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12.1  INTRODUCTION

Since its deployment, the precipitation estimates from the network of National 
Weather Service (NWS) Weather Surveillance Radars-1988 Doppler (WSR-88D) 
have become widely used. These precipitation estimates are used for the flash flood 
warning program at NWS Weather Forecast Offices (WFOs) and the hydrologic pro-
gram at NWS River Forecast Centers (RFCs), and they also show potential as an 
input data set for drought monitoring. However, radar-based precipitation estimates 
can contain considerable error because of radar limitations such as range degra-
dation and radar beam blockage or false precipitation estimates from anomalous 
propagation (AP) of the radar beam itself. Because of these errors, for operational 
applications, the RFCs adjust the WSR-88D precipitation estimates using a multisen-
sor approach. The primary goal of this approach is to reduce both areal-mean and 
local bias errors in radar-derived precipitation by using rain gauge data so that the 
final estimate of rainfall is better than an estimate from a single sensor.

This chapter briefly discusses the past efforts for estimating mean areal precipita-
tion (MAP). Although there are currently several radar and rain gauge estimation 
techniques, such as Process 3, Mountain Mapper, and Daily Quality Control (QC), this 
chapter will emphasize the Multisensor Precipitation Estimator (MPE) Precipitation 
Processing System (PPS). The challenges faced by the Hydrometeorological Analysis 
and Support (HAS) forecasters at RFCs to quality control all sources of precipita-
tion data in the MPE program, including the WSR-88D estimates, will be discussed. 
The HAS forecaster must determine in real time if a particular radar is correctly 
estimating, overestimating, or underestimating precipitation and make adjustments 
within the MPE program so the proper amount of precipitation is determined. In this 
chapter, we discuss procedures used by the HAS forecasters to improve initial best 
estimates of precipitation using 24 h rain gauge data, achieving correlation coeffi-
cients greater than 0.85. Finally, since several organizations are now using the output 
of MPE for deriving short- and long-term Standardized Precipitation Indices (SPIs), 
this chapter will discuss how spatially distributed estimates of precipitation can be 
used for drought monitoring.

The U.S. Drought Monitor (USDM), which is considered the current state-of-
the-art drought monitoring tool for the United States, is presently not designed for 
county-scale representations, yet its output is used by customers for critical decision 
making at this spatial scale. Thus, drought indicators are needed at the county and 
subcounty scale. The MPE estimates can be used as a “gold standard” precipitation 
product to compare with or validate other remote-sensing drought products, as long 
as the user understands the weaknesses of MPE. In the hands of a knowledgeable 
user, MPE provides information that no other existing drought tool can provide. With 
these products, we can look at detailed rainfall patterns and see how they correlate 
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with evapotranspiration (ET) products across large areas, as well as identify localized 
areas of rainfall deficits over time. These data could also provide higher-resolution 
inputs for remote-sensing drought index formulations such as the Vegetation Drought 
Response Index (VegDRI) (Brown et al., 2008). VegDRI currently integrates SPI 
grids spatially interpolated from Applied Climate Information System (ACIS) gauge 
data, which characterize broadscale precipitation patterns but are often unrepresenta-
tive of county-scale level precipitation variations. Higher-spatial-resolution 4 km MPE 
observations are now available to enhance these types of tools and support local-scale 
drought monitoring and early warning activities that have been identified as a priority 
by the recently established National Integrated Drought Information System (NIDIS).

12.2  �PAST EFFORTS IN DETERMINING MEAN AREAL 
PRECIPITATION

This chapter briefly discusses some of the reasons why the WSR-88D does not always 
estimate precipitation accurately and explain how HAS forecasters use the MPE PPS 
to determine the accuracy of radar precipitation estimates, as well as highlight some 
known issues with traditional rain gauge data. But before we look at the current state 
of ground-based radar rainfall estimation, an examination of past estimation tech-
niques will be presented to gain an appreciation of the current algorithms.

12.2.1  Rain Gauge–Only Estimation

Before MPE, the RFCs only used rain gauge data to calculate basin-averaged MAP, 
which is the average depth of precipitation over a specific area for a given time 
period. This led to timing and location errors in the identification of heavy rainfall 
events, especially in a highly convective environment where intense rainfall often 
occurs over small core areas. Precipitation estimates were generated from discrete 
rain gauge observations using the Thiessen polygon method. This method attempted 
to calculate MAP, allowing for a nonuniform distribution of gauges by providing a 
weighting factor for each gauge. In basins where no rain gauges existed, this method 
was forced to use rain gauges that were outside the basin in question for its calcula-
tion. Although gauge-only analyses exist for drought monitoring in the United States 
at the climate division scale (e.g., the 1 month accumulated precipitation product at 
http://www.wrcc.dri.edu/spi/spi.html), these products are noisy, particularly in the 
western United States where gauge density is sparse with only a few observations per 
climate division. And since older radar systems described in the next section did not 
have the computer algorithms necessary to produce MAP, RFCs had no choice but 
to use a rain gauge–only methodology.

12.2.2  Radar Rainfall Estimation before the WSR-88D

Early radar systems (WSR-57, WSR-74S, and WSR-74C) came on line in 1973 and 
were used through 1993, but meteorologists at that time used a very crude technique 
for determining rainfall rates. These early radar networks would show rainfall and 
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storm intensities using digital video integrator and processor (D/VIP) levels. The 
D/VIP levels were based on a predetermined value of returned power called the 
equivalent reflectivity, Z. A lookup table was used to establish rainfall rates for each 
D/VIP level. Radar operators would place a digital grid over the planned position 
indicator (PPI) radar scope and manually write in a value ranging from 0 to 6 that 
represented the maximum D/VIP level in each grid cell. The rectangular grid cells 
are known as manually digitized radar (MDR) boxes, which are based on a subgrid of 
the Limited Fine Mesh (LFM) model. The spatial resolution of the MDR grid cell was 
approximately 40 km. By contrast, the Hydrologic Rainfall Analysis Project (HRAP) 
grid now used by the WSR-88D has further improved the spatial resolution to ∼4 km.

After the radar operators determined the maximum D/VIP level in each MDR 
box, they would transfer these values onto a paper overlay, which was usually a 
county boundary map. As an example, a D/VIP level of 5 meant the returned power 
from the echo had an equivalent reflectivity Z of between 50 and 57 decibels (dBZ). 
Next the operators would attempt to determine how much rain had accumulated. 
Using a reflectivity rainfall rate table, the hourly rainfall rate for this value would 
be found to be 4.5–7.1 in./h in a convective environment. They would then visually 
inspect the D/VIP levels over the past few hours and add the D/VIP levels together 
for longer-term rainfall estimates for specific counties. Using these early methods, 
considerable guesswork and manual analysis was involved in using radar to deter-
mine the amount of rainfall.

12.3  CURRENT ESTIMATION OF PRECIPITATION

12.3.1  Radar: The WSR-88D Precipitation Estimation Algorithm

Estimates from radar have become the base product for deriving mean areal, basin-
averaged precipitation within the NWS. A photograph of a typical WSR-88D station 
is shown in Figure 12.1. The precipitation algorithm in the WSR-88D radar product 
generator (RPG) is complex, and given all the factors involved in radar sampling and 
performance, such as proper radar calibration and assumptions regarding radio wave 
propagation through the atmosphere, errors in radar precipitation estimates often 
occur. The precipitation algorithm contains dozens of adaptable parameters that con-
trol its performance (Fulton et al., 1998), improving accuracy over earlier radar esti-
mation methods (Pereira Fo et al., 1988). The algorithm itself consists of five main 
scientific processing components (or subalgorithms) and an external independent 
support function called the precipitation detection function (NWS/ROC, 1999). The 
five scientific subalgorithms are (1) preprocessing, (2) determination of rainfall rate, 
(3) determination of rainfall accumulation, (4) rainfall adjustment, and (5) generation 
of precipitation products. The five subalgorithms are executed in sequence as long 
as the precipitation detection function determines that rain is occurring anywhere 
within a 230 km radius of the radar, which is referred to as the radar umbrella.

Once precipitation is detected, the first subalgorithm is executed: The base reflec-
tivity data go through the preprocessing stage, which includes a quality control step 
that corrects for beam blockage using a terrain-based hybrid scan (O’Bannon, 1997) 
and checks for AP and biscan maximization (see Fulton et al., 1998 for more details). 
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The reflected power returned to the radar (Z) is then assigned a rainfall rate (R) 
using a conversion known as a Z/R relationship. As the value Z increases, the R 
estimate in inches per hour increases exponentially based on the Z/R equation 
employed. Within this precipitation rate subalgorithm, more quality control is per-
formed using a time continuity test, as well as corrections for hail and range degra-
dation. Next, precipitation accumulations are determined through interpolation of 
scan-to-scan rain accumulation while simultaneously running clock-hour accumula-
tions. Precipitation products are then generated and updated with each volume scan 
(NWS/ROC, 1999). An important end product is the hourly Digital Precipitation 
Array (DPA) product that provides 1 h estimates of rainfall on the 4 km HRAP grid 
discussed earlier. These DPAs are the one of four primary inputs to the MPE PPS 
program, a tool primarily used east of the Rocky Mountains, which will be dis-
cussed later in Section 12.4.

12.3.1.1  Problems with Radar-Based Precipitation Estimates
The WSR-88D precipitation algorithm is not without deficiencies and limitations, 
which all operational radars experience when attempting to estimate rainfall. Many 
factors that make accurate radar precipitation estimates difficult have been well doc-
umented (Wilson and Brandes, 1979; Hunter, 1996). The following text is a brief 
description of some of these factors and how they affect precipitation estimates.

12.3.1.1.1  Radar Reflectivity Calibration
Precipitation estimates can experience significant error if the reflectivity (i.e., value 
of returned power) from a rainfall target is too large or too small (Chrisman and 
Chrisman, 1999). The WSR-88D calibrates reflectivity before every volume scan 
using internally generated test signals. These calibration checks should maintain an 
accuracy of 1 dBZ, which translates to an accuracy of 17% in rainfall rates when the 
default Z/R relationship (Z = 300R1.4) is employed. However, hardware problems 

FIGURE 12.1  A WSR-88D radar. (Photo courtesy of NOAA, Washington, DC.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-000.jpg&w=239&h=179
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(such as a change in actual transmitted power, or path loss of the returned power 
before reaching the receiver signal processor since the last off-line calibration) can 
cause significant changes in absolute calibration over time. Absolute calibration 
needs to be maintained because a change in Z of ±4 dBZ will result in doubling 
(or halving) the estimated R when the default Z/R relationship is used. Therefore, 
the WSR-88D Radar Operations Center (ROC) has developed absolute calibration 
procedures that are designed to ensure that reflectivity data are accurate to within 
±1 dBZ.

12.3.1.1.2  Proper Use of Adaptable Parameters
As mentioned earlier, several adaptable parameters have a bearing on the precipita-
tion algorithm, including parameters defining the Z/R relationship and the maxi-
mum precipitation rate (MXPRA). In the WSR-88D, the default Z/R relationship 
is the convective Z = 300R1.4, and the default MXPRA is established at 53 dBZ, 
which equates to a maximum rainfall rate of ∼104 mm/h (4 in./h) when the con-
vective Z/R is employed. This value of MXPRA was established to eliminate the 
effects of hail contamination on rainfall estimates, as water-coated ice in clouds 
returns larger reflectivity values than liquid water alone would produce. However, 
extreme rainfall rates above the default MXPRA have been shown to occur when 
a deep warm cloud layer exists and warm rain processes prevail, which is most 
prevalent in tropical rainfall regimes where larger water drop size diameters exist 
(Baeck and Smith, 1998) and hail is absent. To compensate for this, radar operators 
have the option of using a different Z/R relationship called the Rosenfeld tropical 
Z/R (Z = 250R1.2). When the tropical Z/R relationship is employed, significantly 
more rainfall is estimated for reflectivities higher than 35 dBZ (Vieux and Bedient, 
1998). For example, the convective Z/R relationship yields a rainfall rate of 28 mm/h 
(1.10 in./h) when Z = 45 dBZ, while the tropical Z/R yields double the rainfall rate 
of 56 mm/h (2.22 in./h). Three additional Z/R relationships have been approved for 
use by the ROC: the Marshall–Palmer relationship (Z = 200R1.6) for warm or arid 
climates where rainfall events are mostly stratiform in nature and two cool-season 
stratiform relationships (East Z = 200R2.0 and West Z = 75R2.0). Radar operators 
may also change the MXPRA parameter so that a higher rainfall rate will be used in 
the precipitation accumulation function to a maximum of 152 mm/h (6.00 in./h). In 
general, changes in the Z/R relationship have been shown to be extremely important 
in radar precipitation estimation (Fournier, 1999), while changes in MXPRA have 
far less impact.

Two other important adaptable parameters (RAINA and RAINZ) control when 
rainfall accumulations start and stop (Boettcher, 2006). Rainfall underestimation 
can occur if these parameters are set such that accumulations begin too late and/or 
end too early. RAINA is the minimum areal coverage of significant rain with a 
default setting of 80 km2. RAINZ is the dBZ threshold that represents significant 
rain (i.e., the level of returned power for which you desire to begin radar rainfall 
accumulation) with a default setting of 20 dBZ. When the reflectivities of echoes are 
at or above RAINZ and the total areal coverage of returns meets or exceeds RAINA, 
the precipitation algorithm will accumulate rainfall. If these parameters are not 
adjusted for the rainfall type noted on any given day, this would have implications 
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for drought monitoring. If a rain event is isolated (covering less than 80 km2) or if the 
dBZ detected is less than the minimum defined level, then rainfall will not be accu-
mulated. This could introduce a “dry bias” such that, if it is consistent over a period 
of time, it would indicate a signal drier than the rainfall that is actually received.

12.3.1.1.3  Hail Contamination, Bright Band, Snow, and Subcloud Evaporation
The presence of frozen or wet frozen precipitation can cause significantly enhanced 
reflectivity values (Wilson and Brandes, 1979). As hail stones grow in size, they 
become coated with water and reflect high amounts of power back to the radar, 
which can be significantly higher than the power returned from liquid precipitation 
present within the storm. The hail-contaminated higher power value results in an 
overestimation of the precipitation reaching the ground. Similarly, when ice crystals 
fall through the freezing level, their outer surfaces begin to melt. These water-coated 
ice crystals also produce abnormally high reflectivities, which lead to “bright band” 
enhancement (the layer of the atmosphere where snow melts to rain) and an overes-
timation of the precipitation.

Snowflakes are sampled fairly well by radar, but improper Z/R relationships can 
lead to an underestimation of the snowfall by the WSR-88D. A snow accumulation 
algorithm (SAA) has been added using a more representative relationship between 
reflectivity and frozen precipitation (Z/S relationship, identical to the East or West 
cool season stratiform Z/R relationship) to improve the water equivalent snowfall 
estimates. Vasiloff (2001) and Barker et al. (2000) provide more detailed review of 
the SAA.

Subcloud evaporation below the radar beam will also cause overestimation. This 
occurs when the rain falls into a dry subcloud layer and is most likely to occur in 
locations where clouds frequently have very high bases. In this situation, the rainfall 
estimate in the cloud may be relatively accurate, but the estimate will be too high 
if little or no rainfall reaches the ground. A prime example of this is virga (or dry 
microbursts).

12.3.1.1.4  Range Degradation
At far ranges, rainfall rates may be reduced because of signal degradation from 
partial beam filling that occurs when the radar beam widens with distance from 
the antenna and precipitation fills only part of the beam’s field of view. Although 
the capability exists for range correction, it is currently not implemented on the 
WSR-88D pending scientific data to support accurate parameterization. Two other 
range degradation problems are more significant compared to partial beam fill-
ing. Certain rainfall types, such as stratiform rains (e.g., rainfall from clouds of 
extensive horizontal development as opposed to vertically developed convective 
clouds), show strong vertical reflectivity gradients. The stratiform gradient is posi-
tive until you get past the “bright band,” and then it decreases sharply, leading to 
an overestimation of precipitation close to the radar and an underestimation with 
greater range. Orographic rain events also have sharp vertical reflectivity gradi-
ents as can certain rainfall events associated with distinct meteorological lifting 
surfaces such as a warm front. A rainfall event with a sharp vertical reflectivity 
gradient will show fairly strong range degradation. The reflectivity values decrease 
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so rapidly with height within a cloud that the radar will have a higher degree of 
underestimation as the radar beam increases in altitude. In such rainfall events, the 
beam height becomes the largest single contributor to radar rainfall underestima-
tions. Last, in stratiform rain events and with rains from thunderstorms that have 
small vertical height (usually 20,000 ft or less), a rainfall underestimation occurs 
due to the radar beam overshooting the precipitation at far ranges, which is a lack 
of detection problem. To compensate for this, the NWS set up the NEXRAD radar 
network with a spatial distribution of roughly 300 km apart. Figure 12.2 shows the 
WSR-88D radar coverage area for the United States. Notice that many sections 
of the western United States are without adequate radar coverage, which leads 
to unrepresentative precipitation estimates. Thus, radar- and range-dependent low 
precipitation biases can accumulate over time, leading to an underestimation of 
precipitation and a depiction of drier conditions. Users should understand this 
issue before using these estimates to evaluate drought conditions and other infor-
mational products.

12.3.1.1.5  Anomalous Propagation and Clutter Suppression
The WSR-88D displays reflectivity returns at locations assuming the beam is 
refracting normally in a standard atmosphere. At times, severe deviations from the 
standard atmosphere occur in layers with large vertical gradients of temperature 
and/or water vapor. When these deviations occur, super-refraction of the radar 
beam can result, and inaccurate calculations of actual beam height are made. 
These changes in refraction usually occur in the lower troposphere and can lead 
to persistent and quasi-stationary returns of high reflectivity either from ducting 
of the radar beam (where radio waves traveling through the lower atmosphere 
are curved to a value greater than the curvature of the earth) or from the beam 
coming in contact with the ground (Chrisman et al., 1995). This AP can lead to 
extreme precipitation accumulation estimates from false echoes. The WSR-88D 
does employ a clutter mitigation decision algorithm, which allows the radar opera-
tor to filter undesirable reflectivity returns, often from permanent targets near 
the radar (Maddox, 2010). However, this capability depends on the radar opera-
tor’s ability to recognize the AP and invoke the algorithm. Improper or excessive 
use of clutter filtering may cause real meteorological echoes to be unnecessarily 
removed, leading to rainfall underestimation. This occurs most frequently when 
real rainfall targets are embedded in or near areas of AP, which is common behind 
a line of strong thunderstorms. Also, precipitation estimates from nonmeteoro-
logical targets (such as wind farms) are still observed on precipitation products, as 
certain targets that exhibit motion are not removed using current clutter filtering 
techniques. Figure 12.3 shows an example of AP across the south-central United 
States caused by superrefraction of the beams of several radars. Note the wide-
spread light rainfall indicated over Oklahoma and central and deep south Texas 
and heavy rain over the Gulf of Mexico. No rainfall was actually occurring at this 
time. For hydrologic applications, this false rainfall is eliminated by conducting 
further data quality control external to the WSR-88D and is performed within the 
MPE PPS at RFCs.
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12.3.1.1.6  Beam Blockage
Beam blockage is a major problem where radars are situated near mountains and 
is unavoidable in many western U.S. locations. For radials (portions of the circular 
scan of the radar at a set elevation angle) with a blockage of no more than 60% in 
the vertical and 2° or less in azimuth, corrections are made to the reflectivities and 
are increased by 1–4 dBZ in the range bins beyond the obstacle, depending on the 
percentage of the blockage. Many sites have beam blockages of more than 60% and 
greater than 2° in azimuth, and this correction cannot be applied. Instead, the WSR-
88D employs a terrain-based hybrid scan (O’Bannon, 1997), so radials that experi-
ence this high degree of beam blockage use the next higher elevation slice (complete 
scan of the radar at a set elevation angle) for the PPS for that radial (up to a maximum 
elevation angle of 3.4°, which is the fourth elevation slice aboveground). However, 
if a higher elevation slice is employed, range degradation is more likely, leading to 
underestimation of the precipitation. As a result, precipitation underestimation is 
common from radars located near mountains. The problem has been mitigated at 
some sites by installing radars on a peak. However, in this situation, the lowest eleva-
tion slices are so high above valleys that near-surface precipitation is not detected, 
which leads to the underestimation of rainfall from clouds of low vertical extent. 
Figure 12.2 also illustrates the gaps in radar coverage over the western United States 
due to the mountainous terrain.

FIGURE 12.3  (See color insert.) Widespread false precipitation, or AP, shown on the MPE 
radar mosaic. (Photos courtesy NOAA/NWS, Silver Spring, MD.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-002.jpg&w=239&h=258
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12.3.1.1.7  Attenuation
The radar corrects for gaseous attenuation of the microwave radar signal, leaving a 
wet radar dome covering the antenna and intervening precipitation as the principal 
attenuators of energy to and from the target. Although this attenuation for S-band 
radars (10 cm wavelength) is considered to have minimal impacts on rainfall estima-
tion, Ryzhkov and Zrnic (1995) show results indicating that attenuation may have 
a greater impact on rainfall estimates than previously thought. Signal attenuation 
could be one reason why rainfall is often underestimated during extremely heavy 
rain events due to reduced reflectivity returns, but it is difficult to quantify exactly 
how much the rainfall rates are reduced.

12.3.1.1.8  Polarization
The current WSR-88D is a single horizontal linear polarized radar. Dual polarization 
radar measurements of a specific differential phase at two orthogonal polarizations 
(horizontal and vertical) have shown improved skill in rainfall estimation compared 
to single polarization radars using Z/R relationships (Zrnic and Ryzhkov, 1999). 
Additional hydrometeor microphysical information can be inferred from the addi-
tion of vertical polarization measurements to obtain differential reflectivity, which 
aids in determining the size and type of liquid or frozen water particles (e.g., precipi-
tation such as rain, sleet, hail, or snow), which would lead to improved precipitation 
estimation. A retrofit for the WSR-88D to implement dual polarization on a national 
scale is slated for 2011–2013. It has been determined that adding dual polarization 
capability to the WSR-88D will provide improved rainfall estimation for floods and 
drought and additional benefits that include improved hail detection for discriminat-
ing between liquid and frozen hydrometeors, rain/snow discrimination for winter 
weather, data retrieval from areas of partial beam blockage to improve services in 
mountainous terrain, and removal of nonweather artifacts such as birds and ground 
clutter to improve overall data quality for the precipitation algorithm.

12.3.1.2  Benefits of Radar-Based Precipitation Estimates
In spite of the limitations and some of the issues related to radar-based precipita-
tion estimates, there are valid reasons for using them. A recent study by Krajewski 
et al. (2010) summarized the operational capability of radar to provide quantita-
tive rainfall estimates with potential applications not only in hydrology but also in 
drought monitoring by improving gridded standard precipitation indices. Radar has 
the ability to show the spatial and temporal distribution of rainfall more accurately 
than other traditional sensors such as rain gauges. The timing and intensity of the 
rainfall is more easily determined because of the availability of hourly and subhourly 
estimates. Radar also provides a more accurate determination of rainfall location, 
which is critical for providing more local-scale information to the drought com-
munity about spatial variations in rainfall patterns and the identification of more 
localized areas experiencing precipitation deficits. This is far superior to waiting for 
24 h rain gauge data to be reported and performing only a single calculation of MAP 
over a predefined geographic area (e.g., a river basin), as was the standard operating 
procedure in the past.
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12.3.2  Rain Gauge Networks

Rain gauge networks form a supplemental source of precipitation data concurrent 
to gridded precipitation estimates. Two basic types of rain gauge networks support 
NWS hydrologic operations. One network has the ability to transmit rainfall data in 
near real time, while the other stations report 24 h data once a day. These two types 
of networks will be discussed separately as follows.

12.3.2.1  Near-Real-Time Gauges
Several near-real-time rain gauge networks with the ability to report precipita-
tion hourly or even at 15 min intervals exist. These include the Automated Surface 
Observing System (ASOS) rain gauges at airports, data collection platforms oper-
ated by the U.S. Geological Survey, and mesonet alert systems maintained by vari-
ous cities, states, and river authorities. Although these gauges are part of different 
networks, they all use tipping bucket gauges (Figure 12.4a) to automate the quantifi-
cation of precipitation amounts.

Unfortunately, although these data are important, they are not without error, 
which can be introduced by wind, tipping bucket losses, poor siting (e.g., block-
age from buildings, trees, and other tall vegetation), frozen precipitation, electronic 
signal malfunctions, mechanical problems, and timing/coding issues related to the 
transmission of rainfall data. Linsley et al. (1982) showed that strong winds will 
cause all rain gauges, regardless of type, to undercatch the precipitation. For exam-
ple, approximately a 10% loss is estimated at a 10 mph wind speed, with losses often 
exceeding 50% at wind speeds over 39 mph. To help compensate for losses, ASOS 
tipping bucket gauges have a shield around them to disrupt the air flow over the 
top of the gauge (see Figure 12.4b). Tipping bucket gauges also tend to underreport 
intense rainfall when the rainfall rate exceeds the bucket’s rate to discard the cap-
tured rain (∼1.5 s). Thus, they cannot be calibrated for 0.01 of an inch precision or 
well calibrated for high rainfall rates. Maintenance is also an issue because many 
gauges are located in remote locations and frequent site visits by technicians may 
not be possible. In general, automated gauges provide good quality rainfall data if 
the gauges have good exposure, are well maintained, are recording when the air 
temperature is above freezing, when wind conditions are relatively light (15 mph or 
less), and the rainfall rate is not in excess of 4 in/h.

12.3.2.2  Daily Reporting Gauges
Gauge networks that report daily, 24 h rainfall totals are usually submitted by human 
observers who typically use a nontipping bucket type of gauge. Data received from 
these networks are considered to be of higher quality than the data received from 
the hourly automated networks partially because of the standard 4 in rain gauge 
or a weighing gauge used by the observers, which are typically free from some of 
the errors commonly encountered with tipping bucket gauges. The two best known 
daily gauge networks are the NWS Cooperative Observer (COOP) network and the 
Community Collaborative Rain, Hail and Snow (CoCoRaHS) network. We will dis-
cuss how these data are used to improve precipitation estimates produced by the 
RFC later in Section 12.4.5.
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12.4  �RADAR-BASED MULTISENSOR PRECIPITATION 
ESTIMATOR PRECIPITATION PROCESSING SYSTEM

The main purpose of the MPE PPS is to take the raw hourly DPAs from the WSR-88Ds 
and perform additional quality control to achieve the best radar-based precipitation esti-
mates possible for inclusion into the NWS River Forecast System (NWSRFS) for the 
primary purpose of river streamflow prediction. These estimates also hold considerable 
potential for providing both spatially and temporally explicit information about precipita-
tion patterns and deficits over an extended period of time, which would greatly enhance 
the drought community’s monitoring capabilities beyond the spatially interpolated pre-
cipitation grids generated from station observations that are currently used in operational 
monitoring systems. The following sections are a brief overview of the three PPS stages.

(a)

(b)

FIGURE 12.4  Tipping bucket rain gauge (a) and ASOS tipping bucket rain gauge with wind 
shield (b). (Photos courtesy of NOAA/NWS, Silver Spring, MD.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-003.jpg&w=232&h=174
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-004.jpg&w=232&h=153
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12.4.1  Three Stages of MPE Precipitation Processing

12.4.1.1  Stage I of the MPE PPS
The first PPS stage ingests the hourly 4 km DPA data that are generated by the WSR-
88D, selecting the DPA that is timed closest to the top of each hour. The only quality 
control applied to the DPA data is features associated with the WSR-88D precipita-
tion algorithm itself. Some of these features were discussed in Section 12.3.1, but for 
a more detailed discussion, see Story (1996).

12.4.1.2  Stage II of the MPE PPS
The second PPS stage calculates and applies a bias adjustment factor based on a com-
parison of rain gauge readings and radar precipitation estimates (Seo et al., 1999). 
Two biasing techniques are derived in the PPS: a mean-field bias and a local bias. The 
mean-field bias represents the ratio of the sum of all positive (nonzero) rain gauge 
data over the radar umbrella from the previous x number of hours to the sum of all 
nonzero DPA rainfall estimates at the corresponding gauge locations over the same 
temporal sampling window. The size of the temporal window x is specified by the 
adaptable parameter “mem-span” (memory span in hours, determined as a function 
of how widespread the rainfall is, how many gauges are available for sampling, and 
how long ago since it last rained). The MPE program calculates a mean-field bias for 
10 memory spans, ranging from the current hour (instantaneous bias) to 10,000,000 h 
(climatological bias). The program also has an adaptable parameter that tells MPE 
which bias calculated from the 10 memory spans to apply to the DPA file. The default 
for this adaptable parameter is a minimum of 10 radar-rain pairs (called N-Pairs) for 
a mean-field bias to be applied to the “raw” radar rainfall estimate. If there are 10 or 
more N-Pairs for mem-span 1, the program uses the bias calculated from the radar-
gauge pairs from the current hour. If there are no 10 N-Pairs for the current hour, the 
program goes back in time until a mem-span is found where 10 radar-gauge pairs are 
achieved. A time-weighting factor is applied to older N-Pairs so that the most recent 
data carry the most weight in these calculations. For example, if the bias calculated 
from mem-span 720 is used, the program had to go back between 168 (the maximum 
number of hours from the previous mem-span) and 720 h to find enough rain events 
that had at least 10 N-Pairs, which would include all nonzero radar-gauge pairs from 
the past 30 days. In general, the denser the rain gauge network is, the shorter the 
mem-span, unless a drought is in progress or the radar samples an area in a dry 
climate. In times of drought, the mem-span continues to increase over time as few 
N-Pairs are achieved, leading to the possibility that when it does rain again, the bias 
calculation will be inappropriate. The goal of MPE is to capture the temporal vari-
ability of the bias for different rainfall regimes to allow for the variability of radar 
precipitation estimates. A detailed description of all MPE functionality can be found 
in the MPE Editor User’s Guide (NWS/OHD/HL, 2010).

In short, the larger the number of rain gauges located under a radar umbrella, 
the better chance the program has of obtaining nonzero radar/rain gauge pairs and 
calculating a mean-field bias. Under radar umbrellas that have a large number of 
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hourly rain gauges available, the calculated MPE mean-field bias adjustment factor 
is a good indicator of whether a radar is over- or underestimating rainfall. A bias 
of 1.00 means that the MPE program has accepted the radar estimates as correct. 
If the mean-field bias adjustment is greater than 1.00, the radar is underestimating 
compared to its associated gauges, and if a bias is less than 1.00, the radar is overes-
timating rainfall. This factor is used to either increase or decrease the precipitation 
estimates in the MPE mean-field bias adjusted analysis.

In addition to the mean-field bias (one bias for each radar), a local bias tech-
nique is also calculated in the MPE program, assigning a bias correction factor 
for each HRAP grid box (or cell) in the MPE area. Like the mean-field bias, local 
bias values are computed by comparing gauge values to raw radar estimates. They 
are also processed over 10 memory spans, selecting the memory span whose bias 
value has at least 10 contributing gauge/radar pairs falling within a 40 km radius 
circle around each HRAP grid box for which a bias factor is being computed. The 
resulting grid of local bias values is then applied to the raw radar mosaic (similar 
to how the mean-field bias is applied) to produce the local bias–corrected radar 
mosaic. By computing the bias for each HRAP grid box, local geographical and 
microclimatological effects on rainfall can be accounted for (Seo and Breidenbach, 
2002). Because of this accounting, the chosen default MPE field at many RFCs is 
the local bias multisensor field (i.e., the combination of the local bias radar mosaic 
and a gauge-only analysis).

In addition to the biased radar mosaics, a gauge-only gridded field is derived 
using hourly rain gauge observations, which must be quality controlled at this stage 
(Fulton et al., 1998). Tools exist within MPE (such as a gauge table) that allow HAS 
forecasters to detect rain gauge readings that subjectively appear to be inaccurate. 
Although rain gauge data are often referred to as “ground truth,” these data also 
have known deficiencies, as mentioned in the previous section. However, the West 
Gulf RFC (WGRFC) HAS forecasters have found that most rain gauge data received 
are of acceptable quality and can be used (with some caution) to make accurate bias 
adjustments during most events. If any gauge reading appears incorrect (e.g., when 
radar fields are nonzero and a gauge reads zero), it is removed by the HAS forecaster, 
and all the MPE fields are regenerated. This may cause a change in the bias adjust-
ment factors for one or more radars and in the gauge-only fields. The end result 
of this second stage is an adjusted radar precipitation estimate for each WSR-88D 
defined in the MPE program.

12.4.1.3  Stage III of the MPE PPS
In stage three of the PPS, the adjusted radar fields (those derived in Stage II, which 
were discussed in the previous section) are merged with the derived gauge-only field 
to calculate the final multisensor fields. The multisensor field of the specific radar site 
is then mosaicked with the multisensor fields of other radar sites to obtain the final 
multiradar precipitation map. Two primary multisensor fields are created in MPE, 
one for each biasing technique described in the previous section. The HAS fore-
caster makes a determination of which multisensor field is estimating correctly each 
hour (to use as our best estimate field, discussed further in the next two sections). 
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These multisensor fields are created for the areal extent covered by each RFC and 
are used daily by the National Centers for Environmental Prediction (NCEP) to gen-
erate a national Stage IV quantitative precipitation estimation (QPE) product. The 
HAS forecaster has other quality control options within the MPE program, such as 
the removal of AP. For a more detailed discussion of precipitation processing, see 
Story (2000).

12.4.2  Q2, the Next-Generation QPE

The WGRFC has been experimenting with a new precipitation estimation technique 
called Q2, which is the second technique derived by research meteorologists at the 
National Severe Storms Laboratory (NSSL). The National Mosaic and Multisensor 
QPE (NMQ) project is a joint initiative between the NSSL and other entities (such 
as the Federal Aviation Administration [FAA] and the University of Oklahoma). 
The National Mosaic and Q2 system is an experimental system designed to improve 
QPE and eventually very short-term Quantitative Precipitation Forecasts (QPF). For 
detailed information on the system, readers are referred to the NMQ web site at 
http://nmq.ou.edu. The NMQ ingests data from 128 WSR-88D stations every 5 min, 
quality controls the radar data, and derives a vertical profile of reflectivity from each 
radar. Analyses are done on eight tiles of radar data that are stitched together to form 
a continental U.S. (CONUS) three-dimensional (3-D) grid. Hybrid scan reflectivity 
and other products (such as a composite reflectivity map and precipitation flag prod-
uct) are then derived to produce the experimental Q2 products. The products (such 
as QPE accumulations for the current hour or several hours of up to 72 h) are then 
translated over to the 4 km HRAP grid. The Q2 products hold several advantages 
over traditional radar-based estimates, with two primary advantages including an AP 
removal technique and rainfall estimates beyond the nominal 230 km range of the 
DPA files that are used in regions where radar umbrellas do not overlap. Because of 
these advantages, WGRFC HAS forecasters have the option of implementing Q2 as 
our final best estimate field.

12.4.3  Satellite Precipitation Estimates

The MPE also ingests satellite-derived precipitation estimates from the National 
Environmental Satellite, Data, and Information Service (NESDIS). The 
Hydroestimator is an automated technique, initially designed for large, moist thun-
derstorm systems, which uses Geostationary Operational Environmental Satellite 
(GOES) infrared (IR) imagery cloud top brightness temperatures (Scofield and 
Kuligowski, 2003). Pixels with the coldest IR temperatures are assigned the heavi-
est rainfall rates at the surface. Numerous other factors, including the cloud-top 
geometry, the available atmospheric moisture (precipitation efficiency), stability 
parameters from weather models, radar, and local topography, are used to further 
adjust the rain rates. Although caution should be used in drawing conclusions about 
radar performance based on satellite-derived precipitation estimates, HAS forecast-
ers can confirm radar performance if the precipitation estimates from both sources 
are in close agreement. However, correlation coefficients comparing 24 h satellite 
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precipitation estimates (SPEs) to 24 h rain gauges show the lowest correlation of any 
of the remote-sensing fields (biased radar estimates or Q2) used by HAS forecasters. 
Therefore, satellite-based estimates have the most benefit over land areas where no 
or limited observations of precipitation (e.g., radar, Q2, or rain gauges) are available 
(e.g., border area of Mexico). SPEs can be used without bias correction, or can be 
corrected for local biases using the techniques described earlier for radar. And like 
the other fields previously discussed, the option exists to integrate SPEs into our final 
best estimate precipitation field by performing polygon edits. One example of when 
SPEs would be integrated is when lightning data indicate thunderstorm activity and 
SPEs are the only field estimating rainfall in this location. As a result, the final best 
estimate field is based on a combination of radar-based multisensor fields from DPA 
files, Q2, and SPEs.

12.4.4  Final Postanalysis Quality Control Technique

Hundreds of 24 h COOP rainfall reports and CoCoRaHS observations are available 
for postanalysis of the MPE results. Direct comparisons of the MPE and observer 
rainfall totals shortly after 12 Coordinated Universal Time (UTC) each morning 
allow HAS forecasters to determine areas where the MPE estimates may be too 
low or too high. Forecasters can raise or lower estimates in specific hours in order 
to produce a 24 h estimate that is more consistent with 24 h gauge reports. The goal 
is to achieve a “general” level of acceptable error in the estimates. Programs are 
run that show the correlation coefficient and percent bias of MPE estimates, which 
vary by time and location. The goal is to modify the estimates to achieve correlation 
coefficients of greater than 0.85. Most initial estimates are low (meaning the 24 h 
gauge reports are higher than MPE) and have correlation coefficients of less than 
0.85. When initial MPE estimates are raised or lowered, the inherent error of most 
estimates is improved to the desired correlation. Since these data are to be used for 
improved drought monitoring, removal of the traditional underestimation is crucial. 
If these biases are not mitigated, a false identification of the onset of drought might 
occur over time.

12.5  �DROUGHT MONITORING: HOW THESE 
ESTIMATES CAN BE USED TO DETERMINE 
CURRENT LOCATIONS OF DROUGHT

12.5.1  NWS Southern Region Precipitation Analysis Project

In the early and mid-2000s, NWS Southern Region offices began to display 
the gridded MPE output maps on the Internet, and the data became avail-
able for download a short time later. Initially, these pages graphically showed 
the short-term observed and climatic trends of precipitation across the south-
ern region (from New Mexico eastward to Tennessee, Georgia, and Florida). 
In 2009, this project was expanded to include the entire CONUS and Puerto 
Rico. The national-level products can be found on the Advanced Hydrologic 
Prediction Service (AHPS) web site (http://water.weather.gov). Tools are also 



298 Remote Sensing of Drought: Innovative Monitoring Approaches

available to compare MPE estimates to normal rainfall over different times-
cales (http://water.weather.gov/precip/), which can provide valuable insight into 
detailed spatiotemporal patterns of precipitation deficits to characterize both 
short- and long-term drought conditions.

“Departure from Normal” and “Percentage of Normal” products are generated 
by using simple grid mathematics, where the “Normal” data set is respectively sub-
tracted from or divided into the “Observed” data set. “Observed” data are derived 
from output (e.g., from MPE or similar PPSs) from 12 NWS RFCs. “Normal” pre-
cipitation is derived from Parameter-elevation Regressions on Independent Slopes 
Model (PRISM) climate data (Gibson et al., 2002), which represent a 30 year period 
of record (1971–2000). The data sets were created as a unique knowledge-based 
system that uses point measurements of precipitation, temperature, and other cli-
matic factors to produce continuous, digital grid estimates of monthly, yearly, and 
event-based climatic parameters. This unique analytical tool incorporates point 
data, a digital elevation model, and expert knowledge of complex climatic extremes, 
including rain shadows, coastal effects, and temperature inversions. In order to fill 
in areas that have radar-coverage gaps in the mountainous western United States, 
gauge reports are plotted against long-term climatic PRISM precipitation data, and 
amounts between gauge locations are spatially interpolated (more information about 
this method is available at http://www.cnrfc.noaa.gov/products/rfcprismuse.pdf). 
The derived precipitation products (specifically, “Departure from Normal” and 
“Percentage of Normal” products) can provide useful contextual information to iden-
tify the amount and magnitude of precipitation deficits that can be used for drought 
monitoring.

Figure 12.5 shows an example of a percent of normal rainfall graphic from 
December 2010 across the southern United States. This month was exception-
ally dry, and this graphic depicts few areas where percent of normal precipitation 

FIGURE 12.5  (See color insert.) Percent of normal rainfall for the southern United States 
from the AHPS precipitation analysis page for December 2010. (Image courtesy of NOAA/
NWS, Silver Spring, MD.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-17&iName=master.img-005.jpg&w=276&h=167
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exceeded 100% (the upper Texas Gulf coast near Houston was one area). Of note 
are the large regions where the percent of normal precipitation was less than 50% 
of normal, specifically from northern Louisiana into east-central Texas, and across 
the Texas/Mexican border to western Texas. This indicates a strong dry signal, col-
located with an extreme drought category designated on the USDM (not shown) for 
these locations.

12.5.2  Advanced Hydrologic Prediction Service

Before 2009, all radar-based product data displayed by the Southern Region 
Precipitation Analysis Project were considered to be “experimental.” To make 
these data “operational,” the data pages were packaged into a nationwide program 
known as the AHPS, a new and essential component of the NWS Climate, Water, 
and Weather Services. AHPS is a web-based suite of products that display drought 
magnitude and uncertainty of occurrence, based on the range of potential outcomes 
computed from historical hydrometeorological data and current conditions using an 
ensemble streamflow prediction model. These new products are enabling the USDM, 
National Drought Mitigation Center (NDMC), government agencies, private institu-
tions, and individuals to make more informed decisions about risk-based policies 
and actions to mitigate the dangers posed by droughts. Although these products were 
not designed specifically for drought monitoring, the high-spatial-resolution precip-
itation information they provide has substantial potential to support this applica-
tion. For example, the office of the Texas State Climatologist creates a gridded 4 km 
resolution and a county-scale resolution SPI from the AHPS precipitation analyses 
data (http://atmo.tamu.edu/osc/drought/). A more detailed description of the SPI grid 
generation using the AHPS is provided by Nielsen-Gammon and McRoberts (2009).

Traditionally, coarse resolution SPI maps derived from spatial interpolations 
of point-based gauge data have been used for drought monitoring, as shown in 
Figure 12.6a. In Figure 12.6b, the 4 km SPI maps generated from radar-based pre-
cipitation data depict considerably more spatially detailed precipitation variations, 
which provide considerably more local-scale information about precipitation defi-
cits that is more appropriate for county to subcounty decision making related to 
drought. In brief, the SPI map generated from AHPS precipitation analyses is 
created using the following process. Initially, a cluster analysis is performed to 
determine Texas precipitation normals by location and season. A frequency distri-
bution is then calculated for each location and season, from which high-resolution 
gridded frequency distributions are produced (using PRISM data over higher ter-
rain of west Texas and roughly 1500 COOP stations in Texas and surrounding 
states). Finally, accumulations of precipitation are computed, creating 4 km and 
county-aggregated SPI for various time periods from 2 to 24 months, and related 
products such as an SPI blend, an SPI blend 1 week change map, and a percent of 
normal precipitation map.

The primary motivation for using AHPS precipitation data in this project was to 
facilitate local-scale drought monitoring for Texas. Climate division-scale drought 
monitoring tools are wholly inadequate for the state, and even ACIS gauge data are 
too coarse and unrepresentative in many areas. For example, the USDA applies the 
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FIGURE 12.6  (See color insert.) An 8 week SPI map interpolated from station-based 
precipitation data (a) and an 8 week SPI map derived from 4 km precipitation from MPE 
(b) (Image courtesy of Dr. John Nielsen-Gammon) for early September 2009 during the 
severe drought in southern Texas, as shown by the USDM map on September 7, 2009 (c). 
The circle highlights an area of exceptional drought in the USDM that is shown to have near-
normal conditions in the interpolated SPI map (a) but clearly had localized areas of severe 
drought conditions that were detected in the SPI map based on higher-resolution, radar-based 
precipitation observations (b).
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USDM map on a county scale for its drought relief decisions, yet the USDM and 
other existing drought index tools do not have the sufficient spatial resolution to 
enable estimation of drought at this spatial scale within Texas. An example of the 
SPI blend for Texas during the 2009 drought can be seen in Figure 12.6b. During 
this drought, the MPE-based SPI blend was able to accurately highlight the locations 
of most severe drought in Texas. Gauges within these hardest-hit areas, as indicated 
by our MPE products, were indeed experiencing historic drought severity based on 
an analysis of the period-of-record data, while stations adjacent to these areas were 
not. Nine counties (Nueces, San Patricio, Aransas, Refugio, Jackson, Calhoun, Bee, 
Brazoria, and Goliad) experiencing unprecedented drought severity were identified 
in southern Texas along the Gulf coast using MPE data, even though most of those 
counties did not have long-term precipitation records because of the sparse number 
of COOP stations that had a long history in that region (Nielsen-Gammon, August 
2010, personal communication). Without the long-term precipitation records, SPI 
blends based on MPE data provided information that improved the assessment of the 
severity of the local drought situation.

In contrast, Figure 12.6a shows a station-based SPI map with data taken from 
the NDMC’s Drought Atlas for the same time period as Figure 12.6b. Eight-week 
SPI data from 475 weather stations (226 stations in Texas and 249 stations from 
the surrounding states to minimize edge effects during the spatial interpolation 
of the SPI point data) were used to generate the map in Figure 12.6a. The station-
based SPI shows the overall location of exceptionally wet conditions (northeast 
Texas and the eastern Texas panhandle) and exceptional drought (middle Texas 
Gulf Coastal region). But it is clear that the station-based SPI missed how wide-
spread the extreme and exceptional drought conditions were across south-central 
Texas. For example, in several counties in south-central Texas where the station-
based SPI showed normal conditions to abnormally dry conditions (Comal County 

D0 abnormally dry
(c)

D1 drought-moderate
D2 drought-severe
D3 drought-extreme
D4 drought-exceptional

FIGURE 12.6 (continued)  (See color insert.)
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eastward to Gonzales County), the MPE-based blended SPI showed severe to 
extreme drought conditions. Since hourly gauge data are incorporated into the 
final multisensor MPE, the drought features that appear over this area in Figure 
12.6b should be representative of relative precipitation patterns (and deficits) at a 
local subcounty scale because ground-based precipitation observations are con-
sidered in the adjusted, radar-based precipitation fields. Across this area of Texas, 
notable rainfall discrepancies among stations during the defined SPI interval were 
likely due to the convective nature of the rainfall in this region, with the intersta-
tion variations being relatively consistent with the drought/nondrought patterns 
depicted in Figure 12.6b. The USDM map for September 8, 2009 (Figure 12.6c), 
reaffirms the severe drought conditions over this area, classifying these counties 
in the most severe drought class (D4, an exceptional drought that is defined as a 
one in 50 year event). Further visual analysis of the MPE-derived SPI map of the 
area reveals many subtle subcounty variations in dryness that are not detected 
in the station-based SPI map. Many counties in southern Texas have pockets of 
both drought and nondrought conditions in the radar-generated SPI map that can-
not be spatially resolved using traditional interpolated maps from station-based 
observations.

The use of 4 km precipitation data provides a more accurate depiction of the 
breadth and scope of the Texas drought conditions in 2009. This result suggests that 
the improved spatial resolution of this information will be a tremendous benefit for 
local-scale drought monitoring activities by characterizing detailed subcounty spa-
tial variations in precipitation deficits. The 4 km precipitation and other derivative 
products such as the SPI will also be extremely valuable in areas with sparse weather 
station networks and for counties with large areas that commonly experience consid-
erable within-county climate variations.

12.6  CONCLUSIONS

Over the past several years, advancements have been made in both radar-based 
precipitation sensing and multisensor estimation processing techniques. Further 
improvements will be made in radar precipitation estimation with the implementa-
tion of dual polarization in the next few years. New rainfall rate algorithms such as 
Q2 have also been implemented within the MPE PPS. This chapter has discussed the 
benefit that improved, quality-controlled, and finer-scale precipitation data can have 
in drought monitoring by detailing deficits in rainfall with greater spatial resolution 
that is not available using gauge-based SPI data alone.

East of the Continental Divide, RFCs derive estimates of precipitation using a 
multisensor approach. Hourly precipitation estimates from WSR-88D radars are 
compared to ground rainfall gauge reports, and a bias (correction factor) is cal-
culated and applied to the radar field. The radar and gauge fields are combined 
into a “multisensor field,” which is quality controlled on an hourly basis. In areas 
with limited or no radar coverage, SPE can be incorporated into this multisensor 
field, and the SPE can also be biased against rain gauge reports. In mountainous 
areas west of the Continental Divide, a different method is used to derive the 
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estimates of precipitation. Gauge reports are plotted against long-term climato-
logical precipitation (PRISM data), and derived amounts are interpolated between 
gauge locations.

Studies have shown (Seo, 1999; Seo and Breidenbach, 2002) that algorithms that 
combine sensor inputs—radar, gauge, and satellite—yield more accurate precipita-
tion estimates than those that rely on a single sensor (i.e., radar only, gauge only, 
and satellite only). Although it is not perfect, the MPE data set is one of the best 
sources of timely, high-resolution precipitation information available. Still, users 
should understand the inherent weaknesses of this data set before using it in drought 
monitoring applications, especially those that require a high degree of accuracy.

Many quantitative measures of drought have been developed in the United States, 
depending on the sector impacted, the region being considered, and the particular 
application. Although different definitions and measures of drought exist, they all 
originate from a deficiency of precipitation resulting from an unusual weather pat-
tern. Therefore, using an improved source of precipitation data such as MPE 4 km 
products would lead to a better determination of the onset, intensity, and geographic 
and temporal evolution of drought.

Several of the Palmer indices and the SPI are useful for describing drought on 
varying temporal scales (i.e., weeks, months, or years). On a climate-division scale, a 
standard suite of products including the NCDC’s SPI, the CPC’s soil moisture–related 
drought severity index, and the Western Region Climate Center’s SPI exist. On a sta-
tion scale, the U.S. Geological Survey provides gauge-based streamflow data, and 
the High Plains Regional Climate Center produces a 30 day SPI using daily data 
from ACIS that incorporates COOP observer and automated weather data. Satellite-
based tools such as VegDRI (Brown et al., 2008) that assist in agricultural-related 
drought monitoring also rely on precipitation data as a primary input. Collectively, 
these drought indices have relied on gauge-based data and have not provided indi-
ces representative of county- to subcounty-scale drought information because of 
the coarse spatial resolution inputs. The higher-resolution 4 km precipitation data 
produced by MPE can be used to replace the traditional point or interpolated pre-
cipitation products in the development of these indices to provide a more detailed 
characterization of drought patterns. This holds the potential to advance local-scale 
drought monitoring activities as prioritized by NIDIS, as well as improve current 
state-of-the-art monitoring tools such as the USDM, which was initially designed 
to classify broadscale, national drought patterns but is increased being relied upon 
for county and subcounty drought information. With the goal of improved drought 
monitoring, Texas A&M University, North Carolina State University, and Purdue 
University received a USDA award to improve the long-term calibration of the AHPS 
MPE analyses, and take the SPI products beyond Texas to include at least the eastern 
parts of the United States (i.e., south-central and eastern sections). The project began 
in January 2011, with tangible results expected a few months after that.
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FIGURE 12.3  Widespread false precipitation, or AP, shown on the MPE radar mosaic. 
(Photos courtesy NOAA/NWS, Silver Spring, MD.)

FIGURE 12.5  Percent of normal rainfall for the southern United States from the AHPS 
precipitation analysis page for December 2010. (Image courtesy of NOAA/NWS, Silver 
Spring, MD.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-23&iName=master.img-110.jpg&w=178&h=194
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-23&iName=master.img-111.jpg&w=275&h=167


Exceptional drought
Extreme drought

Normal
Exceptionally wet
Stations

(a)

Abnormally wet
Moderately wet
Severely wet
Extremely wet

Abnormally dry
Moderate drought
Severe drought

Exceptional wetness

Abnormal wetness
Moderate wetness
Severe wetness
Extreme wetness

Exceptional drought
Extreme drought

Normal

(b)

Abnorma dryness
Moderate drought
Severe drought

D0 abnormally dry(c)
D1 drought-moderate
D2 drought-severe
D3 drought-extreme
D4 drought-exceptional

FIGURE 12.6  An 8 week SPI map interpolated from station-based precipitation data (a) and 
an 8 week SPI map derived from 4 km precipitation from MPE (b) (Image courtesy of Dr. John 
Nielsen-Gammon) for early September 2009 during the severe drought in southern Texas, as 
shown by the USDM map on September 7, 2009 (c). The circle highlights an area of excep-
tional drought in the USDM that is shown to have near-normal conditions in the interpolated 
SPI map (a) but clearly had localized areas of severe drought conditions that were detected in 
the SPI map based on higher-resolution, radar-based precipitation observations (b).
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