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Case Postale 8888, Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3P8
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Abstract

The effect of inelastic final-state interactions (IFSI’s) on the determination of the

weak phase α from the isospin triangles of B → ππ is qualitatively illustrated. Neglect-

ing the electroweak penguins and IFSI’s and assuming the dominance of the top-quark

loop in strong penguin diagrams, we propose an experimentally accessible way to ap-

proximately determine α and the penguin amplitude in Bd → ππ. This approach

relies on a simplified isospin consideration and the factorization approximation, and

its feasibility is irrelevant to the time-dependent measurements of Bd → ππ.
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1. Introduction

Today the most promising way to test the Cabibbo-Kobayashi-Maskawa (CKM) mecha-

nism of quark mixing and CP violation is to measure CP asymmetries in neutral B-meson

decays to CP eigenstates [1]. For this purpose, the decay mode Bd → π+π− is a good can-

didate in addition to the gold-plated channel Bd → J/ψKS. However, the penguin-induced

effect on Bd → π+π− may be significant enough so that a reliable prediction for the CP

asymmetry is theoretically difficult [2]. Using the isospin triangle relations among the decay

amplitudes of B±
u → π±π0,

(−)

B 0
d → π+π− and

(−)

B 0
d → π0π0, Gronau and London have shown

that the tree-level and penguin contributions can be disentangled by measuring the relevant

decay rates [3]. Their work provides a relatively clean way to extract α, an angle of the CKM

unitarity triangle in the complex plane [4], although its feasibility depends closely upon the

time-dependent measurements of Bd → ππ.

The naive isospin analysis of B → ππ has to be modified, if these decay modes involve

non-negligible electroweak penguin (EWP) diagrams [5] or inelastic final-state interactions

(IFSI’s) [6]. It has recently been shown that the overall effect of EWP’s on the determina-

tion of α from the isospin triangles is merely at the level of O(λ2) (λ = 0.22) or smaller [7],

although the individual EWP amplitude may be O(λ) of the strong penguin amplitude in

Bd → π0π0. The IFSI’s are possible to induce channel mixing (e.g., between the direct reac-

tions Bd → ππ and the two-step processes Bd → DD̄ → ππ), such that both the branching

ratios and CP asymmetries of Bd → ππ are difficult to be predicted. An illustration of the

effect of IFSI’s on the extraction of α from B → ππ is still lacking in the literacture.

In this work, we first illustrate the influence of ππ ⇀↽ DD̄ scattering on the isospin

triangles of B → ππ qualitatively. We find that the determination of α may suffer from

large mixing between the I = 0 states of ππ and DD̄. The approach proposed in ref. [3]

can work only if the IFSI’s are insignificant enough to be negligible. Second, we develop

an approximate but more practical approach to isolate the weak phase α and the penguin

amplitude in Bd → ππ. Neglecting the effects of EWP’s and IFSI’s and assuming the

dominance of the top-quark loop in strong penguin diagrams, we relate the tree-level and

penguin amplitudes of B → ππ under a simplified isospin consideration and the factorization

approximation. Provided that the decay rates of B±
u → π±π0,

(−)

B 0
d → π+π− and

(−)

B 0
d → π0π0

are measured, we show that it is possible to determine the magnitudes of the penguin and

tree-level amplitudes and to extract the weak and strong phase shifts between them. This

approximate method has two obvious advantages: (1) its feasibility depends only upon the
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time-independent measurements of the relevant decay rates, which can be carried out at

either B-meson factories or high-luminosity hadron machines; and (2) it can confront the

nearest data of B → ππ and give a ballpark number to be expected for α, before a delicate

determination of α is available in experiments.

2. Effect of IFSI’s on the isospin triangles

In the absence of EWP’s and IFSI’s, the isospin amplitudes of B0
d → π+π−, B+

u → π+π0,

B0
d → π0π0 and their CP -conjugate counterparts are given as [3]

A+− = 〈π+π−|H|B0
d〉 =

√
2Aππ

2 −
√

2Aππ
0 ,

A+0 = 〈π+π0|H|B+
u 〉 = 3Aππ

2 ,

A00 = 〈π0π0|H|B0
d〉 = 2Aππ

2 + Aππ
0 ;

(1a)

and
Ā+− = 〈π+π−|H|B̄0

d〉 =
√

2Āππ
2 −

√
2Āππ

0 ,

Ā−0 = 〈π−π0|H|B−
u 〉 = 3Āππ

2 ,

Ā00 = 〈π0π0|H|B̄0
d〉 = 2Āππ

2 + Āππ
0 ,

(1b)

where some Clebsch-Gordan coefficients have been absorbed into the definitions of Aππ
0,2 and

Āππ
0,2. Clearly the above relations form two isospin triangles in the complex plane:

A+− +
√

2A00 =
√

2A+0 , Ā+− +
√

2Ā00 =
√

2Ā−0 . (2)

Since the decay modes B±
u → π±π0 occur solely through the tree-level quark diagrams, the

ratio Āππ
2 /Aππ

2 = Ā−0/A+0 is purely governed by the CKM factor (VubV
∗
ud)/(V

∗
ubVud) = e−2iγ

(γ is an angle of the unitarity triangle [8]). To probe CP violation induced by the interplay

of decay and B0
d − B̄0

d mixing in Bd → π+π−, we need to measure the interference term

Imξ+− = Im

(

e−2iβ Ā+−

A+−

)

= Im
(

e2iα 1 − z̄

1 − z

)

, (3)

where β and α are also the angles of the CKM unitarity triangle (α + β + γ = 1800),

z = Aππ
0 /Aππ

2 and z̄ = Āππ
0 /Āππ

2 . As shown in ref. [3], the complex parameter z (z̄) is

determinable from the isospin triangles up to a two-fold ambiguity in the sign of its phase.

In a similar way one can discuss the CP -violating term Imξ00 in Bd → π0π0. Then the weak

angle α can be extracted from Imξ+− and Imξ00. This approach relies on the time-dependent

measurements of Bd → ππ.

Now let us illustrate the effect of IFSI’s on the isospin triangles and the CP -violating

measurable Imξ+− (Imξ00), which are crucial for the extraction of α. Due to IFSI’s the I = 0
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state of ππ can mix with that of DD̄, and this leads to the two-step decays Bd → DD̄ → ππ.

The final states π±π0 cannot mix with DD̄ because of their different isospin configurations

(I = 2 for π±π0, I = 0 and I = 1 for DD̄). But in principle π±π0 could mix with ρ±ρ0,

and DD̄ could mix with D∗D̄∗ [6]. For simplicity, here we only consider the influence of

ππ ⇀↽ DD̄ scattering on Bd → ππ, leaving the I = 2 state of ππ unmixed with others. As a

result, the “bare” isospin amplitudes of Bd → ππ in eq. (1) are modified as

A
′

+− =
√

2Sππ
2 Aππ

2 −
√

2
(

Sππ
0 Aππ

0 + SπD
0 ADD

0

)

,

A
′

00 = 2Sππ
2 Aππ

2 +
(

Sππ
0 Aππ

0 + SπD
0 ADD

0

)

;
(4a)

and
Ā

′

+− =
√

2Sππ
2 Āππ

2 −
√

2
(

Sππ
0 Āππ

0 + SπD
0 ĀDD

0

)

,

Ā
′

00 = 2Sππ
2 Āππ

2 +
(

Sππ
0 Āππ

0 + SπD
0 ĀDD

0

)

.
(4b)

In the above equations, ADD
0 denote the I = 0 amplitude component of Bd → DD̄, S0,2 are

complex matrix elements connecting the unitarized isospin amplitudes to the bare ones [6].

Of course, SπD
0 = 0 and Sππ

2 = Sππ
0 = 1 if there is no mixture between the I = 0 states of

ππ and DD̄. From eq. (4), we obtain the following triangle relations:

A
′

+− +
√

2A
′

00 =
√

2Sππ
2 A+0 , Ā

′

+− +
√

2Ā
′

00 =
√

2Sππ
2 Ā−0 . (5)

Comparing this result with eq. (2), one can observe an overall change of the bare isospin

triangles due to IFSI’s. In this case, the CP -violating measurable Imξ+− becomes

Imξ
′

+− = Im

(

e−2iβ Ā
′

+−

A
′

+−

)

= Im

(

e2iα 1 − z̄′

1 − z′

)

, (6)

where

z′ = z
Sππ

0

Sππ
2

+
ADD

0

Aππ
2

SπD
0

Sππ
2

, z̄′ = z̄
Sππ

0

Sππ
2

+
ĀDD

0

Āππ
2

SπD
0

Sππ
2

. (7)

We find that in principle the angle α can still be extracted from Imξ
′

+− (and Imξ
′

00). However,

the determination of z′ and z̄′ from eq. (5) needs the knowledge of Sππ
2 , since the measured

branching ratio of B+
u → π+π0 can only fix |A+0| other than |Sππ

2 A+0|. Before we obtain

definite information on the mixing of ππ and DD̄, it is impossible to determine the values

of |SπD
0 | and |Sππ

0,2| reliably 3. Thus the isospin approach of ref. [3] cannot work well in the

presence of significant IFSI’s.

If the ππ ⇀↽ DD̄ scattering effect is insignificant in the problem under discussion, one

expects that |SπD
0 | may be small enough and |Sππ

2 | does not deviate too much from unity. In

3From ref. [6], one can obtain a rough feeling of the possible effect of IFSI’s on the magnitudes of decay

rates and CP asymmetries.
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this case, the two triangles in eq. (5) are able to be approximately determined from direct

measurements, then one can isolate the unknow parameters z′ and z̄′ to an acceptable degree

of accuracy and extract α from Imξ
′

+− and Imξ
′

00. In the following we shall assume this simple

case and present an approximate approach to determine α and the penguin amplitude in the

decay modes Bd → ππ.

3. Approximate isolation of the penguin amplitude

To lowest order in weak interactions, all two-body mesonic B decays can be generally

described by ten topologically different quark diagrams [9]. In this language, we assume that

the effect of IFSI’s on every decay mode is insignificant enough to be negligible. Neglecting

the EWP diagrams and those exchange- or annihilation-type channels, the dominant quark-

diagram amplitudes for B0
d → π+π−, B+

u → π+π0 and B0
d → π0π0 are illustrated in fig. 1.

Another reasonable assumption to be used is that the strong penguin diagram is dominated

by the top-quark loop [10, 11]. This implies that the weak phase of the penguin amplitude

comes only from V ∗
tbVtd in B0

d → π+π− or B0
d → π0π0. In terms of the angles of the CKM

unitarity triangle [8], we parametrize the decay amplitudes of the three modes and their

CP -conjugate counterparts as follows 4:

A+− = −Teiγ − Pei(δ−β) ,

A+0 = −1 + a√
2
Teiγ ,

A00 = − a√
2
Teiγ +

1√
2
Pei(δ−β) ;

(8a)

and
Ā+− = −Te−iγ − Pei(δ+β) ,

Ā−0 = −1 + a√
2
Te−iγ ,

Ā00 = − a√
2
Te−iγ +

1√
2
Pei(δ+β) .

(8b)

The above expressions are based on a simple isospin consideration and the factorization

approximation for the final states ππ, as we shall explain below. Here δ denotes the strong

phase shift between the penguin and tree-level amplitudes of Bd → ππ. Thus without loss of

any generality, T and P can be assumed to be real and positive. The parameter a represents

the color-mismatched suppression in the tree-level amplitudes of B+
u → π+π0, B0

d → π0π0

and their CP -conjugate processes. We shall see later that a can be either calculated using

4Here we use the same valence-quark notations for the pions as refs. [12, 13]: |π+〉 = |ud̄〉, |π0〉 =

|dd̄ − uū〉/
√

2, and |π−〉 = −|dū〉. This convention guarantees that the three pion mesons belong to an

isotriplet. Also, we adopt |B0
d
〉 = |db̄〉, |B̄0

d
〉 = |bd̄〉, |B+

u 〉 = |ub̄〉, and |B−

u 〉 = −|bū〉.
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the factorization approximation or measured directly from the decay rates. Clearly the

relations in eq. (8) can form the same isospin triangles as those in eq. (2). This implies

that the quark-diagram language used for describing B → ππ is consistent with the isospin

analysis, as shown first in ref. [13]. In the factorization approximation, we can assume that

the difference between the interactions of I = 0 and I = 2 final states is negligible. Thus the

two quark-diagram amplitudes of B+
u → π+π0, which occurs solely through the ∆I = 3/2

transition, can be parametrized as eq. (8a) with a real factor a. This accordingly implies

that the tree-level amplitude of B0
d → π+π− and that of B0

d → π0π0 also have negligible

strong phase shift, to guarantee the isospin triangle relations in eq. (2). So do the penguin

amplitudes of B0
d → π+π− and B0

d → π0π0. Therefore, we expect that contributions from

the penguin diagrams of Bd → ππ are crucial for the isospin triangles to have nonvanishing

area. For a detailed discussion about translation of the isospin amplitudes of B → ππ into

the corresponding combinations of quark-diagram amplitudes, we refer the reader to ref.

[13]. Based on the correspondence between the quark-diagram description and the isospin

analysis, we subsequently use eq. (8) to relate the weak and strong phases in Bd → ππ to

the time-independent measurables.

From eqs. (8a) and (8b), we have |A+0| = |Ā−0|. The decay rates of the above six pro-

cesses should be measured in the near future at either B-meson factories or high-luminosity

hadron machines. Let us define the following four measurables:

R+− =
|A+−|2

|A+0|2 + |Ā−0|2
, R̄+− =

|Ā+−|2
|A+0|2 + |Ā−0|2

; (9a)

R00 =
|A00|2

|A+0|2 + |Ā−0|2
, R̄00 =

|Ā00|2
|A+0|2 + |Ā−0|2

. (9b)

It is clear that T can be directly obtained from |A+0|2 or |Ā−0|2. On the other hand, the

magnitude of the penguin amplitude P is only determined once the data on R+− (R̄+−) and

R00 (R̄00) become available. By use of eqs. (8) and (9), the ratio P/T ≡ χ is given as

χ =
√

(1 + a) (aR+− + 2R00) − a =

√

(1 + a)
(

aR̄+− + 2R̄00

)

− a . (10)

It should be noted that the size of χ is sensitive to the uncertainty associated with the color-

suppression factor a. There are two ways to determine a. One way is to use the effective

weak Hamiltonian H(∆B = 1) [14] and the factorization approximation [15]. It is easy to

obtain

a =
C2 +NcC1

C1 +NcC2

, (11)

where Nc is the number of colors, C1 ≈ −0.291 and C2 ≈ 1.133 are the Wilson coefficients

at the scale µ = O(mb) [14]. We obtain a ≈ 0.23 for Nc ≈ 2.2 and a ≈ −0.26 for Nc = ∞.

6



The current data on exclusive hadronic B decays favor the former, i.e. a positive a with

the magnitude of O(λ) [16]. The other way to determine a is through measurements of the

decay modes Bd → π+π− and Bd → π0π0. From eqs. (8) and (9) one can find

a = −2 · R̄00 − R00

R̄+− − R+−

. (12)

Indeed the rate differences R̄00 − R00 and R̄+− − R+− indicate the signals of direct CP

violation. The assumptions made in eq. (8) imply that the direct CP asymmetries in

Bd → π+π− and Bd → π0π0 are governed by the same weak phase difference (β + γ) and

the same strong phase shift (δ), but their magnitudes are different. A comparison between

the results of a obtained in eqs. (11) and (12) can serve as a rough test of the factorization

approximation. In practice, however, measuring the rate difference R̄00 −R00 might be very

difficult due to the expected smallness of the branching ratio of Bd → π0π0. Considering

SU(3) symmetry and its small breaking effect, Deshpande and He [17] have shown that the

rate difference of B0
d → π+π− (π0π0) vs B̄0

d → π+π− (π0π0) is related to that of B0
d → π−K+

(π0K0) vs B̄0
d → π+K− (π0K̄0). The latter can be more easily measured in experiments,

thus can be used to determine a through eq. (12). It should be noted that our main results

still hold even in the special case a = 0. If δ happens to be 00 or 1800, however, eq. (12) will

not work. In this case, we have to use the data on other B decays to determine a [16].

4. Approximate determination of α

Now we look at how to extract the weak phase α without resorting to measurements of

the decay-time distribution of Bd → ππ. Since the weak phase shift between the penguin and

tree-level amplitudes of Bd → π+π− is β+γ, by use of the unitarity condition α+β+γ = 1800

we obtain two concise equations connecting the weak and strong phases to the measurables:

cos(α + δ) =
1

2χ

[

1 + χ2 − (1 + a)2R+−

]

, (13a)

cos(α− δ) =
1

2χ

[

1 + χ2 − (1 + a)2R̄+−

]

. (13b)

Similarly, α and δ can be related to R00 and R̄00. Because χ is determined from eq. (10),

both α and δ can be extracted from (13) with four-fold ambiguity. Due to the assumptions

made in eq. (8), this ambiguity cannot be reduced by the relations among α, δ, R00 and

R̄00. To the accuracy that R+− and R̄+− cannot be distinguished in experiments, we expect

that the strong phase shift δ might be close to 00 or 1800 (i.e., vanishingly small direct CP

violation in Bd → ππ). Note that eq. (13) would become invalid if the magnitude of the
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penguin amplitude P were too small to be measured. In this case, the two isospin triangles

in eq. (2) would collapse to lines. Within the standard model, however, several calculations

have given that χ is at the level of O(λ) or larger [2]. Thus our results (10) and (13) are

feasible to probe the weak phase α as well as the significant penguin amplitude in Bd → ππ.

It is worth remarking that our approach to determine the angle α does not require the

measurement of the CP -violating term Imξ+−:

Imξ+− ≈ sin(2α) − 2χ sinα cos δ (14)

(to lowest-order approximation of χ), which is induced by the interplay of decay and B0
d−B̄0

d

mixing. Thus the feasibility of our approach is independent of the time-dependent measure-

ments of neutral B decays to be carried out at the asymmetric B factories of KEK and SLAC

[18]. Nonetheless, it should be noted that the determination of |A+−| and |Ā+−| from any

experiment is indeed influenced by B0
d − B̄0

d mixing. To overcome this problem, one available

way is through the time-integrated measurements of Bd → π+π− on the Υ(4S) resonance,

where the produced two Bd mesons are in a coherent state (with odd charge-conjugation

parity) until one of them decays. Using the semileptonic decay of one Bd meson to tag the

flavor of the other meson decaying to π+π−, the probability for observing such a joint decay

has been give as [19]:

Pr(l+X−; π+π−) = |Al|2
[

|A+−|2 + |Ā+−|2
2

− 1

1 + x2
d

· |A+−|2 − |Ā+−|2
2

]

, (15a)

Pr(l−X+; π+π−) = |Al|2
[

|A+−|2 + |Ā+−|2
2

+
1

1 + x2
d

· |A+−|2 − |Ā+−|2
2

]

, (15b)

where |Al| = |〈l+X−|H|B0
d〉|

CPT
= |〈l−X+|H|B̄0

d〉|, and xd = ∆m/Γ ≈ 0.71 is a measure of

B0
d − B̄0

d mixing [8]. At present, the semileptonic decays B0
d → l+X− and B̄0

d → l−X+

have been well reconstructed [8, 20], thus |Al| is determinable independent of the above joint

decays. Once Pr(l±X∓; π+π−) are measured, we shall be able to determine |A+−| and |Ā+−|
through eq. (15). In practice, the measurements of Pr(l±X∓; π+π−) can be realized either

by the symmetric e+e− collider running at Cornell [20] or by the forthcoming asymmetric B

factories. Similarly, |A00| and |Ā00| can be determined.

5. Discussions and conclusion

In the first part of this work, we have qualitatively illustrated the effect of IFSI’s on the

isospin triangles of B → ππ. The determination of α from these decay modes may suffer

8



from large mixing between the I = 0 states of ππ and DD̄. A quantitative estimation of

IFSI’s needs much progress in theory and more data in experiments.

In the assumption that the IFSI’s in B → ππ are insignificant enough to be negligible,

we have presented a self-consistent and time-independent approach to approximately isolate

the weak phase α and the penguin amplitude of Bd → ππ. Here it is worthwhile to comment

briefly on the uncertainties with this approach. In the first approximation, we neglected

the electroweak penguins in B → ππ. As pointed out in ref. [7], the effects of electroweak

penguins on the decays via b̄ → ūud̄ or b̄ → d̄ are at most O(λ2) of the dominant tree-level

amplitude T or O(λ) of the strong penguin amplitude P . Hence it is unlikely that the validity

of the isospin analysis in ref. [3] and our present method are significantly affected by the

neglect of the electroweak penguins. On the other hand, the approximation of neglecting

those exchange- and annihilation-type topologies in B → ππ is expected to be safe for some

dynamical reasons [13]. The approach to test the reliability of this kind of approximations

has been suggested in ref. [11]. The factorization approximation used to parametrize the

decay amplitudes of B → ππ as eq. (8) is equivalent to neglecting the difference between

the I = 0 and I = 2 interactions in the final states. The validity of this assumption can be

examined by the forthcoming experimental data. The assumption that the strong penguin

diagram is dominated by the top-quark loop can be interpreted as follows. On the basis of

the standard model with three families of quarks, the penguin contributions with u and c

quarks in the loop are equal in magnitude up to O(m2
c/m

2
b) apart from their CKM factors.

Thus the top-quark loop dominates the penguin amplitude to the same degree of accuracy,

i.e. O(≤ 10%), guaranteed by the CKM unitarity. Indeed this is a good approximation to

obtain the lowest order magnitudes of α, δ and P . When the time-dependent measurements

of Bd → ππ become available at an asymmetric B factory to allow for the more precise

isospin analysis proposed by Gronau and London [3], one can check the difference between

our results and theirs. The corresponding deviation should definitely constrain the reliability

of the top-quark dominance and the factorization approximation assumed in our work.

By now the experimental sensitivity to the penguin contribution in Bd → ππ has been

analyzed based on the isospin triangle relations [3] and under the circumstance of asymmet-

ric B-meson factories [21]. Such an analysis is also applicable to the simplified approach

proposed in this work. It is concluded that determining the weak and strong phases associ-

ated with the penguin amplitude to a satisfactory accuracy is experimentally feasible in the

near future. Finally we stress again that our approach is time-independent, and thus it can

be confronted with all the forthcoming measurements of B → ππ, no matter whether they

9



are time-integrated or time-dependent.
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Figure 1: The dominant tree-level and strong penguin diagrams for B0
d → π+π−, B+

u →
π+π0, and B0

d → π0π0.
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