vs. non-work trips). The marginal rates of

substitution of time for emissions (minutes per lbs of CO2 ) can be expressed as:

MRSTT,EM =

∂Z
∂(EM)

∂Z
∂(TT )

=
βEM
βTT

(3.6)

3.3.3 Interpreting the trade-off values

The values of trade-off between emissions and travel time can be great importance

in terms of identifying the users with higher pro-environmental attitudes and to design

policies. Consider, the following scenario: route A (25 minutes and 20 lbs of CO2

) and route B (30 minutes and 15 lbs of CO2 ) With all other contributing factors

being the same we can write the propensity function (5.27) as:

Zi = −βTT × TT − βEM × EM + ∆ (3.7)

∆ is the constant term accounting for other factors.

With, βTT = 5 and βEM = 1 (assuming ∆ to be fixed), the choice outcome

functional value for route A will be higher than route B and accordingly will have

the higher probability to be chosen. Now, we have the trade-off as βEM/βTT or 0.2

(similar value as we get from Figure 1). This tells us, for route B if we can reduce the

travel time to 26 minutes it will have same functional value as route A. Therefore,

the probability to choose route B (with less emissions) will be same as route A.
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ZA = (−)5× 25 + (−)1× 20 + ∆ = −145 + ∆

ZB = (−)5× 30 + (−)1× 15 + ∆ = −165 + ∆

If we can reduce travel time for route B to 26 minutes:

Z∗B = (−)5× 26 + (−)1× 15 + ∆ = −145 + ∆

This is how the analysis of trade-off will help us to understand the behavior and

to design policies (e.g., taking measures to improve travel time for route B). One

should note that, the interpretation is highly dependent on the context. We cannot

just substitute any amount of travel time with emissions. The model only tells us

about the trade-off in the travel decision making for the users in the sample for a

particular type of trip (purpose, length, and context).

3.3.4 Statistical testing

Different specifications of the models are tested for goodness-of-fit and also for

transferability of contexts (work vs. non-work trips). The test follows the approach

recommended by [95] using the likelihood ratio statistic. Log likelihood-ratio test is

widely used in the literature [96], [97],[98],[94]. The null hypothesis for the test is

that the restricted model does not have a significantly lower log-likelihood than the

unrestricted model. The test statistic can be calculated using the following equation:

Likelihood ratio test statistic = −2[LL(βRestricted)− LL(βUnrestricted)] (3.8)

This statistic is χ2 distributed with n degrees of freedom which the difference

of estimated parameters in the restricted and unrestricted models. When the test

statistic is higher than the value with n degrees of freedom at specified confidence

level, one can conclude that the null hypothesis can be rejected.
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3.4 Empirical results

Random parameter models are estimated for route and departure time choice

contexts. Further, separate models are estimated for work and non-work trips. The

models assume log-normal distribution for the coefficients of travel time and normal

distribution for all other coefficients. Moreover, the models account for the correlation

across repeated choices considering the fact that the same individual is responding

to several repeated travel choice scenarios. We consider 95 groups(panel data) in the

estimation procedure and for each group the models estimate distinct coefficients.

Next few sections discuss the results from the estimated models. The trade-

offs between emissions and travel time for both route and departure time scenarios

are reported as histograms along with cumulative distribution to demonstrate the

heterogeneity across the individuals in the sample.

3.4.1 Route choice models

Random parameter models are estimated using the responses from 10 route choice

scenarios. Five of these scenarios are home-to-work commute trips in the morning

and the length of the trips ranges from 21 to 29 minutes. The rest five are non-work

trips on a weekend day for recreational purpose. The length of the non-work trips

ranges from 55 to 65 minutes. It should be noted that, non-work trips can take many

different forms and recreational trips represent simply one type of non-work trips.

3.4.2 Work vs. non-work trips

The log likelihood ratio test suggests that the route choice models for work and

non-work trips should be modeled separately. The restricted model is estimated

including all trips (work and non-work) using 950 (10×95 observations) observations.

Now, two separate models are estimated for work trips (5×95 observations) and non-

work trips (5×95 observations). The null hypothesis for the test is that, the restricted
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model (joint model with work and non-work trips) does not have a significantly lower

log-likelihood than the unrestricted models. The test statistic is as follows:

Likelihood ratio test statistic

= −2[LL(βAllTrips)− LL(βWorkTrips)− LL(βNon−workTrips)]

= −2[−905.8 + 436.2 + 460.4] = 18.4

This statistic is χ2 distributed with (18+12-19) or 11 degrees of freedom which the

difference of estimated parameters in the restricted and unrestricted models. From

the χ2 distribution curve we compute the probability and conclude that with 92.3

% (computed form χ2 distribution) confidence interval the null hypothesis can be

rejected. Note that, 95% and 99% confidence intervals are more common in the

literature. However, we reject the null hypothesis at 92.3% confidence interval because

of the intuitive behavioral difference in work and non-work trips. Previous studies

[99, 100, 101, 102, 103] provide evidences of behavioral differences for trips with

different purposes. Based on the test results, this research estimates separate models

for work and non-work trips.

3.4.3 Estimation results: Route choice

Table 3.1 and table 3.2 report the estimates from the route choice model for work

and non-work trips respectively. The model specification include travel time and emis-

sions attributes specific to male, female, individuals who prefer bike for commute, use

transit at least three times a week, and individuals who are from high income (more

than $90,000 per year) households.

Model results (work trips):

For work trips, the coefficients for travel time specific to male and individuals who

prefer bike for commuting are found to be log-normally distributed with statistically

significant standard deviations. Note that the sign of travel time is adjusted to ac-

count for the log-normal distribution. This reflects the intuition that no traveler wants
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to increase her travel time. The p-values for the standard deviations are greater than

0.01. Small sample size (95 observations) can be one of the reasons for having high

p-value. Nevertheless, we keep the same specification because the heterogeneity in

the effects of travel time on route choice (and other travel decisions) is intuitive and

can be found in the literature ([104, 105, 106]).

The coefficients for emissions specific to male, individuals who prefer bike for

commute, and individuals from high income households are found to be normally

distributed. This implies heterogeneity across sample. For instance, the participants

from high-income households have different patterns of route choices when emissions

information is provided. Inputting the mean and standard deviation values in the

Normal curve we find 53% of the participants from high-income households are more

likely to have less emissions in their choice of route and the rest 47% are more like to

choose route with higher emissions (low travel time). Further, we found the coefficient

for variation in travel time to be normally distributed.

Model results (non-work trips):

For non-work trips, we found the coefficients for travel time specific to male individ-

uals to be log-normally distributed. Due to intuition behind heterogeneity in travel

time effects we keep the variable in the specification. The coefficients for emissions

specific to male and female groups are normally distributed with statistically signif-

icant standard deviations. The results for work and non-work trips are similar with

the exception that high-income effect is not found to be significant for emissions.

The next sections report the distribution of trade-off values between emissions

and travel time.
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Table 3.1.: Estimates: Route choice for work commute

Explanatory variable Estimate t-statistic

Alternative specific constant-1 0.811 4.42

Alternative specific constant-2 0.278 1.1

Travel time (in minutes)- if male -0.279 -4.00

(Standard deviation-Log Normal) (0.0623) (1.3)

Travel time (in minutes)- if female -0.243 -2.09

Travel time (in minutes)-

if bike is preferred for daily commute -0.074 -1.88

(Standard deviation-Log Normal) (0.112) (1.44)

Travel time (in minutes)-

if transit is used at least twice a week -0.117 -1.8

Emissions (in lbs of CO2 )- if male -0.183 -6.02

(Standard deviation-Normal) (0.209) (1.76)

Emissions (lbs of CO2 )-

if bike is preferred for daily commute -0.394 -2.88

(Standard deviation-Normal) (0.267) (1.74)

Emissions (in lbs of CO2 )- with high income -0.019 -0.22

(Standard deviation-Normal) (0.210) (1.63)

Variation in travel time -0.126 - 0.78

(Standard deviation-Normal) (0.285) (1.69)

Log likelihood value at zero -461.615

Log likelihood value at convergence -436.2

Number of observations 475 (95 groups)
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Table 3.2.: Estimates: Route choice for non-work

Explanatory variable Estimate t-statistic

Alternative specific constant-1 0.052 0.27

Alternative specific constant-2 0.227 1.6

Travel time (in minutes)- if male -0.18 -4.2

(Standard deviation-Log Normal) (0.123) (1.3)

Travel time (in minutes)- if female -0.179 -2.01

Travel time (in minutes)-

if transit is used at least twice a week -0.059 -1.2

Emissions (in lbs of CO2 )- if male 0.01 0.08

(Standard deviation-Normal) (0.235) (2.91)

Emissions (in lbs of CO2 )- if female 0.045 0.23

(Standard deviation-Normal) (0.347) (2.45)

Emissions (lbs of CO2 )-

if bike is preferred for daily commute -0.207 -2.4

Variation in travel time -0.261 - 2.26

Log likelihood value at zero -484.34

Log likelihood value at convergence -460.4

Number of observations 475 (95 groups)
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3.4.4 Trade-offs in route choice

Figures 1 through 4 show the frequency distribution of trade-offs between travel

time and emissions specific to work trips. Also, we report the cumulative frequency

in the same graph. The estimates from the model are specific to different groups

(e.g., male, female, high income groups). Random parameter models provide distinct

coefficient for each person in the sample. We compute the net effects to quantify the

exact trade-off values for each group of interest. For instance, to compute the net

effects for the male individuals (work trips) in the sample:

βemissionsNet,Male = MaleIndicator × (βemissionsmale + βemissionsbike + βemissionsHighInc. ) (3.9)

The interpretation should be based on the definition in equation 5.27 that de-

scribes the propensity of choosing a particular route. The value of MRS simply indi-

cates the trade-off between attributes to keep the same functional value in propensity

equation (section 3.3.3). For instance, trade-off value of y minutes per lb of CO2

for a person in the sample indicates that, the individual shows preference to travel

additional y minutes for each lb of CO2 emissions reduction for a defined travel

context with the following conditions: (a) Purpose and time: morning home-to-work

trips, (b) mode of transport: personal vehicle, (c) trip length: ranging from 21 to 30

minutes.

3.4.5 Work trips

Findings for work trips indicate that, on average the trade-off value for a female

(1.37 minutes/lb of CO2 ) is higher than that (1.29 minutes/lb of CO2 ) of a male.

In other words, the additional travel time for a lb of CO2 a traveler considers during

route choice decision making is higher for female compared to male (for work trips

with length ranging from 21 to 30 minutes). Further, the average trade-off value for

individuals who prefer bike for daily commute is higher compared to male individuals

and lower compared to female individuals.
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Figure 3.1.: Trade-offs in work trips: Male group

Preference for bike for daily commute does not show increased value for the trade-

off value. Someone willing to use bike for commute may not consider higher (compared

to who do not prefer bike for commute) additional travel time while making a route

choice decision. One interesting finding is that, the average trade-off value for the

individuals from high income (greater than $90,000 per year) is higher compared to

the average values for specific groups male, female, who prefer bike. Participants

from high income households may have exposed to more educational activities that

emphasizes on climate change, energy crisis, and impacts of CO2 emissions on our

lives. Also, the rich people are also believed to have higher social responsibility

in context of environment and sustainability. In our case, the level of education

regarding climate change, social responsibility, and awareness may be the driving

factor for higher trade-off value for participants from high income households.
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Figure 3.2.: Trade-offs in work trips: Female group

Figure 3.3.: Trade-offs in work trips: Bike preference
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Figure 3.4.: Trade-offs: high income households
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Figure 3.5.: Trade-offs in non-work trips: Male group

3.4.6 Non-work trips

Figures 5 through 7 show the frequency distribution of trade-off values for spe-

cific groups in our sample. Similar to work trips, the average trade-off value for a

female(1.38 minutes/lb of CO2 ) is higher compared to a male (1.29/lb of CO2 ).

Further, both values are higher than those found for work trips.

Again, the average trade-off value specific to the group that prefers bike for daily

commute is lower compared to female individuals and higher compared to male indi-

viduals. Again, preference for biking does not necessarily indicate consideration for

additional travel time to have less emissions along the trip.

Observing the values for work and non-work trips, one can see that for non-work

trips participants show preference to travel higher additional minutes for each lb of

CO2 savings along the trip. This is intuitive because non-work trips (referring only

to recreational trips on weekend) are more malleable in terms of travel behavior [103]

and the schedules are more flexible.
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Figure 3.6.: Trade-offs in non-work trips: Female group

Figure 3.7.: Trade-offs in non-work trips: Bike preference
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3.4.7 Summary

Table 3.3.: Trade-off value distributions

Context Trade-off value (minutes per lb of CO2 )

Average Min. Max.

Male (work trips) 1.284 0.43 2.87

Male (non-work trips) 1.298 0.04 3.63

Female (work trips) 1.36 0.367 2.61

Female (non-work trips) 1.38 0.02 3.41

Bikers (work trips) 1.33 0.367 2.87

Bikers (non-work trips) 1.31 0.02 3.40

High Income (work trips) 1.41 0.43 2.77

[36] estimated willingness-to-pay as $ 0.24 per lb of CO2 savings in context of

route choice. The expected wage rate of students in California is about $ 8.00 per

hour. Using these values, the equivalent trade-off is about 1.8 minutes per lb CO2

. Recently, [37] found the average value of green (willingness to pay per lb of GHG

emissions) as 15 cents per lb of CO2 from their analysis using data from undergrad-

uate students in California. Using these values, the equivalent trade-off is about 1.13

minutes per lb CO2 . As we see from table 3.3, the values obtained from our model

are similar to the findings from other researchers.
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3.4.8 Departure time choice models

Random parameter models for departure time choice are estimated for work-to-

home trips during afternoon rush hour. Table 3.4 reports the estimates from the

departure time choice model. Coefficients of travel time specific to male and female

groups, and schedule delay specific to Asian ethnicity are found to be random pa-

rameters with significant standard deviations. The signs of the coefficients indicate

that, on average routes with less travel time and less schedule delay are more prefer-

able. The model also reports the distribution of coefficients for the sample (distinct

parameter for each panel). Coefficients of emissions specific to male individuals is

found to be normally distributed. This implies that for certain portion of the sample

the coefficient is negative and for the rest the coefficient has a positive sign. The

net effects of emissions and travel time for a certain group can be computed using

equation 3.9. In addition, we found coefficients for travel time and emissions specific

to ethnicity, income, and area-grownup to be significant.
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Table 3.4.: Results: departure time choice

Explanatory variable Estimate t-statistic

Alternative specific constant-1 -0.849 -1.79

Alternative specific constant-2 -0.129 -0.766

Travel time (in minutes)- if male -0.151 -3.55

(Standard deviation-log normal) (0.119) (2.5)

Travel time (in minutes)- if female -0.535 -1.59

(Standard deviation-log normal) (0.235) (2.83)

Travel time (in minutes)- if grown up in suburb -0.114 -2.43

Travel time (in minutes)- Asian ethnicity -0.365 -4.35

Travel time (in minutes)- Caucasian ethnicity -0.150 -2.83

Emissions (in lbs of CO2 )- if male

mean (normal distribution) -0.092 -0.805

Standard deviation 0.271 7.06

Emissions (in lbs of CO2 )- if female -0.226 -2.03

Travel time- if grown up in suburb -0.114 -2.44

Travel time- if Asian -0.347 -4.34

Emissions- if white -0.187 -1.65

Emissions- if bike is preferred -0.164 -1.57

Schedule delay (in minutes)- high income group -0.025 - 1.97

Schedule delay (in minutes)- if bike is preferred -0.041 - 1.97

Schedule delay (in minutes)- if white -0.045 - 3.29

Schedule delay (in minutes) - if Asian

mean (normal distribution) -0.067 -1.7

Standard deviation 0.071 3.1

Log likelihood value at zero -834.945

Log likelihood value at convergence -672.461

McFadden Pseudo ρ2 0.195

Number of observations 760 (95 groups)
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3.4.9 Trade-offs in departure time choices

Figures 3.8, 3.9,and 3.10 show the distribution of trade-offs between schedule delay

and emissions. Schedule delay is defined as the amount of time a person adjusts by

departing early or late for the destination (see table 1.2). The trade-off values exclude

the effects of travel time. Results indicate that the trade-off values are higher than

those found for route choice contexts. This implies that an individual, with similar

attributes as in our sample, is more likely to consider higher additional minutes when

adjusting departure time compared with altering route choices. Further, the average

trade-off value is higher for male individuals compared to female. Similar to the case of

route choice scenario, the trade-off value for the individuals, who show preference for

bike to commute to work, is lower than the average value (male and female groups).

Also, we observe a hike around the trade-off value around the range 3.75 minutes

per lb for female group. The number of female individuals is relatively small (about

30%) in our sample. This may cause less variation in the trade-off values. For male

group,the trade-off values constitute a large share ranging from 3.75 to 5 minutes per

lb of CO2 . Similar trend is found for the trade-off distribution for the group-who

prefer bike for commute to work. Table 3.5 summarizes the results.

Table 3.5.: Trade-off value distributions

Context Trade-off value (minutes per lb of CO2 )

Average Min. Max.

Male 3.82 1.78 7.8

Female 3.71 2.34 4.55

Bikers 3.65 1.78 5.61



47

Figure 3.8.: Trade-offs in departure time choice: Male group

Figure 3.9.: Trade-offs in departure time choice: Female group
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Figure 3.10.: Trade-offs in departure time choice: Bike preference
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3.5 Policy implications

3.5.1 Provision of information

This research shows that providing emissions related information can influence the

travel decisions and accordingly can lead to significant reduction of CO2 emissions. To

demonstrate, we apply the estimates from the models (section 7.5) and approximately

quantify the savings in terms of CO2 emissions. We must acknowledge that, this is

an approximation of the CO2 emissions without accounting for the transferability

issues. With our assumptions (justified by the census data), we demonstrate possible

reduction in emissions when information regarding emissions for the trip are provided

to the users.

At the beginning of the experiment, participants were asked to make travel choices

when information about the emissions along the trip is not available. Later, we pre-

sented the hypothetical travel scenarios (as described earlier in section 3.2) before the

participants with emissions information. The estimated random parameter models

(section 7.5) that provide us with the most likely outcome in terms of travel decisions

when emissions related information are available.

Table 3.6.: Effect of providing emissions information*

Information Route-1 Route-2 Route-3

on emissions Share Share Share

NO 92% 8 % 0

YES 86 % 5 % 9 %

(work trips)

YES 78 % 3 % 19%

(non-work trips)

∗Route-1: Least travel time with highest emissions
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Route-2: Moderate travel time with moderate emissions

Route-3: Highest travel time with least emissions

3.5.2 Savings in terms of emissions

Now, we provide an example to demonstrate how much emissions can be reduced

for the network. Our collected sample has two unique attributes:

1. Participants are within the age group ranging from 20 to 24 years.

2. The education level is near bachelor’s degree in civil engineering.

Purdue University is located in the Tippecanoe county, West Lafayette, Indiana

and the American community survey (ACS) provides the data regarding work trips

made by the individuals within the age group ranging from 20 to 24 years and with

a bachelor’s degree. We must acknowledge that, this is a strong assumption that the

travel choice making pattern will be similar. Nevertheless, this is only for demonstra-

tion purpose to show the benefits of providing emissions related information to the

travelers.

We find the work trips made by the individuals from the 2012 ACS survey data

with the following attributes:

• age group ranging from 20 to 24 years (about 22% of all work trips)

• either with college or associate degree, or bachelor’s degree and mode of trans-

portation to work can be car, truck or van (about 45 % of all work trips)

• commute time ranging from 21 to 29 minutes (about 25% of all work trips)

According to 2012 ACS survey, the estimated number of daily work trips is 83,434

in Tippecanoe county. Now, the number of work trips meeting the above criteria is

about 2300 trips per day. In consistent with our travel choice scenarios depicted in

our experiment, we assume switching from least travel time route to least emissions
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(highest travel time) route saves 5 lbs of CO2 emissions on average and switching

from least travel time to moderate travel time (moderate emissions) route saves 2.5 lbs

of CO2 emissions on average. With these assumptions the following table reports the

quantity of CO2 emissions that can be reduced when emissions related information

are available for work trips.
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Table 3.7.: Impact of information: city level

Total work trips 2300 per day

Information Route-1 Route-2 Route-3

on emissions Share Share Share

NO 2116 184 0

(work trips)

Base Case emissions+ 40940 lbs CO2

YES 1978 115 207

(work trips)

Daily savings (115× 2.5) (207× 5)

(Morning commute only) or, 287.5 lbs or, 1035 lbs

Total weekly savings 6612.5 lbs CO2 (16.15 % reduction

(Morning commute only) from base case)

Total Annual∗ savings

(Morning commute only) 167.3 tons CO2

+Assume, 18 lbs of CO2 on average for the route with least travel time

*Assume, 253 working days in a year.

With changes in the route choice behavior when emissions related information

is available, the network may reach a different equilibrium over time. The direct

analogy is the emissions pricing problem where we impose emissions based tolls or

credit based pricing, and a new equilibrium (desired) is established [4, 65]. Network

equilibrium models [107, 108] can be formulated with generalized cost structure and

perception variance when real-time information (either travel time or emissions, or

both) is available to the road users. The notion of trade-off will be more prominent

when we integrate the route choice models and network equilibrium models.
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3.5.3 Improvement of travel time

The trade-off values between emissions and travel time can help to design travel

time improvement schemes that lead to significant emissions reduction. Note that,

the trade-off values are specific to the context that includes (but not limited to):

a) trip duration, purpose, and time of day (e.g., short work trip in the morning),

b) population mix (e.g., proportion of white and blue collar workers, students, and

so on), c) Travel decision scenario (route vs. departure time choice). Further, the

availability of alternative travel options and the difference between the least and

highest emissions travel options should be accounted for before applying the results

from the models.

The results from our estimated model provides insights only for a specific context.

The results provide us with a distribution of the trade-off values in the sample. Now,

we examine the effect of travel time reduction on route choice decisions. In context of

work trips, we keep the same emissions level for the routes and decrease the travel time

of the least emissions route to observe the resulting market share. The trade-off values

between emissions and travel time help us to decide how much travel time reduction

would be effective for this particular context (e.g., the difference in emissions and

travel time between the least and highest emissions travel alternatives).

Table 3.8.: Effect of reducing travel time: Work trips

Travel time reduction Route-1 Route-2 Route-3

(in minutes) Share Share Share

No change 51% 31% 18%

0.5 49 % 29 % 22%

0.75 48.38 % 28 % 23.58%

1.0 47.6 % 26.9 % 25.5%

2.0 44 % 22 % 34%

3.0 39.5 % 17.3 % 43.2%



54

∗Route-1: Least travel time with highest emissions

Route-2: Moderate travel time with moderate emissions

Route-3: Highest travel time with least emissions

Table 3.7 reports the outcome of the scenarios. We reduce the travel time for

the least emissions path by values ranging from 0.5 to 3.0 minutes and simulate the

probabilities using the results from our estimated models.

3.5.4 Policies for heterogeneous population

Our results indicate that trade-off between emissions and travel time vary across

the population. Even the same individual can have different trade-off values at differ-

ent travel scenarios (route vs. departure time). Therefore, the policies that encourage

travel behavior leading to less emissions for the network (similar to scenarios explained

in this research) should account for the heterogeneity. For instance, for particular con-

text if the trade-off values are too small, even a big improvement in travel may not

bring a significant reduction in emissions. Likewise, different groups of people have

different trade-off values and accordingly one need to consider the population mix

before consideration of any scheme.

3.5.5 Flexibility in departure time

Figures 3.8 3.9, 3.10 and table 3.5 indicate that users are willing to adjust de-

parture times for their work to home commute trips. Moreover, the average values

are higher compared to route choice context. Policies allowing for higher flexibility

in terms of departure time from work can help to reduce emissions. Many employ-

ers (e.g., Sun Microsystems, BestBuy, PNC Financials) are interested to give flexible

schedule to the workers where they can set the start and end time of their weekday

work and allow telecommuting(http://www.careerbuilder.com)
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3.5.6 Integrated agent based simulation

The estimated models for route and departure time choice provide us with the

probabilities for travel options at specific context. These probability values can be

integrated with an agent based simulation that can serve as an effective policy tool.

The random parameter models provide choice probabilities for each individual in

the sample and can be integrated to the route choice rules in an agent based traffic

simulation.

3.6 Concluding remarks

This study motivates the analysis of trade-off between emissions and travel time

at different contexts of daily travel, describes a mixed logit based framework that

accounts for heterogeneity across the sample, and completes the study with a sample

collected from Purdue undergraduate students. Random parameter models account-

ing for correlation across repeated observations are estimated to find the trade-off

between emissions and travel. The empirical results show that trade-off values are dif-

ferent for route (home-to-work morning commute) and departure time (work-to-home

afternoon commute) choice contexts. Further, the log likelihood ratio test suggests

different models for work and non-work (weekend recreational trip, in our case) travel

decisions. Further, the trade-off values for route choice contexts estimated from our

models are similar as found by [36] and [37].

3.6.1 Key findings

The findings are limited to the scope of the data and travel contexts (purpose,

length, and type of trips) we have analyzed. Key findings from the empirical results

are as follows:

(a) Female individuals consider higher additional travel time (compared to available

alternatives with lower travel time and higher emissions) per lb of GHG emissions

in route choice contexts compared to male individuals. Findings are similar for
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work and non-work trips (table 3.3). However, for departure time context we see

the opposite trend. This research analyzes only few travel choice contexts and

accordingly a general conclusion cannot be made.

(b) For the route choice contexts, the average additional minutes the participants

from high income households (annual income greater than $90,000) are willing

to consider is higher than average value in the sample. Level of awareness and

exposure to education related to climate change can be the driving factors behind

this. In addition, this also indicates to the notion of higher social responsibility

of rich people in general.

(c) One interesting finding is that, the average additional minutes per lb of CO2

emissions for the group of participants who prefer bike for daily commute (when

a safe bike route with convenient length is available) is lower than the average

value in the sample. Preference to bike is often considered as an indicator of

pro-environmental attitude. Our results show that, preference to bike does not

necessarily mean pro-environmental attitude in the context of trade-off between

emissions and travel time.

(d) Our study indicates that, the additional travel time per lb of CO2 emissions

individuals consider in departure time context is higher compared to route choice

contexts. This has an important policy implication in terms of flexibility provided

by the employer(section 3.5).

(e) Providing emissions related information prior to daily travel decisions can lead

to significant emissions reduction. We do not generalize the results from our

study. However, the framework and methodologies can be readily transferred to

any travel context for a different population mix.

3.6.2 Limitations and future work
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The study is has few limitations. First, use of sample that includes only students

limits the scope of estimated models in terms of generalization and transferability.

The insights are only valid for certain population group with characteristics similar

to the student sample. However analyses can be done after characterizing population

groups by the selected sample attributes. Further data collection is required for a

comprehensive analysis for a city or geographic region. Also, the participants made

choices in a lab setting and the impact of time or money constraints is minimal.

To address this issue, we have designed the experiments incorporating real world

network, travel time variations, and emissions estimation (see screen shots in the

appendix). Finally, the conclusions are not directly transferable to policy making

for general population of traffic users. However the results help us to understand

the impact of providing information about emissions to travelers. The distribution

of trade-off values indicate heterogeneity exists in willingness to consider additional

travel time to save emissions. This can serve as a basis for designing policies that

motivate individual to save emissions.

Student samples are often characterized with selectivity bias. A recent study by

[89] indicates that self-selected students are appropriate for behavioral experiments

with least bias. We plan to collect data to obtain a larger and representative sample

in near future.

Second, we only consider three travel choice scenarios. It would be useful to collect

data for additional travel contexts (i.e., range of travel activities along the day) and

analyze the trade-off values.

Third, we consider route and departure time choice separately, however studies

[23, 109] suggest it is important to consider the coupled choice of departure time and

route choice. As a future extension, we plan to collect data and estimate joint choice

models.

Nevertheless, this research is one of the first studies focusing on the trade-off be-

tween emissions and travel time using econometric models. The framework can be

transferable for any particular study for general road networks. We demonstrate the
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use of trade-off values in terms of finding effective policies that can help to reduce

emissions from transportation network (section 3.5). To conclude, this research con-

tributes to find effective policies for emissions reduction from road transport (e.g.,

information provision, flexible departure time), to assess the policies (e.g., what-of

scenario with travel time improvement), and to explore the inherent heterogeneity in

terms of pro-environmental behavior (trade-off as minutes per lb of CO2 emissions)

across the users of transportation network.
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CHAPTER 4. CARBON ALLOWANCE FOR TRAVEL

4.1 Introduction

This chapter proposes personal mobility carbon allowance scheme, collects the data

using an on-line experimental game, and analyzes data with econometric models. We

propose personal mobility carbon allowance (PMCA) scheme that allocates carbon

credits to users at no cost based on the emissions reduction goal of the system. Users

can spend carbon credits for travel and a market place exists where users can buy

or sell credits. To understand this process, a real-time experimental game tool is

developed where players are asked to make travel decisions within the carbon budget

set by PMCA and they are allowed to trade carbon credits in a market modeled as

a double auction game. Random parameter models are estimated to examine the

impact of PMCA on short-term travel decisions.

The downstream carbon trading schemes aiming at reduction of GHG emissions

and energy consumptions at household level (travel and utility) [43, 45, 47] are argued

to be successful . One class of these schemes, namely the personal carbon allowance

(PCA), focuses on cutting down household level carbon consumptions [44, 66, 67, 68].

Two key advantages of PCA schemes are: emissions reduction target and revenue

neutrality. Moreover these policies are identified as soft policies because no restriction

on personal mobility is imposed directly. The idea presented here is conceptually

similar to the Tradable Energy Quotas (TEQs) [18] with the key difference that our

focus is only on personal travel and we study at a finer level of travel behavior rather

than aggregate trips or vehicles-miles-traveled measures.
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Figure 4.1.: Overview of the PMCA scheme

4.1.1 Personal Mobility Carbon Allowance (PMCA)

PMCA scheme allocates each eligible (e.g., all taxpayers) household within the

system boundary a fixed number of carbon credits to spend for travel activities at

no cost. The allocation interval can be each week or each month depending on

the scope of the system. Figure 4.1 describes all elements of a PMCA scheme that

include: distribution authority, travelers (users), carbon market, and the collective

travel patterns that decide the transportation network state in terms of congestion

and emissions.

The government or an authority regulates the distribution. A third party energy

committee decides the total carbon cap for the system. The carbon cap changes
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each year. For instance, the cap can be set to have 2%, 5%, 7% carbon reduction

from the base case for the consecutive three years. The carbon credits can be spent

to purchase any form of energy or fuel sources required for personal transportation.

Transit systems and air travel can be considered separately. The air fare and transit

pass can include the carbon cost for users. A carbon rating system sets the carbon

credit cost based on the carbon contents of the energy sources. For instance, refueling

at gas station and recharging the battery of an electric vehicle both will cost carbon

credits. Further, a carbon market exists where households can sell (surplus) or buy

(additional) carbon credits. The demand and trading patterns determine the price of

unit carbon credit.

Under PMCA scheme the road users consider the carbon cost in addition to travel

cost associated with the travel alternative (e.g., route and departure time choice)

. The travel decisions are influenced by the carbon budget and the current price

of unit carbon credit. It is intuitive that the decision making process will not be

homogeneous. Users with different values of travel time are likely to have different

patterns of travel behavior.

4.1.2 Research goals

Section 2.3 in chapter 2 has a discussion on the relevant works in the literature and

the general research goals are described in section 1.2.2. This research aims to address

the limitations of previous studies relevant to carbon allowance and trading schemes.

Existing works [51, 110, 111, 112] have explored different aspects of household level

carbon trading schemes qualitatively. The scope of most of these studies are limited

to aggregate level analysis of behavioral change and they do not capture the changes

in travel decisions or patterns at household or individual level. Additionally, the data

used are obtained in the form of either opinions or responses from questionnaire based

surveys [113, 114, 115].
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Further, a key limitation of these approaches is the absence of the carbon market.

Modeling carbon market requires interaction among all individuals (households) in

the market and questionnaire based settings are not able to do that. This is im-

portant because the trading behavior determines the price of carbon credit in the

market. The price affects the travel decisions. Assuming a fixed carbon price will

not be appropriate to investigate the evolving travel patterns under household level

carbon schemes. Finally, the resulting travel patterns are not analyzed rigorously

with behavioral models based on econometrics.

Major goals of this research are as follows:

(a) To develop and design an interactive experimental tool with integrated trading

market to collect data for PMCA scheme,

(b) To estimate cost functions accounting for heterogeneity in the users, and to inves-

tigate the influence of carbon credit cost and market conditions on travel decision

making,

(c) To investigate the patterns of unit price of carbon credit,and to explore the asks-

bids patterns in the trading market.

4.2 Why experimental games?

Understanding PMCA scheme requires observations from real world systems where

the scheme is being implemented and the evolved travel and market behavior can

be observed. Personal carbon allowance schemes are relatively new and no effec-

tive implementation at household level can be found to the best of the authors’

knowledge. The only carbon trading study we are aware of is the carbon health

evaluation project in Norfolk Island which lies in the Pacific Ocean between Aus-

tralia, New Zealand and New Caledonia. This is the world’s first carbon trading pilot

project conducted by Southern Cross University in a closed system island environ-
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ment(http://www.norfolkislandcarbonhealthevaluation.com/). Collecting real world

data is challenging and expensive both in terms of money and time.

An alternative to the collection of the real-world data is conducting laboratory

experiments with human subjects. In the experiment, a group of participants interact

with each other in a controlled environment. The incentives for specific actions are

designed in such a way that one can investigate the evolution of certain behavior

patterns at individual and collective level. Note that laboratory experiments do

not require any prior assumptions on the behavior of the participants. Rather the

behavior patterns are observed and analyzed from the experimental data.

Experimental economics offers a suitable way to collect field data for behavioral

analysis. Nobel Laureate Vernon Smith first emphasized on the applicability of well

designed experiments to analyze theories involving human behavior and market in-

teractions [116]. The experiments can be run with a controlled, uniform group of

subjects. The utility (cost) functions that are imposed upon the subjects allow for

heterogeneity among the subjects. The basic unit of analysis for PMCA is a house-

hold. For example, in the context of a PMCA scheme, we will allow some subjects

have a higher value of time and a higher trip demand, which would lead to a higher

demand for personal carbon credits and other subjects (say blue collar workers) who

make mandatory trips due to their work situation. Our analysis puts focus on qual-

itative rather than quantitative results, i.e., trends and patterns in the data that

allow behavioral characterization rather than absolute magnitudes. An experiment

will likely not be able to tell us that a given scheme can lower energy use by 35%,

more realistically; it will tell us that imposing a certain scheme will lead to lower

energy use, a relative sense of the savings across different populations and how they

impact differentially among different user groups. Though it may not be perfect, it

provides the only reasonable way to analyze the effect of untested schemes such as

PMCA on a given population.

The incentive for the game is designed so that the primary objective of the players

is to minimize travel cost within the carbon budget. At the same time the players
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get additional points from buying and selling in the markets. This is to replicate the

behavior of the road users (households) under PMCA scheme. Since subjects’ choices

are incentivized, it expected that they will make choices with the goal of maximizing

points they earn in the experiment. For each player the cost function and travel

demand will be different based on the assigned group. This points to an important

feature of experimental economics. Since the subject pool will likely be a homogeneous

set of students, the only way that we can study behavior of a heterogeneous population

is by imposing specific utility (cost) functions on the subjects. For example, subject A

may have a value of time ζAj = 10 for trip j while subject B only has a value of time

ζBj = 2 for trip j. Though the individual subjects may be identical, we have imposed

utility functions on them such that individual A values time more than individual

B. Because of these different utility functions, we are able to study heterogeneous

groups. To impose heterogeneity, we will have different types (or income levels) of

subjects. Different types of subjects will vary in three different ways: their initial

level of money, their value of time, and the number of trips they make per week.

The next few sections describe the experimental setup,and details of the game

interface development for travel choices, and the double auction framework.

4.3 Description of the experimental game

The experimental game comprises making choices for daily trips and participation

in a double-auction based carbon credit market. The trip decision segment involves

making route and departure time choices with available information on travel cost,

carbon credit cost, and travel time variation (figure 4.2). The temporal horizon of the

game depends on the scope of the problem. This study collects data for a five week

horizon. A player makes travel choices on each week based on available information.

Each player starts the game with certain amount of carbon credits and money. After

making a travel decision, the corresponding carbon credits are deducted from the

player’s carbon account (figure 4.2). The available money can be used to buy credits
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Figure 4.2.: Route choice segment of the game

in the market. While making a decision players can see the remaining carbon credits

and remaining money to buy credits from the market (figure 4.2). After making all

travel choices for the week, all players enter in a double-auction based market. The

market allows the players to buy and sell credits. The unused credits are rolled over

and each player gets new credits before making choices for the next week.

4.4 Game design

This section describes different features and design aspects of the experiment

that include initial carbon allocation, design of travel choice scenarios, travel cost

functions, and mechanism of double-auction market.

4.4.1 Initial allocation

To set the initial allocation of carbon credits, we follow the target-based approach

that sets goal to reduce GHG emissions from baseline (existing state). The analysis
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of the test network with associated conditions such as demand, multiple user groups,

and route availability provides us with the baseline GHG emissions for the system.

The baseline emissions can be converted into equivalent number of carbon credits.

For instance, we set a goal to reduce the emissions by 10% (choice by policy maker)

and distribute the equivalent carbon credits among all users.

4.4.2 Travel decision scenarios

We designed the travel choice scenarios for the bi-directional Sioux-Falls network.

Sioux-Falls is located in South Dakota, USA. Using Google maps, the initial travel

time values are obtained. The travel time values between different origin-destination

pairs were systematically varied to reflect varying congestion states. The experiment

presents travel scenarios on three basic types: work, non-work(grocery), and recre-

ational trips. Non-work trips constitute a large set with numerous specific purposes

and we Only consider grocery trips because of its higher frequency in the daily trip

decisions. Ideally, the experiments should be conducted with all trip purposes. How-

ever conducting an experiment including all trip types and with a time horizon of

four weeks requires more than 2 hours. It is challenging to find participant with a

time commitment more than 2 hours.

4.4.3 Trip demand and value of time

Number of trips for user groups representing different income levels are obtained

from the 2009 National Household Travel Survey data and are listed in table 5.1.

The income brackets are modified so that there are five groups and the number of

weekly trips are determined from the survey data. The experiments in this study

have players representing three income groups.

To account for the heterogeneity in travel cost for each income class we use the

value of travel time (VOTT) for trips specific to purpose. The VOTT values are

obtained from the guidelines provided by FHWA [117]. For the ease of conduct-
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ing experiments, the number of total trips are proportioned with the same relative

difference among the groups.

Table 4.1.: User group definition

User Income Work VOT Grocery VOT Rec. VOT

Group Range Trips Trips Trips

Group-1 $20,000 - $39,999 4 7.2 7 5.8 3 6.1

Group-2 $40,000 - $59,999 6 12.0 8 9.6 4 10.2

Group-3 $60,000 - $99,999 7 18.0 10 14.4 5 15.3

4.4.4 Market: double auction mechanism

Carbon market plays an important role in the PMCA scheme. At the beginning

of the game each player receives a fixed amount of money that can be spent to buy

carbon credits. The players collectively participate in a market where they can buy

or sell their carbon credits. The market takes the form of a double-auction where

players can post bids (offers to buy) and asks (offers to sell).

Double auction mechanism ([116]) is commonly used in market experiments in

context of experimental economics. Studies confirm that convergence using double

auction mechanism occurs quickly in a variety of environments, even with very few

traders in the market [118]. For a more detailed survey on the history of double

auction experiments in economics see [119]. In a double auction market buyers post

bids and sellers post asks, which are all listed publicly in order. Each time a player

submits a bid or an ask, it will be added to a queue of offers, the most competitive

(highest bids and lowest asks) will be shown to all players (figure 4.3). If a bid (or ask)

is submitted that is higher (lower) than the lowest ask (highest bid) A transaction

takes place when a buyer is willing to pay the price equal or more than the ask listed

top in the ask table.
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Figure 4.3.: Market (double auction) segment of the game
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The transaction takes place in units. A buyer does not have to buy all the units

a seller offers with a particular ask. After the transaction the money and carbon

credits balance are adjusted for the buyer and the seller. The transaction price is also

shown to all users through the transaction table (figure 4.3). The duration of market

segment depends on the state of the game. At early weeks when players are just

participating in the market for first time we use a higher duration (e.g., 7 minutes)

and later a smaller duration (e.g., 3 minutes) is used. All remaining carbon credits

and money will carry over to the next session.

4.5 Development of game

The game is developed using Python language. With compiled binaries and re-

quired dynamic libraries, one can run the game in machines running on Windows,

Linux, and MacOs. The game application has two parts: client and sever. The play-

ers interact (travel choices and auction) in client part. The server part communicates

(bi-directional) with all players. For example, each client sends the server information

on bids and asks. The server processes the queues of bids and asks, and broadcasts

the bid and ask tables to all the clients (i.e., the players). TCP-IP protocols are used

to facilitate communication between the server and a client.

4.5.1 Interface design

The interface is designed using PyQt4 and TKInter library. PyQt is commonly

used to develop interface for cellphone, tablets, and general applications. PyQt4

allows to convert the code to a standalone application. We keep the development

framework flexible so that the same module can be used for similar problems in the

future.
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Figure 4.4.: Interaction between server and client modules

4.5.2 Real-time interaction using TCP-IP

The communications between the server and the client(s) is facilitated using TCP-

IP protocol. the SocketServer and Socket libraries are used. To allow for faster

communication and least packet drop, we run the sessions in private LAN network.

Figure 4.4 shows the interactions between the server and client(s).

4.6 Data collection

The game participants were graduate students of Purdue University. A brief

description of the personal mobility carbon allowance scheme is provided to all par-

ticipants before starting the game. The rules of the auction are explained. Further,

we conduct a demo session where each player learns how to make travel choices and
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how to participate in the market. This is done to make sure that each player knows

all the rules. Two types of incentives were provided to the players. First, lunch is

provided for each session. Second, winner from each group is offered a 25$ gift card.

The experiments were conducted on multiple days and each day has three or

more sessions. A participant can attend one or more sessions. We have at least nine

players for each session. This is important because the market would not have a

realistic presentation with fewer participants. The highest number of players of a

session was 15. Multiple sessions were conducted on five days. However, not all data

are used for the model estimation. The data used from the sessions where players

have already participated at least in two sessions prior to this session. This is to

ensure that the players are familiar with rules and they possibly have learned how to

manage carbon budget optimally.

4.7 Methodology

Using the data obtained from the experiments, we estimate the parameters of

the (dis)utility or generalized functions of travel cost accounting for heterogeneity

across user groups in the system. Mixed logit (random parameter) models are used

to estimate parameters of utility functions describing decision making process [90, 91,

92]. Each utility function is specific to a user group characterized based on income

level, value of travel time, and number of trips made. Further characterization is made

based on trip purpose (e.g., work vs. non-work trips), congestion level, and carbon

credit allocation in the scheme. Denote, Ψi,m as the generalized (dis)utility function

(or the generalized cost of travel) for an individual i choosing the travel alternative

(combination of departure time and route) m in one of her trip making instances.

For simplicity, we present the formulation for a specific trip purpose, congestion level,

initial credit allocation and for a specific user group. Accordingly, the notations that

characterize the user group, congestion level, and carbon credit allocation are omitted.
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Now, Xi,m is the generalized vector for observed attributes specific to the alternative

and the individual making the choice.

Ψi,m = βmXi,m + ζi,m (4.1)

βm is the vector of parameters to be estimated and ζi,m is the error terms that

are extreme value type-I distributed. For any travel decision instance we observe

the following attributes: TTm: the travel time associated with option m : {r, t},

CCm: the carbon cost in terms of units of credits associated with option m, RBi:

remaining carbon credits for individual i prior to making decision, Hi: available

money for individual i to purchase carbon credits from the market. Incorporating

these attributes, the utility function can be written as:

Ψi,m = βTTm TTm + βCCm CCm + βRBm RBi + βHmHi + ζi,m (4.2)

Now a model with mixing distribution is defined for which we describe a density

function f(β|ξ) with parameters βm. ξ vector of parameters of the density function

(mean and variance). The probability that individual i chooses option m is expressed

as [92]:

P̂i(m) =

∫
X

exp(βmXi,m)∑
m exp(βmXi,m)

f(β|ξ)dβ (4.3)

Since the players make decisions for similar trips for several weeks, we have re-

peated observations. The probability for K repeated observations for each individual

is

Pi(m) =

∫
X

K∏
k

exp(βmXi,m)∑
m∈Mk exp(βmXi,m)

f(β|ξ)dβ (4.4)

Note that, Mk is the set that contains repeated observations. The probabili-

ties Pi(m) are the weighted average of the standard probabilities where the density



73

function f(β|ξ)dβ determines the weights. Different distributions such as uniform,

triangular, weibull, log-normal or normal will be used to define the density function.

Most commonly used are normal and log-normal distributions to define f(β|ξ)dβ.

Now the log-likelihood function is:

LL =
I∑
i=1

(
M∑
m=1

δi,m ln[Pi(m)]) (4.5)

Note that δi,m = 1, when the choice outcome is m for individual i. The mixed

logit probabilities Pi(m) are not straightforward to compute. Simulated likelihood

functions are approximated by drawing the values from the density function and

averaged to estimate the simulated probability [92, 93] This models provide us with

the estimates for βTTm , βCCm , βRBm and βHm for each group specific to trip type, demand

level, and initial credit allocation. The estimates from this behavioral model will be

used to integrate with PMCA based dynamic traffic equilibrium model which is the

focus of the next section.

4.8 General observations

Experiments with different settings show some interesting findings of the PMCA

scheme. We vary the number of players for each group for different sessions. With

fewer players in the Group-1 (low travel demand) the number of credits available for

buying went down in the market. Although the players from Group-3 offered very

high price to buy credits, very few credits were available to purchase in the market.

After investigating the data from multiple sessions we identified two reasons behind

this to happen.

(a) The players from the low income group are mostly selling the surplus credits.

If there are too many high-income players and too few low-income players, the

extra credits sold away too soon.

(b) Even some low income players are not willing to sell. Since they always can make

trips with reasonable travel time, not enough credits are available to sell.
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Also, hoarding behavior was found among some players particularly in Group-3

characterized by moderate travel demand. The players were saving credits for future

use so that they can make the trips with smaller travel cost.

Our experiments also reflect the learning behavior of participants over time. After

examining the budget data for the players we find that the allocation of carbon budget

improves over time. Most players have a better allocation of money and credits after

the first session. Each session comprises five weeks of decision making (route and

participation in the credit market).

4.9 Incorporating market effects

The available carbon credits and disposable money are included in the cost func-

tion to incorporate the effect of carbon market into the travel decision making process.

We assume the users participate in the market after each week. Within a week the

unit price of credit does not change. Give a fixed unit price, the available carbon

credit and the disposable money are more likely to influence the travel decisions. Dis-

posable money refers to the amount of money a user can spend in the market to buy

credits. Each group has a different disposable money allocation with the high income

group having more. The market condition also impacts the available credits to spend

to travel. The amount of credit depends on the transactions a user makes in terms of

buying and selling. For instance, although started with same initial allocation a user

can have significantly higher number of carbon credits based on her transactions in

the market. Accordingly the travel decisions she will be making can be significantly

different from a user from the same group. Accounting for these effects, we include

available credits and disposable income as explanatory variables in our cost function

specification. The estimation procedure will be discussed in details in section 4.10.

4.10 Parameter estimates
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The data from the experiment allows us to estimate models for different user

groups specific to trip purpose. Nine distinct models are estimated for three user

groups characterized by the income level and three trip purposes: work, grocery

(non-work), and recreational trips. In our experiments users from all groups make

similar types of trips in the same network. The trip length is identical, however the

number of trips made weekly and the perceived cost as a function of VOTT is distinct

for each user group. The next sections describes the estimation results.

4.10.1 Work trips

Table 4.2 reports the estimation results for work trips. The signs of travel cost

parameters can be explained intuitively. For work trips, users from all classes prefer

lower travel cost in their travel choices. This parameter is found to have normal

distribution for Group-1. Figure 4.5 shows an example regarding the interpretation

that can be made for random parameters. Using the mean and standard deviation

we see (figure 4.5-yellow region) that more than 92% of the area lies on the left of

zero that indicates preference for lower travel cost in travel option.

Results show that, users from Group-2 and Group-3 on average are more likely

to have less carbon credit cost in their travel options. For Group-1 the parameter

for carbon cost is found to be normally distributed. Using the mean and standard

deviation value we find that 65% of the sample has positive sign and the rest 35%

have negative sign(prefer less carbon cost). Users from Group-1 have fewer trips to

make compared with other groups. This may lead to results that a certain portion of

the sample have positive sign for carbon cost parameter.

4.10.2 Grocery(non-work) trips

Table 4.3 reports the estimation results for grocery (non-work) trips. For grocery

trips, the estimated parameters for travel cost specific to Group-2 and Group-3 have

different signs for different parts of the sample population. The distribution curves of
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Table 4.2.: Estimates for work trips-all groups

Group-1 Group-2 Group-3

Variable Estimate t-stat Estimate t-stat Estimate t-stat

Constant-1 2.742 0.4 4.522 1.12 -4.805 -0.816

Constant-2 2.924 0.45 3.691 0.987 -3.584 -0.696

Constant-3 2.583 0.4 3.301 0.911 -2.307 -0.468

Constant-4 1.202 0.19 2.312 0.657 -1.329 -0.282

Travel cost -0.031 -1.89 -0.0066 -2.24 -0.011 3.66

(S. D.) (0.022) (2.33) - - - -

Carbon cost 0.056 0.64 -0.113 -2.73 -0.057 -0.835

(S. D) (0.144) (3.26) - - (0.166) (2.59)

Credits relative

to allocation -3.34 -0.48 -0.031 -0.005 2.521 0.34

(S. D) (2.92) (1.6) (3.754) (1.89) (7.75) (2.4)

Money relative

to allocation -0.197 -1.51 -0.144 -0.225 1.02 1.03

(S. D) (0.149) (1.83) (1.307) (2.38) (2.06) (2.56)

Halton draws 800 800 800

LL(Restricted) -177.04 -209.22 -180.26

LL(Convergence) -65.44 -168.29 -154.41

McFadden R2 0.63 0.196 0.16

Observations 110 130 112

the random parameters show that the areas on the left of zero are 20% and 27% for

Group-2 and Group-3 respectively. These segments of the sample prefer less travel

costs in their choices whereas for the rest of the sample the direction is opposite. The

estimated parameter of carbon cost for Group-2 has a negative sign indicating that

preference for lower carbon cost in the travel options. For Group-3 the carbon cost
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Table 4.3.: Estimates for grocery trips-all groups

Group-1 Group-2 Group-3

Variable Estimate t-stat Estimate t-stat Estimate t-stat

Constant-1 -11.98 1.88 7.13 2.54 4.71 1.08

Constant-2 -9.89 -1.78 7.17 2.61 4.77 1.6

Constant-3 -7.09 -2.05 5.12 3.2 5.16 1.85

Constant-4 -3.67 -2.09 3.75 1.6 2.56 1.52

Travel cost -0.024 -1.17 0.0009 0.305 0.005 1.43

(S. D) (0.015) (1.85) (0.0011) (1.55) (0.008) (2.83)

Carbon cost 0.46 2.39 -0.132 -1.89 -0.109 -0.98

(S. D) - - - - (0.079) (1.23)

Credits relative

to allocation 3.466 0.514 -0.499 -0.23 -0.244 -0.091

(S. D) (12.7) (1.6) (3.25) (2.37) (3.17) (1.61)

Money relative

to allocation 0.459 1.3 -1.633 -1.85 -0.733 -1.72

(S. D) (0.471) (1.44) - - - -

Halton draws 800 800 800

LL(Restricted) -177.04 -209.23 -180.25

LL(Convergence) -53.34 -168.23 -154.61

McFadden R2 0.69 0.196 0.142

Observations 110 130 112

parameter is found to have a normal distribution with 92% of the area on the left

side of zero indicating the users are more likely to have less carbon cost. The carbon

cost parameter for Group-2 is fixed and has a negative sign.

These findings show a derived outcome of the travel decision behavior under PCA

scheme. Due to carbon budget constraints the users are more likely to save carbon
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credits on their non-work (e.g., grocery) trips. The trend is more prominent in higher

income groups (Group-2 and Group-3) with higher travel demand. However due

to the equal allocation feature, the users from Group-1 with low trip demand have

sufficient carbon credits and the carbon saving trend is not found (positive sign of

carbon cost parameter).

4.10.3 Recreational trips

Table 4.4 reports the estimation results for recreational trips. The parameters for

travel cost are found to be random with negative mean for Group-1 and Group-2.

The distribution curves show that the splits in the sample 50.7-49.3%, and 50.2-49.8

% for Group-1 and Group-2 respectively. The parameters of carbon cost for Group-1

is found to be random with a split 99-1%. For group-2 this parameter is fixed with

a negative sign. For Group-1 and Group-2, we conclude that carbon saving trend is

dominant, however travel cost saving pattern is different for different segment of the

sample as found in the distribution curve.

For Group-3 the travel cost parameter is random with 11-89% split and carbon

cost parameter is fixed with a negative sign. With higher travel demand and limited

budget it is intuitive that users from Group-3 are more likely to choose travel options

that can save carbon credits.

The sign and distribution (if random) of an estimate tell us only the direction

of impact on the cost function. The level of impact on the probability of making a

particular travel decision cannot be assessed. A more effective way to explore the

results is to estimate the elasticity values and then infer the change in probabilities

when an explanatory variable changes from base case. The next section reports the

elasticity values and discuss the impact of PMCA scheme on travel decision making.
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Figure 4.5.: Distribution of estimated parameters: Travel cost
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Table 4.4.: Estimates for recreational trips-all groups

Group-1 Group-2 Group-3

Variable Estimate t-stat Estimate t-stat Estimate t-stat

Constant-1 28.29 1.73 3.93 1.16 11.33 1.64

Constant-2 21.35 1.1 3.67 1.54 8.63 1.67

Constant-3 17.62 1.02 1.09 0.611 6.44 1.88

Constant-4 - - 0.896 0.76 5.12 1.93

Travel cost -0.0006 -0.01 -0.0003 -0.046 0.016 2.01

(S. D) (0.031) (1.86) (0.061) (2.49) (0.013) (1.68)

Carbon cost -0.18 -0.98 -0.162 -2.61 -0.173 -1.53

(S. D) (0.062) (1.64) - - - -

Credits relative

to allocation 6.23 1.65 10.65 1.5 24.12 1.56

Money relative

to allocation -0.091 -0.96 1.198 1.61 6.084 1.03

(S. D) (0.129) (1.52) - - (2.742) (1.1)

Halton draws 200 800 800

LL(Restricted) -76.246 -103.004 -90.13

LL(Convergence) -30.348 -82.26 -51.35

McFadden R2 0.601 0.20 0.43

Observations 55 64 56

4.11 Effect of PMCA on travel decision

Elasticity values are well accepted way to infer the impact of explanatory variables

on the dependent variable in choice models [92]. In our case, the dependent variable

is the travel choice defined as a joint decision of departure time and route. The

elasticity values help us to determine the effects of travel cost, carbon cost, available

credits, and disposable money on travel decisions made by the users under PMCA
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scheme. An elasticity measure of κxj for a variable x on option j indicates that 1%

change in variable x will change (increase or decrease based on sign) the probability

of choosing option by κxj%. Elasticities are defined as κxj =
∂Pj
∂x
× x

∂Pj
. Here Pj is the

probability of choosing travel option j and x is the variable of interest. A value less

than 1 implies the choice is inelastic to the changes in the variable in consideration.

Table 4.5 reports the elasticity values each group (see definition of each at section

5.1) specific to trip purpose. The values are computed based on the results in the

tables 4.2, 4.3, and 4.4. The results are organized by groups and trip purposes. The

elasticity values reported here are averaged over all observations. The next subsections

discuss the results specific to trip purpose:

4.11.1 Work trips

It is intuitive to find that group-3 (high VOTT and income) is the most sensitive

to a change in the travel cost compared with other groups. With 1% increase in

the travel cost the probability of choosing that travel option decreases by 4.8% for

group-3. Further, we find group-1 (low VOTT and income) and group-3 are inelastic

to change in carbon cost. This may be resulting from two facts: (i) group-1 users

have fewer trips (but with equal carbon allocation) to make in the week compared

with other groups and (ii) the highest VOTT for group-1 is also assigned for work

trips. On the other hand, the VOTT of work trips for group-3 very high and it is

more likely that carbon cost has less priority compared with travel cost.

The effects of available carbon credits and disposable money are significant for

group-3. Elasticity values indicate that 1% increase in available carbon credits and

disposable money increases the probability of choosing a particular travel option

(with all other variables unchanged) by 2.23% and 2.76% respectively. Available

money and credits are indirect measures of reliability and market effects. With a

fixed travel choice, an individual with more money to spend in the carbon market

has a higher likelihood to choose that option compared with another individual with
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less money to spend in the market. Likewise, the effects of available carbon credits

can be explained.

Table 4.5.: Direct elasticity measures

Average (Direct) Elasticity

Variable Group-1 Group-2 Group-3

Work Trips

Travel cost -2.9 -3.02 -4.8

Carbon credits cost -0.8 -2.5 -0.63

Available carbon credits

relative to initial allocation -1.15 0.13 2.23

Available disposable money

relative to initial allocation -0.46 0.11 2.76

Grocery Trips

Travel cost -0.98 0.52 1.14

Carbon credits cost 6.67 -2.96 -1.65

Available carbon credits

relative to initial allocation 2.92 0.04 0.03

Available disposable money

relative to initial allocation 3.91 -0.72 -1.13

Recreational Trips

Travel cost 5.18 -0.79 3.66

Carbon credits cost -6.56 -7.02 -6.03

Available carbon credits

relative to initial allocation 1.38 0.29 -1.09

Available disposable money

relative to initial allocation 0.009 0.53 2.57
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4.11.2 Grocery trips

It is interesting to see that a rise in travel cost increases the probability of choosing

the travel option for group-3. This can be explained when we carefully examine the

elasticity value specific to carbon cost for group-3. The elasticity value indicates that

1% increase in the carbon cost reduces the probability of choosing the travel option

by 1.65%. Unlike the work trips, group-3 users are highly sensitive to carbon cost.

Grocery trips are characterized with lower VOTT values and it is more likely that

users would spend fewer carbon credits for grocery trips compared with work trips.

As a result, group-3 users are more likely to choose travel options with less carbon

cost and to have a lower priority for travel cost which is reflected by the elasticity

value. Moreover, group-2 users are more sensitive to change in carbon cost compared

with group-3 users. Although the initial carbon allocation is equal for all groups,

the disposable money to spend in carbon market is less for group-2 users. Since

the likelihood to buy more credits from market is low (less money compared with

group-3), group-2 users are more sensitive to changes in carbon cost for grocery trips.

4.11.3 Recreational trips

The elasticity values specific to carbon cost are much higher for recreational

trips. This is valid for all groups. It is more likely that a travel option with

high travel cost but low carbon cost is preferred by all groups in context of recre-

ational trips. Moreover we observe that available money affects the choice signifi-

cantly (an elasticity value of 2.57). Group-3 users are more sensitive to disposable

money for recreational trips. For instance, an individual from group-3 may not be

willing to choose a travel option that has high carbon cost. However the same in-

dividual having higher disposable money to buy credits from the market will have

a higher probability (an increase by 2.57%) to choose the same travel option.
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4.12 Price convergence

This section investigates the convergence of unit price (carbon credit) in the double

auction based market. Our experiment has four auction sessions and the average

duration of the auction is 3.5 minutes. We allow longer duration in the earlier ses-

sions (5-7 minutes) and smaller duration (3 minutes) in the ending sessions. Even

though we have explained the rules of the market before the game session, it is more

likely that participants would spend more time at earlier sessions to understand the

mechanism and making bidding or asking decisions. On the other hand, during the

end sessions the participants have already ideas about the price in the market and

have experiences on ask or bid decision making. Therefore, the duration get smaller

for the end sessions. This section reports three cases of the experimental sessions.

Figure 4.6 shows the patterns of changes in unit price for three cases as defined

earlier. Each row in figure 4.6 illustrates a case. In case-1 (row 1 in figure 4.6) we

have many participants from group-3 (higher travel demand, but equal allocation

as group-1). As a result the demand for carbon credits is higher from the very

beginning. However the supply is not high because group-1 participants are few.

Session-1 exhibits low price to high price at the end of auction. Session-2 and session-

3 start with a higher price. This is because the participants are aware of the market

conditions at that point and asking price goes up for credits. The final session shows

stable price for the last 7 intervals indicating convergence of price.

Case-2 (row 2 in figure 4.6) refers to a case where we have high number of group-

1 users compared with group-2 and group-3. At the beginning session the price is

stable at lower values. During session-2 we see a rise in the price. It is interesting

to see the stable low price during the last two sessions. It indicates that supply is

higher than demand in the market and the price goes down. Group-1 users are more

likely to have spare carbon credits to sell in the market. With higher trip demand,

high VOTT, and more disposable money to spend, group-3 users are more likely to

buy credits from the market. Since case-2 has fewer group-3 users, it is possible that
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Figure 4.6.: Patterns of unit price in the market

market has many sellers but fewer buyers. Accordingly we see a pattern where the

unit price goes down and stay stable for the session.

Case-3 (row 3 in figure 4.6) represents a more generalized case where we have equal

share of group-1 and group-3 users. The first two sessions indicate low unit price and

then in session-3 the price goes up. The high price remains stable during session-4.

This pattern indicates the general response of the market as the number of available

credits gets low. At the beginning with more credits available in the market the price
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remains low. During the last sessions the demand for credits goes up, however the

supply does not increase. Accordingly we see stable high price for carbon credits.

4.13 Market: bids and asks

This section provides a framework to estimate the total number bids or asks a

player would make in the auction session of the experimental game. Under PMCA

scheme, each individual allocates the available carbon credits for personal travel.

After each week all players participate in an auction for carbon credits where they can

sell and buy credits. The trading actions in a particular session primarily include bid,

ask, and the transaction. The total number of bids and asks for a player in the auction

depends on various factors. The primary factors are mostly related to travel demand,

market conditions, and value of travel time. To estimate the expected number of

total bids and total asks by an individual in a particular session we approach with

count data models. Since the total number of bids and asks are non-negative integers

and can be considered as count data.

4.13.1 Model description

Denote λj as the Poisson parameter for individual j that we define as the expected

number of bids an individual j will place in an auction session. Poisson parameters

λj is a function of a set of explanatory variables that include available carbon credits,

available money to spend in the market, the current price of carbon credit, number of

left trips, and so on. Assuming log-linear model the functional form can be expressed

as:

λj = exp(βXj)

⇒LN(λj) = βXj
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Xj defines the set of explanatory variables for individual j and β are the vector

of estimable parameters. According to the Poisson regression model, the probability

P (uj) of having uj number of bids by a household j can be written as:

P (uj) =
exp(λj)λ

uj
j

uj!
(4.6)

λj is the expected number of bids by household j during an auction session with the

relationship E(uj) = λj = exp(βXj) Standard maximum likelihood methods can be

used to find the parameters β. The likelihood function can be expressed as:

L(β) =
∏
j

exp(− exp(βXj))(exp(βXj))
uj

uj!
(4.7)

The log of this function is commonly used to estimate the parameters. A caveat with

the Poisson model is the assumption that mean and variance are equal. A general

approach to resolve this is to check the dispersion parameter for the data to be used

for estimation. When the dispersion parameter is different from zero with statistical

significance, one should use the negative binomial model instead.

4.13.2 Zero-Inflated model for asks

Due to high frequency of zero asks in our data set, we test the data for the

suitability of using zero-inflated model. The Vuong test statistic is found to be 2.62

(> 1.96), and zero-inflated Poisson model will be appropriate for the asks. Zero-

inflated Poisson model accounts for two distinct states: zero count state, and normal

count state. A zero count state refers to a situation where the likelihood of an event is

extremely rare. More details can be found in [92]. We estimated a Poisson model for

the bids and a zero-inflated Poisson model for the asks using a set of data obtained

from our experiments.

4.13.3 Empirical results

We identified several variables as the contributing factors for asks and bids placed

by the users. The variables include: the number of trips left, available carbon credits
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relative to initial allocation, available money relative to initial allocation, price of unit

carbon credit, and income level. Table 4.6 shows the results from the Poisson model

for bids. The signs of the estimated parameters indicate the effect on the average

number of bids placed by a player in the game. More available money increases the

likelihood to place bids. Further, the income indicators have intuitive directions.

Being a player from the low income groups reduces the average number of bids to be

placed. Increase in price also lowers the average number of bids.

Table 4.6.: Results: Poisson model for bids

Variable Estimate t-stat.

Constant 1.737 4.01

Credit consumption level 0.011 2.32

Available money 0.452× 10−4 3.32

Price of unit credit -0.008 -5.07

Indicator- High income 0.162 1.04

Indicator-Low income -0.966 -5.98

Number of trips left 0.0033 1.6

Log likelihood (restricted) -357.48

Log likelihood (convergence) -258.48

McFadden 0.28

Total observations 49

Table 4.7 shows the average elasticity values of the variables. We observe that

being a player of the high-income group increases the mean number of bids by 1.826.

Further, 1% increase in available money to spend in the market increases the mean

number of bids by 0.0005. The increase in credit consumption level also has similar

impacts. Higher consumption level is an indirect indicator of higher travel demand

or suboptimal usage of carbon credits. Both can lead to buying more carbon credits.
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Table 4.7.: Elasticity values: Bids model

Variable Elasticity

Credit consumption level 0.127

Available money 0.0005

Price of unit credit -0.0967

Indicator-High income 1.826

Indicator-Low income -10.923

Number of trips left 0.0377

Table 4.8 reports the results from zero-inflated Poisson model for asks. Unlike

the bids model we observer that being a player from low income group has a positive

impact on the average number of asks. For a player from mid-income group the

direction is opposite. Also higher credit consumption level leads to lower average

number of asks to be placed. It is obvious that, with higher consumption the surplus

credits will be fewer and accordingly the number of asks will be few.

Table 4.9 shows the elasticity values obtained from the zero-inflated Poisson model.

The values indicate that 1% increase in credit consumption level decreases the mean

number of asks by 0.0389. Also, belonging to mid-income group reduces the number

of mean asks by 0.6015. On the contrary, being a player from low-income group

increases the mean number of asks by 2.23.

4.13.4 Correlation between asks and bids

The number of bids and asks placed by an individual can be correlated. For

instance, an individual with high trip demand may place high number of bids and at

the same time the number of asks will be few (if not zero). However the correlation

value (R2) in our data set is 0.065 which is very small. We have a small sample and

the experiment continues for only five weeks. With a larger sample, it may be possible
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Table 4.8.: Results: Zero-inflated Poisson model for asks

Variable Estimate t-stat.

Constant 8.267 12.1

Credit consumption level -0.047 -6.98

Available money -0.0000504 -7.74

Price of unit credit -0.0472 -6.98

Indicator- Mid income -0.729 -2.51

Indicator-Low income 2.708 7.59

Number of trips left 0.0018 0.567

(Standard deviation) -0.0115 -7.712

Log likelihood (restricted) -949.0233

Log likelihood (convergence) -92.899

McFadden 0.9

Total observations 49

Table 4.9.: Elasticity values: Asks model

Variable Elasticity

Credit consumption level -0.0389

Available money -0.0365

Price of unit credit -0.000042

Indicator- Mid income -0.6015

Indicator-Low income 2.233

Number of trips left 0.00147

to have a high correlation. Different methodologies exist to account for correlation

in count data models. Poisson log-Normal models and Copula-based models are two

prominent directions that accounts for correlation and have been used by researchers.
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MVPLN model is proposed by Chib and Winkelmann [120]. An MVPLN model

accommodates both positive and negative correlations in the data. Studies [121, 122]

show that MVPLN models provide better statistical fit and predictions compared

with univariate Poisson and negative binomial models. Copula-based models are

recently gaining attentions in economics and other areas including transportation sci-

ence, behavior modeling, traffic safety analysis and so on. Copulas can be specified

parametrically with joint distributions obtained from given marginals. The unob-

served factors behind the decision to make asks and bids can be correlated and can

be captured through a copula. Details can be found in [123, 124].
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4.14 Conclusions and future research

This research describes a market based strategy to reduce carbon consumptions

originating from personal travel. The personal mobility carbon allowance scheme

(PMCA) scheme is based on the conventional cap-and-trade system with a different

scope. The successful implementation of the carbon allowance schemes [18, 68] re-

quires a comprehensive understanding of the change in travel behavior in context of

personal trip decision making. Further, it is challenging to obtain data for PMCA

because there is still not real world implementation and a pilot study would be sig-

nificantly expensive. Aiming at understanding the travel behavior we develop an

experimental tool where the elements of PMCA can be designed and data can be

obtained. Further, travel behavior patterns are analyzed by estimating cost functions

specific to user groups and trip type and by estimating elasticities to determine the

effect of travel option attributes and market conditions on travel choices.

The PMCA scheme is a novel market based strategy to reduce carbon consump-

tions originating from personal travel. This research contributes to literature in sev-

eral ways. First, the developed game is a handy tool to collect data for cases that

require interaction among users in real time. the developed game can collect data for

cases that require interaction among users such as carbon tax schemes and trading

systems. Without a market integration, analysis of the tradable schemes is incom-

plete.

Second, the sensitivity analysis using the estimates mode random parameter mod-

els provides insights on the effect of travel option attributes and market conditions

on travel choices. The probability as a function of travel and demographic attributes

can be used as behavior rules for agents in an agent-based traffic simulation.

Finally, the PMCA scheme can be extended to combine energy consumptions in

household utility and personal travel. Instead of focusing on travel we can explore the

general energy consumption behavior. The market component will be same. However

more decisions have to be incorporated in the first segment of the experimental game

developed here. The question of interest would the be evolving patterns of energy
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consumptions as a result of interaction between travel and household energy related

activities.
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CHAPTER 5. EQUILIBRIUM MODELS FOR PMCA

5.1 Introduction

The previous chapter outlines the PMCA scheme and developed an experimental game

to collect data. Further the generalized cost functions are estimated with random

parameter models. This chapter motivates the necessity of system level assessment

when PMCA scheme is implemented. The cost functions can be incorporated in a

network wide user equilibrium model to assess the travel time and emissions (carbon

consumptions) for the network. The research goals are outlined in section 1.2.3 and

section 2.3 describes relevant existing works.

This research offers novelty in several ways and addresses limitations of previous

works. First, our focus is on the emissions and energy consumption in addition

to travel time. Second, the generalized cost function explicitly considers the effect

of PMCA and budgeting behavior of households. Third, the integrated framework

combines the decision making process at household level and the impact on the system

at network level in terms of congestion and emissions accounting for heterogeneity

at originating from the dynamics of carbon trading. Finally, this is one of the first

network equilibrium models capturing the impacts of carbon allowance scheme at

household level.

5.2 Multi-class characterization

The primary heterogeneity originates due to income level, trip demand, and driv-

ing patterns. The value of travel time (VOTT) is often used an indirect measure

for income level [49, 125, 126, 127]. Further, carbon consumption through fuels are

directly influenced by the driving patterns of the users on the road. Generally, higher
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fluctuation in the speed profile leads to higher emissions in traffic networks [16, 71].

Finally, emissions (accordingly the carbon consumption) from on-road vehicles depend

on the congestion state of the network. The congestion state of a traffic network is

highly dominated by the travel choices [6] by the users( e.g., route and departure time

choice) of the network. The emissions in a highly congested network is significantly

different from that of a non-congested network. Modeling the effect of congestion

on carbon credit cost and its impact on route and departure time choice behavior

is central in this research and we have a detailed discussion in the methodology sec-

tion. Also, the travel decisions are impacted by trip purpose, length of the trip, and

time-of-the-day.

The travel decision of an user also depends on the remaining carbon credits in her

quota at that particular point of time. Additional carbon credits are added at the end

of the week as per PMCA system. A traveler with higher credits (with a predefined

budget for personal travel and household energy consumption) is more likely to have

less sensitivity for the emissions (i.e., carbon credit spending) at the end of the week.

Based on this attributes mentioned above we define each user class based on five

attributes:(a) value of travel time (VOTT), (b) purpose of trip making (e.g., work vs.

non-work), (c) available carbon credits prior to making the trip decision, (d) rmaining

money to spent in the carbon market to buy or sell credits, and (e) value of carbon

credits relative to travel time cost.

5.3 Methodology

This section describes a multi-user based dynamic network equilibrium model un-

der PMCA scheme. The DUE-PMCA model gives us the resulting path flow pattern

specific to OD pairs and user groups in the network when PMCA scheme is in ef-

fect. The next few sections provide details on the key components of the model that

include: the network loading model, travel time estimation, quantification of CO2
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emissions to find carbon credit consumption, characterization of multi-user classes,and

the dynamic user equilibrium conditions under PMCA.

5.3.1 Dynamic network loading

Our formulation embeds a spatial queue based traffic flow model, namely the

cell transmission model(CTM), that computes the travel cost and carbon credit cost

for the paths in the network. The cell transmission model is originally proposed by

[128, 129]. However many variants of the model exist in the literature [130] and CTM

is widely used as dynamic network loading models. This research follows the models

by [131] and [132]. The key differences are as follows:

(a) Generalized cost structure to capture PMCA attributes. Carbon credit cost is

considered in addition to travel cost.

(b) Heterogeneity in the population: value of time, value of carbon,and carbon credit

market attributes such as unit price of carbon credit and credit availability. This

leads to dynamic equilibrium model for multi-user groups.

(c) DUE formulation with coupled carbon-cap constraint reflecting the target emis-

sions reduction in the PMCA scheme.

5.3.2 Cell transmission model

The CTM divides each link of the network into finite number of homogeneous

cells. Each cell has a length at least equal to the distance traveled in a single time

interval at free flow speed. Also, the time horizon is finite and discretized into a

number of intervals.

(a) Notations and symbols:
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Indices:

w: index of origin-destination pairs, w ∈W : {1, . . . ,W};

p: index of paths, p ∈ P : {1, . . . , P};

i, j, k: index of cells;

t: index of discrete time intervals,

m: index of user group, m ∈M : {1, . . . ,M} .

Parameters:

αm1 : unit cost of travel time for user class m;

αm2 : unit cost of early arrival for user class m;

αm3 : unit cost of late arrival for user class m;

where αm2 < αm1 < αm3 ;

t∗w: preferred arrival time for O-D pair w (this is same for all user classes);

βmT : Estimated parameter for travel time cost for class m;

βmC : Estimated parameter for carbon cost class m;

βmR : Estimated parameter for the effect of remaining carbon budget for class m;

βmH : Estimated parameter for the effect of available money for class m;

dw,m: total demand from O-D pair w for class m;

ς: infinitesimal flow to avoid zero denominator;

te: maximum departure time (loading time);

tf : maximum time horizon (network clearance time);

N i: jam density of cell i;

Qi: flow capacity out of cell i;

δ: ratio of backward to forward shockwave propagation.
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Sets:

C: set of cells;

CO: set of ordinary cells;

CR: set of source cells;

CS: set of sink cells;

CD: set of diverging cells;

CM : set of merging cells;

E: set of links or cell-connectors;

EO: set of ordinary links;

ED: set of diverging links;

EM : set of merging links;

Γ−1
i : set of predecessors of cell i;

Γi: set of successors of cell i;

M : set of all user classes;

W : set of all O-D pairs;

Pw: set of paths for O-D pair w;

P : set of all the paths, P = ∪w∈WPw,

Te: set of all departure time intervals, T , {0, · · · , te}

Tf : set of all time intervals, Tf , {0, · · · , tf}.

Variables:

xi,mp,t : cell occupancy of cell i at time t on path p 3 i for user class m,

yi,j,mp,t : flow from cell i to cell j at time t for the flow on path p 3 (i, j)

x̄it: aggregate cell occupancy of cell i at time t,

ȳi,j,mt : aggregate flow from cell i to j at time t,

x̃i,jt : aggregate cell occupancy at diverging cell i at time t proceeding to cell j,

rmp,t: departure rate at time t for the flow using path p for user class m,

TTp,t: travel time for the flow using path p at time t,

An ordered pair of cells (i, j) represents a link and an ordered collection of links

or an ordered collection of cells represents a path (similar to [132]). Also, a cell i ∈ p
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implies that path p must contain cell i and a link (i, j) ∈ p implies that path p must

go through link (i, j).

(b) Initialization:

At the beginning of the simulation (t = 0), the cell occupancies are set to zero for all

paths and for all user classes in the network.

xi,mp,0 = 0, ∀i ∈ C, p ∈ P,m ∈M ; (5.1)

yi,j,mp,0 = 0, ∀(i, j) ∈ E, p ∈ P,m ∈M. (5.2)

Source cells (CR):

During network loading vehicles get into the source cells according to the demand

pattern rmp,t. Based on the capacity (in and outflow rate), vehicles move to the next

cell. For each path p ∈ P containing source cells i ∈ CR, the occupancy updates can

be expressed as:

xi,mp,t = rmp,t−1 + xi,mp,t−1 − y
i,j,m
p,t−1, ∀j ∈ Γi, t = {1, . . . , te + 1},m ∈M, (5.3)

xi,mp,t = xi,mp,t−1 − y
i,j,m
p,t−1, ∀j ∈ Γi, t = {te + 2, . . . , tf},m ∈M. (5.4)

Now, each O-D pair has unique demand values for each user class m ∈ M of the

network. The cumulative departure rate should be equal to the total demand for a

OD pair. ∑
p∈Pw

te∑
t=0

rmp,t = dmw , ∀w ∈ W,m ∈M ; (5.5)

∑
m∈M

dmw = dw, ∀w ∈ W. (5.6)

Ordinary cells (CO):

An Ordinary cell, i ∈ CO has one incoming link and one outgoing link. The following

equation updates the cell occupancy of an ordinary cell for a user class m ∈M :
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xi,mp,t = xi,mp,t−1 + yk,i,mp,t−1 − y
i,j,m
p,t−1, ∀p 3 i, k ∈ Γ−1

i , j ∈ Γi, t = {1, . . . , tf}. (5.7)

Also, if i not part of path p, then xi,mp,t = 0.

Diverging-merging cells (CD):

The occupancy of any diverging and merging cell, i ∈ CD ∪ CM for a user class,

m ∈M is updated updated as follows:

xi,mp,t = xi,mp,t−1 +
∑
k∈Γ−1

i

yk,i,mp,t−1 −
∑
j∈Γi

yi,j,mp,t−1, ∀p 3 k, i, j; k ∈ Γ−1
i ; j ∈ Γi; t = {1, . . . , tf}.

(5.8)

Sink cells (CS):

A sink cell i ∈ CS has limited in-flow capacity Qs, however the storage capacity is

unlimited ( N s → ∞). The cell occupancy xi,mp,t equals with the cumulative arrivals

of path p in the period from 0 to t for user class m ∈M.

xi,mp,t = xi,mp,t−1 + yk,i,mp,t−1, ∀i ∈ CS; p 3 i; k ∈ Γ−1
i ; t = {1, . . . , tf}. (5.9)

Ordinary links (EO):

At the aggregate flow level, we have:

ȳi,jt = min
(
x̄it, Q

i, Qj, δ(N j − x̄jt)
)
∀(i, j) ∈ EO; t = {1, · · · , tf} (5.10)

At the disaggregate level, we use the proportion of path-based cell occupancy xi,mp,t

and aggregate cell occupancy x̄it to determine the path flow yi,j,mp,t

yi,j,mp,t = min
(
x̄it, Q

i, Qj, δ(N j − x̄jt)
)
×

xi,mp,t
x̄it + ς

∀(i, j) ∈ EO; p 3 i; j ∈ Γi; t = {1, · · · , tf}

(5.11)

Here ς > 0 is an infinitesimal number used to make sure that the denominator is

different from 0.
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Diverging links (ED):

The updates are similar to Ukkusuri et al. [109] and aggregate occupancies are

computed as follows:

x̃i,jt =
∑

∀p3(i,j),m∈M

xi,mp,t ∀ i ∈ CD; j ∈ Γi; t = {1, · · · , tf} (5.12)

x̄it =
∑
j∈Γi

x̃i,jt ∀i ∈ CD; t ∈ {1, · · · , tf}, (5.13)

For the diverging flows:

For all i ∈ CD; j ∈ Γi; t = {1, · · · , tf},

ȳi,jt = min(x̃i,jt , Q
j, δ(N j − x̄jt))×min

1,
Qi∑

j′∈Γi

(
min(x̃i,j

′

t , Qj′ , δ(N j′ − x̄j′t ))
)

+ µ


(5.14)

Ukkusuri et al. [109] use the proportional rule to obtain the flow for each path

from each O-D pair:

yi,j,mp,t = ȳi,jt ×
xi,mp,t

x̃i,jt + ς
∀ i ∈ CD; p 3 i; j ∈ Γi; t ∈ {1, · · · , tf} (5.15)

Merging links (ED):

The updating for merging links are computed by the following equations:

For all i ∈ CM ; k ∈ Γ−1
i ; t = {1, · · · , tf},

ȳk,it = min(Qk, x̄kt )×min

(
1,

min (Qi, δ(N i − x̄it))∑
k′∈Γ−1

i

(
min(Qk′ , x̄k

′
t )
)

+ ς

)
. (5.16)

The flow for each path of each O-D pair can be computed as:

yk,i,mp,t = ȳk,it ×
xk,mp,t
x̄kt + ς

∀ i ∈ CM ; p 3 i; k ∈ Γ−1
i ; t ∈ {1, · · · , tf} (5.17)
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5.3.3 Travel Time Estimation

Travel time computation is a critical element for both DUE formulation. Most of

the previous works only compute the travel time without considering schedule delay

[133, 134]. More recently, the notion of schedule delay is accounted for in the DUE

and DSO framework [131, 132, 135]. Our proposed model requires the computation

of average travel time. [136] and [131] provide details on computing average travel

time within the path-based CTM model. For the completeness of our discussion we

mention the equations from [132].

νp,t,t′ = max

(
0,

t∑
h=0

rp,h − xsp,t′

)
,

∀p ∈ P ; s ∈ p ∩ CS; t = {0, · · · , te}; t′ = {t, · · · , tf} (5.18)

TTp,0 =

Tf−1∑
h=0

(νp,0,h − νp,0,h+1)h

rp,0 + µ
,∀p ∈ P (5.19)

TTp,t =

Tf−1∑
h=t

(νp,t,h − νp,t,h+1 + νp,t−1,h+1 − νp,t−1,h)(h− t)

rp,t + µ
,

∀p ∈ P ; s ∈ p ∩ CS; t = 0, · · · , T. (5.20)

Users from all classes experience the same travel time. Therefore, the average travel

time computation is not specific for a class.

rp,h =
∑
m∈M

rmp,t, (5.21)

xsp,t′ =
∑
m∈M

xs,mp,t . (5.22)
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Now, the max operator can be replaced by the following complementarity condi-

tions:

0 ≤ νp,t,t′ ⊥ νp,t,t′ −

(
t∑

h=0

rp,h − xsp,t′

)
≥ 0

∀p ∈ P ; t = {0, · · · , te}; t′ = {t, · · · , tf}. (5.23)

5.3.4 Carbon cost for the trip

The carbon credit cost to travel in a traffic network is inherently heterogeneous

and depends on several attributes pertaining to the vehicle, the user (driver) be-

havior, traffic conditions, and atmospheric attributes such as humidity, wind speed,

temperature profile. Previous researchers [16, 17] estimated the relationship between

average trip speed and CO2 emissions. The emissions on a link can be expressed as

polynomials.

ψe = a0 + a1 ∗ vp + a2 ∗ (vp)
2 + a3 ∗ (vp)

3 + a4 ∗ (vp)
4 + . . . (5.24)

Where, ajs are the coefficients, vp is the average trip speed. ψe is the total CO2

emissions for the trip. Relationships also exist for electric vehicles. Based on the data

from Tesla Motors, the average CO2 from EVs is about 12.6 g/km. [137] use the

following equation to compute the energy requirement from EV:

ECEV = 1.79∗10−8∗(v)4−4.073∗10−6∗(v)2+3.654∗10−4∗(v)2−4(v)4−0.0109v+0.2372

The steps to compute carbon cost for a path are as follows:

• Step 1: Compute the average travel time TTp,t for the path with departure time

t

• Step 2: Estimate the average speed Vp,t using the trip length lp

• Step 3: Use the appropriate emissions estimation equation based on engine type



104

• Step 4: Convert the emissions into carbon credit using proper factor (in our

case 100 g of CO2 = 1 carbon credit)

The path level carbon cost can be computed as follows:

CCp,t =α1v
4
p,t − α2v

3
p,t + α3v

2
p,t − α4vp,t + α5. (5.25)

α1, α2, α3, α4, and α5 are input parameters that depend on type of engine, geographical

location, and atmospheric attributes such as wind speed, temperature profile, etc.

vp,t: Average speed of the trip when a user departs at time t ∈ Tf on path p.

vp,t =

∑
i∈Ip Li

TTp,t
(5.26)

Ip: set of all cell index constituting path p,

Li: Length of cell i. Next we describe the generalized cost function and its parameters

for each user class.

5.3.5 Generalized cost function under PMCA

Consider an individual i ∈ I : {1, . . . , i, . . . , I}, with total N trips (set of trips

N = {1, . . . , n, . . . , N}). For any trip n ∈ N, an individual chooses travel option k̂ from

the set of all feasible travel options to make the trip defined as K = {1, . . . , k̂, . . . , K̂}.

Each travel option has two dimensions: path p and departure time t, and is associ-

ated with a cost in carbon credits CC k̂ and a travel cost TC k̂. The generalized cost

function is specific to a user group characterized based on income level, value of travel

time, and number of trips made. Further characterization is made based on trip pur-

pose (e.g., work vs. non-work trips), congestion level, and carbon credit allocation in

the scheme. Denote, Ψi,k̂ as the generalized cost of travel for an individual i choos-

ing the travel alternative (combination of departure time and path) k̂ in one of her

trip making instances. For simplicity, we present the formulation for a specific trip

purpose, congestion level, initial credit allocation and for a specific user group. The

notations that characterize the user group, congestion level, and carbon credit alloca-

tion are omitted. For any travel decision instance we observe the following attributes:
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TC k̂: the travel time cost associated with option k̂,

CC k̂: the carbon cost in terms of units of credits associated with option k̂,

RBi: remaining carbon credits for individual i prior to making decision,

Hi: available money for individual i to purchase carbon credits from the market.

Incorporating these attributes, the generalized trip cost function, when travel

option k̂ is chosen, can be written as:

Ψi,k̂ = βTCTCk̂ + βCCCCk̂ + βRBRBi + βHHi (5.27)

With data on the travel decisions for all options k̂ ∈ K for all trips, the coefficients

βTCm , βCCm , βRB, βHm can be estimated for each group m ∈ M . To collect data we

designed experiments and have estimated the coefficients using random parameter

models (please see the previous chapter). The parameters are estimated specific to

each user class and each trip type. The generalized cost GCm
p,t when departing at

time t ∈ Te on path p ∈ Pw for OD pair w ∈ W by a user in group m ∈ M can be

expressed as:

GCm
p,t = βTCm TCm

p,t + βCCm CCp,t + βRBm RBm + βHmHm (5.28)

Note that, each path is unique, therefore we do not use the OD index w. Also,

the remaining carbon budget and money are only specific to the user class and inde-

pendent of the current travel option (p, t). Only travel cost is specific to a user class

m ∈ M because the value of travel time and the penalties for early and late arrival

at destination is different for each group.

5.3.6 Dynamic user equilibrium condition

The dynamic user equilibrium (DUE) condition for PMCA-DUE specific to a user

class is defined as follows:
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The generalized cost of each path between an O-D pair is equal and minimum at any

departure time interval with non-zero departure rate for the paths.

In other words, at equilibrium there is no incentive for a user belonging to a particular

class to switch path and departure time (i.e., travel option). While this definition of

network equilibrium is similar to dynamic equilibrium problems in the literature [130,

132], a key difference is that the generalized cost in our case is a function of carbon

credit consumption and the accommodation of user heterogeneity in formulation.

For each user class m ∈ M and OD pair w ∈ W in the network we have the

following dynamic equilibrium condition:

0 ≤ rmp,t ⊥ GCm
p,t −GC

g∗
p,t ≥ 0,

⇒ 0 ≤ rmp,t ⊥ βTCm TCm
p,t + βCCm CCp,t + βRBm RBi + βHmHi −GCm∗

p,t ≥ 0
(5.29)

The travel cost TCm
p,t is computed as follows:

TCm
p,t =αm1 TT p,t + αm2 ep,t + αm3 lp,t (5.30)

5.3.7 Demand satisfaction constraints

At equilibrium the departure rate for all paths must accumulate to the demand

for the O-D pair.

0 ≤ GCm∗
p,t ⊥

∑
p∈Pw

te∑
t=0

rmp,t − dmw ≥ 0, ∀w ∈ W,m ∈M (5.31)

This constraint is similar to [109, 138] with the addition of user class level constraint.

At equilibrium we have,

∑
p∈Pw

te∑
t=0

rmp,t − dmw = 0, ∀w ∈ W,m ∈M (5.32)

The equations that compute ep,t and lp,t can be transformed into equivalent com-

plementarity conditions (see [138]).
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5.3.8 Dynamic user equilibrium (DUE-PMCA)

PMCA scheme is continuous in nature. With a choice of interval for the auction it

can continue for years. The model presented here assumes a weekly auction format.

A user only participates in the auction after a week. The price changes after each

week, however the remaining carbon credits and money continue to change as users

make travel decisions during the week. The model divides the time horizon into

multiple segments. This segmentation helps to run the model efficiently compared

with a single analysis with a very long time horizon (e.g., entire day or week). We

refer to such segment as a DUE-episode. For instance, the morning peak hour (6 am

to 9 am) is a DUE-episode. DUE-PMCA formulates the model with multiple DUE-

episodes as required by the time horizon. For instance, a typical week day can have

several DUE-episodes covering all travel activities from the 4 am to 12 midnight. Each

DUE-episode is distinct in terms of demand and purpose of the trips. For instance,

a DUE-episode for 12 noon-2 pm will have higher grocery trips.

Define a finite time horizon {1, 2, . . . , π, . . .Π} and a set of DUE-episodes for

the horizon {E1, E2, . . . , Eπ, . . . , EΠ}. Each episode Epi follows the conditions as

described by the equations 5.29 and 5.31. Now we introduce a necessary constraint

for the DUE-PMCA model that reflects the carbon consumption cap for the system.

PMCA schemes are designed to meet targets such as reducing the carbon consumption

by 5% from the base case. To meet this requirement, carbon credits equivalent to

95% of the base case are distributed among the users. Therefore the model needs to

ensure that the total carbon consumption for all episodes should not exceed 95 % of

the base consumption.

∑
Eπ :π∈{1,...,Π}

∑
t∈Tf

∑
m∈M

∑
w∈W

∑
p∈Pw

CCm
p,t ∗ rmp,t ≤ Θ (5.33)

In equation 5.33, Θ defines the desired threshold for carbon consumption. Equa-

tion 5.33 is a coupling constraint for all the DUE-episodes in considered in the model.

Now the entire model can be presented as follows:
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For each episode Eπ:

A1. DUE Condition:

0 ≤ rmp,t ⊥ βTCm TCm
p,t + βCCm CCp,t + βRBm RBi + βHmHi −GCm∗

p,t ≥ 0

A2. Demand satisfaction:

0 ≤ GCm∗
p,t ⊥

∑
p∈Pw

te∑
t=0

rmp,t − dmw ≥ 0, ∀w ∈ W,m ∈M

A3. Travel time computation (equation 5.20)

A4. Carbon cost computation (equation 5.25)

A5. Non-negativity constraints

Coupling constraint:

B. carbon cap: ∑
Eπ :π∈{1,...,Π}

∑
t∈Tf

∑
m∈M

∑
w∈W

∑
p∈Pw

CCm
p,t ∗ rmp,t ≤ Θ

⇒
Π∑
π=1

θπ ≤ Θ

θπ: Total carbon consumption for an episode π.

5.3.9 Equivalent VI

For each DUE episode we can write the complementarity formulation in a compact

format:

0 ≤ rmp,t ⊥ GCm
p,t −GCm∗

p,t ≥ 0 ∀p ∈ Pw, w ∈ W, t ∈ Te. (5.34)

The demand satisfaction and non-negativity constraints can be represented as follows:

Ω , {
∑
p∈Pw

te∑
t=0

rmp,t − dmw = 0, r ≥ 0 ∀w ∈ W,m ∈M} (5.35)

Now define the θ as the total carbon consumption for the episode and it should

be non-negative. The equivalent VI formulation for a single DUE-episode will be:

GCT (r− r∗) ≥ 0, r∗ ∈ Ω (5.36)

0T (θ − θ∗) ≥ 0, θ∗ ∈ R+ (5.37)
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Now for a PMCA-DUE problem with Π DUE-episodes we can have:

GC1
T (r1 − r1

∗) ≥ 0, r1
∗ ∈ Ω1,

0T (θ1 − θ1
∗) ≥ 0, θ1

∗ ∈ R+,

GC2
T (r2 − r2

∗) ≥ 0, r2
∗ ∈ Ω2,

0T (θ2 − θ2
∗) ≥ 0, θ2

∗ ∈ R+,

· · · · · · · · ·

· · · · · · · · ·

GCπ
T (rπ − rπ

∗) ≥ 0, rπ
∗ ∈ Ωπ,

0T (θπ − θ∗π) ≥ 0, θπ
∗ ∈ R+,

· · · · · · · · ·

· · · · · · · · ·

GCΠ
T (rΠ − rΠ

∗) ≥ 0, rΠ
∗ ∈ ΩΠ,

0T (θΠ − θΠ
∗) ≥ 0, θΠ

∗ ∈ R+,

Π∑
π=1

θπ ≤ Θ.

Now we denote,

Ωθ , {
Π∑
π=1

θπ ≤ Θ} (5.38)

Also define, Y = [r1, θ1, r2, θ2, . . . , rπ, θπ, . . . , rΠ, θΠ]T ;

C = [GC1, 0,GC2, 0, . . . ,GCπ, 0, . . . ,GCΠ, 0]T and

Ω : {Ω′1×Ω
′
2×· · ·× . . .Ω

′
π×· · ·×Ω

′
Π×Ωθ}. Now the system of VIs can be represented

in a compact format.

CT (Y −Y∗) ≥ 0, Y∗ ∈ Ω (5.39)

The solution of the V I(C,Ω) will be the solution of formulation AB

5.4 Solution approach
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This section describes the solution approaches to solve the DUE-PMCA problem.

In the previous section, we have shown that the original problem can be transformed

into a variational inequality (VI) problem. This section proposes solution methods

for the equivalent VI problem. Challenges associated with the solution technique

mostly arise with the nature of the cost function that is non-differentiable, non-

convex, and non-monotone. The reason is that we obtain the cost function from the

CTM simulation. Commonly used commercial solvers such as KNITRO and PATH

are not able to solve this problem for reasonable sized networks. Addressing this

issue, this research approaches with derivative-free algorithms, namely the projection

algorithm, to solve the equivalent VI problem.

We propose two approaches to solve the problem. The first approach is to use

the basic projection algorithm to solve the VI problem with coupling constraints of

carbon cap. The second approach is to decompose the original VI problem and solve

a series of smaller VI problems where the carbon cap constraints are associated with

each individual DUE-episode.

5.4.1 Basic projection method

To solve a V I(F,K) we compute a sequence of points {ui}∞i=1 starting with an

initial solution x0.

ui+1 =ΛK [ui − F (ui)], ∀i = 1, 2, . . . ,∞ (5.40)

ΛK(u) denotes the the projection of u on the feasible region K. In other words, one

defines the projection:

$ = arg min ‖z − u‖2 (5.41)

The convergence of the solution requires that F should be monotone. In our case, the

cost function does not have this property and direct convergence cannot be shown.

However the feasible region that has only systems of linear equations and inequalities

is compact. With this compact feasible region it is possible to show sub sequential



111

convergence when the VI problem is solved using projection method. [132] has the

proof for the case without carbon cap constraint. Since carbon cap constraints are

linear in nature and the properties of the feasible region remain the same, the same

proof applies for our case.

Algorithm steps:

Data: Initialize with a feasible Y0 ∈ Ω

Step 0 : Set i = 0.

Step 1 : Computation: CTM(Y),C,Y

Step 2 : Find the projection: Z∗ = arg minz∈Ω[Z − (Yi − λC(Yi))].

Step 3 : If ‖Z∗ −Yi‖ < ξ, Terminate. Else, Yi+1 = Z∗ and Go to Step 1.

Our experience with the basic projection algorithm shows that the algorithm is

not efficient to solve large networks and do not meet the error tolerance criterion

at most cases. To resolve the issue we propose a decomposed approach where each

DUE-episode is solved separately with its distinct carbon cap constraint. The next

sections describes the algorithm.

5.4.2 Algorithm to solve decomposed VI

Instead of a coupling constraint for all the DUE-episodes in an analysis we can

distribute the carbon caps among the DUE-episodes. This implies that each DUE-

episode can be solved separately with its own carbon cap constraints. Further, we

assign the carbon caps specific to each user class and each OD pair. A useful property

of our problem is that its feasible region Ω can be expressed as a Cartesian product

of a set of closed and convex linear constraints: demand satisfactory and carbon cap

conditions. This naturally leads to a decomposition optimization scheme to solve

this problem. The algorithm proposed by [139] decomposes the original VI problem

coupled variation inequalities of lower dimensions, with each defined for a user group

and origin-destination pair. The algorithm ensures the mapping finds a convergent

sequence and it can be proved that such a fixed point is a solution for sub-VI problem.
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If we find a set of solutions for all sub-VI problems simultaneously, it can be shown

that the combined solution is a solution of the original VI problem.

Algorithm steps ([139]):

Step 0 : Set counter k=0. Initialize a feasible departure rate.

Step 1 : Run the simulation CTM(γk) and compute TC(γk), CC(γk), GC(γk).

Step 2 : Decompose γk = (γk1 , γ
k
2 , ..., γ

k
m)T .

Step 3 : Find the λk(γk) that ensures most number of user classes and OD pairs satisfy:

||Ti(γki )− Ti(γk−1
i )|| ≤ α||γki − γk−1

i )||, in which Ti(γ
k
i ) = PrΩi [γ

k
i − λk(γk)GCi(γ

k)]

Step 4 : Update departure rate γki using mapping Ti only for those user classes and OD

pairs that satisfy the condition in Step 3. For others that not satisfied, set γkj = γk−1
j .

Step 5 : If none of the user classes and OD pairs are found satisfy condition in Step

3, set γkj = γk−1
j , λk(γk) = λk−1(γk−1)/2.

Step 6 : If ||z∗ − γk|| ≤ ε, terminate the algorithm, γ∗ = z∗. Otherwise γk+1 = γk,

Set k = k + 1, go to step 1.
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5.5 Numerical example

We solved the PMCA-DUE model with two test networks.

(a) X-shape network (similar to that used in [109]) with four O-D pairs and three

user classes. The network has ten cells and the equilibrium is based on departure

time choice only.

(b) Sioux-Falls network with six O-D pairs and five user classes. The network has

114 cells and 142 links. There are two O-D pairs with three paths, two O-D pairs

with two paths, and two O-D pairs with a single path.

Each link in the network is divided into multiple cells. The time step for the

simulation is set such that no vehicle can move more than one cell in a single time

step. We choose the time step as 60 seconds. With free flow speed 30 miles/hour the

maximum length of a cell is 0.5 miles or 0.8 kilometers. Assuming saturation flow as

1800 vehicles per hour per lane the maximum flow rate for a cell is 30 vehicles per

time step per lane. At saturated condition the bumper-to-bumper distance is about 10

meter. Therefore, the jam density is (0.8*1000)/10 or 80 for the cells in the network.

Other than source and sink cells we use these parameters for all cells in the network.

The ratio to forward to backward shockwave propagation is 0.8 in the analysis. The

convergence criterion is the norm of difference between two consecutive solutions. All

results in this research are obtained by setting the convergence criterion as 0.05. The

optimal value of parameter step size in projection algorithm that produces the best

results is different for different problems. We observe that the value is less than 1 in

all cases and ranges between 0.1 and 0.625 in our tests.

5.5.1 Input parameters

To quantify the carbon cost we extracted a relationship between average path

speed and GHG emissions rate (g of CO2 per mile) using the county level database

from EPA-MOVES. We tested our algorithm on Sioux-Falls network which is closer
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Figure 5.1.: Fitted relationship between speed and emissions rate

in terms of traffic and atmospheric conditions of Minnehaha county of South Dakota

in the U.S. EPA-MOVES provides access to county level data that include fuel type

and formulation, vehicle age distribution, temperature profile, humidity, and fuel type

distribution. With link geometry attributes identical to the Sioux-Falls network, we

estimate GHG emissions for different speed levels. A fourth-order polynomial fits

the data points and represents the relationship between average path (trip) speed

and GHG emissions. The fitted relationship is similar to the empirical relationship

obtained in the study by [16]. [137] followed similar approaches to extract functional

relationship from EPA-MOVES. The fitted function is as follows:

ψe =0.0002v4 − 0.0417v3 + 2.8745v2 − 87.317v + 1323.5. (5.42)

Here, ψe = Emissions rate g/mile and v = Average speed in miles/hour. We used

this equation for both X-shape and the Sioux-Falls network.
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5.5.2 Trip demand and value of time

We consider three income classes with three types of trips for our tests. Number

of trips for user groups representing different income levels are obtained from the

2009 National Household Travel Survey data and are listed in table 5.1. To account

for the heterogeneity in travel cost for each income class we use the value of travel

time (VOTT) for trips specific to purpose. The VOTT values are obtained from the

guidelines provided by FHWA [117]. For the ease of conducting experiments, the

number of total trips are proportioned with the same relative difference among the

groups.

Table 5.1.: User group definition

User Income Work VOTT Grocery VOTT Rec. VOTT

Group Range Trips Work Trips Shopping Trips Rec.

Group-1 $20,000 - $39,999 4 7.2 7 5.8 3 6.1

Group-2 $40,000 - $59,999 6 12.0 8 9.6 4 10.2

Group-3 $60,000 - $99,999 7 18.0 10 14.4 5 15.3

5.5.3 Parameters for cost function

Table 5.2 shows the parameters used for cost function. The parameters correspond

to: travel cost, carbon cost, effect of remaining carbon credits relative to initial

allocation at the point of decision making, and available money to spend in the

carbon market relative to initial money.

5.5.4 X-network

The X-shape network, originally used in [109], is a small network with diverge

and merge cells (figure 5.2). It allows to test the equilibrium with departure time

choice. We define a scenario with three DUE episodes characterized by distinct trip
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Table 5.2.: Parameters for generalized cost function.

User βTC βCC βRB βHH

Class-1 0.031 0.056 -0.42 -0.048

Class-2 0.0066 0.113 3.72 1.163

Class-3 0.011 0.057 2.75 -1.63

Class-4 0.024 0.46 5.23 1.04

Class-5 0.03 0.109 1.52 -1.72
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Figure 5.2.: Cell representation of X-Shaped Network [109]

demand for each user class. The carbon cap constraint requires a threshold value for

the PMCA-DUE problem as a whole (i.e., coupled with all DUE-episodes). First, we

solve three DUE problems without carbon cap constraints separately and compute

the carbon consumption. Then we set a 2% reduction goal for the PMCA-DUE

and define the constraint such that the total carbon consumption for all three DUE-

episodes cannot exceed 98% of the base case. We solve the network following both

approaches described earlier in sections 5.4.1 and 5.4.2. Results from two solution

approaches are compared to verify whether significant difference exists between the

solution approaches.

The figures 5.3, 5.4, 5.5 show the results obtained from basic projection algorithm

5.4.1. The departure rate vs. generalized cost plots show that highest departure rate

occurs at lowest cost. This trend is valid for all user classes and O-D pairs. Next,

the figures 5.6, 5.7, 5.8 show the results obtained from decomposed VI projection

algorithm 5.4.2. No significant differences are found in the cost vs. departure rate

plots compared with those obtained from the basic projection algorithm with coupled

constraints.

Table 5.3 summarizes the results. The base case represents the problem without

any carbon cap, basic refers to the solution obtained by basic projection algorithm
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Figure 5.3.: Results for DUE-1: Coupled constraint problem
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Figure 5.4.: Results for DUE-2: Coupled constraint problem
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Figure 5.5.: Results for DUE-3: Coupled constraint problem
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Figure 5.6.: Results for DUE-1: carbon constraint at OD level
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Figure 5.7.: Results for DUE-2: carbon constraint at OD level
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Figure 5.8.: Results for DUE-3: carbon constraint at OD level
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and coupled carbon cap constraint, and decomposed refers to the solution obtained

by the decomposed VI algorithm with individual carbon cap constraints. At system

level we see the total carbon consumption reduced to near 2% for all DUE-episodes.

In other words the constraint is not active. It is interesting to see that the travel

cost is lower with carbon cap constraint for DUE-1 when compared with the base

case. Due to the inclusion of carbon credit cost into the generalized cost, the path

flows are redistributed and this may cause a lower total cost compared with the base

case. These findings are same for both basic and decomposed algorithms. However

for DUE-2 and DUE-3, the travel time costs increase when the carbon cap constraints

are introduced. As mentioned earlier, path flow redistribution is one of the possible

causes that affects the resulting travel times. In addition, demand levels specific to

user classes also affect the travel costs.

Table 5.3.: System level results for X-network

Carbon cost Travel cost

Episode Base Basic Decomposed Base Basic Decomposed

DUE-1 393600 386000 385810 2972 2711 2788

DUE-2 370200 361900 361747 2431 2686 2740

DUE-3 394500 385900 385723 2887 2944 2955

Table 5.4 reports the cumulative carbon cost difference at O-D level for each user

class using the results obtained from basic and decomposed algorithms. In the tables,

each row represents a user class and each column represents an O-D pair. Each cell

value indicates the difference between the solution obtained from basic projection and

decomposed algorithm. The purpose of the comparison is to show that the results

obtained from decomposed algorithm that solves a relaxed version of the problem

(i.e., no coupled constraint rather carbon caps at individual level)are not significantly

different from the solutions from basic projection algorithm. From the tables we

observe that:
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(a) The decomposed algorithm underestimates the carbon consumption at OD level.

This is valid for all three episodes and all user classes. However the extent of

underestimation is negligible.

(b) The highest difference we obtain is 0.114%. Most cases the difference is below

0.05% that is negligible.

(c) For user class-1 the differences are high (≤ 0.114%) for DUE-episodes.

Table 5.4.: Comparison between two solution approaches

User Carbon cost difference(%) from basic projection algorithm

OD-1 OD-2 OD-3 OD-4

DUE-1

Class-1 -0.114 -0.115 -0.105 -0.098

Class-2 -0.038 -0.009 -0.005 -0.031

Class-3 -0.041 -0.0632 -0.058 -0.028

DUE-2

Class-1 -0.084 -0.086 -0.078 -0.072

Class-2 -0.025 -0.004 -0.0005 -0.019

Class-3 -0.019 -0.037 -0.034 -0.01

DUE-3

Class-1 -0.108 -0.112 -0.103 -0.093

Class-2 -0.034 -0.043 -0.005 -0.026

Class-3 -0.034 -0.055 -0.049 -0.022

With evidences from the cost vs. departure rate plots, the total time and cost

values, and the carbon cost difference values at group levels, we conclude that the

results obtained from decomposed algorithm are not significantly different from the

basic projection algorithm. This is important because the basic projection algorithm
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does not solve the reasonably sized networks efficiently whereas the decomposed algo-

rithm can solve those networks at desired error tolerance. The next section describes

the results from Sioux-Falls network obtained through the decomposed VI algorithm.

5.6 Results for Sioux-Falls network

This section describes the results from Sioux-Falls network. The six O-D pairs

are: 540-550, 551-541, 540-570, 551-570, 571-541, and 571-550. For each O-D pair

and each user class we define the trips demands to characterize the DUE-episodes.

A three-episode PMCA-DUE is analyzed using the decomposed VI algorithm. Five

user classes are defined: (a)Low income and work trip, (b) Medium income and

work trip, (c) Medium income and grocery trip, (d) High income and work trip, and

(e)High income and grocery trip. The value of travel time is used as a measure of

the income level. The relative value of carbon cost is capture through the generalized

cost function parameters.

The decomposed VI algorithm solves each DUE-episode separately. For brevity,

we report the results for DUE-1 episode here. We test the PMCA-DUE model for 2%,

5%, and 7% carbon reduction from the base case where no carbon cap is introduced.

First we report the cost vs. departure time plots for DUE-1 at 2%, 5%, and 7%

reduction to examine the equilibrium conditions. Then we compare the O-D level

carbon and travel time costs for each user class for each reduction level.

5.6.1 PMCA-DUE-1 (different carbon reduction)

The total carbon cap is set at 98%, 95%, 93% level of the base case for each

case respectively. Further, the cap is distributed at O-D level for each group. We

cannot distribute the carbon cap uniformly because each user class has a unique

generalized cost as parametric combination of carbon cost and travel cost. Therefore,

we compute the carbon consumption of each user class for each O-D pair in the base

case and set the carbon caps accordingly. Figure 5.10 reports the generalized cost vs.
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Figure 5.9.: Cell representation of SiouxFalls network [109]
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Figure 5.10.: PMCA-DUE-1 results: 2% reduction from base case

departure rate plots for the PMCA-DUE-1 with 2% reduction level. The plots show

consistency in terms of the feature that higher departure rate occurs at lower cost

reflecting DUE conditions. For few cases we observe multiple peaks in the departure

rate vector. Most of those cases are accompanied with multiple troughs in the cost

vector. Whenever the cost falls, the departure rate goes up. For user class-4 and

class-5, this is more prominent. Similar trends can be found for the DUE-episodes

with 5% and 7% reductions. For PMCA-DUE-1 at 7% reduction, we see multiple

peaks in the departure rate vector more often. Since the carbon constraint becomes

tight it may happen that the rate vector is distributed over multiple peaks to satisfy

equilibrium.
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Figure 5.11.: PMCA-DUE-1 results: 5% reduction from base case
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Figure 5.12.: PMCA-DUE-1 results: 7% reduction from base case
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5.6.2 Comparison of OD level carbon and travel cost

This section compares the total carbon and travel cost at O-D level when PMCA

is implemented at different reduction level. The goal here is to explore the effect of

PMCA on total carbon consumption and system wide travel costs. Note that travel

cost is not same as generalized cost. Travel cost is defined as the total cost accounting

for travel time and penalties for early and late arrivals. The travel cost comparison

shows the impact of PMCA when personal carbon allowance is introduced in the

system.

We only compare the results for OD-1, OD-2, OD-3, and OD-5. Since OD-4 and

OD-6 do not have any path choices, the results are not reported here.

Table 5.5 summarizes the results at O-D level. Carbon consumption at O-D level

goes down as carbon cap constraints are introduced. This is valid for all O-D pairs

and all reduction levels. The increase in travel cost is much higher as the carbon

cap goes from 5% to 7%. This trend holds true for all O-D pairs. This indicates a

non-linear pattern of travel cost increase as PMCA imposes carbon constraint.

For OD-2, the travel cost first decreases with 2% reduction. However, the travel

cost increases as the reduction level rises. This can be explained with the effect of

path flow redistribution and the conflicting nature of travel and carbon cost. With a

smaller carbon cap, the PMAC-DUE model redistributes the flow to equilibrate the

generalized cost that include both carbon and travel time cost. It is possible that this

results into a better flow distribution in context of O-D level cost. However, with a

higher cap, the model redistributes the flow so that carbon cap constraint is satisfied

resulting into a higher travel cost compared with the base case. OD-5 exhibits the

same feature.

5.6.3 Comparison of carbon consumption

Five user classes are defined with three attribute: (a) income level (value of travel

time), (b) how many trips to make each week?, (c) purpose of the trip. The classes are:
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Table 5.5.: OD level cost comparison

Carbon Cost Travel Cost

Reduction level Reduction level

Case: Base 2% 5% 7% Base 2% 5% 7%

OD-1 56000 53261 53378 52600 3407 3424 3496 3739

OD-2 58651 53272 53268 52575 2671 2646 2687 2848

OD-3 51692 49737 49113 48980 4116 4119 4230 4978

OD-5 45756 43636 42807 42730 2534 2514 2576 2658

1. Low income, fewer weekly trips and work trip, 2. Medium income, moderate weekly

trips, and work trip, 3. Medium income, moderate weekly trips, and grocery trip, 4.

High income, high weekly trips, and work trip, 5. High income, high weekly trips,

and grocery trip. The DUE-1 episode is the morning peak hour with work trips and

grocery trips specific to OD pairs. Table 5.6 shows the total carbon consumptions for

each user class. The results are categorized by OD pair and level of carbon reduction

to demonstrate the effects of PMCA. The table reports % change only when the

consumption is significantly large.

The decrease in carbon consumption for class-4 is much smaller compared with

class-5 as seen in the results for OD-1 and OD-3. Class-4 and class-5 are differentiated

by only trip purpose. For work trips the reduction levels is smaller. The largest

decrease is 1.82% as observed for OD-3. On the other hand, the decrease for grocery

trips ranges between 6-7.4%. This is intuitive because class-5 users have a high value

of travel time for work trips compared with grocery trips. It is more likely that the

users would be saving carbon credits more in the grocery trips.

The carbon consumption for class-2 gets smaller significantly (ranging from 7-

11%) as carbon caps are introduced. However, the relative changes from 2% to 5%

and 7% reductions are smaller. It is interesting to see that the reduction in carbon

for grocery trips by class-3 (medium income) users is smaller compared with class-
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5 (high income). Higher income (class-4 and class-5) users are characterized with

higher trips compared to medium income (class-2 and class-3). It is more likely that

higher income users (class-5) would be more sensitive to carbon saving in grocery

trips compared with medium income users (class-2).

For class-1 users the carbon consumption decreases with higher carbon caps with

the exception in OD-1. This can be explained by flow distribution mechanism at

equilibrium. The value of time is low for class-1 users compared with other users.

Equilibrium condition at the base case will push more flows from user class-1 to a

relative higher travel time option (rate vector) resulting into lower carbon. With the

carbon caps, the equilibrium state considers both carbon and travel costs. Accord-

ingly, it is possible that flows from other user class are pushed to low-carbon (higher

travel cost) option. This may cause higher carbon cost for the travel option compared

to the base and the carbon consumption goes up for all classes using the travel option

(specifically the users from class-1).

5.6.4 Comparison of path level carbon cost

This section explores the changes in carbon cost specific to paths. The cumulative

carbon cost is a parametric measure of the emissions level of the particular path con-

tributed by a particular user class. We define 100 g of CO2 equivalent to one carbon

credit and the cost can be directly converted into emissions. One particular interest

is to observe the change in the level of emissions at path levels. It is possible that

the emissions level of a path significantly increases or decreases due to distribution of

flows as PMCA-DUE satisfies equilibrium. Figure 5.13 shows the changes in carbon

consumption(i.e., cumulative carbon cost) at path level for all O-D pairs.

For OD-1 (figure 5.13 top-right) the carbon consumption for path-3 decreases as

we set the carbon consumptions caps. At the same time the carbon consumptions

go up for path-1 and path-2. This trend continues up to 5% of reduction and at

7% reduction path-3 exhibits similar carbon consumption as that of 5%. However
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Figure 5.13.: Path level carbon cost at different carbon caps.
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Table 5.6.: Comparison of carbon consumptions at user class level*

OD-Pair Total Carbon Cost

Class-1 Class-2 Class-3 Class-4

OD-1(Base) 18082 14620 363 22567

OD-1-98 16379 (9.4%) 13038 (10.8%) 368 22454 (0.5%)

OD-1-95 16802 (7.07%) 13053 (10.72%) 361 22400 (0.73%)

OD-1-93 17160 (5.1%) 12964 (11.3%) 373 22409 (0.69%)

Class-1 Class-2 Class-3 Class-4

OD-2(Base) 23444 24906 348 9605

OD-2-98 20357 (13%) 22622 (9.17%) 350 9600

OD-2-95 19987 (15%) 22905 (8.03%) 359 9675

OD-2-93 19487 (17%) 22674 (8.96%) 352 9718

Class-1 Class-2 Class-3 Class-4

OD-3(Base) 414 415 17033 13127

OD-3-98 387 365 16604 (2.51%)

OD-3-95 375 368 16303 (4.28%) 12889 (1.82%)

OD-3-93 369 368 16213 (4.81%) 12865 (2%)

Class-1 Class-2 Class-3 Class-4

OD-5(Base) 11069 14109 19871 353

OD-5-98 10232 (7.55%) 13071(7.35%) 19637 (1.18%)

OD-5-95 9868 (10.85%) 12903 (8.55%) 19340 (2.67%)

OD-5-93 9736 (12.04%) 12965(8.11%) 19438 (2.18%) 343

*Values in the parentheses show the difference in % from base

the consumption is higher for path-1 and lower for path-2 when compared with 5%

reduction level results.

For OD-2 (figure 5.13 bottom-right), flows are distributed between two paths.

Lower carbon consumption can be observed when carbon cap constraints are intro-
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duced. The carbon consumptions do not vary much at different levels of carbon cap.

For OD-3 (figure 5.13, bottom-left) The total carbon consumptions increase for path-

1 and path-2, whereas path-3 shows lower carbon consumption. The pattern changes

for the case with 7% reduction. The carbon consumption goes up for path-3 while

going down for path-2 and path-3. OD-5 (also with two paths) shows a different

pattern compared with OD-2 (figure 5.13, top-left). The carbon consumption gets

higher for path-2 at 2% and 5% reduction level and again goes down for 7% reduction

level.

5.7 Concluding remarks

This research develops a multi-user class dynamic user equilibrium model, namely

the PMCA-DUE model, incorporating the market based carbon reduction strategy

described as personal mobility carbon allowance scheme. Consideration of carbon

cost in addition to travel cost for path and departure time choice, requires a new

generalized cost function and equilibrium condition. Also, the effects of initial allo-

cation of carbon credits, value of travel time, and number of trips to make influence

the travel decisions under PMCA scheme. It is obvious that these attributes are not

homogeneous and a model capturing the heterogeneity is necessary. Accordingly we

develop a multi-user dynamic equilibrium model where each user class has a distinct

value of travel time, trip demand, different sensitivity to perceived carbon cost (see

section 5.3.5).

This research makes several contributions to the literature. First, a multi-class

dynamic user equilibrium model is formulated. Both complementarity and equivalent

VI formulation is demonstrated. Second, we propose two solutions techniques: basic

projection and decomposed VI algorithms. We solve two test networks and analyze

the results. Third, the user and OD level travel and carbon costs are investigated.

Carbon consumption patterns are explored. Finally, the impact PMCA scheme is

investigated which provides insights for carbon allowance schemes in general.
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The key findings from the analyses are as follows:

(a) Introducing carbon cap through PMCA schemes can lower the system level travel

time up to certain level of cap. Our results (table 5.3 and table 5.6) show that

the cumulative travel costs are lower from the base case when PMCA scheme is

in effect. This can be explained from the concept of congestion pricing and the

conflicting nature of travel time minimization and carbon credit consumption.

When the average trip speed is high, the carbon cost goes up. At the same time

the travel cost goes down. Since the generalized cost in our model considers

both, the model distributes the flows such a way that the generalized cost, which

is a parametric combination of the carbon and travel cost, is minimized. At

equilibrium it redistributes the flow by adjusting the departure rate vector. This

results into a new equilibrium state with lower cumulative travel cost for a class.

This does not necessarily decrease the travel cost for each path. Rather for some

paths the costs increase and for some paths the cost decrease as exhibited by the

figure 5.13. As a net effect, it is possible to have lower travel cost for the system

at OD level.

(b) Class-4 users (characterized by high value of travel time) are less sensitive to

carbon constraint in context of work trips. Relatively higher value of time and

higher penalties for late and early arrival may cause to exhibit this. For work

trips class-4 users do not show significant reduction of carbon consumption as the

carbon cap goes from 2% to 7%.

(c) One important finding from our results is that the emissions level (parametric

function of the carbon consumption) for paths changes with the levels of reduc-

tion. For air quality conformity this is important because PMCA leads reduction

in carbon consumption for the network, however for some paths the emissions

can be higher as seen in figure 5.13.

(d) Carbon consumptions are lower for cases (OD-3) characterized by grocery trips

compared with cases (OD-1) characterized by work trips. This is mainly because
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of the nature the parameters in the generalized cost function. The parameters

specific to grocery trips prioritize the savings of carbon credits so that it can be

used for work trips later.

(e) Our analysis indicates that the equilibrium state highly depends on the compo-

sition of trips characterized by purpose. A case with higher grocery trips will

reach a different equilibrium compared with a case with higher work trips. This

is because of the heterogeneity captured through the generalized cost function

parameters.

(f) The results also show the impact of setting initial distribution of carbon credits.

The initial distribution is incorporated through the carbon cap constraint in the

model. As we move from 5% to 7% reduction, the equilibrium state changes and

we observe a new path cost pattern (see figure 5.13) and the OD level carbon

consumptions are also affected (see table 5.3 and table 5.6).

This research has few limitations in terms of scope and transferability. First,

the parameters for the generalized cost function are estimated specifically for the

Sioux-Falls network. Although the models are applicable to other networks, one

must estimate parameters specific to the transportation network. Second, the cap-

tured heterogeneity across population can be extended to have a comprehensive form

through considering other trip types, finer level of income, and vehicle composition.

Finally, our solution technique solves only up to 7 % reduction for the Sioux-Falls

network. It is possible that the problem becomes infeasible with higher carbon cap.

We observe that the problem can be solved with lower trip demand keeping the carbon

cap same indicating the allocated carbon for the system may not be sufficient for the

original demand. The demand feasibility issue can be resolved through redistribution

of the carbon credits based on the demands for specific groups at specific OD pairs.

This alludes to another research question regarding the initial allocation of carbon

credits with efficiency and equity. This is a potential future research direction that is

critical for the implementation of the PMCA schemes.
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CHAPTER 6. LEARNING BASED TRAFFIC CONTROL

6.1 Introduction

Traffic congestion is ubiquitous in the 439 urban areas of the United States and is re-

sponsible for 2.9 billion gallons of additional fuel consumption in 2011 [19] 2010). The

net congestion cost is 121 billion (in 2011 U.S. dollars) with about 5.5 billion hours of

delay. Further, the transportation sector alone is responsible for about 76 percent of

the total CO emissions and 50 percent of the total NOx [140] emissions in the United

States. The U.S. Environmental protection agency (EPA) reports transportation sec-

tor as the fastest growing source of greenhouse gas (GHG) emissions indicating 47

percent net increase from 1990 to 2003 (EPA, 2006). The contribution of delay due

to traffic signals is about 5 to 10 percent of the net delay (NTOC Report, 2012). Na-

tional Traffic Signal Report Card (NTOC Report, 2012) gave C grade for the current

traffic signal operations and emphasizes on optimized signal scheme implementation.

Clearly, it is important to design signal control systems that can minimize travel delay,

intersection delay, and number of stops at the intersections. Moreover, signal systems

with reduced number of stops, intersection delay, and the variability in speed profiles

can lead to less vehicular emissions for the network. Accordingly, this research aims

to find signal control schemes that lead to sustainable mobility, i.e., reduced delay for

the users and less vehicular emissions for the traffic network. Adaptive signal control

schemes such as SCOOT [141], SCATS [142], PRODYN [143], OPAC [144], RHODES

[145], UTOPIA [146], CRONOS [147], and TUC [148] are found to perform better

than fixed and actuated signal timing plans. Nevertheless, adaptive schemes are often

limited in terms of scalability and robustness ( [149, 150, 151]. Many of these control

systems (e.g., SCOOT and SCATS) are centralized systems based on real time traf-
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fic data and some (e.g., OPAC and RHODES) use dynamic optimization to obtain

the signal settings. However, none of them adaptively learns from the environment

and the computational complexity increase exponentially with network size. Further,

researchers from the machine learning and artificial intelligence area have also ap-

plied algorithms that include (but not limited to) neuro-fuzzy networks [152], neural

networks [153] (Li Mueck, 2010), Tabu search [154] (Hu Chen, 2012), self-organizing

maps [155] (Li et al., 2011), emotional algorithm [156], and genetic algorithms [75].

Two limitations tied with most of these algorithms are: the requirement of large data

to calibrate the parameters and exponential complexity of the problem for large scale

networks [157]. To overcome these limitations, researchers from different area also

looked at the prospects of using learning techniques as an alternative to using real

time adaptive algorithms ([149, 151, 158, 159, 160, 161].

Recent advances in CV environment offer useful technologies in detection and ac-

quisition of high fidelity data that can be used for intelligent control for signalized in-

tersections. Acknowledging the potential, the intelligent transportation system (ITS)

program of the U.S. Department of Transportation (DOT) heavily emphasizes on CV

research in the ITS Strategic Plan (2010-2014). CV environment facilitates commu-

nication platform where vehicles can talk to each other (Vehicle-to-Vehicle, V2V), to

the infrastructure components (Vehicle-to-Infrastructure, V2I), and also infrastruc-

ture to infrastructure communication (I2I) is possible. We propose RL algorithm

for signal control that allows an agent (i.e., signal controller) to share information

with its neighbor controllers through I2I communication. Later we also show that,

learning with information sharing improves the performance of the RL algorithm.

To summarize, this research applies reinforcement-learning (RL) algorithm for signal

control (namely, the R-Markov Average Reward Technique or RMART) at network

level. Also, the algorithm takes advantage of the I2I communication to allow for in-

formation sharing among the neighborhood controllers. The remainder of the paper

is organized as follows: the literature review section describes related works previ-

ously done by researchers, the problem definition section states the hypotheses and
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research questions of this research, the methodology section explains the RL algo-

rithm, the numerical results section explains the results obtained from test networks,

and finally, we discuss the important contributions, limitations, and future directions

of this research.

6.2 Literature Review

The implementation of RL in signal control area has been well studied in the

last decade. Miakami and Kakazu [162] proposed cooperative signal control scheme

with a combination of evolutionary algorithm and reinforcement learning techniques.

Bingham [163] proposed rules based on fuzzy-logic that allocates green times based

on the number of vehicles. Other than signal control researchers have also used it for

other problems in transportation [164, 165, 166, 167]. Abdulhai et al. [149] applied off

policy (Q-learning) algorithm to optimize signal control in an isolated intersection.

Application to larger networks was challenging due to exponential increase in the

joint state-action space. Later, Wiering et al. [158] proposed co-learning algorithms at

network level accounting for the waiting time for the vehicles and used car-based value

function that reduced the state space to a reasonable number. However, the prediction

of waiting time is not accurate and the traffic simulator lacks important modules such

as lane changing and dynamic route choice. Researchers ([159, 168, 169] have also

studied cooperative multi agent system for urban traffic control. More recently, El-

Tantawy et al. [161] proposed neighborhood coordinated RL based signal control and

described a joint decision framework to present multi agent framework. Although Q-

learning and SARSA are most widely used temporal difference techniques, researcher

also applied other algorithms like actor-critic temporal difference, Q-learning with

function approximation [170] and action dependent adaptive dynamic programming

[171]. Although commonly used in long-term average reward specific algorithms, R-

Markov Average Reward Technique (RMART) has not been applied potentially in

the context of vehicular traffic control. Recognizing the potential to address long
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term average reward this research applies RMART technique for signal control. The

RL algorithms applied for signal control vary greatly with the definitions of state and

reward. El-Tantawy et al. [161] provides an excellent discussion on the variations in

state and reward definitions in context of signal control.

The most common definitions of state include number of arriving vehicles, queue

lengths, average delay, and so on. Most of them do not consider information sharing

among neighborhood controllers. Neighborhood information provides us with con-

gestion status of the surrounding controllers. Including this information will help

the controller to learn better. Consider a case when the adjacent intersections of a

particular intersection are heavily loaded and in near future this intersection will ex-

perience heavy load. Using only local information, the agent does not have any idea

of the immediate congestion that will appear. When the state definition includes con-

gestion status of the adjacent intersections the agent learns to adjust signal settings

when the nearby intersections are congested. Based on this idea, this research adds

congestion information of the neighborhood intersections to the definition of state in

the RL algorithm. This idea is different from the multi-agent coordination research

([151, 158, 159, 168] because multi-agent cooperative learning deals with the joint

state-action space optimality. This research focuses on adding neighborhood infor-

mation in the state definition without explicit coordination among the controllers.

Rewards in a RL algorithm can take different forms including number of stops

made, intersection delay, and throughput for the intersection. The reward is defined in

a static manner and the definition does not change over time. However, rewards can be

dynamic as a response to the current state of the traffic network and multiple reward

structure can be used [172]. Houli et al. [173] defined different reward functions

such as stops, delay, and so on, for different congestion levels: free flow, saturated

condition, etc. However, their approach is not truly dynamic because the congestion

level is always known beforehand and rewards are predefined for different time of

analysis. This study takes a different approach where the reward takes a dynamic

form in the sense that reward definitions changes based on the congestion level in
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real-time. In addition to static reward structure we also examine the performance

of RL algorithms with this kind of dynamic structure. Finally, most research works

relevant to learning techniques for signal control do not evaluate the benefits in terms

of reducing vehicular emission. Although connected vehicle research area has some

potential works [78, 79, 174] that evaluate benefits in terms of reducing emissions,

however not in the context of applying learning techniques. To conclude, the goals of

research are as follows:

(a) To develop a learning based signal control scheme that minimizes emissions for

the signalized intersections.

(b) To apply RMART technique for traffic signal control that allows for neighborhood

congestion information sharing within the CV environment and compare with

fixed, adaptive, and other learning algorithms.

(c) To demonstrate the benefits of learning based control algorithms in terms of

reducing emissions from traffic network.

6.3 Reinforcement Learning Based Algorithms

Optimization of vehicular traffic control requires the determination of signal timing

parameters: scheduling and allocation of green time to specific set of movements. A

set of non-conflicting allowable movements is defined as phase or stage. In context of

RL, traffic network is the environment and the traffic controllers act as agents. We

define the action of an agent as the activation of a particular phase (predefined) at the

decision interval. Thus, the traffic signal control problem has all the elements of MDP.

Each time the agent takes an action that influences the current environment, the state

of the environment changes. The problem is to find the optimal policy (mapping

between the phase-activation and traffic states) that gives the largest reward that is

commonly defined in terms of average delay, number of stops, etc. in the long-term.
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The key idea of RL comes from DP and artificial intelligence (AI) based learning

techniques. A detailed description can be found in Sutton and Barto [175] and Gosavi

[176]. The two key elements of MDP are the reward and state transition probability.

The RL technique is most appropriate when these elements are not deterministic.

The solution methodology should contain components that determine the transition

probabilities and rewards as a feedback from the environment. However, a simulator

of the real environment can provide us with the reward and the transition of the

states can be observed. This research uses VISSIM (PTV, 2012) as a traffic simulator

that provides rewards and other performance.

6.4 Elements of the RL-based algorithm

Reinforcement learning techniques follow sampling based approaches to solve the

optimal control problems. RL systems contain basic components: the state, action,

and reward. These components are specific to the problem at hand. Next, we define

the state, action, and reward for the proposed RL algorithm.

6.4.1 State of the system

Before defining state, we need to define the residual queuing state for each lane

group served by the signal phases at the intersection. Residual queuing state for lane

i, is defined as:

ωti =
qti
J
× 1

li
(6.1)

ωti = Residual queuing state for lane i at step t,

qti = Queue length (in PCE units) for lane i at step t, J = Jam density (190 PCE

per lane mile) li = Length of lane (in miles)

Jam density is usually expressed in number of passenger car equivalent (PCE)

per lane-mile. It refers to the density of a lane when speed equals to zero for all the

vehicles on that lane. Highway Capacity Manual (HCM) suggests using 190 PCE
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per lane-mile for freeway facilities. Note that, one should choose the value that is

consistent with the existing network conditions. Now, the residual queuing state for

the lane group served by phase p can be estimated by taking the average over all the

lanes.

πtp =

∑
i∈lane group,p

ωi∑
i∈ lane group,p

i
(6.2)

πtp = Average residual queuing state for the lane group serving phase p at step t.

It can be seen that is continuous in nature and can take any value between 0 and

1.Next, the average residual state for a particular phase, p is labeled as low, high or

medium using the following conditions:

Πt
p =


L, if πtp < 0.4

M, if 0.4 ≤ πtp < 0.7

H, if πtp ≥ 0.7

 ;L = low, H = high, M = medium. (6.3)

The RQ state of the intersection is computed using the RQ states of the phases.

Different values are assigned to the labels of RQ state of a particular phase. Here,

Πt
p = label of πtp.

µtp =


1, if Πt

p = L

3, if Πt
p = M

5, if Πt
p = H

 (6.4)

Now, the labels for RQ states of the intersection are defined as follows:

Ωt
j =



Free flow; if
∑

p∈Phases

µtp < 10

Average flow; if 10 ≤
∑

p∈Phases

µtp < 16

Saturated flow; if
∑

p∈Phases

µtp ≥ 16


(6.5)

Note that these values in (3), (4), and (5) are arbitrary and depends on the judgment

of the analyst and scope of the problem. We select these values through observation

of congestion variation of our test cases.
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6.4.2 System state of the RL

At any step of the RL algorithm, the state of the system is represented by three

elements: (a) the average label of RQ states of the phases in signal timing plan, (b)

the phase number with maximum queue length for the intersection, (c) the adjacent

intersection number with maximum queue length. The state at step t for signal

controller j can be represented as:

stj =


average

(
Πt
p,∀p ∈ P

)
arg max

p

(
Πt
p,∀p ∈ P

)
arg max

j̃

(
Ωt
j̃
,∀j̃ ∈ Γ(j)

)


(6.6)

An example for the state: medium, phase 3, adjacent intersection no. 104 is inter-

preted as: a) the intersection has a medium congestion label in terms of residual

queue, b) Phase 3 corresponds to the maximum queue length, c) Intersection 104

(straight northbound neighbor) has the maximum queue length. Where,

P = Set of phases in the signal timing plan for inter sec tion j,

Γ(j) = The set of adjacent intersection for intersection j

6.4.3 Action selection strategy

The agents action is to switch on any of available phases in the signal-timing plan.

Note that, there is no restriction on the sequence of the phases. Flexible sequence in

signal timing plan has been used by previous researchers and has been implemented

in real world signalized intersections. The algorithm follows the minimum and maxi-

mum green constraints. Currently, the thresholds for these parameters are assumed.

Reinforcement learning algorithms in general require a balance between exploitation

and exploration in the strategies for selecting optimal action. The simplest action

rule is to select the action (or one of the actions) with the highest estimated state-

action value (complete greedy behavior). In other words, the agent always tries to

maximize the immediate reward using the immediate knowledge without any attempt
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to explore other possible actions. To balance between exploitation and exploration

Sutton and Barto [175] suggests two methods:

6.4.4 ε-greedy method

In this method, the agents behaves greedily by choosing the action that gives the

maximum state-action value in most cases except at some cases it chooses a random

action. The probability of this random behavior is and the probability of selecting the

optimal action converges to greater than 1− ε . One should note that, the advantage

of methods over the ε-greedy methods is highly dependent on the type of problem.

6.4.5 soft-max method

One limitation with the ε-greedy method is that it gives equal priority to all ac-

tions while exploring. It is possible to choose the worst action instead of choosing the

next best action. To resolve this, Softmax algorithms vary the action probabilities

as a graded function of estimated value. Although, the greedy action has the highest

selection probability the other are ranked and weighted according to the value esti-

mates. In general, Gibbs or Boltzman distribution is used to define the probability.

The probability for choosing action a in state s,

P (a|state = s) =
exp(Q(s,a)

τ
)

all actions∑
b=1

exp(Q(s,b)
τ

)

(6.7)

τ =Positive parameter called the temperature. Higher values for the temperature

can make the probability of choosing any of the actions nearly equal. On the other

hand, lower value of the temperature will create a higher difference in the action

selection probabilities. Another commonly used action strategy is the combination of

the above mentioned strategies that is referred to as ε-softmax . The agent behaves

greedily with the probability of (1 − ε) and the rest of the cases it selects an action

using the probability computed from Softmax selection process.
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6.4.6 Reward function

Three separate reward functions have been used: Queue length (R1), average

delay experienced by the intersection since previous action (R2), and Residual Queue

(R3). In addition, we propose the multi reward structure that defines queue length

as reward at free flow, average delay as reward over the time interval at medium level

congestion, and residual queue as reward at near saturated condition.

6.4.7 Multi-reward structure

The multi reward structure dynamically changes the reward function type based

on the traffic congestion in real time. We consider the three categories of congestion

states: (a) free flow to low congestion, (b) low to medium congestion and (c) medium

congestion to high congestion (saturated condition). The algorithm identifies the

congestion state in real time and uses the proper reward function in response. This

research defines queue length as reward at free flow (to reduce the number of stops),

average delay as reward over the time interval at medium level congestion, and residual

queue as reward at near saturated condition (to avoid the gridlock and spill back

condition).

6.5 Algorithm description

We applied three specific temporal-difference techniques:(a) Off-policy TD con-

trol (Q-Learning), (b) On-policy TD control (SARSA), and (c) Advanced off-policy

TD. Like most RL based schemes, the proposed algorithm has two phases: learning

phase and implementation phase. The learning takes place before the implementa-

tion. During the learning phase the agents update the state-action value through

interacting with the environment. Balancing the exploration and exploitation is im-

portant at this phase. Initially, the algorithm starts with using higher probability for

exploration. Then, gradually the value is decreased and at the end of the learning
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phase we implement the Softmax method. During the implementation period, the

algorithm emphasizes on exploitation with very small value.

6.5.1 Notations

ρ = The average reward per time step.

Q(s, a) = The value of state - action pair (s, a).

r(s, a, s
′
)= Observed reward when the agent takes

action a in state s, and moves to state s
′
.

α(k) = Learning rate for the Q− values (scalar) at

k − th iteration.

β(k) = Learning rate for the average reward at step, k.

N = Maximum no. of iterations allowed (learning phase).

γ = Discount factor for reward value.

6.5.2 RMART description

RMART does not divide the experience into separate episodes with finite returns.

The value functions are defined with respect to the average expected reward per time

step under the policy κ is defined as:

ρκ = lim
n→∞

1

n

n∑
t=1

Eκ(rt) (6.8)

RMART has the concept of average reward over long term instead of discounted

reward used in Q-learning and SARSA. Tsitsikilis and Roy [177] provides an analytical

comparison between the discounted (Q-learning) and average reward techniques and

showed that as the discount factor approaches to 1, the value function by discounted

technique approaches the differential value function by average reward technique.

Average reward methods also offer computational advantages (Tsitsikilis and Roy

[177]).
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6.5.3 Pseudo Code

Since, Q-learning and SARSA have almost the same framework; we use a single

algorithm separating out the update phase. In the learning phase the agent builds

its state-action mapping table which can be used later to take decision (which phase

to activate) in the implementation phase. Next, we present the pseudo codes for

Q-Learning and SARSA, and RMART.

6.6 Implementation and numerical results

The RL-based algorithms are implemented in VISSIM using COM interface. Fig.

1 shows two networks: network-I (inside the rhombus) with eight junctions and

network-II, with 18 junctions. VISSIM follows the psychophysical car-following mod-

els (Wiedemann74 and Wiedemann99) and its variants developed later. In our case,

the networks are hypothetical with assumed geometry and flow conditions that resem-

ble real world traffic networks. Therefore, we do not have to calibrate using field data.

Further, we assume the same set of parameters for all simulation scenarios for all al-

gorithms to have consistency in the results. For instance, RMART and Q-Learning

have the same set of car following parameters.

6.6.1 Congestion level variation at intersection level

Algorithms are evaluated at three different congestion levels: low, medium, and

high (near saturation). The trip rates for distinct origin-destination pairs are varied

to create low to high congestion level. However, this is not the exact representation

of the congestion experienced by the intersections. Two intersections can experience

varying level of congestion state, even though the demand (network congestion level

is same). Intersection-8 and intersection-11 in figure 6.3 experience different patterns

of congestion, although the network congestion level is same. Table 6.1 shows the

distribution of experienced states for these intersections.
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Figure 6.1.: Algorithm: SARSA



148

Figure 6.2.: Algorithm: RMART
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Figure 6.3.: Test network for evaluating the signal control algorithms.
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Table 6.1.: Description Of Congestion Variation

Experienced State Q-learning SARSA RMART

IS-8 IS-11 IS-8 IS-11 IS-11 IS-11

Low congestion (%) 45.74 45.74 22.87 37.67 27.81 78.92

Medium congestion (%) 39.91 49.78 45.3 57.85 43.49 20.18

High congestion (%) 14.35 4.48 31.83 4.48 2 0.9

6.6.2 Statistical tests

We obtain a sample from 10 simulation runs (for each scenario) in VISSIM using

a different random seed each time. The sample size is N = 10 with unknown stan-

dard deviation and accordingly, we use the Student t distribution for tests. First, we

determine the mean value of the performance metrics (i.e., travel time, delay, and

stops) at 95% confidence interval. The resulting values indicate the range of popula-

tion mean at desired confidence interval (in our case 95%). For instance, the system

delay of adaptive controller 156.2 < µ < 172.7 indicates that we are 95% confident

that the population mean for the system delay with adaptive controller lies between

156.2 × 104 and 172.7 × 104 seconds. Second, we test the validity of the claim that

RMART performs better than other controller using statistical tests. For instance,

with a predefined scenario we test whether the mean values of system delay for adap-

tive controller and RMART controller are significantly (statistically) different. Table

6.2 shows the results for high demand at network-II.

6.6.3 Performance comparison: Average Delay

Average delay, stopped delay, number of stops and network wide delay are chosen

as the measures of effectiveness (MOE). Table 6.3 shows the sample comparison of

average delay for different RL algorithms with different reward functions at different

congestion levels for network-I. The results are reported for intersection-8, however
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Table 6.2.: System performance for different control algorithms*

Fixed control Adaptive control RMART

System Delay

Mean 173 164 130

(in seconds ×104) (4.9% reduction) (24.6% reduction)

Population mean range 167 < µ <178 156 < µ <172 121 < µ <139

(at 95% confidence )

Stopped Delay

Mean 118 114 85

(in seconds ×104) (3.14% reduction) (27.9% reduction)

Population mean range 114< µ <122 106< µ <121 77< µ <92

(at 95% confidence )

(µ = mean value) at high demand for network-II

(All the improvements are tested and we find p < 0.001 with N = 10)

the trend is same for other intersections. At low congestion, Q-learning exhibits best

performance with R1 and R2, and RMART performs better only with R3. The results

are similar for both network-I and network-II. Due to space limitation, we report

the results for network-I only. At high congestion, RMART outperforms all other

algorithms with all types of reward functions. We made the following conclusions:

(a) SARSA performs worse than the other two algorithms

(b) At low congestion, Q-learning is a good choice. Note that, residual queue (R3) is a

more appropriate reward, when the congestion level is higher, aiming at avoiding

gridlock, however not directly related with delay.

(c) At high congestion, RMART is the best choice that yields the minimal average

delay.
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Table 6.3.: Average Delay (seconds) Comparison

Reward Congestion Fixed control Q-Learning SARSA RMART

Queue length Low 155 135 142 139

(R1) Decrease by 13% 8% 10%

Medium 236 193 191 179

Decrease by 18% 19% 24%

High 353 265 291 227

Decrease by 25% 18% 36%

Average delay Low 155 136 149 145

(R2) Decrease by 12% 4% 7%

Medium 236 171 187 195

Decrease by 28% 21% 17%

High 353 297 290 277

Decrease by 16% 18% 22%

Residual queue Low 155 140 148 139

(R3) Decrease by 10% 5% 10%

Medium 236 167 201 176

Decrease by 29% 15% 25%

High 353 260 276 226

Decrease by 26% 22% 36%

6.6.4 Performance comparison: stopped delay

Table 6.4 reports the comparison of intersection delay along with percentage of

improvement compared to fixed signal control. At low congestion, Q-learning per-

forms best with R1 and R2 for both intersections, however SARSA performs better

for intersection-8. At high congestion, RMART yields the best results with all reward

functions for both the intersections. Similar to previous results, RMART is the best
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choice to reduce stopped delay at signalized intersection at high congestion level of

the network.

Table 6.4.: Comparison of Stopped Delay (seconds)

Reward definition Congestion Fixed control Q-Learning SARSA RMART

Queue length Low 113 91 112 96

(R1) Decrease by 20% 1% 15%

Medium 183 137 156 123

Decrease by 25% 15% 33%

High 284 189 208 156

Decrease by 34% 27% 45%

Average delay Low 113 94 105 104

(R2) Decrease by 17% 7% 8%

Medium 183 118 131 140

Decrease by 36% 28% 24%

High 284 216 207 201

Decrease by 24% 27% 29%

Residual queue Low 113 95 93 96

(R3) Decrease by 16% 18% 15%

Medium 183 110 118 121

Decrease by 40% 36% 34%

High 284 182 216 151

Decrease by 36% 24% 47%

6.6.5 Comparison of system wide performance

Table 6.5 compares the system delays for different algorithms. Q-learning and

RMART perform significantly better than the fixed control at all congestion levels.
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SARSA has better performance at medium and high congestion levels. At high con-

gestion level, RMART shows the highest percentage of improvement compared to

fixed control.

Table 6.5.: Comparisons of system delay (seconds ×103

Congestion Fixed Q Reduce RMART Reduce SARSA Reduce

Level Control Learning by(%) by (%) by (%)

Low 235 229 2% 226 4% 235 0%

Medium 434 369 15% 376 14% 402 7%

High 774 622 20% 619 20% 638 18%

6.6.6 Comparison with real time adaptive control

The RL algorithms are compared with a real time adaptive signal control, namely

the Enhanced-Longest-Queue-First (ELQF) algorithm. The ELQF algorithm is based

on a routing algorithm in data communication network and has been implemented by

researchers in traffic control context (Arel et al.[178]; Wunderlich et al.[179]. Wun-

derlich et al. [179] proposed a variant of this algorithm, namely the Maximal Weight

Matching algorithm. For the test purpose, we modified the algorithm to make it

more efficient. The changes include provision for minimum and maximum green in

the signal-timing plan and adjusting for repetitive phases for the case when a par-

ticular approach is highly congested compared to all other approaches. The LQF

algorithm uses real time information to make signal control decision. ELQF activates

the phase with longest queue size within the defined constraints. Queue size is defined

as the number of stopped vehicles at the intersection on red.

Table 6.6 reports the comparison of RL algorithms with LQF algorithm. The RL

algorithms perform better than the LQF algorithm in terms of both average delay

and stopped delay (not reported due to space limitation). The results are similar for
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Table 6.6.: Comparison with Adaptive (ELQF) Controllers

Congestion Fixed Timing Plan Adaptive (ELQF) Q-Learning RMART

Intersection-8 Average Delay (seconds)

Low 144 177 132 132

Medium 203 207 160 175

High 357 294 270 232

Intersection-11 Average Delay (seconds)

Low 155.13 198.338 145.86 134.53

Medium 236.42 223.947 176.79 177.42

High 353.47 279.32 263.95 228.06

both intersection-3 and intersection-6. Note that both RL and ELQF algorithms use

real time traffic information to make signal control decision. The key difference is

that, the RL based algorithm have the notion of learning i.e., the controllers learn to

make the better decision with training. Similar results are found for network-II.

6.6.7 Value of information sharing among neighbors

Sharing traffic information among neighborhood controllers has been mentioned

as one of the distinct feature of the proposed RL algorithm in this research. To justify

the impact of information sharing we compare the results from two test cases: with

and without information sharing. Table 6.7 shows the comparison results for different

congestion levels. For Q-Learning, we see improvements at all congestion levels.

For RMART, we see improvement for higher congestion and for SARSA negligible

deterioration is observed at higher congestion level. It can be concluded that, sharing

of neighborhood information helps to improve the performance of RL algorithms.
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Table 6.7.: Benefits of information sharing

Test Case Average Stopped

Delay Delay

With W/O Change With W/O Change

Info Info. Info Info

Off-policy Low 132.39 133.58 0% 92.8 93.5 0%

(Q-Learning) Medium 160.13 168.56 5% 111.3 118.29 6%

High 270.12 270.37 0% 204.7 204.06 0%

RMART Low 131.89 131.89 0% 93.09 93.09 0%

Medium 174.98 172.52 -1% 123.81 121.31 -2%

High 231.55 284.15 23% 168.42 218.03 30%

On Policy Low 152.78 152.78 0% 111.43 111.43 0%

(SARSA) Medium 184.55 192.88 5% 133.75 140.46 5%

High 320.82 319.31 0% 247.58 245.92 0%

6.7 Emissions estimation using MOVES2010b

To evaluate the control algorithms from sustainability consideration, we estimate

and compare emissions (CO, CO2 , NOx, VOC, PM10) for the major seven roads.

Since all the roads are two-ways, in total we have 14 road links. MOtor Vehicle

Emission Simulator (MOVES2010), developed the U.S. EPA (EPA, 2012), is used to

estimate the emission. EPA has regulated to use MOVES2010 for emission conformity

analysis (except, California) for states in the U.S. MOVES2010 have the capability to

estimate emission with time dependent speed profiles (Lin et al.[155]; Xie et al.[83]).

We simulated the morning peak hour (8:00 am to 9:00 am) with higher level of con-

gestion assuming the geographical and meteorological details of Tippecanoe County,

Indiana for the year 2012. Only passenger cars with Gasoline type of fuel are used in

the analysis. Although the values obtained are only for an hour, generally the analysis

is done for the entire day or for the week. If we assume 4 hours of peak congestion
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each day and assume the conditions prevail as we simulated through MOVES2010,

then we see significant reduction in the emission level for a typical work week. Table

6.8 shows the results. It can be seen that RMART algorithm can significantly reduce

emissions from road network.

Table 6.8.: Comparison of Emissions (Network-I)

Pollutants Control Schemes

Fixed Timing Adaptive Q-Learning RMART

CO (g/hour) 10683 4318 4394 4247

Weekly total (g) 213656 86357 87883 84935

NOx (g/hour) 732 312 308 302

Weekly total (g) 14632.34 6246.612 6155.406 6037.2

VOC (g/hour) 264 108 106 104

Weekly total (g) 5290 2151 2112 2079

PM10 (g/hour) 38.1 16.33 16.2 15.78

Weekly total (g) 762.03 326.55 320.23 315.6072

CO2 (g/hour) 841070.6 345631.6 339527.5 334037.4

Weekly total (g) 16821412 6912632 6790550 6680748

Energy consumption 117032 48093 47244 46480

(j/hour) ×105

Equivalent fuel 1777 730 717 705

(in gallons per week)
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6.8 Summary and concluding remarks

The research presents and implements RL based signal control algorithm, namely

RMART, which adapts with the traffic dynamics through learning from the stochastic

environment. Our results show the total system delay and stopped delay are lower for

RMART compared to fixed control and adaptive control (i.e., the variant of longest-

queue-first). The obtained results are statistically significant (p ¡ 0.001). Adaptive

controllers are quite different from the RL based controllers in terms of principle and

implementation (Mirchandani and Head [145]; Abdulhai et al. [149]). The results

from our empirical tests show that, learning based controls can perform better than

the adaptive control. In addition, the RL controllers perform much better than the

fixed timing plan. This implies that, learning is a useful and potential feature in the

real time signal control algorithms and can improve the performance of the controllers.

The inclusion of neighborhood information sharing in the RL algorithms is found

to improve the performance (H2) in most cases for the RL algorithms. Information

sharing facilitates the controller to make decisions based on the overall congestion

states of its neighborhoods. Without neighborhood information, the controller makes

decision based on local information. However, the state of traffic flow of the neighbors

affects the future traffic conditions (simplest example would be the arrival rate at the

downstream intersection). This is particularly important at higher congestion level

(near saturation).

To assess the benefits in terms of reducing vehicular emissions we compare the lev-

els of emissions of RMART with other algorithms. The levels of emissions (CO,NOx,

PM10, CO2 , VOC) are significantly lower for the network when RMART is imple-

mented (H4). The reduction in number of stops and average stopped delays at the

intersections with RMART can be the major reasons behind lower level of emissions.

Further, we also observe lower energy consumption for RMART compared to other

algorithms. Therefore, RMART performs better than the other algorithms in terms

of reducing vehicular emissions and energy consumption for the entire network.
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Note that, our test cases do not indicate a better performance of the multi-reward

structure. The random nature of on-road traffic (e.g., drastic changes from low con-

gestion to high congestion due to an incident) is the key motivation behind the imple-

mentation of multi-reward structure. However, the multiple reward structure did not

have better performance in our tests compared to the other learning algorithms. This

phenomenon can occur due to the basic principle of the algorithms, i.e., learning over

time. To test the algorithms, we applied varying demand over time and report the

results for the last 15 minutes of the simulation. The algorithms with single reward

structure learn over the simulation period. Accordingly, these algorithms are also

able to take the best decision even in the most random environment (sudden change

from low to high congestion). As a result, we do not observe significant improvement

for the multi-reward based RL algorithm.

To conclude, the RMART algorithm as illustrated by the results has shown higher

potential to reduce delay at highly congested states. In addition, this research shows

the advantages of information sharing and potential of emissions reduction of the RL

based algorithms.
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CHAPTER 7. INTEGRATED EMISSIONS TOOL

7.1 Introduction

A system or user level strategy that aims to reduce emissions from road networks

requires a rigorous assessment of emissions inventory for the system to justify its

effectiveness. In other words, it is necessary to estimate the total emissions for the

transportation network before and after the implementation of a particular policy.

For instance, a traffic signal control scheme that is optimized for environmental goal

is expected to cause less emissions compared with the settings without any environ-

mental goal. To assess the benefits of the new signal control scheme it is necessary

to compare the emissions level with base case (i.e., scheme without any environmen-

tal goal). Further, air quality assessment is a requirement for the local agencies for

conformity and funding decisions. The Clean Air Act section 176(c) requires trans-

portation conformity to ensure that federally supported highway and transit project

activities support and move towards the state air quality implementation plan (SIP).

Federal Highway Administration (FHWA) requires transportation conformity studies

to ensure that federal funded and approved projects are consistent with air quality

goals set by National Ambient Air Quality Standards (NAAQS).

The previous chapters discuss strategies that include providing emissions related

descriptive information (chapter 3), personal mobility carbon allowance schemes,

learning based traffic signal control with environmental objectives. This chapter de-

scribes an integrated traffic-emissions simulator framework that can be used to assess

the strategies described in the earlier chapters. The framework does not require any

specific traffic simulator. Any micro-level simulator should fit in the framework that

can provide outputs in second-by-second manner. Motor Vehicle Emissions Simu-
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lator (MOVES) developed by the U.S. Environmental Protection Agency is used in

the integrated framework. This is because, EPA has regulated to use MOVES to de-

velop state implementation plans (SIPs) and regional or project-level transportation

conformity analyses. MOVES is a modal-based emissions estimator that accounts

for vehicle operating modes defined by factors like speed, acceleration, road grade,

curvature, and so on. MOVES has the ability to include alternative types of fuel

and different type of vehicles. MOVES can be used to conduct analysis at different

scales including regional, state, and project level (e.g., small road network at county

level). The development and refinement of MOVES will be an on-going process and

MOVES will be considered as the standard tool for quantifying the emissions level of

road networks in the United States.

Integration of MOVES with traffic simulator can be outlined as a input-output

process. The second-by-second vehicular activities from traffic simulation serve as

input for MOVES and the emissions inventory for a transportation network can be

estimated [80, 81, 83, 84].The input from traffic simulators can be any of the following

formats: (I) Average speeds for the links in the network, (II) Link Driving Schedule

(LDS) for each link of the network. LDS is the change in speed with time for a link

in the network (generally done for a representative vehicle or by means of sampling),

(III) Operating mode distribution of vehicles on the link. While option I is commonly

used in practice, option II and option III can take the advantages regarding vehicular

activity data and dynamic capability of MOVES to report time dependent emissions

([180]. Input data for MOVES for the analysis signalized intersections require more

details and careful selection of vehicular activities. EPA suggests to use a series of

LDS to represent cruise, acceleration, idle, and deceleration behavior in a congested

intersection. Also notions of approach and departure link should be incorporated.

Two challenges with this link segmentation technique are: (a) the overlapping of

cruise, idle, acceleration, deceleration, and idle zone (e.g., the vehicular activity 100

ft. from the stop line at red and green phases), (b) Finding a single representative

LDS that features all the vehicles within that segment for the analysis period (e.g.,
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one may need to pick one LDS from 400 vehicles for a single hour analysis). Option III

requires computing fractions of the fleet travel times spent in each mode of operations.

The computation is based on ratios of mode travel times to total travel times and

significant post processing is required [180].

Option II is commonly used because trajectories are relatively easy to obtain

and can be converted into LDS for links. An alternative to the link segmentation

technique is to input the second-by-second trajectory of the vehicles. This allows

to overcome the first limitation of link segmentation technique. We do not have to

separately model idling, cruise, acceleration, and deceleration because vehicular tra-

jectories accommodates all possible activities. However,the challenge is to find the

representative trajectory for a link that may be traversed by thousands of vehicles

during the analysis period. Sampling techniques with carefully designed sample crite-

ria can be used to reduce the size of the problem. However the computation becomes

significantly expensive as the size of the problem grows. A sample of 5000 vehicles for

150,000 original data can take multiple hours (if not days). This makes the trajectory

approach inefficient in terms of computation and obviously accuracy is compromised

as the sample size is constricted.

This research proposes a novel technique based on similarity based clustering to

find the representative vehicle trajectories. The technique uses the dynamic time

warping distance as the similarity measure in clustering which is more appropriate

for curve alignment compared with Euclidean distances and its variants which is

more common in the literature. A recent approach by [181] applies K-means cluster-

ing with Euclidean distances. Two major limitation exists with this study. First, the

Euclidean distance is not an appropriate similarity measure for time series type of

clustering. Euclidean distance measures cannot account for this shift in time phase.

Euclidean distance fails to provide a correct measure of similarity between two se-

quences because of its high sensitivity to changes in the time axis [182, 183]. Second,

K-means algorithm requires the number of clusters to be predefined.



163

10
20

30
40

50
60

70

0

50

100

150

200

350

400

450

500

550

600

650

700

750

800

 
Alignment by DTW

 

Trajectory−1

Trajectory−2

Figure 7.1.: Alignment by DTW

Our proposed technique overcomes both limitations. First, we use a dynamic

time warping measure instead of Euclidean distance. The advantage DTW offers

is that it can align two times series having similar shape but not aligned in time.

DTW allows elastic shifting of the time axis to identify similar shapes with different

phases. We applied agglomerative hierarchical clustering that does not require the

number of clusters as input. The number of clusters is determined using inconsistency

coefficient measure and also it is possible to assign maximum number clusters. Figure

7.1 illustrates the DTW similarity for two trajectories with different lengths. The

trajectories are overall similar but shifted in time. Finally, our proposed technique

reduces the computation requirement significantly with negligible compromise in the

accuracy of estimation.

The goals for this research are as follows:
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(a) To present an integrated framework of traffic and emissions simulator (MOVES)

that can be used to evaluate user and system level emissions and energy reduction

policies

(b) To develop a similarity based clustering technique that finds the representative

link driving schedules for MOVES input from second-by-second trajectory data.

(c) To demonstrate the applicability of the technique in terms of accuracy and com-

putational efficiency for analyses of signalized intersections.

The rest of the chapter is organized as follows: section 8.2 provides an overview of

MOVES2010, section 8.3 described the integration framework, section 8.4 and section

8.5 discuss the dynamic time warping based clustering technique in details, section

8.6 demonstrated the applicability of our proposed technique, and finally we discuss

the limitations and future research direction in section 8.7.

7.2 EPA Regulated Estimation Tool: MOVES2010

MOVES (MOtor Vehicle Emission Simulator) developed by the U.S. EPA was first

released in December 2009. In March 2010, MOVES was officially approved for use in

state implementation plans (SIP) and transportation conformity analysis [184] out-

side California. MOVES2010b is the most recent update of the tool. We will use the

term ”MOVES” throughout the manuscript that refers to refer to MOVES2010b ver-

sion. MOVES can be used both as an inventory model (estimation of total emissions

for a network or region or even state). The VMT (vehicle miles traveled) and vehicle

fleet composition information are used to compute the total emissions. If used as an

emissions rate model MOVES only provides the emissions rates and post processing

is required to obtain the total emissions. MOVES is one of the micro-scale vehi-

cle emissions simulator that uses instantaneous (e.g., second-by-second) operations

of individual vehicles on the road [185], [180]. Among the few microlevel emissions

models, International Vehicle Emission (IVE) model [186] and Comprehensive Modal
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Emissions Model (CMEM) [187], [17] are well known for estimating vehicular emis-

sions. MOVES is one of the most sophisticated emissions models that can be applied

at different modeling scales: from the micro-scale (project-level, e.g., parking lot) to

the macro-scale, where national-scale inventories are being generated for precursor,

criteria, and greenhouse pollutants from on-road mobile sources [185].

7.2.1 Estimation Method in MOVES

The emissions estimation in MOVES is primarily based on power demand of the

vehicles. Two categorical bins are defined in the MOVES database: source bin and

operating mode (op-mode) bin. The source bin is defined based on Vehicle charac-

teristics (type of fuel, engine type, make and year, loaded weight, and engine size).

The Operating mode bins are defined based on the second-by-second vehicle char-

acteristics (idling, accelerating, cruising, decelerating, and so on). Vehicle Specific

Power (VSP) is used as the measure of the power demand [188] placed on a vehicle

under various driving modes. VSP is defined as the power demand on the engine per

unit of vehicle mass to surmount the inertial acceleration (power demand), rolling

resistance, road grade, and aerodynamic drag [188], [189]. Studies ([190], [191], [185])

show direct correlation between VSP and vehicular emissions. IVE [17], and CMEM

[17] also use VSP based approach [186] to estimate emissions from road networks.

VSP is differentiated based on driving cycles and vehicle characteristics. Other than

the meteorological factors, vehicle characteristics highly impact the emissions estima-

tion. Also, the aerodynamic drag varies by vehicle size, type, and loads. For instance,

the aerodynamic drag for a compact car and for a full size car will be quite different

[189]. Detail description on the emissions estimation method can be found in the

MOVES user guide [180] and EPA guidelines for GHG and energy estimation from

road networks [192].
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7.2.2 Data input for MOVES

MOVES requires several traffic network related attributes for emissions estima-

tion. These include

• Type of links (freeway, arterial, parking lot, truck terminal, and so on ) based

on the type of access (restricted vs. unrestricted)

• Length of link, grade (slope), and average speed of vehicles on the link for the

analysis period.

• Special treatment is applied for the analysis of signalized intersections. Gener-

ally, the link is divided into several segments to account for the stopping of the

vehicles at red.

Currently, MOVES has five categories of road types. The default database contains:

a) Rural roads with restricted and unrestricted access, b) Urban roads with restricted

and unrestricted access, c) Off-network (this is primarily for the extended idle process

in parking lots or truck terminals). Note that, the selected road type may or may

not exist in the geographical bounds of selected county and MOVES only computes

results for the existing road types for that county.

The time span including the year, month, day (weekday or weekend), and starting-

ending hours needs to be defined precisely. The finest resolution is one hour in

MOVES. For project level analysis, any county in the U.S. can be chosen for analysis.

Further, one can customize the county level parameters using the option custom

domain. The custom domain requires the following data:

(a) GPA fraction which is defined as the fraction of the county within a fuel Geo-

graphic Phase-in Area (GPA).

(b) Atmospheric pressure in units of Bar of Hg. The average for low altitude is 28.9

and average for high altitude is 24.6.

(c) Vapor Adjust which is defined as the refueling vapor program adjustment fraction.
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(d) Refueling Spill which is defined as the refueling spill program adjustment fraction.

The vehicle-fuel combination is required. Currently, MOVES has the following

types of fuels Source Use Types (i.e., the types of vehicles). The available fuel types

are as follows: Compressed Natural gas (CNG), diesel fuel, electricity, gasoline, and

liquefied petroleum gas (LPG). The available vehicle types are: combination long-haul

and short-haul truck, intercity bus, light commercial truck, motor home, motorcycle,

passenger car and passenger truck, refuse truck, school bus, single unit long haul

and short Haul truck, and transit bus. MOVES requires the age distribution of the

vehicles on the network to be analyzed. The emissions are different for vehicles at

different ages. The default database is available in EPA website that can be used when

local data cannot be accessed. Similar to the vehicle-age distribution, distribution of

fuel type use in the network is also required. MOVES provides a county level default

database for fuel type composition.

7.3 Integration with Traffic Simulation

The recent advances in the emissions modeling allow to compute emissions ac-

counting for second-by-second operation characteristics of a vehicle on a road segment

[180], [81]. The instantaneous emissions models are useful for temporal ans spatial

analysis of different policies and emissions reduction strategies at fine-grained levels.

These models overcome the under-estimation problem associated with the air quality

models that assume emissions are evenly distributed along a road section [193]. Now,

micro-scale models like MOVES require detailed and precise information regarding

vehicle operation and location. Without the finesse of the data, expected accuracy

level and accordingly the benefits are lost. On the other hand, collecting precise

data on instantaneous vehicle operations for even a small network is tedious, expen-

sive, and time consuming. An obvious solution to this problem is the use of micro

level traffic simulation model that can effectively produce all the required inputs with

desired details for the instantaneous emissions model.



168

Figure 7.2.: Framework: integrated traffic and emissions simulator

This research provides a general framework to integrate MOVES with a traffic

simulator. MOVES is build on Java platform and the databased is in MySQL format.

In addition to the visual interface, MOVES can be executed from scripts in UNIX

or LINUX or command prompt in Windows OS. Batch mode is possible as well for

series of scenario analysis. The MOVES run specification is required to be saved as

an XML file and later can be revoked from the system. Figure ?? shows the steps

performed to integrate MOVES and the traffic simulator.

7.3.1 Applications of integrated tool

The potential applications of the integrate tool are as follows:
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• Assessment of the air quality: The integrated tool will be able to output emis-

sions level at link and network level in terms of emissions rate (gm/hour) or

total emissions (in mass units). By means of an emissions dispersion model (for

instance, the Gaussian dispersion model), the emissions concentrations will be

reported.

• Effectiveness of provision of emissions information: The tool will allow us to

assess the network state when descriptive emissions information will be provided

to the system users. As described in chapter 4, we hypothesize that the travel

decisions (departure time and route choice) are influenced by the information

provision and this tool will help us to assess the resulting network state.

• Evaluation of signal control strategies

• Evaluation of pricing policies such as carbon budgeting for personal travel.

7.4 Methodology: HC-DTW technique

The proposed methodology applies hierarchical clustering technique with dynamic

time warping (DTW) (dis)similarity measures. Details on the methodology can be

found in Everitt et al. [194]. Figure 7.3 shows the steps of the technique proposed in

this research. Hereafter we refer to our clustering technique as hierarchical clustering

with DTW or HC-DTW technique. The inputs are the vehicular trajectories of all

links in the network. The DTW algorithm provides the shortest DTW path distance

for any two trajectories. For a link we compute the DTW distances for all trajectories

and then create a square matrix of size equals to number of trajectories. Each element

in the matrix is the DTW measure with all other trajectories for the link. This matrix

acts as the distance matrix for the hierarchical clustering. Note that we do not use

k-means method because the objective is more curve alignment based on similarity

measures. The k-means algorithms are more suitable for density based clustering

where the focus is more on the location.
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Figure 7.3.: Link Driving Schedule (LDS) finding methodology
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Unlike k-means algorithm, hierarchical clustering does not require the number of

clusters as an input. One can follow either agglomerative or divisive method to obtain

hierarchical clusters. Both approaches provides the clusters and can be visualized

using a dendrogram. This study follows agglomerative method. The clustering tree

starts with all elements condensed in a single cluster on the top and each element a

separate cluster at the bottom. One particular challenge is to find the optimal number

of clusters. In other words, where should we cut the clustering tree? This research

follows two approaches to cut the clustering tree: (a) inconsistency coefficients, (b)

maximum number of clusters allowed. After obtaining the clusters, a prototype from

each cluster is picked. The prototype trajectory is the member of the cluster that

minimizes the distance with all other members within that cluster. The prototype

trajectory is then converted into LDS by computing the instantaneous speed. The

next subsections provide details

7.4.1 Computing DTW measures

Dynamic time warping (DTW) [195, 196] is a similarity measure that can be

applied for unsupervised clustering of time series. DTW has been used in several

ares that include speech recognition, gesture recognition, data mining, robotics, and

biometric data alignment problems. DTW finds an optimal alignment between any

two time dependent sequences. The optimal alignment (also known as the minimum

distance wrap path) is determined by assigning successive values of one sequence to

a single value of the other. This enables DTW to find alignment even when the time

series are of different lengths.

Consider two sequences u and v with lengths m and n respectively. The seqeunces

are: u : {u1, u2, . . . , ui, . . . , um}, v : {v1, v2, . . . , vj, . . . vn}. A n × m grid can be

constructed where each element in the grid represents an alignment between any

two objects from u and v. A warping path W p is a sequence of elements from this

grid(W p = w1, w2, . . . , wk, . . . , wK). Each element wk is defined with element index
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from u and v. The sequence W maps the elements of the u and v. Classical DTW

path has several constraints:

• Boundary conditions: The warping path starts in first point of both sequences

and ends in last point of both sequences. Mathematically, w1 = (1, 1), wK =

(n,m)

• Continuity: The warping path is restricted to the adjacent cells in all directions.

Consider two sequential elements wk = (u, v) and wk+1 = (ũ, ṽ) in W . Now the

conditions ũ− u ≤ 1, ṽ − v ≤ 1 must hold.

• Monotonicity: The points in W are monotonically spaced in time.

Exponentially high number of warping paths are possible that satisfy the above

conditions. DTW algorithm finds the path with minimal cost (distance).

DTW (u, v) = min(1/K)

√√√√ K∑
k=1

wk (7.1)

Denote λ(i, j) as a cumulative distance defined as:

λ(i, j) = d(ui, vj) + min{λ(i− 1, j − 1), λ(i− 1, j), λ(i, j − 1)} (7.2)

Dynamic programming can be used to find this recurrence equation. Details on

the algorithm can be found in Kruskall and Liberman [197].

Figure 7.4 shows an example of computing DTW minimum path for two vehicular

trajectories of different lengths (45 seconds vs. 70 seconds).

7.4.2 Hierarchical clustering

Hierarchical clustering partitions the data in sequential steps and the number of

clusters is not predefined. The clustering method yields a series of partitions that

may include a single object or all the objects in the data. Further classification of
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hierarchical clustering leads to two subdivisions: agglomerative and divisive methods.

This research follows agglomerative method that starts with all objects into a single

cluster and ends with each object as a distinct cluster. At each stage of clustering

agglomerative method fuses objects or groups which are most similar. The similarity

measure dominates the patterns of partitioning. Finally, a binary hierarchical tree

(linkage) is found. Clustering can be implemented with different specification of link-

age. Single linkage (also known as nearest neighbor) defines the group distance as the

distance between the closest pair of points of each group. Complete linkage (farthest

neighbor) refers to the case where group distance is defined the distance between the

farthest pair of points of each group. Average linkage clustering defines group dis-

tance as the average distance between all pairs of points. The results reported in this

research are obtained from average linkage hierarchical clustering. After obtaining

the dendrogram (binary tree) one needs to decide where to cut the tree (in other

words we need to determine the number of clusters). This research follows two tech-

niques: (1) cutting at an height that yields desired number of clusters, (2) cutting

the inconsistent links using inconsistency coefficients.

7.4.3 Consistency measures

The comparison of the height of each link in a cluster tree with the heights of

neighboring links below it in the tree can provide a direction to determining optimal

number of cluster in a tree (MATLAB statistical Toolbox, [194, 198]). If two links

(vertically spaced) have almost the same height, the cluster distinction between these

two levels is not significant. These links are characterized by higher level of consis-

tency. Obviously links with lower level of consistency (or inconsistency) are desired.

Higher level of inconsistency indicates that the distance between the objects being

joined is approximately the same as the distances between the objects they contain.

The links in the dendrogram that have significantly different height compared with

the height of the links below can be identified as inconsistent. Outputs from hierar-
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chical clustering can be used to determine the the relative consistency of each link

that is denoted as the inconsistency coefficient. The coefficient is a ratio of the height

of the link to the average height of all links that lie below the link. High value of

inconsistency coefficient indicates the joining of distinctly featured clusters. On the

other hand, low value indicates that the clusters may be insignificant and possibility

of merging is high.

7.4.4 (Dis)similarity measures

A property of a hierarchical cluster tree is that any two data objects must be

connected to each other at some hierarchical levels of the tree. The cophenetic dis-

tance between any two objects is defined as the distance between the two clusters

that contain these two objects. The distance between two clusters is measured as

the height of the link in the tree. Intuitively, if the clustering is valid, the linking of

objects in the cluster tree will be strongly correlated with the distances (DTW mea-

sures in our case) between objects in the original data. The cophenetic correlation

coefficient measures this correlation between linkage distances and (dis)similarity dis-

tances ([199, 200]). A cophenetic coefficient closer to 1 indicates higher validity of

the output from hierarchical clustering.

7.5 Demonstration of the technique

The applicability of the proposed technique is demonstrated with the data from

of a corridor with five signalized intersections. The corridor is located in the city of

West Lafayette, Indiana in the U.S. The trip demand and signal settings are obtained

from a previous study [201]. The signal settings are based on Econolite controllers and

designed for maximum congestion period. The network along with demand and signal

settings is simulated using commercial traffic simulator VISSIM [202] and trajectories

are collected for 15 minutes period.
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Figure 7.5.: Test network: five intersection corridor
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7.5.1 Comparing the performance of HC-DTW

To demonstrate the applicability and benefits of the HC-DTW technique we com-

pare the emissions estimates obtained from three different methods. The first method

is the HC-DTW technique that uses the Link Driving Schedule (LDS) set obtained

by clustering. Second method uses average speed of the link to estimate emissions

which is the most commonly used technique in practice. The third method uses tra-

jectories of all vehicles on a link as input for MOVES. The last technique provides

the most accurate estimate of emissions from MOVES because the activity of each

vehicle is considered as a separate link input into MOVES. For instance, if we have

1000 vehicles traversing on a link during the analysis period, we have to create 1000

instances of the link in the MOVES input file. Since each vehicle’s activity is con-

sidered separately, different operating modes are considered by MOVES with higher

accuracy. Hereafter we refer to this approach as the exact method. The goal of this

section is to demonstrate that the emissions obtained from our proposed approach is

not significantly different from the those obtained from exact method.

We tested our technique with seven scenarios with the trajectories from the links

of the signalized corridor. The test cases are constructed in such a way that variation

in vehicular activities, resulting from varying congestion level or simply due to the

existence of traffic signals, on road links can be represented. Although many possi-

ble combinations of vehicular activities exist, six types of activities are considered:

(I) Cruise-Decelerate-Idle, (II) Idle-Accelerate, (III) Cruise, (IV) Cruise-decelerate-

Accelerate, (V) Idle-Accelerate-Decelerate-Idle, and (VI) Idle. Table 7.1 shows the

percentage of each type of vehicular activities for each case considered in this study.

For case 1, 39 vehicles traverse the road segment during the analysis. To compute

the emissions using the exact method, we input 39 LDS (one LDS for each vehicle)

in MOVES and compute the emissions for the link. Next, we apply the HC-DTW

technique and we find three representative clusters. A prototype from each cluster

is obtained to find the LDS. These LDSs are used as input for MOVES with cor-

responding traffic volumes. Likewise we estimate the emissions for all other cases.
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Further, we report the emissions estimated by inputting simply the average speed of

the link for all cases (case 1 to case 7). Table 7.2 reports the emissions from these

three approaches.

Further table 7.2 reports the percentage difference from the exact method for

average speed and HC-DTW techniques. The differences for average speed method

are found to be significantly higher compared with the HC-DTW technique. One

intuitive cause is that the average speed method is not able to capture variations

in speed profiles. For case 1, we observe 12 vehicles belong to a cluster where they

do not have to stop on red phase of the signal or simply cruise through the link.

The other two clusters (with 19 and 8 vehicles respectively) are characterized with

acceleration, cruising, and then deceleration phase. Average speed for cluster-1 is

about 22 mph and for the other two clusters the average speed is about 7.5 mph.

The average speed method overestimates the speed for the link and uses a value of 13

mph and uses the corresponding driving cycle to estimate the emissions. This causes

underestimation of emissions for that link. At lower speed (0-10 mph) the emissions

are high, the average speed approach fails to capture that. Whereas by clustering we

find representative speed profiles and emissions values are estimated with three LDS

inputs that are close to exact method (table 7.2).

The difference values for PM10 is very high for cases 2, 3, and 7 with HC-DTW

technique. However the difference values are still smaller compared with average-

speed technique. The emissions estimate for PM10 are very small in terms of mag-

nitude. It is possible to have accumulated error that leads to high percentage error

although the absolute errors are small. HC-DTW provides one LDS for each cluster

as a prototype of all vehicular activities in the cluster. Smaller difference in speed

profiles between a member and the representative LDS can lead to higher degree of

percentage difference as well.

Further we observe higher error percentage for CO emissions in case 2 and case

6. Both cases have higher percentage of cruise-decelerate-idle activity. It is possible

that one single prototype of LDS cannot represent three activities: cruise, decelerate,
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Table 7.1.: Description of test scenarios: vehicular activity proportions

Vehicular Activity (%)

Test Cruise- Idle- Cruise Cruise Idle- Idle

Scenario Decelerate Accelerate -Decelerate -Accelerate

-Idle -Accelerate Decel-Idle

Case 1 31 21 48

Case 2 40 55 5

Case 3 51 8 41

Case 4 44 41 15

Case 5 46 42 12

Case 6 48 5 47

Case 7 9 51 40
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idle. Higher number of clusters to represent cruise-decelerate, decelerate-idle, and

idle separately can improve the results. We observe that the difference is higher as

we increase the number of links (compare case 1 and case 2). This is mainly because

of the accumulation of errors for each vehicle. This can be addressed by increasing

the number of clusters when number of vehicles gets higher.

Further, we tested the technique for a case where the variation of speed profiles

is small. Three clusters with slight variation were chosen and all represent cruise-

decelerate-idle activity. We found the difference with Exact method are 2% and

2.5% for HC-DTW and average-speed techniques respectively. This implies that the

benefits of HC-DTW technique is marginal in cases where the vehicular activities do

not vary much.

7.5.2 Computational time

We also observe significant reduction in running time when HC-DTW technique

is applied. Table 7.3 shows the computational time for each cases. To conclude from

our results, we do not have to compromise accuracy and obtain the solutions in much

faster time. The running time is a function of the links in the network. For large

networks with links in the order of thousands, the computational time can go up to

days [180]. With the HTC-DTW technique it is possible to reduce the computational

time. The analyst can define the error tolerance and the corresponding number of

clusters to be used for large scale analysis. Further, it is possible to use real-world data

as input to this algorithm and that will expedite the emissions estimation process for

local transportation agencies while assessing air quality for transportation networks.

7.5.3 Results with two signalized intersections

This section illustrates results obtained for seven links (signalized intersections)

using the HC-DTW technique. The results report clusters of trajectories. It is straight

forward to convert a trajectory to a LDS, therefore we do not present results for LDS
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Figure 7.6.: Link-3 for intersection-1

objects. Table 7.4 summarizes the results for seven links from the test network. Fig-

ures 7.6 - 7.10 show examples of the clusters obtained and exhibit the heterogeneous

vehicular activities on signalized intersections. Further the cophenetic coefficients

have higher values close to 1 indicating higher degree of validity of the results ob-

tained from clustering.

7.5.4 Summary of findings

Several insights can be drawn from the observations The major findings from our

research are as follows:
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Figure 7.7.: Link-4 for intersection-1
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Figure 7.8.: Link-1 for intersection-4



183

0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)

0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)

0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)

0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)
0 20 40 60

100

200

300

D
is

ta
n
c
e
(f

t)

Time(s)

Figure 7.9.: Link-2 for intersection-4
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Figure 7.10.: Link-3 for intersection-4
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• The HC-DTW technique provides higher accuracy compared with average-speed

technique (table 7.2) as we see from our seven test cases.

• The error percentage for PM10 is found to very high in most cases.

• The number of links in a cluster affects the accuracy of the estimation. As

the number of vehicle increases in a cluster, the degree of similarity (closeness)

decreases. Although the average similarity remains same, some details are lost.

Further, estimation with a very high volume traffic adds the accumulated error.

This implies that the when the number of trajectories are reasonably high the

analyst needs to carefully decide the number of clusters to include (section ??)as

input to MOVES.

• Except PM10, the error percentage ranges from 1% to 10% for all other pollu-

tants. Case 2 and case 6 higher error for NOx.

• HC-DTW is most effective when the variation in vehicular activities on a link

is high which is typically found during peak hour conditions and in urban areas

(section 7.5.1). If the congestion level is low, and the vehicular activities are

similar, average speed technique provides estimation with reasonable accuracy.
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Table 7.2.: Comparison of estimates for different approaches

Case 1 (39 vehicles)

Pollutants Exact method HC-DTW **diff. (%) Avg speed **diff. (%)

CO2 (g/hr) 3607.66 3692.06 2.33 2906.75 19.42

CO (g/hr) 32.75 30.98 5.41 23.99 26.74

PM10 0.1039 0.1059 1.91 0.0526 49.34

NOx (g/hr) 2.879 3.035 5.40 2.164 24.82

Case 2 (62 vehicles)

CO2 (g/hr) 14884.44 13764.04 7.53 5939.55 60.10

CO (g/hr) 74.99 63.11 14.5 44.44 40.74

PM10 0.27 0.22 18.88 0.10 63.94

NOx (g/hr) 5.94 4.75 17.8 3.66 38.36

Case 3 (42 vehicles)

CO2 (g/hr) 4692.43 4603.01 1.91 4291.64 8.54

CO (g/hr) 35.34 34.00 3.77 29.77 15.75

PM10 0.11 0.13 22.10 0.06 40.50

NOx (g/hr) 3.42 3.23 5.41 2.24 34.39

Case 4 (34 vehicles)

CO2 (g/hr) 12469.52 11739.35 5.86 17401.29 39.55

CO (g/hr) 58.30 53.02 9.06 93.21 59.88

PM10 0.22 0.19 13.45 0.22 2.38

NOx (g/hr) 4.36 3.90 10.55 6.44 47.73

Case 5 (26 vehicles)

CO2 (g/hr) 11704.87 11135.34 4.87 16588.73 41.73

CO (g/hr) 52.60 49.71 5.50 88.62 68.47

PM10 0.20 0.18 10.60 0.21 5.26

NOx (g/hr) 3.88 3.62 6.72 5.97 53.97

Case 6 (36 vehicles)

CO2 (g/hr) 4282.95 3908.51 8.74 3738.09 12.72

CO (g/hr) 33.14 26.99 18.56 25.74 22.35

PM10 0.11 0.10 2.05 0.06 47.84

NOx (g/hr) 3.12 2.58 17.38 1.92 38.47

Case 7 (34 vehicles)

CO2 (g/hr) 3893.57 3845.91 1.22 3570.03 8.31

CO (g/hr) 30.07 30.00 0.22 24.90 17.19

PM10 0.09 0.11 21.68 0.05 42.25

NOx (g/hr) 2.86 2.74 4.09 1.89 34.04

**Differences are from the exact method when each vehicle trajectory is an input
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Table 7.3.: Computational time comparison

Estimation method No. of LDS Computational time (minute)

Case 1

Exact method 39 33

HC-DTW 3 less than a minute

Average-Speed - less than a minute

Case 2

Exact method 62 39

HC-DTW 3 less than a minute

Average-Speed - less than a minute

Case 3

Exact method 42 34

HC-DTW 3 less than a minute

Average-Speed - less than a minute

Case 4

Exact method 34 25

HC-DTW 3 less than a minute

Average-Speed - less than a minute

Case 5

Exact method 26 18

HC-DTW 3 less than a minute

Average-Speed - less than a minute

Case 6

Exact method 36 29

HC-DTW 3 less than a minute

Average-Speed - less than a minute

Case 7

Exact method 34 25

HC-DTW 3 less than a minute

Average-Speed - less than a minute

Conducted with 2.4 GHz, i5 4 core processor, 4 GB RAM machine
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Table 7.4.: Sample results using HC-DTW technique

Link-ID Total no. of No. of Min. no. Max. no Cophenetic

Vehicles clusters of elements of elements coefficient

Link-1 195 8 19 58 0.83

Link-2 197 5 17 77 0.96

Link-3 400 9 17 116 0.76

Link-4 364 7 13 94 0.8

Link-5 181 5 12 47 0.78

Link-6 186 8 12 28 0.74

Link-7 249 8 15 62 0.86
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7.6 Concluding remarks

This research develops a novel technique to find link driving schedules from ve-

hicular trajectories that can be used as input for emissions simulator MOVES. First,

we outline a framework that integrates traffic and emissions simulator. The traffic

simulator can be any micro-level simulation that provides second-by-second vehicle

activity data. Second, this research proposes a link driving schedule finding technique

based on similarity based clustering that overcomes the general limitations of current

approaches to estimate emissions using vehicle trajectories. The hierarchical cluster-

ing based dynamic time warping (HC-DTW) technique is shown to have negligible

difference when compared with a exact method that requires to treat each vehicle’s

speed profile as a distinct LDS. Analysis with a link shows that the difference in

emissions are very small. In addition, the computational time is significantly smaller

than the exact method. The major contributions are as follows:

(a) A similarity based clustering technique is proposed that finds the representative

link driving schedules for MOVES input from second-by-second trajectory data.

(b) The hierarchical clustering based dynamic time warping (HC-DTW) technique

does not compromise accuracy at a higher degree. This is particularly important

for networks with highly varying congestion states. Traditional approaches such

as average speed based techniques tends to under or over estimate the emissions,

whereas HC-DTW technique is expected to have estimated emissions with very

small difference with the exact method.

(c) The computational time decreases significantly because HC-DTW only uses clus-

ter prototypes as the LDS for MOVES input. Since the number link-instances

gets lower, the computation is faster.

The proposed technique can be used with any traffic simulation tool that provides

second-by-second data. Moreover, real-world trajectory data can be easily processed

and converted into LDS using our HC-DTW technique. The computational time also
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depends on the choice of number of clusters. However this will be decided by the

analyst depending on the scope of the study.

For HC-DTW we observe that, the error level ranges from 2% to 18% in most

cases. We observe the error level goes up with higher links in a cluster. This can be

an issue if we estimate emissions for clusters with very high number of links. This

can be addressed by increasing the number of clusters so that each cluster does not

have a very high number of links. Also, more tests are required to have a stronger

conclusion on the savings of computational time. Further, the technique is more

promising to links with higher variability of vehicular activities. Nevertheless, the HC-

DTW technique will significantly benefit the estimation of emissions using MOVES

in terms of efficiency and accuracy and serve as a useful tool for the practitioners in

context of air quality conformity analysis.
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CHAPTER 8. CONCLUSIONS

8.1 Major contributions

The general theme of the dissertation underscores the potential of influencing travel

related decisions that can lead to significant reduction in greenhouse gas emissions.

This dissertation proposes user and system level strategies, critically analyzes the

impact of the strategies on the state of the transportation networks, and develops an

evaluation framework to asses the effectiveness of the strategies. The broader impact

of this dissertation is the innovation and assessment of the behavior based soft policies

to reduce GHG emissions and fossil fuel consumptions from road networks. Further,

each research work has its distinct contribution to the literature.

• The analysis of trade-off between emissions and travel time (chapter 3) at

different contexts of daily travel is one of the first studies that investigates

travel decision making when emissions related information is available. We

estimate random parameter models accounting for correlation across repeated

observations to find the trade-off between emissions and travel. The results can

significantly assist to find policies that encourage travel behavior leading to less

emissions for road networks. We observe that different groups of people have

different trade-off values and accordingly one need to consider the population

mix before consideration of any scheme.

• The PMCA scheme described in chapter 4 is a novel market based strategy

to reduce carbon consumptions originating from personal travel. This research

contributes to literature in several ways. The developed game is a handy tool to

collect data for cases that require interaction among users in real time. Without

a market integration, analysis of the tradable schemes is incomplete. Further,
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the sensitivity analysis using the estimates mode random parameter models

provides insights on the effect of travel option attributes and market conditions

on travel choices.

• The PMCA-DUE model (chapter 5), is one of the first dynamic user equilib-

rium models incorporating the travel behavior under carbon allowance scheme.

The complementarity based formulation provides a novel way to describe equi-

librium under PMCA scheme. Two solutions techniques:basic projection and

decomposed VI algorithms are proposed. In addition, we examine the effects of

different levels of initial allocation as set by carbon reduction goals (e.g., 2%,

5%, 7%).

• We developed learning based signal control algorithms (chapter 6) that can

reduce emissions from road networks. The levels of emissions (CO,NOx, PM10,

CO2 , VOC) are found to less with the learning based signal controllers. The

reduction in number of stops and average stopped delays at the intersections

with learning based control can be the major reasons behind lower level of

emissions.

• The link driving schedule finding technique (chapter 7) is a significant contri-

bution to the emissions assessment methodologies when integrated with traffic

simulation. The HC-DTW techniques significantly reduces the computational

time. At the same time the level of accuracy is reasonable. This technique

is also useful when real world trajectory data are collected. With the avail-

ability of trajectory data irrespective of the source, HC-DTW can provide link

driving schedules and the estimation using MOVES can be done with shorter

computational time.
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8.2 Future works

• The trade-off values can be further explored at different dimensions such as

bike-sharing, zip-cars, electric vehicles, and accounting for trip-chains.

• The PMCA scheme can be extended to combine energy consumptions in house-

hold utility and personal travel. Instead of focusing on travel we can explore

the general energy consumption behavior. The market component will be same.

However more decisions have to be incorporated in the first segment of the ex-

perimental game developed here (see chapter 4). The question of interest would

the be evolving patterns of energy consumptions as a result of interaction be-

tween travel and household energy related activities,

• Agent based models can be an alternative to the PMCA-DUE model to assess

network state under PMCA. Incorporating user heterogeneity at a large scale

is possible,

• Coordinated signal control schemes that balance the delay and emissions can be

developed. The basic methodology will be same. However the state space will

be larger and the actions require to be coordinated aligned with the objectives,

• The integrated emissions-traffic simulator can be extended to make investment

and project planning decisions.
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