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Abstract

We give several explicit combinatorial formulas for the expansion
of k-Schur functions indexed by maximal rectangles in terms of the
standard basis of the affine nilCoxeter algebra. Using our result, we
also show a commutation relation of k-Schur functions corresponding
to rectangles with the generators of the affine nilCoxeter algebra.

1 Introduction and Prerequisites

k-Schur functions (s
(k)
λ , indexed by k-bounded partitions) were first intro-

duced by Lapointe, Lascoux and Morse in [10], in an attempt to better un-
derstand Macdonald polynomials. Since that time it developed that k-Schur
functions play an important role in many other areas of mathematics (see
[6, 7, 9, 8, 11, 12, 13]). As a result, one fundamental open problem in the the-
ory of k-Schur functions is the understanding of their structure constants, the
k-Littlewood Richardson coefficients c

ν,(k)
λ,µ defined by s

(k)
λ s

(k)
µ =

∑
ν c

ν,(k)
λ,µ s

(k)
ν .

Recent work of Thomas Lam [5] has applied the work of Fomin and Green
[3] by viewing the ring Λ(k) of symmetric functions spanned by the k-Schur
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functions as a subalgebra of the affine nilCoxeter algebra. In particular, we
recall in Section 4 that understanding k-Littlewood Richardson coefficients
c
ν,(k)
λ,µ is equivalent to understanding the explicit expansion of s

(k)
λ in the stan-

dard basis of the affine nilCoxeter algebra (the basis formed by the words in
the generators).

With this in mind, this article is about expanding the k-Schur function s
(k)
λ

in a specific case, namely when λ is a maximal rectangle, i.e. a rectangular
partition with maximal hook length k. In fact, we give four different formulas
giving four different points of view. Two of them are central to our proof,
but the other two are of interest in their own right. It is not clear yet which
point of view will generalize to other shapes and we choose to present all four
formulas as a starting point of this investigation. However, a reader chiefly
interested in getting to the proof of the main theorem could skip Sections
2.3, 2.4, 3.2 and 3.3.

In Section 2 we state our four combinatorial definitions of elements of
the affine nilCoxeter algebra. In Section 3 we prove that all four definitions
are equivalent. In Section 4 we prove that these formulas give an explicit
expansion for a k-Schur function indexed by a maximal rectangle in the
standard basis of the affine nilCoxeter algebra. Section 5 contains a short
application of our formulas: we give a commutation relation of the k-Schur
function indexed by a maximal rectangle with the generators of the affine
nilCoxeter algebra.

1.1 k-bounded partitions, (k + 1)-cores and the affine
symmetric group

Throughout the paper, we work with k ≥ 1 a fixed integer.
For a Young diagram of a partition λ, we associate to each box (i, j) (row

i, column j) of the diagram a content defined by c(i,j) = (j− i) mod (k+ 1).
We will let P(k) denote the set of partitions λ = (λ1, λ2, . . . ) whose first part
λ1 is at most k.

A p-core is a partition which has no removable rim hooks of length p.
Lapointe and Morse [12, Theorem 7] showed that the set P(k) bijects with
the set of (k + 1)-cores. Following their notation, we let c(λ) denote the
(k+1)-core corresponding to the partition λ, and p(µ) denote the k-bounded
partition corresponding to the (k + 1)-core µ. We will also use C(k+1) to
represent the set of all (k + 1)-cores.
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The affine symmetric group W is generated by reflections si for i ∈
{0, 1, . . . , k}, subject to the relations:

s2
i = 1 for i ∈ {0, 1, . . . , k}

sisj = sjsi if i− j 6= ±1

sisi+1si = si+1sisi+1 for i ∈ {0, 1, . . . , k}

where i− j and i+ 1 are understood to be taken modulo k + 1.
An element w ∈ W has a length, denoted len(w), defined to be the

minimal m for which w = si1 · · · sim for some i1, . . . , im.
W has an action on C(k+1). Specifically, if λ is a (k+ 1)-core then siλ is λ

union all addable positions of content i, if λ has such an addable position, siλ
is λ minus all removable boxes of content i from λ if λ has such a removable
box (a (k+1)-core cannot have both a removable box and an addable position
of the same content), and siλ = λ otherwise.

We let W0 denote the parabolic subgroup obtained from W by removing
the generator s0. This is naturally isomorphic to the symmetric group Sk+1.
W 0 will denote the set of minimal length coset representatives of W/W0. W 0

is naturally identified with C(k+1) in the following way. To a core λ ∈ C(k+1),
we associate the unique element w ∈ W 0 for which w∅ = λ. For a k-bounded
partition µ, we let wµ denote the element of W 0 which satisfies wµ∅ = c(µ).
More details on this can be found in [2].

Fix an orthonormal basis {ε1, . . . , εk+1} of Rk+1. There is a left action of
W on V := Rk+1/(

∑k+1
i=1 εi) which occurs from viewing W as the affine type

A Weyl group (see for example [4]):

si � (a1, . . . , ak+1) = (a1, . . . , ai+1, ai, . . . , ak+1) for i 6= 0 (1)

s0 � (a1, . . . , ak+1) = (ak+1 + 1, a2, . . . , ak, a1 − 1)

We let

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αk = εk − εk+1, α0 = εk+1 − ε1.

The � action comes from viewing si as a reflection in V across the hyperplane
through the origin perpendicular to αi for i 6= 0, and across the hyperplane
{(a1, . . . , ak+1) ∈ V : a1 − ak+1 = 1} for s0. The collection of {α1, . . . , αk}
are called the simple roots for the finite root system of type A.
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We let 〈, 〉 denote the inner product on V defined by

〈αi, αj〉 =


2 if i = j
−1 if i = j ± 1
0 else

The Z-span of {ε1, ε2, . . . εk+1} contained in the k-dimensional space V
are called weights.

Let Λ+ = {a ∈ V : a1 ≥ a2 ≥ · · · ≥ ak+1} denote the dominant chamber.
A weight η that is in Λ+ will be called a dominant weight.

An element of W0 � α1 is called a root. A root α is positive if 〈α, v〉 ≥ 0
for all vectors v in the dominant chamber.

Let A∅ := {(a1, . . . , ak+1) ∈ V : a1 ≥ a2 ≥ · · · ≥ ak+1 ≥ a1 − 1}. This
is called the fundamental alcove. The action of W on V is faithful on A∅
(w �A∅ 6= v �A∅ for w 6= v). For w ∈ W , we define Aw := w−1 �A∅. The Aw
are called alcoves. The union of all alcoves is V and two alcoves overlap on
at most an affine hyperplane.

There is another way of calculating the location of Aw given a reduced
word of the element w = si1si2 · · · sir that we picture as an alcove walk.

To a weight η = (η1, . . . , ηk+1), we associate a label L(η) = (
∑k+1

i=1 ηi)
mod (k + 1). Every alcove contains exactly one weight of every label, cor-
responding to the vertices of the alcove. Figure 1 shows what this picture
looks like in the case of k = 2.

The following proposition can be found as Lemma 6.1 in [16].

Proposition 1.1. Suppose Aw has vertices v0, v1, . . . , vk with L(vj) = j.
Then Asiw is the alcove which has vertices {vj : j 6= i} and the vertex obtained
by reflecting vi across the affine hyperplane spanned by {vj : j 6= i}.

An alcove Aw is contained in Λ+ if and only if w ∈ W 0 (see [4]). From the
correspondence between (k + 1)-cores and W 0, we obtain a correspondence
between (k + 1)-cores and alcoves of Λ+.

Given a word w = si1si2 · · · sir , the location of Aw is calculated by a path
starting at A∅ followed by the alcove Asir , then

Asir−1
sir
, Asir−2

sir−1
sir
, . . . , Asi1si2 ···sir−1

sir
.

Each of these alcoves is adjacent due to the previous proposition and the
word for w determines a path which travels from the fundamental alcove to
Aw traversing a single hyperplane for each simple reflection in the word. See
Figure 3 for an example of this.
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Figure 1: With k = 2, a portion of the vector space V divided into alcoves.
We have labeled the fundamental alcove A∅ and each of the other alcoves
corresponds to an element Aw for w ∈ W .

1.2 The affine nilCoxeter algebra and k-Schur func-
tions

The affine nilCoxeter algebra A is the algebra generated by ui for i ∈
{0, 1, . . . , k}, subject to the relations (see for instance [5]):

u2
i = 0 for i ∈ {0, 1, . . . , k}

uiuj = ujui if i− j 6= ±1

uiui+1ui = ui+1uiui+1 for i ∈ {0, 1, . . . , k}

where i− j and i+ 1 are understood to be taken modulo k + 1.
If si1 . . . sim is a reduced word for an element w ∈ W , we let u(w) =

ui1 . . . uim . Then U := {u(w) : w ∈ W} is a basis of A, which we will call the
standard basis of A. For a k-bounded partition λ ∈ P(k), uλ := u(wλ) ∈ U .
We let U0 = {u(w) : w ∈ W 0}. We note that w = xy with len(w) =
len(x) + len(y) if and only if u(w) = u(x)u(y).

The affine nilCoxeter algebra has an action on the free abelian group with
basis the k+ 1-cores. Let ν ∈ C(k+1) and then define uiν to be the k+ 1 core
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Figure 2: With k = 2, a single alcove Aw is adjacent to each of As0w, As1w
and As2w.

formed by adding all addable boxes of content i if ν has at least one such
addable box, and uiν is 0 otherwise.

Example 1.2. Let k + 1 = 5 and let ν be the 5-core (6, 4, 3, 1).

ν =

2
3 4 0
4 0 1 2
0 1 2 3 4 0 u1ν =

1
2
3 4 0 1
4 0 1 2
0 1 2 3 4 0 1 u3ν =

2 3
3 4 0
4 0 1 2 3
0 1 2 3 4 0

Then u1ν = (7, 4, 4, 1, 1), u3ν = (6, 5, 3, 2) and uiν = 0 for i ∈ {0, 2, 4}.

Within the affine nilCoxeter algebra, Lam [5] found elements hi for 1 ≤
i ≤ k which generate a subalgebra isomorphic to the subring of symmet-
ric functions generated by the complete homogenous symmetric functions
h1, . . . , hk, or equivalently to a commutative polynomial ring in k variables.

Definition 1.3. An element u = ui1ui2 · · ·uim ∈ U is said to be cyclically
decreasing if each of i1, . . . , im are distinct, and whenever j = is and j+1 = it
then t < s (here j + 1 is taken modulo k + 1). To a strict subset D ⊂
{0, 1, . . . , k}, we let uD denote the unique element of U which is cyclically
decreasing and is a product of the generators um for m ∈ D.

Lam then defines elements hi :=
∑
|D|=i uD ∈ A for i ∈ {0, 1, . . . , k}.

Theorem 1.4 (Lam [5] Proposition 8 and Corollary 14). The hi commute
with one another (i.e. hihj = hjhi) and hi for i ∈ {1, 2, . . . k} generate
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Figure 3: With k = 2, an example of a walk represented by a reduced
word w = s2s0s1s2s1s0. The terminal alcove corresponds to the 3-core
s2s0s1s2s1s0∅ = (4, 2, 2, 1, 1).

a subalgebra isomorphic to the ring generated by the complete homogeneous
symmetric functions hi for i ∈ {1, 2, . . . k}. The isomorphism identifies hi
and hi.

One can then define the k-Schur functions.

Definition 1.5. Let λ ∈ P(k). Then we define s
(k)
λ to be the unique elements

of the subring generated by the hi which satisfy the following rule:

his
(k)
λ =

∑
µ

s(k)
µ ; s

(k)
∅ = 1.

where uµ = yuλ and y is a cyclically decreasing word of length i.

Remark 1.6. This defining formula for k-Schur functions is called the k-
Pieri rule. It is an analogue of the classical Pieri rule for Schur functions,
and was first used as a definition of the k-Schur functions in the ring of
symmetric functions by Lapointe and Morse in [12].

It is conjecturally equivalent to earlier definitions of the k-Schur functions
found in [10] and [11]. The form of the k-Pieri rule we have stated here in
terms of the action of the nil-Coxeter algebra follows Lam [5] and is equivalent
to the k-Pieri rule of Lapointe and Morse by Proposition 27 of [5].

7



Remark 1.7. We note that by the definition of hi and the action of A that
hic(λ) =

∑
µ c(µ), where the sum is indexed by the same conditions as in

Definition 1.5.

The following is the start of a running example which demonstrates the
formulas presented in this article.

Example 1.8. If the largest hook of λ is sufficiently small, the k-Pieri rule
and the usual Pieri rule are the same. In particular, we have that s

(k)
λ = sλ

whenever λ = c(λ).
Let k = 4. For example we have the 4-Schur function indexed by (2, 2, 2)

has an expansion in terms of the homogeneous symmetric functions given by
the Jacobi-Trudi formula.

s
(4)
(222) = h(222) − 2h(321) + h(33) + h(411) − h(42).

By definition,

h1 = u0 + u1 + u2 + u3 + u4,

h2 = u1u0 + u2u1 + u3u2 + u4u3 + u0u4 + u0u2 + u0u3 + u1u3 + u1u4 + u2u4,

h3 = u2u1u0 + u3u2u1 + u4u3u2 + u0u4u3 + u1u0u4 + u1u0u3 + u0u4u2

+ u0u3u2 + u4u3u1 + u4u2u1,

h4 = u4u3u2u1 + u0u4u3u2 + u1u0u4u3 + u2u1u0u4 + u3u2u1u0.

By substituting each of the hi in the expansion of s
(4)
(2,2,2), we see with a bit

of cancellation that

s
(4)
(2,2,2) = u4u3u0u4u1u0 + u2u4u3u0u4u1 + u3u2u4u3u0u4 + u1u2u4u3u0u1

+ u1u3u2u4u3u0 + u0u1u2u4u0u1 + u2u1u3u2u4u3 + u0u1u3u2u4u0

+ u0u2u1u3u2u4 + u1u0u2u1u3u2.

2 Four formulas for k-Schur functions indexed

by a maximal rectangle

The first explicit formulas for expansions of k-Schur functions in the standard
basis of the affine nilCoxeter algebra come from Lam [5], where he gives the

formula stated above for hi, since hi = s
(k)
(i) .
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When λ is a hook shape and λ1 + len(λ) ≤ k, the k-Schur function s
(k)
λ

has an explicit formula in the standard basis of the affine nilCoxeter algebra
[1].

An explicit formula in general would give an explicit solution to the k-
Littlewood Richardson problem of computing the coefficients c

ν,(k)
λ,µ from the

expansion s
(k)
λ s

(k)
µ =

∑
ν c

ν,(k)
λ,µ s

(k)
ν (this was first realized by Thomas Lam

in [5], see Remark 4.4 for more details). The primary contribution of this

paper is to give a combinatorial formula for a k-Schur function s
(k)
R where R

is a maximal rectangle (a rectangular partition with maximal hook length
exactly k). It is worth noting that there is only a finite amount of work to
determine all of the k-Littlewood Richardson coefficients. This is because
maximal rectangles factor out of k-Schur functions (see Theorem 4.1) and
there are only finitely many partitions (in fact, k!) which do not contain a

maximal rectangle, so one is left with the problem of understanding s
(k)
λ s

(k)
µ

when λ and µ contain no maximal rectangle.
In fact, we give four combinatorial formulas for s

(k)
R . In this section, we

explicitly state the four formulas.
We fix two integers c, r ≥ 1 such that r+c = k+1. Let R be the maximal

rectangle (c, c, . . . , c)︸ ︷︷ ︸
r

= (cr) (a rectangle with c columns and r rows).

2.1 Def. 1: Partitions contained in the rectangle

For a skew shape ν/µ, let Vν/µ ∈ W be the reading word in the products of
the generators si of the contents (mod k + 1) of the rows of ν/µ starting in
the top row and reading from right to left.

For a maximal rectangle R = (cr), we let R := {ν : ν ⊂ R} and, in
particular, we are interested in the terms V(R,ν)/ν for ν ∈ R. It is well known

that there are
(
k+1
c

)
=
(
k+1
r

)
such terms.

Definition 2.1. Define XR =
∑

ν∈R u(V(R,ν)/ν).

Example 2.2. Let k = 4 and R = (2, 2, 2) = (23). There are ten partitions
contained in R. They are ∅, (1), (2), (1, 1), (2, 1), (1, 1, 1), (2, 2), (2, 1, 1), (2, 2, 1), (2, 2, 2).
These ten partitions are represented by the diagrams
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The element V(R,ν)/ν is a reading of the cells in white by placing the cells of
the partition ν on top of the rectangle R and then reading the rows of the
resulting shape (R, ν)/ν. This defines the following words,

V(23) = s4s3s0s4s1s0 V(23,1)/(1) = s2s4s3s0s4s1

V(24)/(2) = s3s2s4s3s0s4 V(23,1,1)/(1,1) = s1s2s4s3s0s1

V(24,1)/(2,1) = s1s3s2s4s3s0 V(23,13)/(13) = s0s1s2s4s0s1

V(25)/(2,2) = s2s1s3s2s4s3 V(24,1,1)/(2,1,1) = s0s1s3s2s4s0

V(25,1)/(2,2,1) = s0s2s1s3s2s4 V(26)/(23) = s1s0s2s1s3s2.
Therefore, X(2,2,2) = u4u3u0u4u1u0 + u2u4u3u0u4u1 + u3u2u4u3u0u4 +

u1u2u4u3u0u1+u1u3u2u4u3u0+u0u1u2u4u0u1+u2u1u3u2u4u3+u0u1u3u2u4u0+
u0u2u1u3u2u4 + u1u0u2u1u3u2. This is equal to s

(4)
(2,2,2) from Example 1.8.

2.2 Def. 2: Pseudo-translations in the alcove picture

Let
Γ = {(a1, . . . , ak+1) ∈ V : ai ∈ {0, 1},

∑
ai = c} (2)

and let
Λc = (1, 1, . . . , 1︸ ︷︷ ︸

c

, 0, 0, . . . , 0︸ ︷︷ ︸
k+1−c

) ∈ Γ.

Definition 2.3. Let η be a weight. We say y ∈ W is a pseudo-translation
of Aw in direction η if Ayw = Aw + η.

Remark 2.4. If α = (a1, . . . , ak+1) satisfies
∑

i ai = 0 and ai ∈ Z then α
is an element of the root lattice. The affine Weyl group is the semi direct
product of the finite Weyl group and translations by the root lattice (see
for instance [2]). For α an element of the root lattice we use tα to denote a
translation by −α (i.e. tα � v = v − α for all v ∈ V ). It is also the case that
tα is a pseudo-translation of A∅ in direction α since Atα = t−1

α �A∅ = A∅+α.
However, it is not the case that tα acts as a pseudo-translation on all alcoves
in the same direction. In other words, tα is a pseudo-translation of Aw in
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direction β (i.e. Atαw = Aw + β) for some weight β depending on w and α.
This is stated precisely in Lemma 3.3.

Remark 2.5. Throughout the paper we will determine if y is a pseudo-
translation of Aw in direction η by taking the centroid Gw of Aw (the average
of the vertices of Aw) and checking whether w−1y−1w �Gw = Gw + η. Since
η is a weight, Aw + η is an alcove, so it suffices to check what happens to the
centroid. Letting G∅ be the centroid of A∅, we can see the equivalence of the
two notions because the centroid Gw of Aw is w−1 � G∅ and the centroid of
Ayw is w−1y−1 �G∅ = w−1y−1ww−1 �G∅ = w−1y−1w �Gw.

The vertices of the fundamental alcove are 0 and Λi = (1, 1, . . . , 1︸ ︷︷ ︸
i

, 0, 0, . . . , 0︸ ︷︷ ︸
k+1−i

)

for i ∈ {0, 1, . . . , k}. The centroid of the fundamental alcove is the average
of the vertices and has coordinates

G∅ =
1

k + 1

∑
i

Λi =

(
k

k + 1
,
k − 1

k + 1
, . . . ,

1

k + 1
, 0

)
. (3)

For a weight γ (in particular for γ ∈ Γ), we let zγ denote the pseudo-
translation of the fundamental alcove A∅ in direction γ. Note that when zγ
acts on other alcoves it also acts as a pseudo-translation, but perhaps not in
the same direction as when it acts on the fundamental alcove (see Lemma
3.3). Note that tα is equal to zα for α an element of the root lattice.

Example 2.6. Let k = 2 andR = (1, 1). Then Γ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The element z(1,0,0) = s2s0 because (s2s0)−1 � A∅ = A∅ + (1, 0, 0). Similarly,
z(0,1,0) = s0s1 and z(0,0,1) = s1s2. In the figure below the arrows represent the
action of zγ when they act on two alcoves A∅ and As2s1s0 . Notice that the
sum over all the pseudo-translations zγ for γ ∈ Γ has the same effect on all
alcoves. The element z(1,0,0) by definition is a pseudo-translation of A∅ in the
direction of (1, 0, 0), but z(1,0,0) is also a pseudo-translation of As2s1s0 in the
direction of (0, 1, 0) (see Lemma 3.3).
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Definition 2.7. Define YR =
∑

γ∈Γ u(zγ).

Remark 2.8. Stated in these terms, the formula YR and results in Section 4
can be viewed as a strengthening of Lam’s formula in Proposition 4.5 of [7].
His formula is valid for roots and translations while our results in Section 4
show that analogous statements hold for weights and pseudo-translations.

Example 2.9. Continuing Example 2.2 from above, we show here that
z(0,0,0,1,1) = s2s1s3s2s4s3. By Remark 2.5, it is enough to show that

(s2s1s3s2s4s3)−1 �G∅ = G∅ + (0, 0, 0, 1, 1).

(s2s1s3s2s4s3)−1 �
(

4

5
,
3

5
,
2

5
,
1

5
, 0

)
= (s3s4s2s3s1s2) �

(
4

5
,
3

5
,
2

5
,
1

5
, 0

)

= (s3s4s2s3s1) �
(

4

5
,
2

5
,
3

5
,
1

5
, 0

)
= (s3s4s2s3) �

(
2

5
,
4

5
,
3

5
,
1

5
, 0

)
= (s3s4s2)�

(
2

5
,
4

5
,
1

5
,
3

5
, 0

)
= (s3s4)�

(
2

5
,
1

5
,
4

5
,
3

5
, 0

)
= (s3)�

(
2

5
,
1

5
,
4

5
, 0,

3

5

)
=

(
2

5
,
1

5
, 0,

4

5
,
3

5

)
=

(
4

5
,
3

5
,
2

5
,
1

5
, 0

)
+

(
−2

5
,
−2

5
,
−2

5
,
3

5
,
3

5

)
≡
(

4

5
,
3

5
,
2

5
,
1

5
, 0

)
+ (0, 0, 0, 1, 1) in V.

Therefore s2s1s3s2s4s3 = z(0,0,0,1,1).
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Similarly,

s4s3s0s4s1s0 = z(1,1,0,0,0), s0s1s3s2s4s0 = z(1,0,1,0,0), s0s1s2s4s0s1 = z(0,1,1,0,0),

s1s3s2s4s3s0 = z(1,0,0,1,0), s1s2s4s3s0s1 = z(0,1,0,1,0), s1s0s2s1s3s2 = z(0,0,1,1,0),

s3s2s4s3s0s4 = z(1,0,0,0,1), s2s4s3s0s4s1 = z(0,1,0,0,1), s0s2s1s3s2s4 = z(0,0,1,0,1).

We compare this calculation with Example 1.8 and find that s
(4)
(2,2,2) =

X(2,2,2) = Y(2,2,2).

2.3 Def. 3: Choosing columns

For A a subset of {0, 1, 2, . . . , k} of size c, and r + c = k + 1, we set

ṽA = uAuA+1uA+2 · · ·uA+r−1

where A+ d = {i+ d : i ∈ A}.
We can represent this graphically by imagining a cylinder with r rows of

k+ 1 cells as appears in the diagram below. The top row of this cylinder has
boxes which are labeled with {0, 1, 2, . . . , k} and each subsequent row has
the labels increased by 1 just below.

Figure 4: A cylinder divided into r rows of k + 1 cells.

From this cylinder we will choose c columns in all possible ways. For each
choice of columns we read the rows starting with the top row. A reading of
the row will begin at one of the non-chosen columns and proceed clockwise
with the top of the cylinder as the point of reference (or from right to left as
the face of cylinder is laid flat). The entries in selected columns are part of
the word, the others are not.
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Definition 2.10. Define ZR =
∑

A∈([k+1]
c ) ṽA.

Example 2.11. Fix k = 4 and again let R = (2, 2, 2). For each subset of
size 2 from {0, 1, 2, 3, 4} we fix a 3 × 5 rectangle that we imagine lies on a
cylinder.

The reading words for these pictures are (respectively) given by the following
elements.

ṽ{0,1} = u1u0u2u1u3u2 ṽ{0,2} = u2u0u3u1u4u2 ṽ{0,3} = u3u0u4u1u0u2

ṽ{0,4} = u0u4u1u0u2u1 ṽ{1,2} = u2u1u3u2u4u3

ṽ{1,3} = u3u1u4u2u0u3 ṽ{1,4} = u4u1u0u2u1u3 ṽ{2,3} = u3u2u4u3u0u4

ṽ{2,4} = u4u2u0u3u1u4 ṽ{3,4} = u4u3u0u4u1u0

This calculation can again be compared with Example 1.8 and we observe
that s

(4)
(2,2,2) = X(2,2,2) = Y(2,2,2) = Z(2,2,2).

2.4 Def. 4: Windows

The affine symmetric group W can also be thought of (see [2]) as the group
of bijections w on Z for which

1. w(i+ k + 1) = w(i) + k + 1 for all i ∈ Z;

2.
∑k+1

i=1 w(i) =
(
k+2

2

)
.

The bijections corresponding to the generators si are given by

si(j) =


j + 1 if j ≡ i;
j − 1 if j ≡ i+ 1;
j otherwise.

14



To describe the bijection, it is enough to understand what w does to
{1, . . . , k + 1}. So we identify win(w) = [w(1), w(2), . . . , w(k + 1)]. This
notation is analogous to one line notation in the symmetric group and is
called window notation.

For a c element subset B of {1, . . . , k + 1}, we let jB denote the element
of W with window

win(jB) = [1−rδ1∈B+cδ16∈B, 2−rδ2∈B+cδ26∈B, . . . , k+1−rδ(k+1)∈B+cδ(k+1)6∈B].

Definition 2.12. Define WR =
∑

B∈([k+1]
c ) u(jB).

Example 2.13. Continuing our comparable running example with k = 4,
r = 3 and c = 2,(

[5]

2

)
= {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

The windows for these elements are given by

win(j{1,2}) = [1− 3, 2− 3, 3 + 2, 4 + 2, 5 + 2] = [−2,−1, 5, 6, 7]

win(j{1,3}) = [1− 3, 2 + 2, 3− 3, 4 + 2, 5 + 2] = [−2, 4, 0, 6, 7]

win(j{1,4}) = [1− 3, 2 + 2, 3 + 2, 4− 4, 5 + 2] = [−2, 4, 5, 1, 7]

win(j{1,5}) = [1− 3, 2 + 2, 3 + 2, 4 + 2, 5− 3] = [−2, 4, 5, 6, 2]

win(j{2,3}) = [1 + 2, 2− 3, 3− 3, 4 + 2, 5 + 2] = [3,−1, 0, 6, 7]

win(j{2,4}) = [1 + 2, 2− 3, 3 + 2, 4− 3, 5 + 2] = [3,−1, 5, 1, 7]

win(j{2,5}) = [1 + 2, 2− 3, 3 + 2, 4 + 2, 5− 3] = [3,−1, 5, 6, 2]

win(j{3,4}) = [1 + 2, 2 + 2, 3− 3, 4− 3, 5 + 2] = [3, 4, 0, 1, 7]

win(j{3,5}) = [1 + 2, 2 + 2, 3− 3, 4 + 2, 5− 3] = [3, 4, 0, 6, 2]

win(j{4,5}) = [1 + 2, 2 + 2, 3 + 2, 4− 3, 5− 3] = [3, 4, 5, 1, 2] .

We can check that

s2s1s3s2s4s3(1) = 3, s2s1s3s2s4s3(2) = 4, s2s1s3s2s4s3(3) = 5,

s2s1s3s2s4s3(4) = 1, s2s1s3s2s4s3(5) = 2.

Therefore win(j{4,5}) = win(s2s1s3s2s4s3) = [3, 4, 5, 1, 2]. Similarly:

j{1,2} = s4s3s0s4s1s0, j{1,3} = s0s1s3s2s4s0, j{2,3} = s0s1s2s4s0s1,
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j{1,4} = s1s3s2s4s3s0, j{2,4} = s1s2s4s3s0s1, j{3,4} = s1s0s2s1s3s2,

j{1,5} = s3s2s4s3s0s4, j{2,5} = s2s4s3s0s4s1, j{3,5} = s0s2s1s3s2s4.

Again comparing this calculation with Example 1.8 we see that s
(4)
(2,2,2) =

X(2,2,2) = Y(2,2,2) = Z(2,2,2) = W(2,2,2).

3 Equivalence of definitions

3.1 Equivalence of def. 1 and def. 2

We start by defining a new action of W on V :

si ? (a1, . . . , ak+1) = (a1, . . . , ai+1, ai, . . . , ak+1) for i 6= 0

s0 ? (a1, . . . , ak+1) = (ak+1, a2, . . . , ak, a1)

This action is connected with the � action in the following way.

Lemma 3.1. Let w ∈ W . Then w � (a+ b) = w � a+ w ? b.

Remark 3.2. From the definition of ? and that of Γ (equation (2)), we see
that w ? Γ = Γ for w ∈ W .

We have already defined zγ ∈ W to be the element of the Weyl group
which acts on the fundamental alcove as a pseudo-translation by γ ∈ Γ.
The next lemma shows that zγ is a pseudo-translation on all alcoves, but in
different directions.

Lemma 3.3. For w ∈ W and a weight γ, zγ is a pseudo-translation of Aw
by w−1 ? γ.

Proof. Let Gw be the centroid of Aw. Then w−1 �G∅ = Gw. We compute:
(w−1z−1

γ w)�Gw = (w−1z−1
γ w)w−1 �G∅ = w−1z−1

γ �G∅ = w−1 � (G∅+γ) =
w−1�G∅+w−1 ?γ = Gw+w−1 ?γ. By Remark 2.5, the statement follows.

Definition 3.4. For w ∈ W , w = si1 · · · sik , we let w(m) = si1+m · · · sik+m.

Lemma 3.5. For x, y ∈ W , if Ax = Ay + η for some weight η, then for any
word w ∈ W , Aw(m)x = Awy + η where m = L(η).
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Proof. It is enough to show this when w = si is a single generator (if w is of
longer length, then repeated application of the single generator case yields
the result). The vertex with label i will change when we pass from Ay to
Asiy; all others are fixed. Suppose that β ∈ Ay and si � β ∈ Asiy are the
vertices of Ay and Asiy (respectively) of label i. It is enough to show that
si+L(η) � (β + η) = (si � β) + η.

However L(β + η) = i + L(η). Therefore the vertices β when acted on
by si and β + η when acted on by si+L(η) are reflected across parallel affine
hyperplanes, which implies that si+L(η) � (β + η) = (si � β) + η.

Definition 3.6. Let Wc denote the subgroup of W without generator sc, let
Wc,0 denote the subgroup without s0 and sc, and let W 0

c denote the minimal
length coset representatives of Wc/Wc,0.

Lemma 3.7. For ν ∈ R, V(R,ν)/ν is a pseudo-translation of Awν by Λc.

Proof. We first show this for ν = ∅. VR is the longest word in W 0
c . We see

that, for w ∈ W 0, we have w ∈ W 0
c if and only if Aw has Λc as a vertex (this

is because the fundamental alcove has Λc as a vertex, and no sc appearing in
w implies that the vertex with label c in Aw is always Λc). The longest word
in W 0

c corresponds to the alcove furthest away from the fundamental alcove
inside the dominant chamber and having Λc as a vertex. This is the alcove
A∅ + Λc.

Now let ν ∈ R. It is easy to see that VR/νwν = VR and V(R,ν)/ν = w
(c)
ν VR/ν .

Also AVR = AVR/νwν = A∅ + Λc by the first paragraph. Applying Lemma 3.5
we then get that AV(R,ν)/νwν = A

w
(c)
ν VR/νwν

= Awν + Λc, since L(Λc) = c.

Lemma 3.8. ν ∈ R if and only if wν ∈ W 0
c .

Proof. It is enough to notice that an r × c rectangle will contain no cell of
content c, so a partition ν is contained in R if and only if wν has no sc
generator.

Theorem 3.9. For R = (cr) with r + c = k + 1, XR = YR.

Proof. It is enough to find a bijection ψ : R→ Γ such that V(R,ν)/ν = zψ(ν).
Define ψ(ν) := wν ? Λc. The map ?Λc : Wc → Γ, sending w to w ? Λc, is

onto. The fixed point set of this map, Fix(?Λc) = {w ∈ Wc : w ? Λc = Λc},
is exactly Wc,0. Therefore ?Λs : W 0

c → Γ is a bijection. By Lemma 3.8 ψ is
also a bijection.
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By Lemma 3.7, AV(R,ν)/νwν = Awν + Λc. Applying wν� to this equation
yields

AV(R,ν)/ν = wν � AV(R,ν)/νwν = wν � (Awν + Λc) = A∅ + wν ? Λc = A∅ + ψ(ν).

This shows that V(R,ν)/ν is the pseudo-translation of A∅ by ψ(ν). Hence
V(R,ν)/ν = zψ(ν).

3.2 Equivalence of def. 1 and def. 3

For a partition ν ⊆ (cr), there is a lattice path of length k + 1 consisting of
the edges in the rectangle (cr) which trace the path just above ν. Label the
edges of this path by equivalence classes of integers modulo k+1, by starting
from −2r + 1 (mod k + 1) in the upper left hand corner and increasing by
1 with each step down or to the right. Let φ(ν) be the set of labels on the
horizontal edges.

Alternatively, set φ(ν) =
⋃r
j=0{i : νr−j−2r+1+j > i ≥ νr−j+1−2r+1+j}

with all entries taken (mod k + 1) where we set ν0 = c and νd = 0 for
d > len(ν). Note that these entries are also the contents of the cells in the
tops of the columns of (R, ν)/ν. If we define an element of A by reading
the label i as indexing the element ui, and we read in our standard order,
the result is a word for uφ(ν) since each of the numbers 0 through k appear
exactly once along this path and it is easy to check that if i and i+ 1 appear
in φ(ν), then i+ 1 appears before i.

Example 3.10. Let r = 6 and c = 4 so that k + 1 = 6 + 4 = 10. Let
ν = (4, 3, 2, 2, 1). The path corresponding to ν is labelled as in the diagram
below, starting at −2 · r + 1 = −11 ≡ 9 (mod 10).

In this case we find φ((4, 3, 2, 2, 1)) = {−10,−8,−5,−3} ≡ {0, 2, 5, 7} (mod 10).
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Theorem 3.11. For R = (cr) with r + c = k + 1 and ν a partition which is
contained in R,

u(V(R,ν)/ν) = ṽφ(ν) .

As a consequence, XR = ZR.

Proof. Let ν̃ = (R, ν). For 0 ≤ a ≤ r, consider ν̃(a) = (cr−a, ν) (so that by
definition, V(R,ν)/ν = Vν̃(0)/ν). We will show that

u(Vν̃(a)/ν) = uφ(ν)+au(Vν̃(a+1)/ν)

for 0 ≤ a < r−1, and hence u(V(R,ν)/ν) = u(Vν̃/ν) = uφ(ν)uφ(ν)+1 · · ·uφ(ν)+r−1 =
ṽν .

We note that since φ(ν) is the set of contents of the highest cells of each
of the columns of ν̃ = ν̃(0), then φ(ν) + a are the contents of the highest cells
in each of the columns of ν̃(a).

Since the word Vν̃(r−1)/ν is a cyclically decreasing reading of the elements
of φ(ν) + r − 1, we have that u(Vν̃(r−1)/ν) = uφ(ν)+r−1.

For 0 ≤ a < r − 1, consider each of the cells p ∈ ν̃(a)/ν̃(a+1). Say that p
has content i (mod k+1). We need to show that if p is not in the highest row
of ν̃(a), then ui commutes with all uj which correspond to cells (of content
j) in ν̃(a+1)/ν and lie to the the left of ui in u(Vν̃(a)/ν). The uj that lie to the
left of the letter corresponding to p in u(Vν̃(a)/ν) are those that correspond

to cells in ν̃(a+1)/ν which are strictly to the left and strictly above p.
Consider a cell in ν̃(a+1)/ν that is strictly above and strictly to the left

of p and let j be the content of of this cell. Let x be the content of the cell
in the first column of ν̃(a)/ν̃(a+1). We see this on the clipped picture of the
cells of ν̃(a) where the content increases (mod (k+ 1)) as we move down and
to the right between the cell with content x and p with content i.
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Therefore j is in the interval {x+ 1, x+ 2, . . . , i− 2} (mod k+ 1). Note that
the Manhattan metric distance from the cell p to the cell at the top of the
first column of ν̃(a) is less than k + 1. It follows that j differs from i by at
least 2 (mod k + 1) and hence uj commutes with ui.

We conclude that since each of the letters ui commutes with the letters
that are read before ui in u(Vν̃(a)/ν) and correspond to cells in ν̃(a+1)/ν that
it is possible to factor to the left the terms in uφ(ν)+a and hence u(Vν̃(a)/ν) =
uφ(ν)+au(Vν̃(a+1)/ν).

3.3 Equivalence of def. 2 and def. 4

The following lemma is stated in Section 8.3 of [2].

Lemma 3.12. Suppose win(w) = [a1, . . . , ak+1]. Then

win(wsi) = [a1, . . . , ai+1, ai, . . . , ak+1] for i 6= 0;

win(ws0) = [ak+1 − (k + 1), a2, . . . , ak, a1 + (k + 1)] for i = 0.

The relationship between windows and centroids is made precise in Lemma
3.16.

Definition 3.13. If w = si1si2 . . . sim , then let ŵ = s−i1s−i2 . . . s−im .

Definition 3.14. For a sequence a = (a1, a2, . . . , ak, ak+1), let rev(a) =
(ak+1, ak, . . . , a2, a1).

Remark 3.15. There is a map between weights and windows. For v ∈ V ,
there is a unique vector y ∈ Rk+1 in the equivalence class for v which also
satisfies

∑
i yi =

(
k+2

2

)
. We associate to the vector v the window [v] :=

[y1, y2, . . . , yk+1].

Lemma 3.16. For w ∈ W , win(w) = [(k + 1)rev(Gŵ)].

Proof. The proof is by induction on the length of w. If len(w) = 0, then
w = 1 and [(k + 1)rev(G∅)] = [(0, 1, . . . , k)] = [1, 2, . . . , k + 1], which is the
window of the identity element.
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Now assume that the statement is true for w and we compute the window
corresponding to wsi,

[(k + 1)rev(Gŵsi)] = [(k + 1)rev(ŵsi
−1 �G∅)]

= [(k + 1)rev(s−iŵ
−1 �G∅)]

= [si � (k + 1)rev(Gŵ) + δi,0(−k, 0, . . . , 0,+k)]

= [si � (w(1), . . . w(k + 1)) + δi,0(−k, 0, . . . , 0,+k)]

= win(wsi)

by induction and Lemma 3.12.

Lemma 3.17. There is a bijection between

Γ = {γ ∈ V :
∑
i

γi = c, γi ∈ {0, 1}}

and
Γt := {γ ∈ V :

∑
i

γi = r, γi ∈ {0, 1}}

τ : Γ→ Γt such that if γ ∈ Γ, then ẑγ = zτ(γ).

Proof. If ν is a partition, let νt denote the transpose of ν. Let Rt denote the
set of partitions {νt : ν ∈ R}.

By Theorem 3.9, there is a bijection ψ from R to Γ which satisfies
V(R,ν)/ν = zψ(ν). There is also an analogous bijection ψt from Rt to Γt which
satisfies that V(Rt,νt)/νt = zψt(νt) for ν ∈ R.

Now, let γ ∈ Γ. Let ν = ψ−1(γ). We have that zγ = V(R,ν)/ν . Thinking
of ν as a (k + 1) core, we can act on it by zγ. We obtain zγν = (R + ν, ν),
where we write R + ν for the partition (c+ ν1, . . . , c+ νr).

It follows that ẑγν
t = (Rt + νt, νt), and thus (reversing the previous

argument) that ẑγ = V(Rt,νt)/νt . Thus ẑγ = zψt(ψ−1(γ)t). We may therefore
take τ(γ) = ψt(ψ−1(γ)t); it is clear that this is a bijection.

Theorem 3.18. For R = (cr) with r + c = k + 1, YR = WR .

Proof. Let γ ∈ Γ. Let B = {i : rev(τ(γ))i = 1}. We will show that
win(zγ) = win(jB).

We know that
win(zγ) = [(k + 1)rev(Gẑγ )]
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by Lemma 3.16. By Lemma 3.17, ẑγ = zτ(γ), so

win(zγ) = [(k + 1)rev(G∅ + τ(γ))] = [(k + 1)rev(G∅) + (k + 1)rev(τ(γ))].

By direct computation, (k + 1)rev(G∅) + (1, 1, . . . , 1) = (1, 2, . . . , k + 1),
which sums to

(
k+2

2

)
, and [v] = [v + (1, 1, . . . , 1)] by the definition of [v].

The term (k + 1)rev(τ(γ)) has k + 1 in the positions indexed by B and
0 elsewhere. It follows that (k + 1)rev(τ(γ)) − r(1, 1, . . . , 1) has c in the
positions indexed by B and −r in the other positions, and that this vector
sums to zero. Therefore, win(jB) = win(zγ), and we are done.

4 Proof of Main Theorem

Maximal rectangles were studied by Lapointe and Morse in [13, Theorem 40]
where they showed the following property:

Theorem 4.1. For a k-bounded partition λ, if R is a maximal rectangle
then s

(k)
λ s

(k)
R = s

(k)
λ∪R, where λ ∪R is the partition obtained by combining and

sorting the parts of R and λ.

Lemma 4.2. For λ ∈ P(k), s
(k)
λ (∅) = c(λ).

Proof. By Remark 1.7,

hic(λ) =
∑
µ

c(µ),

where the sum is over the same set of objects as described in Definition
1.5. Therefore s

(k)
λ c(µ) =

∑
ν c

ν,(k)
λ,µ c(ν). In particular, s

(k)
λ (∅) = c(λ), since

c
ν,(k)
λ,∅ = δλ,ν .

Lemma 4.3. Let µ, ν ∈ P(k). There is at most one w ∈ W such that
wc(µ) = c(ν).

Proof. If wc(µ) = w′c(µ) = c(ν), then wwµ = wν = w′wµ, so w = w′.

Remark 4.4. [5, Proposition 42] An explicit expression for s
(k)
λ in terms

of the standard basis of the nil-Coxeter algebra would give a combinato-
rial method of obtaining the k-Littlewood-Richardson coefficients. If s

(k)
λ =∑

w cwu(w) then Lemma 4.2 implies that the coefficient of s
(k)
ν in the prod-

uct s
(k)
λ s

(k)
µ would be cw if there exists a w such that wc(µ) = c(ν) and zero

otherwise. By Lemma 4.3, there can be at most one such w.
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Lemma 4.5. (see for instance [17]) Minimal length expressions of w ∈ W
correspond to alcove walks which do not cross the same affine hyperplane
twice.

Proposition 4.6. If w ∈ W 0 such that Axw = Aw + η for x ∈ W and for
some weight η, then η ∈ Λ+ if and only if u(x)u(w)∅ 6= 0.

Proof. Let J be the set of reflection hyperplanes which separate Aw from A∅,
and let K be the set of reflection hyperplanes which separate Aw and Axw.
The set J consists of the hyperplanes crossed by a reduced alcove walk from
A∅ to Aw, while K consists of the hyperplanes crossed by a reduced alcove
walk from w to xw.

Write x,w for reduced expressions for x and w. Then xw corresponds to
an alcove walk from A∅ to Axw passing through Aw. Therefore u(x)u(w) 6= 0
if and only if this alcove walk is reduced if and only if J ∩K = ∅ by Lemma
4.5.

For a positive root α, we let Hα denote the set of reflection hyperplanes
perpendicular to α. If we write Hα,i = {x : 〈α, x〉 = i} then Hα = {Hα,i : i ∈
Z}.

Since w is in the dominant chamber,

J ∩Hα = {Hα,i : 〈α,G∅〉 < i < 〈α,Gw〉}.

Similarly, K ∩ Hα consists of those Hα,i with i between 〈α,Gw〉 and
〈α,Gw + η〉.

If η is dominant, then 〈α, η〉 ≥ 0 for all positive roots α, and thus J ∩
Hα and K ∩ Hα are disjoint for all α, so J and K are disjoint, and thus
u(x)u(w) = u(xw), and xw ∈ W 0, so u(xw)∅ 6= 0.

Contrariwise, if η is not dominant, then there exists a positive root α,
which we may take to be simple, such that 〈α, η〉 < 0. If 〈α,Gw〉 > 1, then it
follows that K∩Hα and J ∩Hα are not disjoint, so u(x)u(w) = 0. If, on the
other hand, 0 < 〈α,Gw〉 < 1, then Axw is not dominant, so u(xw)∅ = 0.

Lemma 4.7. Let w ∈ W 0, and let α ∈ Λ+ be an element of the root lattice.
Then u(w)u(tα)∅ 6= 0.

Proof. u(tα)∅ 6= 0 since α ∈ Λ+. Any reduced word for w determines an
alcove walk from Atα to Awtα . This alcove walk is the translate by α of the
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corresponding reduced walk from A∅ to Aw; it therefore crosses no affine hy-
perplane more than once. Further, as in the proof of the previous proposition,
we see that, for any positive root β, we have

〈β,G∅〉 ≤ 〈β,Gtα〉 ≤ 〈β,Gwtα〉,

from which it follows that no hyperplane perpendicular to β is crossed by
both a reduced walk from G∅ to Gtα and a reduced walk from Gtα to Gwtα .
By Lemma 4.5, u(w)u(tα)∅ = u(wtα)∅ 6= 0.

Lemma 4.8. For every w ∈ W , there is a λ ∈ C(k+1) such that u(w)λ 6= 0.

Proof. Let α = 2(Λ1 + Λ2 + · · · + Λk). Since Λi =
∑i

j=1 εj we have that
α = kε1 + (k− 2)ε2 + · · ·+ (−k)εk+1 as an element of V so we conclude that
α is both a dominant weight and an element of the root lattice. Let tα ∈ W
denote the translation corresponding to α (i.e. tαv = v − α for all v ∈ V ).
Let w = xy for x ∈ W 0 and y ∈ W0.

The alcove Ay−1tα = t−1
α � Ay−1 = Ay−1 + α. Since y ∈ W0, Ay−1 contains

the vertex 0, so Ay−1tα has α as a vertex. The dominant weight α is in the
interior of the dominant chamber (i.e. α is not on the wall of the dominant
chamber), so the alcove Ay−1tα is contained in the dominant chamber.

Since Ay−1tα is in the dominant chamber, it is associated to a (k+ 1)-core
λ := y−1tα∅. We claim that u(w)λ = u(x)u(y)λ 6= 0.

We claim that len(sitα) < len(tα) for all i 6= 0. The fundamental weights
Λi form a dual basis with the simple roots αj (i.e. 〈Λi, αj〉 = δi,j). Since Atα
is a translate of A∅, the wall which separates Atα and Asitα is a translate of
the wall which separates A∅ and Asi . The latter is the wall {ν : 〈ν, αi〉 = 0},
so the former is the wall {ν + α : 〈ν, αi〉 = 0} = {ν : 〈ν, αi〉 = 2} since
〈α, αi〉 = 2. The fundamental alcove satisfies 0 ≤ 〈A∅, αi〉 ≤ 1, so the wall
in question separates A∅ and Atα and hence Asitα is on the same side of the
hyperplane {ν : 〈ν, αi〉 = 2} as A∅, so len(sitα) < len(tα).

Let w0 be the longest element of W0. Since w0 is characterized as the
element for which len(siw0) < len(w0) for each 1 ≤ i ≤ k, we have that tα =
w0σ for some σ ∈ W 0 with len(tα) = len(w0) + len(σ). Since len(y−1w0σ) =
len(w0σ)−len(y−1) we have that len(tα) = len(w0σ) = len(y)+len(y−1w0σ),
so we know that u(y)u(y−1tα) = u(tα).

By Lemma 4.7, u(x)u(tα)∅ 6= 0 since x ∈ W 0 and α ∈ Λ+.

Corollary 4.9. For all λ ∈ P(k), s
(k)
R c(λ) = c(λ∪R). Moreover, this uniquely

determines s
(k)
R : it is the unique element of A with this property.
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Proof. From Theorem 4.1 we know that s
(k)
R s

(k)
λ = s

(k)
λ∪R. Then s

(k)
R c(λ) =

s
(k)
R s

(k)
λ ∅ = s

(k)
λ∪R∅ = c(λ ∪R).

For the second statement, let s
(k)
R =

∑
w∈W cwu(w) and let x =

∑
w∈W dwu(w)

be another element of A satisfying xc(λ) = c(λ ∪ R) for all λ ∈ P(k). Then

(s
(k)
R − x)c(λ) =

∑
w∈W (cw − dw)u(w)c(λ). So cw = dw for all w by Lemma

4.8.

The following lemma follows from the definition of V(R,λ)/λ and the action
of A on C(k+1).

Lemma 4.10. If ν ∈ R, then ν = c(ν) and u(V(R,ν)/ν)ν = (R + ν, ν) =
c(R ∪ ν).

Lemma 4.11. For any λ ∈ C(k+1), XRλ consists of exactly one term.

Proof. Since XR = YR we will instead prove this for YR.
An arbitrary term in YR looks like u(zγ), so we will compute u(zγ)λ =

u(zγ)u(wλ)∅.
In order to use Proposition 4.6, we calculate the difference between the

alcoves Azγwλ and Awλ .

Azγwλ = (zγwλ)
−1 � A∅ = w−1

λ � Azγ = w−1
λ � (A∅ + γ) = Awλ + w−1

λ ? γ.

By Proposition 4.6, u(zγ)u(wλ)∅ 6= 0 if and only if w−1
λ ? γ ∈ Λ+. Since

Γ ∩ Λ+ = {Λc}, there is a unique term in YRλ which is nonzero; specifically
it is the term u(zw−1

λ ?Λc
)λ.

Theorem 4.12. For a maximal rectangle R = (cr) with c + r = k + 1,

s
(k)
R = XR.

Proof. We will show that XR has the defining property of s
(k)
R as outlined

in Corollary 4.9. Let s
(k)
R =

∑
w cwu(w) and let XR =

∑
w dwu(w). Lemma

4.10, implies that XR and s
(k)
R act the same on c(ν) when ν ∈ R:

s
(k)
R c(ν) = XRc(ν) = c(ν ∪R).

This implies that cw = dw for all w in the support of XR by Lemma 4.10, since
every element u(w) of the support of XR has a ν ∈ R for which u(w)c(ν) 6= 0.

Therefore the support of XR is contained in the support of s
(k)
R .
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Now suppose ν 6∈ R. By Lemma 4.11, XRc(ν) consists of a single term,
let’s say µ. But then:

s
(k)
R c(ν) = c(ν ∪R) and XRc(ν) = µ,

for some core µ. We know the support of XR is contained in the support
of s

(k)
R and that they agree on the support of XR. Therefore, some term

u(w) of XR and s
(k)
R has u(w)c(ν) = µ. There cannot be a v 6= w for which

u(v)c(ν) = µ by Lemma 4.3, so µ must appear in the expansion of s
(k)
R c(ν).

Therefore µ = c(ν ∪R).

5 An application

Finally, we use our formula for s
(k)
R to prove a surprising observation about

s
(k)
R which motivated this article.

Theorem 5.1. Let R = (cr) be a maximal rectangle with c+ r = k+ 1, then

s
(k)
R ui = ui+cs

(k)
R .

Proof. Let γ ∈ Γ. We start by computing (si+czγsi)
−1 � A∅. We let Λ0 = 0.

Then A∅ is the alcove with vertices {Λj : j ∈ {0, 1, . . . , k}}. si � A∅ is the
alcove with vertices {Λj : j 6= i} and Λi − αi. By Lemma 3.3, zγ is a
pseudo-translation of Asi by si ? γ. The vertices of (zγsi)

−1 � A∅ are thus
{Λj + si ? γ : j 6= i} and Λi − αi + si ? γ. This shares all but one vertex
with the alcove A∅ + si ? γ. By Proposition 1.1, (si+czγsi)

−1 � A∅ shares
all the vertices of the alcove (zγsi)

−1 � A∅ except for the vertex with label
c + i, which is Λi − αi + si ? γ (since si ? γ has label c while Λi − αi has
label i). Thus it follows that (si+czγsi)

−1 � A∅ = A∅ + si ? γ. But then
Asi+czγsi = (si+czγsi)

−1 � A∅ = A∅ + si ? γ = Azsi?γ , so si+czγsi = zsi?γ.
Therefore zγsi = si+czsi?γ.

Replace each sj by uj in the above expression. We still have equality
because the two expressions have the same length, so either both are reduced
or neither is. Summing over all γ shows that s

(k)
R ui = ui+cs

(k)
R .

Remark 5.2. Let s̃R
(k) denote the element of CW which has the same ex-

pression as s
(k)
R , but in the si generators instead of the ui generators. Then

we have actually proved in Theorem 5.1 that s̃R
(k)si = si+cs̃R

(k).
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