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Abstract

This paper proposes a new statistical model for symmetric axial

directional data in dimension p. This proposal is an alternative to the

Bingham distribution and to the angular central Gaussian family. The

statistical properties for this model are presented. An explicit form

for its normalizing constant is given and some moments and limiting

distributions are derived. The proposed density is shown to apply

to the modeling of 3 × 3 rotation matrices by representing them as

quaternions, which are unit vectors in <4. The moment estimators of

the parameters of the new model are calculated; explicit expressions

for their sampling variances are given. The analysis of data measuring

the posture of the right arm of subjects performing a drilling task

illustrates the application of the proposed model.

Keywords: Axial distribution; Directional data; Multivariate statistics;
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Spherical symmetry; Quaternion; Rotation.

1 Introduction

This paper is motivated by the statistical analysis of samples of 3 × 3 ro-

tation matrices. These matrices are used to characterize the orientations of

the limbs of human subjects or the posture of human joints in biomechanics.

Recording a 3×3 rotation matrix typically involves two reference frames. The

x, y, and z axes of the laboratory reference frame depend on the camera sys-

tem making the measurements while the local axes are characteristics of the

object being measured. When measuring the posture of a limb the local axes

typically represent the flexion axis and the direction of the limb. Statistical

models for 3 × 3 rotation matrices are useful to characterize the variability

within a sample and to compare several samples of rotation matrices.

The main statistical model for rotation matrices is the exponential family

of Downs (1972); some of its properties are reviewed in Khatri and Mardia

(1977), Mardia and Jupp (2000) and Chikuse (2002). It has a complicated

normalizing constant so that its moments and the maximum likelihood es-

timator of its shape parameter are relatively difficult to evaluate. The sim-

ulation of random rotations following Downs model is not simple. Léon et

al. (2006) proposed an alternative density that leads to relatively simple

statistical procedures. Its high degree of symmetry makes it unsuitable for

many of the samples of rotation matrices found in applications.

This paper constructs a model for 3 × 3 rotation matrices by proposing

a new class of densities for axial unit vectors defined on Sp−1. The proposed
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model applies to 3 × 3 rotation matrices since they can be represented as

quaternions which are 4 × 1 unit vectors. Prentice (1986) and Rancourt,

Rivest and Asselin (2000) use this representation.

The proposed density is an alternative to the exponential model of Bing-

ham (1974), and to the angular central Gaussian family of Tyler (1987) which

are reviewed in Section 9.4 of Mardia and Jupp (2000). Prentice (1986) noted

that when a quaternion follows the Bingham distribution, the corresponding

3× 3 rotation matrix has the matrix Fisher von Mises distribution. A distri-

bution for 3 × 3 rotation matrices can be derived in a similar way from the

angular Gaussian model.

Section 2 presents the new density in an arbitrary dimension p; it is

parameterized by a vector of shape parameters γ ∈ <p−1 and M ∈ SO(p),

where SO(p) is the set of p × p rotation matrices. Random unit vectors

distributed according to the proposed model are shown to be simple functions

of independent random variables having beta distributions. Thus calculating

moments and simulating vectors from the new distribution is simple. Section

3 studies the model in dimension 4 for the statistical analysis of a sample

of quaternions representing 3× 3 rotation matrices. Section 4 gives moment

estimators for γ and M and derive their sampling distributions. Section 5

applies this methodology to the drilling data and suggests a goodness-of-fit

test.
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2 A General Model for Unsigned Unit Direc-

tions in Sp−1

The proposed density with respect to the Lebesgue measure on Sp−1 is

gM,γ,p(r) =
1

cγ,p

p−1∏

k=1

[ k∑

l=1

(MT
l r)2

]γk−γk−1 r ∈ Sp−1,

where Sp−1 is the unit sphere in <p, M = (M1, . . . , Mp) ∈ SO(p) is a p × p

rotation matrix, γ0 = 0, γ = (γ1, . . . , γp−1)
T ∈ <p−1, with γp−1 > γp−2 >

. . . > γ1 > 0, cγ,p is the normalizing constant, and AT denotes the transpose

the of the matrix A. The constraint that all the γk’s are different ensures

that all the column of the matrix M are identifiable. When γk = γk+1 for

k < p − 1, one cannot distinguish Mk from Mk+1. Thus some elements

of the parameter M are not estimable. The proposed model is axial since

gM,γ,p(r) = gM,γ,p(−r).

If r is distributed according to gM,γ,p, then u = MT r is distributed ac-

cording to gIp,γ,p. This is the density of the reduced model, denoted by gγ,p,

that is given by

gγ,p(u) = [cγ,p]
−1

p−1∏

k=1

[ k∑

l=1

u2
l

]γk−γk−1 u = (u1, . . . , up)
T ∈ Sp−1. (2.1)

The normalizing constant of this model has an explicit form. It is given in

the following proposition. All the proofs appear in the Appendix.

Proposition 1: The normalizing constant is given by

cγ,p = 2(π)
p−1
2

p−1∏

k=1

Γ(γk + k
2
)

Γ(γk + k+1
2

)
.
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If the γj’s are equal with γ1 = γ2 = . . . = γp−1 = γ, then the model

parameters are the unit vector M1 and a univariate shape parameter γ. The

distribution of r is rotationally symmetric about M1; its density can be writ-

ten as grs
M1,γ,p(r). The reduced model (2.1) becomes

grs
γ,p(u) =

Γ(γ + p
2
)

2(π)
p−1
2 Γ(γ + 1

2
)
u2γ

1 , u ∈ Sp−1. (2.2)

If the common value of γ is 0, one gets the uniform distribution on Sp−1 and

c0,p = 2πp/2/Γ(p/2) is the Lebesgue measure of Sp−1. Observe however that,

for any γ > 0, grs
γ,p(u) = 0 if u1 = 0. Thus as the shape vector goes to 0,

gM,γ,p(r) does not converge uniformly to the uniform distribution. Following

Watson (1983, p. 92) one can show that the marginal distribution of u1, is

grs
γ (u1) =

Γ(γ + p
2
)

Γ(p−1
2

)Γ(γ + 1
2
)
u2γ

1 (1− u2
1)

p−3
2 , u1 ∈ [−1, 1],

that is u2
1 follows a beta(γ+1/2, (p−1)/2) distribution and that (u2, . . . , up)

T /
√

1− u2
1

is uniformly distributed in Sp−2.

When p = 2, (2.1) becomes

gγ,2(u1, u2) =
Γ(γ + 1)

2
√

πΓ(γ + 1
2
)
u2γ

1 , (u1, u2)
T ∈ S1. (2.3)

This is related to the circular beta density with parameters (γ + 1/2, 1/2),

see Jammalamadaka & SenGupta (2001, p. 51), whose density is given by

gγ,2(θ) =
Γ(γ + 1)

2γ+1
√

πΓ(γ + 1
2
)
[1 + cos (θ)]γ , −π ≤ θ ≤ π.

If θ has this circular beta density, then u = (cos(θ/2), ε sin(θ/2))T is dis-

tributed according to (2.3) where ε is uniformly distributed on {−1, 1}.
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The distribution of up, the last component of u, in (2.1) can be determined

using Watson’s (1983, p. 44) parametrization of Sp−1,

u = t


 0

1


 +

√
1− t2


 v

0


 , t ∈ [−1, 1], v ∈ Sp−2,

whose Jacobian is du = (1− t2)
p−3
2 dtdv. Thus the joint density of (t, v) is

gγ,p(t, v) = [cγ,p−1]
−1

p−2∏

k=1

[
k∑

l=1

v2
l

]γk−γk−1

Γ(γp−1 + p
2
)√

πΓ(γp−1 + p−1
2

)
(1− t2)γp−1+ p−3

2 ,

where v ∈ Sp−2 and t ∈ [−1, 1]. Thus t and v are independent, the marginal

density of v is gγ,p−1(v), with γ = (γ1, γ2, . . . , γp−2)
T , and the marginal dis-

tribution of t is given by

fT (t) =
Γ(γp−1 + p

2
)√

πΓ(γp−1 + p−1
2

)
(1− t2)( p−3

2
+γp−1), t ∈ [−1, 1].

This is the density function of (2βp−1−1), where βp−1 is distributed according

to a beta(γp−1 + (p− 1)/2, γp−1 + (p− 1)/2). Hence, u satisfies

u
d
=


 2

√
βp−1(1− βp−1)v

(2βp−1 − 1)


 ,

where
d
= means equality in distribution. In a similar way, one can write

the distribution of the last entry of v in terms of a beta random variable.

Iterating this procedure proves the following proposition.

Proposition 2: Let βj be independent random variables distributed accord-

ing to beta(γj + j/2, γj + j/2) distributions, for j = 1, . . . , p − 1 and let ε

be distributed according to the discrete uniform distribution on {-1,1}, then
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the unit vector

u =




2p−1
∏p−1

1

√
βj(1− βj)ε

.

.

2p−k
∏p−1

k

√
βj(1− βj)(2βk−1 − 1)

.

.

(2βp−1 − 1)




p×1

, (2.4)

is distributed according to gγ,p .

Proposition 2 shows that, starting from independent beta random vari-

ables, a random vector distributed according to the proposed distribution is

easily constructed. If we let u(k) = (u1, . . . , uk)
T , for k = 1, . . . , p, then from

(2.4), we can write u(k) as

u(k) = ckv
(k), (2.5)

where ck =
√

u2
1 + . . . + u2

k = 2p−k
∏p−1

k

√
βj(1− βj) and v(k) ∈ Sk−1. Since

ck is a function of βk, . . . , βp−1 and v(k) depends only on βk−1, . . . , β1, the

random variable ck is independent of the unit vector v(k), which is distributed

according to g
γ,k

, with γ = (γ1, . . . , γk−1)
T .

If in (2.4) we let yj = 4βj(1−βj), then one can show that yj is distributed

according to a beta(γj + j/2, 1/2). Thus an alternative form for (2.4) is

uk =

(
p−1∏

j=k

√
yj

) √
1− yk−1εk, k = 1, 2, . . . , p,

where εk’s are random variables distributed according to the discrete uniform

distribution in {-1,1}, y0 = 0, and the product is equal to one when k = p.
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2.1 Limiting Cases

This section derives limiting distributions obtained when some elements of

the shape parameter vector γ go to infinity. The derivations rely on the

following result. If γj = αjτ , then as τ goes to infinity,

√
τ(2βj − 1)

d−→ N

(
0,

1

2αj

)
,

√
βj(1− βj)

prob−−→ 1

2
,

where βj is distributed according to a beta(γj + j/2, γj + j/2). Together with

(2.4), these results can be used to derive the following limiting distribution.

Proposition 3: Suppose that γj is fixed, for j = 1, . . . , k − 1 and γj = αjτ ,

for j = k, . . . , p − 1, for some 1 ≤ k ≤ p. If u is distributed as gγ,p then, as

τ →∞,

1. The limiting density of (u1, . . . , uk)
T is gγ,k(.), with γ = (γ1, . . . , γk−1);

2. The vector
√

τ(uk+1, . . . , up)
T converges in distribution to a Np−k

(
0, diag

(
1

2αj

))
.

When k = 1, |u1| tends to 1 in probability and u is distributed in one of the

two hyperplanes tangent to Sp−1 at (±1, 0, . . . , 0)T . When k > 1, the unit

vector u is distributed close to the subspace of Sp−1 of dimension k−1 defined

by the equation u2
1 + . . .+u2

k = 1. The distance between u and this subspace

is characterized by (uk+1, . . . , up)
T that has a limiting normal distribution.

2.2 A Closure Property

Suppose that given x ∈ Sp−1, the random vector r has a rotationally sym-

metric density about x, grs
γ,p(r

T x) which is given in (2.2). Now suppose that x
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is uniformly distributed in a q dimensional subspace of Sp−1. Then x = Uv,

where U = (U1, . . . , Uq)p×q, p > q, UT U = Iq and v is uniform in Sq−1. The

marginal distribution of r is given by

g(r) =

∫

Sq−1

Γ(γ + p/2)Γ(q/2)

4π(p+q−1)/2Γ(γ + 1/2)
(rT Uv)2γdv

=
(√

rT UUT r
)2γ Γ(γ + p/2)Γ(q/2)

4π(p+q−1)/2Γ(γ + 1/2)

∫

Sq−1

(
vT UT r√
rT UUT r

)2γ

dv

=
Γ(γ + p/2)Γ(q/2)

2πp/2Γ(γ + q/2)

{
q∑

i=1

(UT
i r)2

}γ

.

This is the reduced model gγ∗,p(r) where the first q − 1 components of the

shape parameters γ∗ are equal to γ while its last p − q components are 0.

Such models are considered in Chapter 5 of Watson (1983). The competing

models of Bingham and Tyler do not satisfy such a closure property.

2.3 Moment Calculations

The moments of the unit vector u distributed as gγ,p are given next. As

shown in the Appendix, they are derived from (2.4), by evaluating moments

of beta random variables.

Proposition 4: Let u be distributed according to gγ,p(u), where the p − 1

entries of γ satisfy γp−1 > γp−2 > . . . > γ1 > 0; the matrix of second order

moments of u is given by E(uuT ) = diag(λk), where λk = E(u2
k) is given by

λk =
1

2(γk−1 + k
2
)

p−1∏

j=k

(γj + j
2
)

(γj + j+1
2

)
and λ1 > λ2 > . . . > λp,

and γ0 = 0. Moreover,

E(u4
k) =

3

4(γk−1 + k
2
)(γk−1 + k+2

2
)

p−1∏

j=k

(γj + j
2
)(γj + j+2

2
)

(γj + j+1
2

)(γj + j+3
2

)
,
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E(u2
ku

2
l ) =

1

4(γk−1 + k
2
)(γl−1 + l+2

2
)

p−1∏

j=k

(γj + j
2
)

(γj + j+1
2

)

p−1∏

j=l

(γj + j+2
2

)

(γj + j+3
2

)
, k < l,

=
λk

2(γl−1 + l+2
2

)

p−1∏

j=l

(γj + j+2
2

)

(γj + j+3
2

)
, k < l, (2.6)

E(uk) = E(ukul) = E(u3
kul) = 0, k 6= l,

where the product is equal to 1 when k = p.

Let r = Mu, then the matrix of second order moments of r is given by

E(rrT ) = Mdiag(λ1, . . . , λp)M
T , (2.7)

where λ1 > . . . > λp > 0 are the eigenvalues of E(rrT ). Furthermore the jth

column of M , Mj, is the eigenvector associated with λj.

3 The Model in the Special Case p = 4

When p = 4, g
M,γ,p

gives a model for quaternions, a representation of 3 × 3

rotation matrices. This section investigates the application of the proposed

model to 3×3 rotation matrices. First, the correspondence between 3×3 ro-

tation matrices and quaternions is reviewed in Section 3.1. To our knowledge

p = 4 is the only instance of such a correspondance between unit vectors and

rotation matrices.
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3.1 3× 3 Rotation Matrices and Quaternions

Let R(θ, µ) denote a rotation of angle θ, θ ∈ (−π, π], around the unit vector

µ in <3. We have

R(θ, µ) = expS(θµ) = I3 + S(θµ) + S(θµ)2/2 + ...

= cos θI3 + sin θS(µ) + (1− cos θ)µµt,

where S(µ) is the skew-symmetric matrix corresponding to µ = (µ1, µ2, µ3)
T ,

given by

S(µ) =




0 −µ3 µ2

µ3 0 −µ1

−µ2 µ1 0


 .

The quaternion associated with R(θ, µ) is a unit vector in <4 defined by

q(θ, µ) = (cos (θ/2), sin (θ/2)µT )T (Hamilton, 1969). Note that, q(θ, µ) =

−q(θ + 2π, µ), so that q and −q represent the same rotation. The rotation

matrix R can be expressed in terms of its quaternion q as (Prentice, 1986),

R = Φ(q) =




q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q1q3 + q2q4)

2(q1q4 + q2q3) q2
1 + q2

3 − q2
2 − q2

4 2(q3q4 − q1q2)

2(q2q4 − q3q1) 2(q3q4 + q1q2) q2
1 + q2

4 − q2
2 − q2

3


 .(3.1)

Quaternions are endowed with a special product corresponding to rotation

multiplication. Let p and q be the quaternions for the rotation matrices R1

and R2 respectively. As mentioned in McCarthy (1990, p. 61), the quaternion

for the product R1R2 is the vector P+q = Q−p, where P+ and Q− are 4× 4

rotation matrices defined by

P+ = p1I4 + S+(p2, p3, p4), Q− = q1I4 + S−(q2, q3, q4), (3.2)
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and

S+(x) =


 0 −xT

x S(x)


 , S−(x) =


 0 −xT

x −S(x)


 , x ∈ <3.

Observe that tp = (p1,−p2,−p3,−p4)
T is the quaternion for the rotation

matrix inverse of R1,R
T
1 . Thus, P T

+ q is the quaternion for RT
1 R2, moreover,

P T
+ q = Q−(tp).

Moran (1976) and Kim (1991) observed that if the rotation matrix R is

distributed according to the uniform distribution in SO(3) then its quater-

nion r is such that εr is uniformly distributed on the unit sphere S3 where ε

takes the values −1 and +1 with a probability of 1/2. Thus the jacobian of

the transformation that maps the upper half sphere of S3 into SO(3) is 1.

Any 4×4 rotation matrix M = (Mij)1≤i,j≤4, can be written as the matrix

product P+Q−, where P+ and Q− are derived from the quaternions p and q

as in (3.2). Given M , we can find p and q as follows

p1 =
1

4

√
A2

1 + A2
2 + A2

3 + [tr(M)]2,

q1 =
sign{tr(M)}

4

√
B2

1 + B2
2 + B2

3 + [tr(M)]2,




p2

p3

p4


 = − 1

4q1




B1

B2

B3


 ,




q2

q3

q4


 = − 1

4p1




A1

A2

A3


 ,
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where sign(x) is -1 if x is negative and 1 otherwise and

A1 = M12 −M21 −M34 + M43,

A2 = M13 −M31 + M24 −M42,

A3 = M14 −M41 −M23 + M32,

B1 = M12 −M21 + M34 −M43,

B2 = M13 −M31 −M24 + M42,

B3 = M14 −M41 + M23 −M32.

These results are derived by noting that trP+Q− = 4p1q1 and that q1S+(p2, p3, p4)+

p1S−(q2, q3, q4) is the skew-symmetric part of P+Q−.

3.2 Moment Calculations

Let r be a quaternion distributed according to g
M,γ,4

and let R be the rotation

matrix associated to r. We have r = Mu, M ∈ SO(4). From Section 3.1,

there exist two quaternions p and q such as r = P+Q−u = P+U+q, where U+

is a 4×4 rotation matrix, associated to u by (3.2). In terms of 3×3 rotation

matrices, this relationship can be written as R = PUQ, where P = Φ(p),

U = Φ(u) and Q = Φ(q), are the 3 × 3 rotation matrices associated to

quaternions p, u and q respectively and Φ(.) is given in (3.1). Since u is

distributed as gγ,p, equation (3.1) and Proposition 2 imply that E(U) is

a diagonal matrix whose elements can be expressed in term of the second

moments λk of Proposition 4. Consequently, we can write

E(R) = PE(U)Q = P diag




λ1 + λ2 − λ3 − λ4

λ1 + λ3 − λ2 − λ4

λ1 + λ4 − λ2 − λ3


 Q,
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see also Section 4 of Prentice (1986). This is the singular value decomposition

for E(R). The fact that λ1 ≥ . . . ≥ λ4 ≥ 0 implies that its singular values

satisfy E(U11) > E(U22) > |E(U33)|. We conclude that the mean rotation is

PQ see (Rivest, Rancourt, and Asselin 2000). The corresponding quaternion

is P+q = M1, where M1 is the first column of the 4 × 4 rotation matrix M .

This is the eigenvector associated to the largest eigenvalue λ1 of E(rrT ).

When γ1 = γ2 = γ3 = γ, the reduced model in (2.1) becomes gsr
γ,4(u)

given in (2.2). Using the transformation U = Φ(u) given in (3.1), that has

the Jacobian [dU ] = du/(2π2) where [dU ] is the unit invariant measure on

SO(3). One can write (2.1) in terms of 3× 3 rotation matrices as

gγ(U) =

√
πΓ(γ + 2)

22γΓ(γ + 1
2
)

[1 + tr(U)]γ .

This is equal to the model of León, Rivest and Massé (2006) when p = 3.

3.3 A Great Circle Model

When modeling rotational data it may happen that λ3 and λ4 are very close

to 0. For these models, γ2 and γ3 are large and the unit vector r takes its

value in a great circle of S3. In this case, the standardized quaternion u

satisfies u ≈ (u1, u2, 0, 0)T , where (u1, u2)
T ∼ gγ,2(u1, u2), see (2.3). Thus

r = Mu can be written as

r ≈ cos(θ/2)M1 + sin(θ/2)M2

= [M1]+
{
cos(θ/2)(1, 0, 0, 0)T + sin(θ/2)[M1]

T
+M2

}
,

where θ has a circular beta distribution with parameters (γ +1/2, 1/2). One

has [M1]
T
+M2 = (0, µT )T , where µ is a S2 vector since [M1]

T
+M2 is a unit vector
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in <4 whose first component is null. In terms of 3× 3 rotation matrices, the

above expression for r is R = R0R(θ, µ), where R0 is the rotation matrix

corresponding to M1 and R(θ, µ) is the rotation matrix corresponding to the

quaternion (cos θ/2, sin θ/2µT )T . This is a situation where the variability in

R can be expressed as rotations around a fixed axis µ; the rotation angles

have a circular beta distribution when r is distributed according to gM,γ,4.

From a geometrical point of view, µ is the rotation axis in the so called

local reference frame. An alternative expression for the fixed axis model,

with respect to the rotation axis R0µ in the laboratory reference frame, is

R = R(θ,R0µ)R0. Fixed axis models for rotation matrices are investigated

in Rivest (2001).

4 Parameter Estimation

Consider {r1, r2, . . . , rn}, a sample of unit vectors in <p distributed according

to g
M,γ,p

(r), where γ ∈ <p−1 and M ∈ SO(p) are unknown parameters. This

section discusses the estimation of γ and M . Moment estimators for γ and M

which are functions of the sample cross-product matrix
∑

rir
T
i /n are derived;

their asymptotic distributions are calculated.

This section emphasizes the method of moments to estimate parameters

because it is simple and it has a large efficiency. The information matrix

for the parameters of γ and M when p = 4, is given in Oualkacha (2004,

Section 4.3). It shows that the efficiency of the moment estimators of γ and

M is greater than 90% when the components of γ are relatively large, i. e.

(γ1 > 2, γ2 > 4). For the rotationally symmetric models, the efficiency of
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the moment estimators is calculated in section 5.2 of León Rivest and Massé

(2006), it is greater than 90% when γ > 4. This suggests that the lost of

information associated with the moment estimators is small, especially when

the data is clustered around its first principal direction.

4.1 Moment Estimators

The estimating equation for (M,γ) is B̂ = E(rrT ), where E(rrT ) is given

in (2.7) and B̂ =
∑n

i rir
T
i /n. The matrix B̂ is positive definite; its spectral

decomposition is

B̂ =
1

n

n∑
i

rir
T
i = M̂

[
diag(λ̂j)

]
1≤j≤p

M̂T , (4.1)

where M̂ = (M̂1, M̂2, . . . , M̂p) is a matrix of eigenvectors associated to the

eigenvalues λ̂1 > λ̂2 > . . . > λ̂p. Consequently, the moment estimator of M

is M̂ and the moment estimator of γ, γ̂, is defined implicitly by the equations

λ̂j = λj, for j = 1, . . . , p, when λj is defined in Proposition 4. The solution

to these equations is

γ̂k =
1

2

(∑k
j=1 λ̂j

λ̂k+1

− k
)
, k = 1, 2, . . . , p− 1.

These moment estimates satisfy γ̂k+1 = γ̂kλ̂k+1/λ̂k+2+(k+1)(λ̂k+1−λ̂k+2)/(2λ̂k+2).

This implies that γ̂1 < γ̂2 < . . . < γ̂p−1.

The asymptotic distributions of γ̂ and M̂ are now derived. For this, let

m = vect(mjk)1≤j<k≤p a vector in <(p−1)p/2 close to zero, so

M exp
(S(m)

)
= M(Ip + S(m) +

S(m)2

2!
+ · · · )

= M(Ip + S(m) + o(m))

≈ M(Ip + S(m)),
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describes the rotation about M , where S(m) is a p×p skew-symmetric matrix

containing the entries of m, such that S(m)jk = mjk for 1 ≤ j < k ≤ p. Thus

MT M̂ = Ip + S(m̂), (4.2)

where m̂ = vect(m̂jk)1≤j<k≤p measures the discrepancy between M and M̂ .

The asymptotic distributions of γ̂ and M̂ are given in the next proposition

which is proved in Appendix.

Proposition 5: As the sample size n becomes large, we have

i) n1/2
(
γ̂ − γ

) → Np−1(0p−1, Σγ),

where Σγ is a (p − 1) × (p − 1) diagonal matrix whose diagonal entries are

given by

Σγ(k, k) =
(γk + k

2
)(γk + k+1

2
)

λk+1(γk + k+3
2

)

p−1∏

j=k+1

(γj + j+2
2

)

(γj + j+3
2

)
,

where the product is equal to 1 when k = p− 1.

ii) n1/2m̂ → N (p−1)p
2

(0 (p−1)p
2

, Σm),

where

Σm = diag
{
Σm

kl

}
(p−1)p

2
× (p−1)p

2

, 1 ≤ k < l ≤ p,

where Σm
kl

is the variance of the component m̂kl of m̂ that is given by

Σm
kl

=
λk

2(λl − λk)2(γl−1 + l+2
2

)

p−1∏

j=l

(γj + j+2
2

)

(γj + j+3
2

)
, 1 ≤ k < l ≤ p.

iii) γ̂ and m̂ are asymptotically independent.
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The small sample biases of the asymptotic variances given in the above

proposition have been investigated in a Monte-Carlo study that is not re-

ported here. When n ≥ 50 Σ̂j(k, k)/λ̂2
k provides reliable variance estimates

for log λ̂k, where Σ̂j(k, k) is the plug-in variance estimate. The variance es-

timates obtained from Proposition 5 ii) also have small biases when n ≥ 50.

For small sample sizes, the parametric bootstrap can be used to estimate the

variances.

4.2 Estimation of the fixed axis model when p = 4

When p = 4 and when γ2 and γ3 are large, one has a fixed-axis model for the

3 × 3 rotation matrices as discussed in Section 3.3. This axis is estimated

by µ̂, the vector of the second, the third and the fourth entries of [M̂1]
T
+M̂2.

The asymptotic distribution of µ̂ is given next.

Proposition 6: As the sample size n becomes large, we have

n1/2
(
µ̂− µ

) → N3(0, Σµ),

where Σµ is given by

Σµ =
[
Σm23

+ Σm14

]
µ1µ

T
1 +

[
Σm13

+ Σm24

]
µ2µ

T
2 ,

where (0, µT
1 )T = [M1]

T
+M3 and (0, µT

2 )T = [M1]
T
+M4.

When γ2 and γ3 are large a convenient expression for this covariance

matrix is

Σµ =

{
λ3

λ2

+
λ4

λ1

}
µ1µ

T
1 +

{
λ4

λ2

+
λ3

λ1

}
µ2µ

T
2 + o(

1

γ2

).

When γ2 = γ3, λ3 = λ4 and this expression coincides with the variance

estimate given in Section 4.1 of Rivest (2001).
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5 Data analysis

To illustrate the methodology presented in this paper, we fit the proposed

model to the data collected from the experiment given in Rancourt et al.

(2000). The sample consists of n = 30 observations that measure the orien-

tations of the upper right arm of a subject performing drilling tasks. The

arm pose is defined via one marker attached in the arm. The marker orien-

tation is characterized by a 3× 3 rotation matrix R = [µx, µy, µz], where µx,

µy and µz are the orientations of the local’s x, y and z axes of the marker

in the laboratory coordinate system. When resting, the arm is in a vertical

position, the local x axis then points backward, the local y axis goes upward

and the local z axis points left. Thus the local y-axis is the direction of the

upper arm, and the local z-axis is the rotation axis of the elbow. The subject

is asked to point a drill at various targets 30 times. The rotation matrices

in the sample record the orientations of the local coordinate system at each

repetition. The n = 30 quaternions for the sample 3 × 3 rotation matrices

are given in Table 1.

The moment estimators of log γj’s and their parametric bootstrap stan-

dard errors are log γ̂1 = 2.60 s.e. = 0.28, log γ̂2 = 5.35 s.e. = 0.28, and

log γ̂3 = 8.10 s.e. = 0.31. The large sample standard errors derived from

Proposition 5 are 10% to 20% smaller than those obtained with the para-

metric bootstrap. Since the γ̂2 and γ̂3 are large we have a fixed axis model.

Thus Ri = R̂0R(θi, µ̂) and the variability of Ri in the local coordinate system

is characterized by θi that has a circular beta distribution with parameters

(γ̂1+1/2, 1/2) around the fixed axis µ̂. Since γ̂1 = 13.42, the range of possible

values for θi ±40 degrees, with a probability of 95%.
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ri ri1 ri2 ri3 ri4

r1 0.664 0.193 0.390 -0.608

r2 -0.623 -0.167 -0.416 0.640

r3 -0.605 -0.195 -0.425 0.644

r4 -0.602 -0.178 -0.416 0.657

r5 -0.562 -0.276 -0.480 0.614

r6 0.791 0.098 0.369 -0.477

r7 0.802 0.056 0.391 -0.448

r8 0.755 0.098 0.381 -0.525

r9 0.789 0.079 0.371 -0.483

r10 0.732 0.109 0.393 -0.545

r11 0.859 0.067 0.395 -0.318

r12 0.853 0.042 0.372 -0.364

r13 0.866 0.023 0.364 -0.341

r14 0.829 0.033 0.366 -0.421

r15 0.852 0.054 0.361 -0.374

ri ri1 ri2 ri3 ri4

r16 0.920 0.059 0.368 -0.123

r17 0.895 0.034 0.360 -0.260

r18 0.910 0.050 0.378 -0.170

r19 0.916 0.043 0.355 -0.181

r20 0.926 0.008 0.333 -0.178

r21 0.795 0.053 0.386 -0.464

r22 0.780 0.042 0.344 -0.521

r23 0.772 0.064 0.355 -0.523

r24 0.791 0.016 0.352 -0.500

r25 0.701 0.104 0.383 -0.593

r26 0.876 0.009 0.349 -0.332

r27 0.850 0.045 0.358 -0.383

r28 0.837 0.039 0.380 -0.391

r29 0.898 0.005 0.334 -0.285

r30 0.874 0.055 0.351 -0.330

Table 1: Sample of n = 30 quaternions for the right arm pose in a drilling

task.

The moment estimator of M1 is M̂11 = 0.813 s.e. = 0.017, M̂12 =

0.077 s.e. = 0.011, M̂13 = 0.383 s.e. = 0.006 and M̂14 − 0.431 s.e. = 0.027,

while the moment estimator of the fixed axis is µ̂1 = −0.524 s.e. = .019,

µ̂2 = −0.365 s.e. = .043, and µ̂3 = 0.773 s.e. = .029. These standard errors

were evaluated using the parametric bootstrap. Since the largest entry of µ̂

is the third one, the arm changes its posture by moving about an axis closed
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to the z-axis. From Proposition 2, the angle of the residual rotation not

explained by the fixed axis model has an N{0, (2γ̂2)
−1} distribution. The

standard deviations is 3.9 degrees; this highlights that the residual rotation

is small.

To interpret this analysis one must bear in mind that a change of the

orientation of the upper arm is the composition of a rotation of the back plus

a motion of the shoulder. For the subject considered here, the back did not

move much since the analysis of the rotation data obtained from the back

marker gives γ̂1 = 113, s.e. = 29. Most of the changes in orientation take

place at the shoulder joint. The changes in the posture of this joint occur

mostly through rotations about µ̂ which is relatively close to the z axis.

During the experiment the upper arm stays in a plane close to the z = 0

plane that is spanned by the x (backward direction) and the y (upward

direction) axis.

We now investigate the fit of the model. Since γ̂2 and γ̂3 are large, the cen-

tered quaternions satisfy ui ≈ (cos(θi/2), sin(θi/2), 0, 0)T , where cos2(θi/2) is

distributed according to a beta(γ̂1 + 1/2, 1/2). A goodness of fit test for

the proposed distribution amounts to testing whether {cos2(θi/2)} has a

beta(γ̂1 + 1/2, 1/2) distribution. First note that cos2(θi/2) is estimated by

(M̂1ri)
2; the beta(γ̂1 + 1/2, 1/2) Q-Q plot is given in Figure 1.

The beta distribution fits reasonably well. To carry out formal good-

ness of fit tests, we use the correlation coefficient in the Q-Q plot and the

Kolmogorov-Smirnov statistic. The observed value for these two statistics are

0.967 and 0.157 respectively. To calculate p-values, we use the parametric

bootstrap. The sampling distributions of these statistics are approximated by
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Figure 1: Q-Q plot for the fit of the beta(γ̂1 + 1/2, 1/2) distribution to the

sample {(M̂ t
1ri)

2}.

evaluating them repeatedly on data simulated from the proposed distribution

with parameters equal to their moment estimates. The bootstrap p-values

are 0.244 for the correlation test and 0.09 for the Kolmogorov-Smirnov test.

The proposed model provides a reasonable fit.

6 Discussion

This paper has proposed a flexible model for axial data of arbitrary dimen-

sion. The proposed density is well suited to analyze samples of 3×3 rotation

matrices. Simple moments estimators of the parameters are available and
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the simulation of data from the proposed distribution is simple making the

parametric bootstrap an appealing strategy to determine the sampling dis-

tributions of interest.

Appendix A

A.1. Proof of Proposition 1. We prove this proposition by induction.

We can verify easily that for p = 2, cγ,2 is given by (2.3), now suppose that

proposition 1 true for p − 1. Using Watson’s (1983, p. 44) parametrization

of Sp−1 given in Section 2, we have

cγ,p =

∫

v∈Sp−2

p−2∏

k=1

[
k∑

l=1

v2
l

]γk−γk−1

dv

∫ 1

−1

(1− t2)γp−1+ p−3
2 dt

= cγ(p−1)

√
πΓ(γp−1 + p−1

2
)

Γ(γp−1 + p
2
)

= 2(π)
p−2
2

p−2∏

k=1

Γ(γk + k
2
)

Γ(γk + k+1
2

)

√
πΓ(γp−1 + p−1

2
)

Γ(γp−1 + p
2
)

.

This completes the proof of Proposition 1.

A.2. Proof of Proposition 4. The expressions for λk, E(u4
k) and E(u2

ku
2
l ), 1 ≤

k < l ≤ p come from the decomposition of u as a product of beta random

variables given in Proposition 2. They are derived by noting that if X is

distributed as a β(γ + k/2, γ + k/2) random variable, then

4E{X(1−X)} =
γ + k/2

γ + (k + 1)/2
, E{(2X − 1)2} =

1

2{γ + (k + 1)/2} ,

16E{X2(1−X)2} =
(γ + k/2)(γ + 1 + k/2)

{γ + (k + 1)/2}{γ + (k + 3)/2} ,

E{(2X − 1)4} =
3

4(γ + k/2)(γ + 1 + k/2)
.
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A.3. Proof of Proposition 5. Following Bellman (1970, chapter 4), one

can write

λ̂j − λj =
1

n

n∑
i=1

[
(MT

j ri)
2 − λj

]
+ Op(

1

n
)

=
1

n

n∑
i=1

u2
jiλj + Op(

1

n
),

and

M̂j −Mj =

p∑

k 6=j

[
1

n

n∑
i=1

MT
j rir

T
i Mk

λj − λk

]
Mk + Op(

1

n
)

=

p∑

k 6=j

[
1

n

n∑
i=1

ujiuki

λj − λk

]
Mk + Op(

1

n
),

where uji is the j th component of the i th centered observation ui. Now let(
∂

∂λ̂
γ̂
)
∣∣λ̂=λ

the partial derivative (p− 1)× p matrix of γ̂ with respect to λ̂ at

point λ = (λ1, . . . , λp)
t. The kth row of the matrix is




1

λk+1

, . . . ,
1

λk+1︸ ︷︷ ︸
k times

,−
∑k

j=1 λj

λ2
k+1

, 0, . . . , 0


 .

According to Slutzky’s theorem and to the central limit theorem, as n goes

to infinity, γ̂ and M̂ have asymptotic normal distributions. Now we prove

that the off diagonal terms of Σγ are zero (i.e: Σγ(k, l) = 0, k < l). To do so,

we can verify that

Σγ(p)(k, l) =
1

4
E

[(
∂

∂λ̂
γ̂

)
∣∣λ̂=λ

uuT

(
∂

∂λ̂
γ̂

)T

∣∣λ̂=λ

]

(k,l)

=
1

4
E

[(
u2

1 + . . . + u2
k

λk+1

−
∑k

j=1 λju
2
k+1

λ2
k+1

)(
u2

1 + . . . + u2
l

λl+1

−
∑l

j=1 λju
2
l+1

λ2
l+1

)]
.
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Using (2.5), the vector u(k+1) of the first k + 1 entries of u can be expressed

as u(k+1) = (u2
1 + . . . + u2

k+1)v
(k+1), where v(k+1) is a random Sp vector. Thus

Σγ(k, l) becomes

Σγ(p)(k, l) =
1

4
E

[{
v2

1 + . . . + v2
k

λk+1

−
∑k

j=1 λjv
2
k+1

λ2
k+1

}

×
{

(u2
1 + . . . + u2

k+1)

(∑l
j=1 u2

j

λl+1

−
∑l

j=1 λju
2
l+1

λ2
l+1

)}]
.

The expectation on the right hand side involves the product of two random

variables. The first one is a function of the (k + 1) × 1 unit vector v with

distribution gγ,k+1. Considering Proposition 4, this first term has a null

expectation. In terms of the beta random variables defined in Proposition

2, the second term depends on βk+1, . . . , βp−1; it is therefore independent of

the first term. The diagonal terms of this matrix are evaluated using the

following expression,

Σγ(p)(k, k) =
1

4λ4
k+1

E{(u2
1 + . . . + u2

k+1)
2}E{(λk+1 − v2

k+1

k+1∑
1

λj)
2}.

The variance covariance matrix for M̂ comes from (2.6). To prove iii)

and that Σm is diagonal, observe that E(ujiu
3
ki) = E(ujiukiu

2
li) = 0, for all

j 6= k 6= l.

A.4. Proof of Proposition 6. It is derived immediately from (4.2), since

[M̂1]+ and M̂2 can be written as

[M̂1]
T
+ = [M1]

T
+ − m̂12 [M2]

T
+ − m̂13 [M3]

T
+ − m̂14 [M4]

T
+,

M̂2 = M2 + m̂12M1 − m̂23M3 − m̂24M4.
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Proposition 2 in Rivest (2001) shows that [M1]
T
+M3 = [M4]

T
+M2 and [M3]

T
+M2 =

[M1]
T
+M4. A first order expansion of [M̂1]

T
+M̂2 yields


 0

µ̂− µ


 = − (m̂23 + m̂14) [M1]

T
+M3 − (m̂13 + m̂24) [M1]

T
+M4 + op(m̂

′
m̂).
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