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Abstract

One of the most critical problems in property/casualty insurance is to determine an
appropriate reserve for incurred but unpaid losses. These provisions generally comprise
most of the liabilities of a non-life insurance company. The global provisions are often
determined under an assumption of independence between the lines of business. Re-
cently, Shi and Frees (2011) proposed to put dependence between lines of business with
a copula that captures dependence between two cells of two different runoff triangles.
In this paper, we propose to generalize this model in two steps. First, by using an idea
proposed by Barnett and Zehnwirth (1998), we will suppose a dependence between all
the observations that belong to the same calendar year for each line of business. There-
after, we will then suppose another dependence structure that links the calendar years
of different lines of business. This model is done by using hierarchical Archimedean
copulas. We show that the model provides more flexibility than existing models, and
offers a better, more realistic and more intuitive interpretation of the dependence be-
tween the lines of business. For illustration, the model is first applied to a dataset from
a major US property-casualty insurer, and then to two lines of business from a large
Canadian insurer.

Keywords: runoff triangles, Copula, Hierarchical Archimedean Copula, Maximum Like-
lihood Estimation, Bootstrap.

∗This paper is a revisited version of Abdallah et al. (2015)
†École d’Actuariat, Université Laval
‡Département de mathématiques, UQAM
§École d’Actuariat, Université Laval

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archipel - Université du Québec à Montréal

https://core.ac.uk/display/77618539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1 Introduction
Reserves are a major component of the financial statements of a financial institution. With
the advent of the new regulatory standards (e.g. Solvency II in Europe and the upcoming
ORSA1 guidelines in North America), insurance companies must better understand and
quantify the risks associated with their activities as a whole, not just by risk classes. Thus,
it is now necessary for an insurance company to not only assess a reserve for each line of
business but also to better estimate the total reserves for all its insurance products. This
involves taking into account dependence between lines of business. In this context, insurance
companies must be particularly able to estimate the amount of provisions for the entire
portfolio. For this purpose, different reserving approaches allowing dependence between
lines of business must be investigated. We will focus on the parametric approach.

Parametric reserving methods have often involved copulas to model the dependence be-
tween lines of business. For example, Brehm (2002) uses a Gaussian copula to model the
joint distribution of unpaid losses, while De Jong (2012) models dependence between lines
of business with a Gaussian copula correlation matrix. Shi et al. (2012) and Wüthrich et al.
(2013) have also used multivariate Gaussian copula to accommodate the correlation due
to accounting years within and across runoff triangles. Bootstrapping is another popular
parametric approach used to forecast the predictive distribution of unpaid losses for corre-
lated lines of business. Kirschner et al. (2008) use a synchronized bootstrap and Taylor and
McGuire (2007) extend this result to a generalized linear model context.

In this paper, we propose to use a parametric approach with multivariate Archimedean
copulas and hierarchical Archimedean copulas. In the same vein as Frees and Shi’s model,
and following an idea proposed by Barnett and Zehnwirth (1998), we propose a model that
allows a dependence relation between all the observations that belong to the same calendar
year for each line of business using multivariate Archimedean copulas. We use another depen-
dence structure that links the losses of calendar years of different lines of business. We show
that this complex dependence structure can be constructed using hierarchial Archimedean
copulas. For illustration, the model is applied to two different datasets from a major US and
a large Canadian property-casualty insurers, where we conclude that the proposed model can
be considered as an interesting alternative of the model proposed by Shi and Frees (2011).

In Section 2, we review the modeling of runoff triangles, where notations are set and
copulas briefly introduced. In Section 3, the model of Shi and Frees (2011) is implemented
(again on their dataset from a major US property-casualty insurer), but with a different
parametrization. The calendar year and hierarchical dependences are explained and applied
to this data and to a new pair of runoff triangles in Section 4. In Section 5, we use a para-
metric bootstrap to obtain the predictive distribution of unpaid losses. Section 6 concludes
the paper.

1ORSA: Own Risk and Solvency Assessment
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2 Preliminary

2.1 Modeling and Reserves
Let us consider an insurance portfolio with ` lines of business (` ∈ {1, ..., L}). We define by
X

(`)
i,j , the incremental payments of the ith accident year (i ∈ {1, ..., I}), and the jth develop-

ment period (j ∈ {1, ..., J}). To take into account the volume of each line of business, we will
work with standardized data which we denote by Y (`)

i,j = X
(`)
ij /ω

(`)
i , where ω(`)

i represents the
exposure variable in the ith accident year for the `th line of business. The exposure variable
can be the number of policies, the number of open claims, or the earned premiums. The
latter option is the one chosen in this paper.

A regression model with two independent explanatory variables, accident year and de-
velopment period, will be used. Assume that α(`)

i (i ∈ {1, 2, ..., I}) and β(`)
j (j ∈ {1, 2, ..., J})

characterize respectively the accident year effect and the development period effect. In such
a context, a systematic component for the `th line of business can be written as:

η
(`)
ij = ζ(`) + α

(`)
i + β

(`)
j , ` = 1, ..., L,

where ζ(`) is the intercept, I = J = n, and for parameter identification, the constraint
α

(`)
1 = β

(`)
1 = 0 is supposed.

In our empirical illustration, we first work with the runoff triangles of cumulative paid
losses exhibited in Tables 1 and 2 of Shi and Frees (2011). They correspond to paid losses
of Schedule P of the National Association of Insurance Commissioners (NAIC) database.
These are data of 1997 for personal auto and commercial auto lines of business, and each
triangle contains losses for accident years 1988-1997 and at most ten development years.

Shi and Frees (2011) show that a lognormal and a gamma distribution provide a good fit
for the Personal Auto and the Commercial Auto line data respectively. To demonstrate the
reasonable model fits for the two triangles, the authors exhibit the qq-plots of marginals for
personal and commercial auto lines. We work with their conclusion and then continue with
the same continuous distributions for each line of business. More specifically, we consider
the form µ

(1)
ij = η

(1)
ij for a lognormal distribution with location (log-scale) parameter µ(1)

ij and
shape parameter σ. However, for the gamma distribution, we change the parametrization
and we do not use the canonical inverse link µ(2)

ij = 1
η

(2)
ij φ

with location (scale) parameter µ(2)
ij

and shape parameter φ. Such a parametrization can lead to undesirable negative values for
the lower right part of the runoff triangle, especially when one uses the bootstrap technique.
To assure positive means of all the cells of the runoff triangle, we use the exponential link

µ
(2)
ij =

exp(η(2)
ij )

φ
, which is always positive, even for the prediction values of the runoff triangle.

With both parametrizations, the estimated total reserve is ∑2
`=1

∑n
i=2

∑n
j=n−i+2 ŷ

(`)
ij ω

(`)
i ,

where ŷ(`)
ij is the projected unpaid loss ratio, and ω

(`)
i represents the net premiums earned

in the corresponding accident year i. For the lognormal distribution, we have ŷ
(1)
ij =

expµ̂
(1)
ij +(γ̂(1))2/2, and for the gamma distribution, ŷ(2)

ij = µ̂
(2)
ij γ̂

(2), where µ̂(`)
ij and γ̂(`) are
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respectively the scale (location) and the shape parameters. Also, γ̂(1) = σ̂ and γ̂(2) = φ̂.

2.2 Copulas
Copulas are a useful and flexible tool to model a dependence relation between runoff triangles
of different lines of business. They allow a separate interpretation of the relationship (linear
and non-linear) between linked random variables and their marginals. See Joe (1997) further
details. We briefly recall below definitions and results that will be used later.

A multivariate copula C(u1, u2, ..., un) is an application from [0, 1]n to [0, 1], that has the
same properties as a joint cumulative distribution. In other words, a copula is a function
that links a multidimensional distribution to its one-dimensional margins. Let F be a n-
dimensional cumulative joint function with margins F (1),F (2),...,F (n). Then, if the margins
are all continuous, the joint distribution of n random variables (Y (1), Y (2), ..., Y (n)), can be
represented by a unique copula function:

F (y(1), y(2), ..., y(n)) = C(F (1), F (2), ..., F (n); θ),

where F (i), with i ∈ {1, 2, ..., n}, are the respective distribution functions of Y (i), and θ is
the dependence parameter, also called the association parameter.

In this paper, we choose to use the Archimedean family of copulas, given its several
interesting properties. This family of copulas offers a wide choice of copulas for which many
have a closed form expression in a multivariate setting. This last property will prove to be
useful in what follows. Finally, Archimedean copulas can be constructed easily with a simple
generator. Formally, we can define multivariate Archimedean copulas as

C(u1, u2, ..., un) = φ−1(φ(u1) + ...+ φ(un)) , (1)

where the function φ is called the generator of the copula. From (1), one can derive the
expression for the multivariate density function of an Archimedean copula. According to
McNeil and Nešlehová (2009), an Archimedean copula C admits a density c if and only if
φ(n−1) exists and is absolutely continuous on (0,∞). In such a case, c is given by

c(u1, u2, ..., un) = φ(n)(φ−1(u1) + ...+ φ−1(un))
n∏
i=1

(φ−1)′(ui),

where functions φ(n) and φ−1 correspond to the nth derivative of the generator function of
the copula and the inverse generator respectively. Hofert et al. (2012) derive closed form
expressions for the multivariate density function of a few Archimedean copulas, notably the
Clayton and the Gumbel copula used in this paper.

3 Pairwise dependence
Dividing a portfolio into homogeneous sub-portfolios and deriving the total reserve by sum-
ming the reserve for each segment implicitly assumes independence between risks. It is
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generally admitted that common social or economic factors may affect several lines of busi-
ness simultaneously. Allowing a possible dependence relation between the runoff triangles
of different lines of business of a portfolio provides a better representation of the portfolio’s
behavior as a whole and hence permits to take better advantage of diversification. It is also
helpful to risk managers in determining the risk capital for an insurance portfolio.

Shi and Frees (2011) propose a model that incorporates a dependence structure between
two runoff triangles in a pairwise manner. More precisely, the dependence between two lines
of business is based on an identical association between cells of a given accident year and
development period, coming from different lines of business. This means that two paid loss
ratios Y (1)

i,j and Y
(2)
i,j are correlated for a given couple (i, j). This form of dependence goes

back to Braun (2004). Throughout the paper, we refer to Frees and Shi’s model as the
pairwise dependence model (PWD).

3.1 Modeling
The PWD model associates two elements of the same accident year and development period,
(Y (1)

i,j , Y
(2)
i,j ) with a bivariate copula. Mathematically, and following Sklar’s theorem, the

joint distribution of normalized incremental payments (Y (1)
i,j , Y

(2)
i,j ) will be represented by the

unique copula function:

Fij(y(1)
ij , y

(2)
ij ) = Pr(Y (1)

ij ≤ y
(1)
ij , Y

(2)
ij ≤ y

(2)
ij ) = C(F (1)

ij , F
(2)
ij ; θ) , (2)

where C(., θ) denotes the copula function with parameter θ, that captures the dependence
between two runoff triangles. Also, this model has the flexibility of choosing a different
cumulative density function for each line of business. The log-likelihood expression can be
easily derived from equation (2):

L =
I∑
i=1

I−i+1∑
j=1

log(f (1)
ij ) + log(f (2)

ij ) +
I∑
i=1

I−i+1∑
j=1

log c(F (1)
ij , F

(2)
ij ; θ) , (3)

where c(.) denotes the probability density function corresponding to the copula distribution
function C(.), f (`)

ij denotes the density of marginal distribution F
(`)
ij , for ` = 1, 2. These

marginals are noted as:

F
(`)
ij = Prob(Y (`)

ij ≤ y
(`)
ij ) = F (`)(y(`)

ij ; η(`)
ij , γ

(`)),

for i = 1, ..., I, j = 1, ...J and ` = 1, ..., L. Shi and Frees (2011) choose the Gaussian and the
Frank copula to model dependence, as well as the product copula that supposes indepen-
dence between the cells. Their model selection is based on a likelihood-based goodness-of-fit
measure, namely Akaike’s Information Criterion (AIC). We will also use this criterion to
select our models.
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3.2 Empirical Illustration
We provide in Tables 1 and 2, the fit statistics and the reserves for the PWD model. Note
that even if the results are close to those obtained in Shi and Frees (2011), we do not obtain
the same estimates because we have changed the link function of the mean of the gamma
distribution to avoid inconsistencies, as explained in Section 2.2.

Copula
Fit Statistics Independence Frank Gaussian

Dependence parameter . -2.7978 (1.0243) -0.3655 (0.1190)
Log-Likelihood 346.6 350.3 350.5

AIC -613.2 -618.5 -618.9

Table 1: Fit Statistics of PWD model with Shi and Frees (2011) database

On the other hand, even if we have chosen a different parametrization, we obtain the
same conclusion as their and find that the copula that leads to the smallest AIC is the
Gaussian copula. This model generates a reserve of almost 7 million dollars. Interestingly,
the dependence parameter obtained for the pairwise model with the Gaussian and the Frank
copula is negative, meaning that the model supposes that the two lines of business are
negatively correlated.

4 Calendar Year and Hierarchical Dependence
We propose here to further investigate the model of Shi and Frees (2011) to better capture
the interactions within and between the runoff triangles of different lines of business. For that
purpose, we first propose to consider a dependence construction for the different elements of
a diagonal of a given runoff triangle to take into account a calendar year effect. Second, we
add another level of dependence to capture the dependence between the lines of business.

4.1 Calendar Year Effect
We propose in this section a model that allows a dependence relation within paid claims
belonging to a diagonal of a runoff triangle. This reflects a calendar year (CY) effect, more
precisely the changes or inflections on paid claims in a calendar year due to jurisprudence

Copula
Reserves estimation Independence Frank Gaussian

Personal 6,464,090 6,511,363 6,423,180
Commercial 490,657 487,904 495,989

Total 6,954,747 6,999,267 6,919,169

Table 2: Reserves estimation with the PWD model with Shi and Frees (2011) database
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modifications or inflationary trends for example. A CY effect can also highlight the impact
of strategic decisions made in a calendar year such as an incentive to increase payments in
a particular calendar year for all lines of business.

This dependence structure assumes that all cells from the same diagonal are correlated,
which implies that the number of cells in the dependence structure is different for each
diagonal. Indeed, the number of cells in the dependence structure varies from 1 to t for the
tth diagonal, with t ∈ {1, ..., n}, and t = i+ j − 1. Evidently, the first cell at the top left of
the runoff triangle is not linked to any other cell within the triangle.

Such a calendar year effect has already been analyzed before, for example by Barnett and
Zehnwirth (1998) who added a covariate to capture the calendar year effect. The systematic
component of such a model can be written as:

η
(`)
ij = ζ(`) + α

(`)
i + β

(`)
j + Υ(`)

t , ` = 1, ..., L , (4)

where ζ(`) is the intercept, α(`)
i (i ∈ {1, 2, ..., I}) and β

(`)
j (j ∈ {1, 2, ..., J}) characterize

respectively the accident year effect and the development period effect, while Υ(`)
t (t =

i+ j − 1) captures the calendar year effect.
De Jong (2006) modeled the growth rates in cumulative payments in a calendar year, and

Wüthrich (2010) examined the accounting year effect for a single line of business. Wüthrich
and Salzmann (2012) used a multivariate Bayes Chain-Ladder model that allows the mod-
eling of dependence along accounting years within runoff triangles. The authors showed
that they are able to derive closed form solutions for the posterior distribution, the claims
reserves and the corresponding prediction uncertainty. Kuang et al. (2008) have also consid-
ered a canonical parametrization with three factors for a single line of business. Each factor
represents time scale, in such way the inflation is taken into account. Also, they added
an assumption ensuring that the forecasts do not depend on these arbitrary linear trends.
They extended this assumption later by combining the canonical parametrization with a
non-stationary time series forecasting model in Kuang et al. (2011).

In our proposed model, instead of adding an explanatory variable for the calendar year
effect, the dependence relation between the paid claims of a diagonal will be based on a
multivariate Archimedean copula. More specifically, the same Archimedean copula with an
identical dependence parameter is assumed for each diagonal of a runoff triangle. Hence, all
random variables of the same calendar year t = i+ j−1 and `th line of business are included
in the vector Y `t = {Y`ij : i + j − 1 = t}. The log-likelihood function of this model can be
written as:

L =
I∑
i=1

I−i+1∑
j=1

log(fij) +
n∑
t=2

log c (Ft−j+1,j, ..., F1,t; θ)j=1,...,t , (5)

where f denotes the density of marginal distribution F , and c(.) the probability density
function corresponding to the copula distribution function C(.).

The main advantage of the copula approach instead of adding a calendar year covariate
in the mean specification, lies in the fact that the copula approach allows a more general
structure of dependence between the observations of a given calendar year and allows more
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flexibility. Also, the use of covariates would lead to a great number of parameters to explain
the calendar year effect instead of only one (dependence copula parameter). For example,
for two lines of business, we would have 20 parameters instead of 2 (see equation (4)). This
might lead to over-parametrization. Furthermore, the parameter describing a given calendar
year effect, would not have any predictive power, as we cannot use it to compute the lower
triangle.

4.2 Line of Business Dependence
A natural extension to the model behind (5) is to introduce a dependence structure be-
tween lines of business based on copulas, more precisely here with the Gaussian copula and
hierarchical Archimedean copulas.

Another way to add dependence between lines of business is by modifying equation (4)
and use the same calendar year covariate for the two lines of business, i.e. Υt = Υ(1)

t = Υ(2)
t .

The correlation induced by common calendar year effects would then be introduced through
the mean specification. Also, as done in Shi et al. (2012), in addition to the common calendar
year covariate, a pair-wise correlation between the two runoff triangles can be added. This
approach has the disadvantage however of adding a new parameter for each diagonal (Υt).

4.2.1 Multivariate Gaussian Copula

We first propose to use the Gaussian copula to capture the dependence within and between
runoff triangles. The Gaussian copula which arises from the multivariate normal distribution
is the most widely known copula of the elliptical family of copulas. Such a copula allows
great flexibility to model dependences simply by modifying its correlation matrix.

Let us suppose, for a given calendar year t, the following set of observations ut =(
u

(1)
t−j+1,j, ..., u

(1)
1,t , u

(2)
t−j+1,j, ..., u

(2)
1,t

)
j=1,...,t

, with multivariate Gaussian copula density:

c (ut) = |Σt|−1/2 exp
(
−1

2ξ
T
t

(
Σ−1
t − I

)
ξt

)
,

where ξt =
(
Φ−1

(
u

(1)
t−j+1,j

)
, ...,Φ−1

(
u

(1)
1,t

)
,Φ−1

(
u

(2)
t−j+1,j

)
, ...,Φ−1

(
u

(2)
1,t )

))T
j=1,...,t

. The corre-
lation matrix Σt for the calendar year t can be represented as a block matrix as follows,
given the assumptions of the model:

Σt =
(

Σ11 Σ21
Σ21 Σ12

)
. (6)

In (6), the matrices Σ11 and Σ12 are correlation matrices with unit main diagonal and
off-diagonal parameters θ1,1 and θ1,2 corresponding to the calendar year dependence for the
first and second line of business respectively. Σ21 is a matrix filled with parameter θ2,1
representing the dependence between the two lines of business.

Numerical results obtained with the Gaussian copula are presented in the empirical il-
lustration of section 4.3.
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4.2.2 Hierarchical Archimedean Copulas

Hierarchical Archimedean copulas permit to have different levels of dependence within our
framework. We use them here to add another level of dependence to the one proposed in
section 4.1. With this second level of dependence, we capture the dependence between two
different runoff triangles in a pairwise manner between corresponding diagonals, instead of
between cells. Pairing diagonals instead of cells with a copula has the advantage of being
applicable even in a case of missing data in one of the runoff triangles.

The hierarchical approach allows us to visualize the multi-level dependence. Indeed, this
dependence structure is illustrated in Figure 1, where a dependence structure between cells of
the same calendar year is supposed as well as a dependence structure between the two lines of
business. In the next section, we will also be interested in comparing the hierarchical copula
approach with the multivariate Gaussian copula approach, as the latter is often considered
as a benchmark model.

Figure 1: Dependence implied by hierarchical dependence

The CY effect has not been often studied with more than one line of business. Two
recent examples are De Jong (2012), where the calendar year effect was introduced through
the correlation matrix and Shi et al. (2012), who used random effects to accommodate the
correlation due to accounting year effects within and across runoff triangles. In Shi et al.
(2012), they work with a Bayesian perspective, using a multivariate lognormal distribu-
tion, along with a multivariate Gaussian correlation matrix. The predictive distributions of
outstanding payments are generated through Monte Carlo simulations. The calendar year
effect is taken into account through an explanatory variable. A discussion of this paper is
suggested in Wüthrich (2012), and where it is also explained that for the method it does
not really matter whether we consider incremental or cumulative claims, as long as we have
a multivariate Gaussian structure. Also, still with a Bayesian framework, Wüthrich et al.
(2013) used a multivariate lognormal Chain-Ladder model and derived predictors and con-
fidence bounds in closed form. Their analytical solutions are such that they allow for any
correlation structure. Their models allow a dependence between and within runoff triangles,
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and for any correlation structure. It has also been shown in this paper that the pair-wise
dependence form is a rather weak one compared to calendar year dependence. More recently,
Shi (2014) captures the dependencies introduced by various sources, including the common
calendar year effects via the family of elliptical copulas, and use a parametric bootstrapping
to quantify the associated reserving variability.

In this paper, to model the complex dependence structure between two runoff trian-
gles, we introduce models based on hierarchical Archimedean copulas. The idea is to use
Archimedean copulas at each level, from the lowest (calendar years) to the highest (lines of
business). Hierarchical Archimedean copulas have first been mentioned in the literature by
Joe (1997), and appeared in more details in Savu and Trede (2010). More recently, Okhrin
et al. (2013) provided a method to estimate multivariate distributions defined through hier-
archical Archimedean copulas.

The main advantage of using Archimedean and hierarchical Archimedean copulas is that
they can be explicitly defined in terms of a one-dimensional function called the generator
of the Archimedean copula. Elliptical copulas, used in Shi (2014), do not possess this
nice property; they do not have a closed form. Archimedean copulas are also flexible and
allow to model many kinds of dependencies, while Elliptical copulas, have equal lower and
upper tail dependence coefficients. In high dimensions, Archimedean copulas are restricted
given the exchangeability of the components. This assumption is relaxed with hierarchical
Archimedean copulas.

At the lowest level, and for the calendar year t, we have 2 × t standard uniformly dis-
tributed random variables U (1)

t−j+1,j, ..., U
(1)
1,t , U

(2)
t−j+1,j, ..., U

(2)
1,t where j designates the develop-

ment period (j = 1, ..., t).
The joint distribution function is evaluated at u = (u(1)

t−j+1,j, ..., u
(1)
1,t , u

(2)
t−j+1,j, ..., u

(2)
1,t ) ∈

[0, 1]2t. Let there be H hierarchy levels indexed by h. For example, the set of elements
u is located at level h = 0. At each level h = 0, ..., H we have nh distinct objects with index
k = 1, ..., nh.

At level h = 1, the u(1)
t−j+1,j, ..., u

(1)
1,t , u

(2)
t−j+1,j, ..., u

(2)
1,t are grouped into n1 ordinary multi-

variate Archimedean copulas C1,k, k = 1, ..., n1 (in our case with two lines of business, we
have n1 = 2), of the form

C1,k(u1,k) = φ−1
1,k

∑
u1,k

φ1,k(u1,k)
 ,

where φ1,k denotes the generator of the copula C1,k. Let u1,k denote the set of elements of
u

(k)
t−j+1,j, ..., u

(k)
1,t belonging to the copula C1,k for k = 1, ..., n1, which represents the elements

of a given calendar year for a single line of business `. At this level only, k corresponds to `
.In our model, we have three levels, i.e H = 2. At the highest level, we have a single object
(n2 = 1), which is the hierarchical Archimedean copula C2,1, that aggregates the multivariate
Archimedean copulas of the previous level, and can be represented as

C2,k(C2,k) = φ−1
2,k

∑
C2,k

φ2,k(C2,k)
 ,
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where φ2,k denotes the generator of the copula C2,k and C2,k represents the set of all copulas
from level h = 1 entering copula C2,k for k = 1, ..., n2.

Obviously, there are numerous conditions to be satisfied for the existence of a hierarchical
Archimedean copula. The number of copulas must decrease at each level, i.e. nh < nh−1,
as well as the degree of dependence, i.e. θh+1,k′ < θh,k for all h = 0, ..., H and k = 1, ..., nh,
k′ = 1, ..., nh+1 such that Ch,k ∈ Ch+1,k′ where θh,k is the parameter belonging to the generator
φh,k. This means that for runoff triangles, elements of a same line of business can have a
higher degree of dependence than elements of different lines of business. Mathematically, the
conditions that have to be verified by a hierarchical Archimedean copula are summarized as
follows:

1. All inverse generator functions φ−1
h,k are completely monotone.

2. The composite φh+1,k′ ◦ φ−1
h,k are convex functions for all h = 0, ..., H and k = 1, ..., nh,

k′ = 1, ..., nh+1 such that Ch,k ∈ Ch+1,k′ .

In our application, we will limit the number of levels to three, and the number of lines of
business to two. This means that we will have at the highest level (h = 2), one (hierarchical)
bivariate Archimedean copula between lines of business, and for h = 1, two (ordinary)
multivariate Archimedean copula within a runoff triangle.

As an illustration, let us consider a dependence structure between two runoff triangles for
the second calendar year. The resulting hierarchical Archimedean copula has the following
analytical form

C2,1 (u) = C2,1(u(1)
2,1, u

(1)
1,2, u

(2)
2,1, u

(2)
1,2)

= C2,1(C1,1(u(1)
2,1, u

(1)
1,2), C1,2(u(2)

2,1, u
(2)
1,2))

= φ−1
2,1

(
φ2,1 ◦ φ−1

1,1[φ1,1(u(1)
2,1) + φ1,1(u(1)

1,2)] + φ2,1 ◦ φ−1
1,2[φ1,2(u(2)

2,1) + φ1,2(u(2)
1,2)]

)
.

This hierarchical Archimedean copula will be applied to each calendar year, with the
dataset described in Section 3.2. The calendar year t takes values from 1 to 10 because
the runoff triangles both have 10 diagonals, i.e. I = J = 10. The resulting hierarchical
Archimedean copula for our model has the following general analytical form:

C2,1 (u) = C2,1(u(1)
t−j+1,j, ..., u

(1)
1,t , u

(2)
t−j+1,j, ..., u

(2)
1,t )

= C2,1(C1,1(u(1)
t−j+1,j, ..., u

(1)
1,t ), C1,2(u(2)

t−j+1,j, ..., u
(2)
1,t ))

= φ−1
2,1

(
φ2,1 ◦ φ−1

1,1[φ1,1(u(1)
t−j+1,j) + ...+ φ1,1(u(1)

1,t )] + φ2,1 ◦ φ−1
1,2[φ1,2(u(2)

t−j+1,j) + ...+ φ1,2(u(2)
1,t )]

)
.

(7)

Finally, the log-likelihood function of the hierarchical model can be written as follows:
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L =
2∑
`=1

I∑
i=1

I−i+1∑
j=1

log(f (`)
ij ) +

n∑
t=2

log
(
c2,1

(
F

(1)
t,1 , F

(1)
t−1,1, ..., F

(1)
1,t , F

(2)
t,1 , F

(2)
t−1,1, ..., F

(2)
1,t

))
, (8)

where c2,1 denotes the density of a hierarchical Archimedean copula, which is obtained by
differentiating the copula using the chain rule. More precisely, for a given diagonal t, we
have the following expression:

c2,1 (u) = ∂2tC2,1 (u)
∂u

(1)
t−j+1,j · · · ∂u

(1)
1,t∂u

(2)
t−j+1,j · · · ∂u

(2)
1,t
. (9)

As we have 10 diagonals, we need to derive up to 20 times. We show an example of a
4-variables case, corresponding to the second diagonal in Appendix A. However, the density
is computationally intensive in high dimensions when the number of observations in the
diagonal increases, and a closed form expression for the maximum likelihood estimators is
no longer available.

A numerically efficient way to evaluate the log-density is presented in ?, where an imple-
mentation of the hierarchical Clayton and Gumbel copulas is provided using the R package
copula; see Hofert and Mächler (2011).

The simpler form of hierarchical dependence is to suppose a product copula between the
two runoff triangles, meaning independence between lines of business. In this situation, the
log-likelihood of the model is simply L = L(1) + L(2), where L(`), ` = 1, 2 is simply the
log-likelihood obtained by (5). Of course, it is very easy to extend this model to more than
two lines of business.

4.3 Empirical Illustration
Hierarchical models based on different copulas have been applied to the runoff triangles used
in Section 3.2. For this model, the CY dependence has been modeled with four different
copulas (product, Gumbel, Clayton and Gaussian). In our empirical study, we first use a
model that supposes independence between lines of business, i.e. a product copula between
runoff triangles. We call this model ICYD, for independence calendar year dependence.
Fit statistics as long as dependence parameters of this model are shown in Table 3, while
the estimated reserves are presented in Table 4. In terms of AIC, we observe that all
Archimedean copula models offer a better fit than the multivariate Gaussian copula. Note
that a CY dependence with a product copula within and between the two lines of business
is simply a cell-by-cell modeling. The empirical results of this simple model have already
been given in Section 3.2, for the PWD model with a product copula.

The two available copulas in the R package copula, which are Clayton and Gumbel,
have been considered in a hierarchical model to investigate dependence between the two
lines of business. The same copula is used for each level, meaning for example that if a
Gumbel copula is chosen within a runoff triangle, then it is also used between the business
lines. This is due to the convexity condition on hierarchical Archimedean copulas. We call
this model HCYD, for hierarchical calendar year dependence. When we apply this model
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Copula - Estimates and Standard Errors
Gaussian Clayton Gumbel

θ1,1 0.6091 (0.1366) 2.2695 (0.4463) 2.7267 (0.6762)
θ1,2 0.7634 (0.0983) 2.9759 (0.5743) 2.7103 (0.6045)

Log-Lik. 391.5 403.9 404.3
AIC -699.0 -723.9 -724.6

Table 3: Fit Statistics of ICYD model with Shi and Frees (2011) database

Copula
Reserves estimation Gaussian Clayton Gumbel

Personal 6 175 574 6 425 748 6 965 466
Commercial 751 725 550 179 593 945

Total 6 927 299 6 975 927 7 559 412

Table 4: Reserves estimation of ICYD model with Shi and Frees (2011) database

to the dataset used in Section 3.2, the hierarchical model do not improve the independent
calendar year model for the three copulas (Gaussian, Clayton and Gumbel). The values of
the dependence parameters θ2,1 are not statistically significant, meaning that the two lines
of business are uncorrelated.

To better emphasize the features of the hierarchical model, we work with two other
runoff triangles that were recently used in Côté et al. (2015), which come from a Canadian
property-casualty insurer. The two lines of business comprise personal and commercial auto
insurance. The first triangle contains paid losses of the Accident Benefits (AB) coverage from
Ontario, while the second one constitutes paid losses from Bodily Injuries (BI) coverage from
the Western region. The Accident Benefits (AB) coverage provides compensation, regardless
of fault, if driver, passengers, or pedestrians suffer injury or death in an automobile collision.
On the other hand, the Bodily Injury (BI) coverage provides compensation to the insured
if he is injured or killed through the fault of a motorist who has no insurance, or by an
unidentified vehicle.

Côté et al. (2015) demonstrate that a gamma distribution provides a good fit for the two
lines of business. We work with their conclusion and then continue with the same continuous
distribution for each line of business. The cumulative paid losses and earned premiums for
the two lines of business are displayed in Appendix B.

We first apply the PWD model to these two lines of business, the estimation parameters
and the reserves estimation are shown in Table 5. Whereas, the fit statistics and the reserves
obtained for the independent and hierarchical calendar year models are shown in Table 6. To
compare the degree of dependence between different copulas, we also provide the two non-
linear association measures Spearman’s rho ρS and Kandall’s tau τK for the two copulas,
see Table 6. We notice that the Clayton copula captures a smaller dependence than the
Gumbel copula, whose association measures are slightly higher. Indeed, the Clayton family
is characterized by a lower tail dependence. Also, the hierarchical calendar year model offers
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a better fit than the independent calendar year model as shown by the values of the log-
likelihood function. This finding leads to a statistically significant dependence between the
two lines of business (θ2,1), captured through the calendar year effects. This is also confirmed
by looking at the value of the AIC, which points to the Gumbel hierarchical copula model
as the one which better adjusts the data.

Copula
Fit Statistics Independence Frank Gaussian

Dependence parameter . -0.6649 (0.9430) 0.0149 (0.1362)
Log-Likelihood 423.7 424.0 423.8

AIC -767.4 -766.0 -765.6
Total Reserve 96 954 96 994 96 949

Table 5: Fit Statistics and Reserves of PWD model with Côté et al. (2015) database

When we incorporate a calendar year correlation within the lines of business (level 1),
the residual dependence becomes positive. Intuitively, this can be explained by the trends
and common effects that are detected with the introduction of the proposed dependence
structure but not with the Chain-Ladder coefficients. In a given calendar year, exogenous
common factors such as inflation, interest rates, jurisprudence or strategic decisions such as
the acceleration of the payments for the entire portfolio can have simultaneous impacts on all
lines of business of a given sector, such as the two lines of business considered in the present
paper. These effects may as well result in trends in the development period parameters.

It is interesting to note that, unlike the slightly negative pairwise association obtained
by the PWD model in Table 5 and also displayed for these two lines of business in Table 4 of
Côté et al. (2015), hierarchical models generate positive dependence between loss triangles
with the same dataset.

We observe that the positive parameter θ2,1 is statistically significant for the Clayton and
Gumbel copulas. This results highlights the fact that the choice of the dependence structure

ICYD model HCYD model
Clayton Gumbel Clayton Gumbel

θ1,1 0.0294 (0.0708) 1.0829 (0.1292) 0.0495 (0.0608) 1.0692 (0.0515)
θ1,2 0.2384 (0.1881) 1.1548 (0.1315) 0.2034 (0.2259) 1.0692 (0.0496)
θ2,1 . . 0.0495 1.0692
ρS . . 0.0362 0.0948
τK . . 0.0241 0.0648

LogLik 424.4 425.8 426.3 427.7
AIC -764.8 -767.6 -766.6 -769.4

Total Reserve 84 172 81 650 96 496 83 202

Table 6: Parameter and Reserves estimation of ICYD and HCYD models with Côté et al.
(2015) database
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can lead to different conclusions for the dependence analysis. This was also well illustrated
in Figure 4 of Shi et al. (2012).

Finally, a hierarchical copula model requires a higher degree of dependence for variates
linked at a lower level than those linked at a higher level. In our context, this means
that the degree of dependence within lines of business should be greater than between lines
of business, as illustrated in Figure 1. One can observe in Table 6 that this condition is
respected with a dependence parameter θ2,1 lower than the dependence parameters θ1,1 and
θ1,2. In this sense, this condition could also be seen as a restriction for the dependence
parameter between the two lines of business. In fact, we observe that the parameters θ2,1
are on the boundary of their domain in Table 6. This actually could constitute a limitation
of the hierarchical model.

5 Predictive distribution
In practice, actuaries are interested in knowing the uncertainty of the reserve. A parametric
technique, the bootstrap, not only provides such information but most importantly lets one
determine the entire predictive distribution, rarely obtained for non-Bayesian models. The
predictive distribution notably allows assessment of risk capital for an insurance portfolio.
Bootstrapping is also ideal from a practical point of view, because it avoids the complex
theoretical calculations and can easily be implemented. Moreover, it tackles the potential
model overfitting, typically encountered in loss reserving problems, due to the small sample
size.

The bootstrap technique is increasingly popular in loss reserving, and allows a wide range
of applications. It was first introduced in a loss reserving context with a distribution-free
approach by Lowe (1994). For a multivariate loss reserving analysis, Kirschner et al. (2008)
used a synchronized parametric bootstrap to model dependence between correlated lines of
business, and Taylor and McGuire (2007) extended this result to a generalized linear model
context. Shi and Frees (2011) and more recently Shi (2014) have also performed a parametric
bootstrap to incorporate the uncertainty in parameter estimates, while modeling dependence
between loss triangles using copulas.

5.1 Parametric Bootstrap
The parametric bootstrap allows us to obtain the whole distribution of the reserves. We
follow the same bootstrap algorithm of Taylor and McGuire (2007), and summarized in Shi
and Frees (2011).

5.1.1 Copula simulation

The first step of the parametric bootstrap is to generate pseudo-responses of normalized
incremental paid losses y∗(`)ij,r , for i, j such that i + j ≤ I and ` = 1, 2. We know that
y
∗(`)
ij,r = F (−1)(`)(u(`)

ij , µ̂
(`)
ij , γ̂

(`)), with µ̂
(`)
ij and γ̂(`) already estimated. Therefore, a technique

to generate the realizations of the copula u(`)
ij , with ` = 1, 2 should be used.
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Model Copula reserve Bootstrap reserve Bias Std Error
Gumbel hierarchical model 83 202 81 574 1.95% 8 555

Table 7: Bootstrap bias for the Gumbel HCYD model with Côté et al. (2015) database

Given that the Gumbel copula generates the best fit for many models in this paper,
we have decided to focus on this copula for the bootstrap. Below, the bootstrap study is
performed with the datasets of Côté et al. (2015).

To generate a multivariate Gumbel copula, we follow the method based on the inversion
of the Laplace transform, an idea that can be traced back to Marshall and Olkin (1988).

The above cited algorithm allows us to generate the set of realizations u(1)
1,1 and u(2)

1,2 for
the first level of hierarchy (CY level at h = 1) from the ordinary multivariate Archimedean
copulas C1,1 and C1,2, for a given calendar year t and development period j (j = 1, ..., t),
with u(1)

1,1 = (u(1)
t−j+1,j, ..., u

(1)
1,t ) and u(2)

1,2 = (u(2)
t−j+1,j, ..., u

(2)
1,t ). To generate realizations with a

Gumbel copula at the highest level of the hierarchy (line of business level at h = 2), we used
the sampling algorithm of Nested Archimedean copulas from the R package copula.

Consequently, we have obtained the set of realizations u(1)
2,1 and u(2)

2,1 for the second level
of hierarchy (business line level at h = 2) from the hierarchical Archimedean copula C2,1.

5.1.2 Bias and MLE

The maximum likelihood estimation technique is known to be asymptotically unbiased. In
practice, we work with a finite number of observations, particularly with runoff triangles.
Indeed, in our empirical illustrations, only 55 observations have been used in each triangle.
Consequently, regardless of the number of simulations, our estimation is done each time on
limited datasets of 55 observations.

The impact of the bias on the estimation has been analyzed. Recently, the lognormal
MLE bias has been studied in Johnson et al. (2011), along with the gamma and Weibull
distributions. Consequently, inter alia, a bias is necessarily observed in the bootstrapping
procedure. In our empirical illustration, the bootstrap bias obtained for the hierarchical
model is exhibited in Table 7.

5.2 Reserve indications
We show a histogram of the reserve distribution of the hierarchical model in Figure 2, which
is important and useful for actuaries when they want to select a reserve at a desired level of
conservatism.

In Table 7, we exhibit the bootstrap results for the Gumbel hierarchical model which
mainly refers to the mean reserve and the prediction uncertainty. The latter may substan-
tially be increased by the introduction of the accounting year dependence. In contrast, PWD
models can under-estimate the variability because they implicitly assume an independence
between accident years. This was also stated in Wüthrich et al. (2013), where it has been
shown that the CY modeling is more performant than the PWD modeling. It is worth men-
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tioning that to compute the mean squared error of prediction, the process uncertainty must
be added to this prediction error (see England and Verrall (2002)).

Note that to obtain the lower triangle in the Bootstrap procedure, we can either calcu-
late the projected mean for each cell of the lower triangle, as shown in this paper (projected
mean approach), or generating (by simulation) each cell of the lower triangle starting from
the new estimates obtained for each bootstrap sample. The second approach (the sim-
ulation based approach) offers a wider range of possible reserves, and will consequently
have a larger standard error. This second approach can be particularly interesting from a
capital risk standpoint where extreme loss events have to be considered. Both bootstrap ap-
proaches (projected mean approach and simulation based approach) are relevant information
for property-casualty insurers.

Total Unpaid Losses
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Figure 2: Predictive distribution of total unpaid losses - Complete hierarchical model

6 Conclusion
In this paper, we have studied different approaches to model the dependence between loss
triangles using multivariate copulas. If losses in different lines of business are correlated,
aggregate reserves must reflect this dependence. To allow a complex dependence relation,
we propose the use of new models using hierarchial Archimedean copulas. To illustrate the
model, an empirical illustration was performed using the same data as the one used by Shi
and Frees (2011). Based on the AIC, we show that the ICYD models provide a better fit than
PWD models. Furthermore, to show the interest of HCYD models and better highlight their
properties, the empirical illustration has also been performed on two other runoff triangles
from a major Canadian insurance company, which also allows us to expose the proposed
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model to a wider range of situations. A hierarchical calendar year dependence seemed to
be relevant because the hierarchical Gumbel copula model was one of the best to adjust the
data.

With the proposed models, we can derive analytically the value of the reserve. However,
to obtain the distribution of the reserve and to estimate the parameters, numerical evaluation
is necessary. Indeed, estimation and sampling are implemented in the R package copula.
Also, the total reserve estimate in the presence of dependence relies heavily on the choice of
the dependence structure and the selected copula. This is a limitation of the joint estimation
of the marginal and dependence parameters. This undesirable effect will be addressed in a
future work within a two-stage inference strategy; see Côté et al. (2015) for more details.

These new models that use hierarchical copula theory constitute a new way to model the
dependence structures of runoff triangles. Those models are promising tools to better take
into account dependencies within and between business lines. Indeed, this approach can
easily be generalized to more than two lines of business because hierarchical Archimedean
copulas are flexible and allow more refined possible dependence constructions. Because
of their flexibility, hierarchical copula models should also be considered in other areas of
actuarial science.
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A Nested Archimedean Copula Density

To lighten the notation, let C(i,j)
θ (u, v) = ∂i+jCθ(u, v)

∂ui∂vj
for i, j ∈ {0, 1, 2}.

Following equation (9), the 4-dimensional density of the hierarchical Archimedean copula
C2,1 for the second diagonal (t = 2) will be written as follows:

c2,1 (u1, u2, u3, u4) = ∂4

∂u1∂u2∂u3∂u4
C2,1 (C1,1 (u1, u2) , C1,2 (u3, u4))

= ∂3

∂u1∂u2∂u3
C

(0,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(0,1)

1,2 (u3, u4)

= ∂2

∂u1∂u2

[
C

(0,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,0)

1,2 (u3, u4)C(0,1)
1,2 (u3, u4)

+C(0,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,1)

1,2 (u3, u4)
]

= ∂

∂u1

[
C

(1,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(0,1)

1,1 (u1, u2)C(1,0)
1,2 (u3, u4)C(0,1)

1,2 (u3, u4)

+C(1,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(0,1)

1,1 (u1, u2)C(1,1)
1,2 (u3, u4)

]
= C

(2,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,0)

1,1 (u1, u2)C(0,1)
1,1 (u1, u2)C(1,0)

1,2 (u3, u4)C(0,1)
1,2 (u3, u4)

+C(1,2)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,1)

1,1 (u1, u2)C(1,0)
1,2 (u3, u4)C(0,1)

1,2 (u3, u4)

+C(2,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,0)

1,1 (u1, u2)C(0,1)
1,1 (u1, u2)C(1,1)

1,2 (u3, u4)

+C(1,1)
2,1 (C1,1(u1, u2), C1,2(u3, u4))C(1,1)

1,1 (u1, u2)C(1,1)
1,2 (u3, u4)

B Data

Table 8: Cumulative paid losses for Ontario AB.
Accident Development Lag (in months)
Year 12 24 36 48 60 72 84 96 108 120 Premiums
2003 3043 5656 7505 8593 9403 10380 10450 10812 10856 10860 116491
2004 2070 4662 6690 8253 9286 9724 9942 10086 10121 111467
2005 2001 4825 7344 8918 9824 10274 10934 11155 107241
2006 1833 4953 7737 9524 10986 11267 11579 105687
2007 2217 5570 7898 8885 9424 10402 105923
2008 2076 5681 8577 10237 12934 111487
2009 2025 6225 9027 10945 113268
2010 2024 5888 8196 121606
2011 1311 3780 110610
2012 912 104304
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Table 9: Cumulative paid losses for West BI.
Accident Development Lag (in months)
Year 12 24 36 48 60 72 84 96 108 120 Premiums
2003 2279 8683 15136 21603 27650 30428 32004 32592 33009 34140 76620
2004 2139 7077 13159 16435 20416 22598 24171 25034 25714 65691
2005 1420 4888 8762 12184 14482 15633 17089 17710 55453
2006 1510 5027 10763 15799 19269 22504 24807 54006
2007 1693 5175 8216 12263 16918 20792 55425
2008 2097 7509 10810 15673 19791 59100
2009 2094 5174 8062 12389 54438
2010 1487 4789 7448 53483
2011 1868 6196 52978
2012 2080 57879


