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ABSTRACTThis paper addresses the problem of resolving virtual methodand interfa
e 
alls in Java byte
ode. The main fo
us is ona new pra
ti
al te
hnique that 
an be used to analyze largeappli
ations. Our fundamental design goal was to developa te
hnique that 
an be solved with only one iteration, andthus s
ales linearly with the size of the program, while at thesame time providing more a

urate results than two popularexisting linear te
hniques, 
lass hierar
hy analysis and rapidtype analysis.We present two variations of our new te
hnique, variable-type analysis and a 
oarser-grain version 
alled de
lared-typeanalysis. Both of these analyses are inexpensive, easy to im-plement, and our experimental results show that they s
alelinearly in the size of the program.We have implemented our new analyses using the Soot frame-work, and we report on empiri
al results for seven ben
h-marks. We have used our te
hniques to build a

urate 
allgraphs for 
omplete appli
ations (in
luding libraries) andwe show that 
ompared to a 
onservative 
all graph builtusing 
lass hierar
hy analysis, our new variable-type analy-sis 
an remove a signi�
ant number of nodes (methods) and
all edges. Further, our results show that we 
an improveupon the 
ompression obtained using rapid type analysis.We also provide dynami
 measurements of monomorphi
 
allsites, fo
using on the ben
hmark 
ode ex
luding libraries.We demonstrate that when 
onsidering only the ben
hmark
ode, both rapid type analysis and our new de
lared-typeanalysis do not add mu
h pre
ision over 
lass hierar
hy anal-ysis. However, our �ner-grained variable-type analysis does�All work reported in this paper was done while all authorswere at M
Gill University. Currently Vijay Sundaresan is atIBM Toronto, Chrislain Raza�mahefa is at the University ofGeneva, and Patri
k Lam is at MIT.

resolve signi�
antly more 
all sites, parti
ularly for pro-grams with more 
omplex uses of obje
ts.
1. INTRODUCTIONAs the Java(tm) programming language and Java byte
odebe
omes more popular, it is be
oming important to provideoptimizing 
ompilers and more eÆ
ient runtime systems.One important optimization problem for Java, as for otherobje
t-oriented languages, is that of stati
ally determiningwhat methods 
an be invoked by virtual method 
alls. Theresults of su
h an analysis 
an be used to redu
e the 
ostof virtual method 
alls, to dete
t potential sites for methodinlining, and to provide an a

urate 
all graph. A morea

urate 
all graph 
an be used to: (1) 
ompa
t appli
ationsby removing methods that are never 
alled, and (2) improvethe eÆ
ien
y and a

ura
y of subsequent interpro
eduralanalyses.Of 
ourse, virtual method resolution is not a new problem.It has been widely studied for a variety of obje
t-orientedlanguages[7, 8, 9, 10, 12, 14, 18, 16, 21, 24, 28, 29, 30℄.The fo
us of this paper is the development and evaluationof a new simple and inexpensive te
hnique for resolving vir-tual method 
alls in Java. A main design obje
tive was todevelop a te
hnique that would produ
e a solution in oneiteration and thus s
ales linearly in the size of the program.Further, we wanted a te
hnique whi
h was simple, easy toimplement, 
ould be applied to large Java appli
ations, butyet 
ould also yield more pre
ision than two eÆ
ient exist-ing te
hniques. In parti
ular, we wanted to measure stati
and dynami
 improvements over 
lass hierar
hy analysis[8,14, 21℄ and rapid type analysis[8℄.Our te
hnique is based on an analysis that builds a typepropagation graph where nodes represent variables and edgesrepresents 
ow of types due to assignments, in
luding theimpli
it assignments due to method invo
ation and methodreturns. The �rst variation is 
alled de
lared-type analysis,where the nodes represent the de
lared type of variables. Forthis analysis the type propagation graph 
ontains at mostone node for ea
h 
lass in the appli
ation. The se
ond vari-ation is 
alled variable-type analysis and it is �ner-grainedand more a

urate, although still eÆ
ient. In this variationthe type propagation graph 
ontains at most one node forea
h variable with an obje
t (referen
e) type. Both of theseanalyses 
an be thought of as more re�ned versions of rapid



type analysis. Whereas rapid type analysis simply 
olle
tsthe types of all obje
ts allo
ated, and uses this to prunethe 
all graph, de
lared-type and variable-type analysis �ndwhi
h types of obje
ts rea
h ea
h variable (i.e. whi
h allo-
ated obje
ts might be assigned to this variable).In keeping with our desire for a simple and eÆ
ient analy-sis, the analyses were 
arefully designed so that one iterationover the type propagation graph results in a safe solution.Further, our algorithm is simple to implement and 
ould eas-ily be added to 
ompilers that already have 
lass hierar
hyanalysis and/or rapid type analysis.All of the analyses were implemented using the Soot frame-work that provides Jimple, a typed three-address 
ode repre-sentation of Java byte
ode [1℄. Sin
e our framework operateson byte
ode, our analysis is not restri
ted to Java, but 
anbe used for byte
ode produ
ed from a wide variety of lan-guages. The ben
hmarks used in our evaluation are meantto be representative of real appli
ations and they in
ludefour SPECjvm ben
hmarks plus three other large, obje
t-oriented ben
hmarks. We use these ben
hmarks to showboth stati
 and dynami
 results that illustrate the a

ura
yof our analyses. When 
onsidering the whole appli
ations,in
luding library 
ode, we found that the existing analysesdid perform quite well, but our variable-type gave additionalimprovements. When 
onsidering only the ben
hmark 
ode,fa
toring out the library 
ode, we found that the existinganalyses performed poorly, but our variable-type analysisperformed signi�
antly better.The remainder of this paper is stru
tured as follows. In Se
-tion 2 we give an overview of Soot and Jimple, and we givea very brief summary of 
lass hierar
hy analysis and rapidtype analysis as implemented in our system. In Se
tion 3 weoutline variable-type analysis and the 
oarser-grain version,de
lared-type analysis. We present our experimental frame-work and empiri
al measurements in Se
tion 4. Finally, inSe
tion 5 we dis
uss related work, 
on
entrating mostly onother eÆ
ient te
hniques, and in Se
tion 6 we give our 
on-
lusions and future work.
2. FOUNDATIONS
2.1 The Soot FrameworkOur analyses are built on top of the Jimple intermediate rep-resentation, whi
h is part of the Soot framework. The Sootframework is a set of Java Appli
ation Programming Inter-fa
es (APIs) for manipulating Java 
ode in various forms [1℄.We analyze 
omplete appli
ations, so our implementationworks by �rst reading all 
lass �les that are required by anappli
ation, starting with the main root 
lass and re
ursivelyloading all 
lasses used in ea
h newly loaded 
lass. As ea
h
lass is read, it is 
onverted into the Jimple intermediaterepresentation. After 
onversion, ea
h 
lass is stored in aninstan
e of a SootClass, whi
h in turn 
ontains informationsu
h as its name, its super
lass, a list of interfa
es that it im-plements, and a 
olle
tion of SootFields and SootMethods.Ea
h SootMethod 
ontains information in
luding its name,modi�er, parameters, lo
als, return type and a list of Jimplethree-address 
ode instru
tions. All parameters and lo
alshave de
lared types [22℄. Figure 1(a) shows a Java method,and Figure 1(b) shows a textual representation of the Jimplerepresentation. It is important to note that we produ
e the

Jimple intermediate representation dire
tly from the Javabyte
ode in 
lass �les, and not from the high-level Java pro-grams. This means that we 
an analyze Java byte
ode thathas been produ
ed by any 
ompiler, optimizer, or other tool.After analysis and transformation we 
onvert the Jimple rep-resentation ba
k to Java byte
ode, making our entire systema byte
ode to byte
ode optimizer[37℄.In terms of our analysis, there are several important pointsto note. Firstly, there are relatively few kinds of Jimplestatements, and ea
h statement has a simple format. Thus,our analyses 
an be spe
i�ed by giving the rules for ea
hkind of Jimple statement. Further, all operands in Jim-ple are either variable referen
es or 
onstants. Sin
e wehave a de
lared type for ea
h variable, and ea
h 
onstanthas a type, our analyses 
an use this type information in astraightforward manner. Another important point is thatJimple splits variables a

ording to D/U and U/D webs, sothat two unrelated variables of the same name will not be
onfused in our analyses.Figure 1(b) shows examples of assignment statements, 
on-ditional statements, method 
alls, and return statements.Also note that at the beginning of ea
h method there arespe
ial identity statements that provide expli
it assignmentsfrom parameters (in
luding the impli
it \this" parameter),and lo
als.
2.2 Class Hierarchy Analysis and the Conser-

vative Call GraphThe obje
tive of all of our analyses is to determine, at 
ompile-time, a 
all graph with as few nodes and edges as possible.All of our analyses start with a 
onservative 
all graph thatis built using 
lass hierar
hy analysis.
2.2.1 Class Hierarchy AnalysisClass hierar
hy analysis is a standard method for 
onser-vatively estimating the run-time types of re
eivers [8, 14,21℄. Given a re
eiver o of with a de
lared type d, hierar-
hy types(d) for Java is de�ned as follows:� If re
eiver o has a de
lared 
lass type C, the possi-ble run-time types of o, hierar
hy types(C), in
ludes Cplus all sub
lasses of C.� If re
eiver o has a de
lared interfa
e type I, the possiblerun-time types of o, hierar
hy types(I), in
ludes: (1)the set of all 
lasses that implement I or implement asubinterfa
e of I, whi
h we 
all implements(I), plus (2)all sub
lasses of implements(I).To implement this analysis, we simply build an internal rep-resentation of the inheritan
e hierar
hy, and then we use thishierar
hy to 
ompute the appropriate hierar
hy types sets.
2.2.2 Call GraphsFor our purposes a 
all graph 
onsists of nodes and dire
tededges. For a single-threaded appli
ation, the 
all graph mustin
lude one node for ea
h method that 
an be rea
hed by a
omputation starting from the main method. If the program



publi
 int stepPoly(int x){ if(x < 0){ System.out.println("error");return -1;}else if(x <= 5)return x * x;elsereturn x * 5 + 16;}
publi
 int stepPoly(int){ java.io.PrintStream r1;Example r0;int i0, i1, i2, i3;r0 := �this;i0 := �parameter0;if i0 >= 0 goto label0;r1 = java.lang.System.out;r1.println("error");return -1;label0:if i0 > 5 goto label1;i1 = i0 * i0;return i1;label1:i3 = i0 * 5;i2 = i3 + 16;return i2;}(a) Java sour
e (b) Jimple representationFigure 1: Example of Jimpleis an applet or has threads, then the 
all graph must alsoin
lude all methods that 
an be rea
hed starting at any entrypoint. An example 
all graph is given in Figure 2(b).Ea
h node in the 
all graph 
ontains a 
olle
tion of 
all sites.Consider a methodM from 
lass C with nmethod 
alls in itsbody. Method M is represented in the 
all graph by a nodelabeled C:M , and this node will 
ontain entries for ea
h 
allsite, whi
h we denote C:M [1℄ to C:M [n℄. In our example, the
all graph node for method C.main 
ontains two 
all sites,C:main[1℄ whi
h is a.m(), and C:main[2℄ whi
h is b.m().Edges in the 
all graph go from 
all sites within a 
all graphnode, to 
all graph nodes. The 
all graph must 
ontainan edge for ea
h possible 
alling relationship between 
allsites and nodes. If it is possible that 
all site C:M [i℄ 
allsmethod C0:M 0, then there must be an edge between C:M [i℄and C0:M 0 in the 
all graph. In the example 
all graph thereare three edges from the 
all site a.m() 
orresponding to thefa
t that the virtual 
all a.m() might resolve to 
alls to A.m,B.m or C.m.Spe
ial attention is required when adding 
alling edges froma virtual method or interfa
e 
all, and this is done using anapproximation of the run-time types of the re
eiver. Givena virtual 
all site C:M [i℄ of the form o:m(a1; : : : ; an), anda set of possible runtime types for re
eiver o, 
all this run-time types(o), we �nd all possible targets of the 
all as fol-lows. For ea
h type Ci in runtime types(o), look up the 
lasshierar
hy starting at Ci until a 
lass Ctarget is found thatin
ludes a method Ctarget:m that mat
hes the signature ofm. The edge from C:M [i℄ to Ctarget:m is added to the 
allgraph.Consider the the 
all a.m() in the example in Figure 2. Ifthe possible runtime types for re
eiver a in
ludes fA;B;Cg,then in ea
h 
ase a mat
hing method m is found in the 
lass

itself (without looking further up the hierar
hy), and thusthe 
all edges to A.m, B.m, and C.m are added. However,sometimes the target method is found further up the hier-ar
hy. Consider the 
all this.toString(). If the possibleruntime types for the re
eiver this are fA;B;Cg, then look-ing up the hierar
hy in ea
h 
ase will result in the targetObje
t.toString().Note that a 
all graph may 
ontain spurious nodes andedges. Spurious edges may be in
luded for virtual method
alls. When adding 
all edges from a virtual method 
all siteC:M [i℄ of the form o:m(a1; : : : ; an), an edge must be pla
edbetween this 
all site and every method C0:m 
orrespondingto the possible run-time types of the re
eiver o. If we usea 
onservative approximation of the run-time types for o,then we may in
lude spurious types in our approximation,and this may lead to spurious edges. In our example, if thetype of the re
eiver a in the 
all a.m() 
an only have a run-time type of A, then the edges to B.m and C.m are spurious.Spurious nodes are in
luded when all in
oming edges to thenode are spurious. In the example, if the edge from a.m()to C.m is spurious, then the node C.m would also be
omespurious. Note that entire subpie
es of the 
all graph 
ouldbe
ome spurious if the subgraph be
omes dis
onne
ted fromthe roots of the graph. In the example, if the edge froma.m() to A.m was spurious, then both the nodes for A.m andObje
t.toString be
ome spurious.The analyses presented in this paper are designed to redu
ethe number of spurious edges and nodes by providing betterapproximations of the runtime types of re
eivers.
2.2.3 Building the Conservative Call GraphIn our implementation, 
all graphs are built iteratively usinga worklist strategy. The worklist starts with nodes for allpossible entry points (for example, main, start, run). Asea
h node (method) is added to the 
all graph, edges from




lass A extends Obje
t {String m() {return(this.toString());}}
lass B extends A {String m() { ... }}
lass C extends A {String m() { ... }publi
 stati
 void main(...) {A a = new A();B b = new B();String s;...s = a.m();s = b.m();}}
m()

B

m()
A

C
m()

main()

Object
toString()

Class Hierarchy Call Graph

this.toString()

a.m() b.m()

C.main

A.m B.m C.m

Object.toString

(a) Example Program (b) Class Hierar
hy and Call GraphFigure 2: Example of a 
onservative 
all graphthe 
all sites in the node are also added. If the target of anedge is not already in the 
all graph, then it is added to the
all graph and to the worklist. Conservative 
all graphs arebuilt using hierar
hy types as the estimate for runtime typesfor determining the edges from virtual method 
all sites.Consider the example in Figure 2. The 
onservative 
allgraph starts with the entry method C.main whi
h in
ludestwo 
all sites a.m() and b.m(). Next, edges are added froma.m(). The type of re
eiver a is estimated using hierar-
hy analysis on the de
lared type of a, hierar
hy types(A)=fA,B,Cg. For ea
h element of this set, the appropriatemethod m is lo
ated, leading to three 
all edges to A.m, B.mand C.m. For the 
all site b.m(), the de
lared type of b is B,hierar
hy types(B)=fBg, and so there is only one one edgeto B.m. There is one remaining 
all site, this.toString()whi
h is inside method A.m. The de
lared type of this isA, and hierar
hy types(A)= fA,B,Cg. However, in this 
aseall three types lead to the same 
all edge to the methodObje
t.toString(). This illustrates the point that a tighterestimate of run-time types may not ne
essarily lead to feweredges.In our work we use the number of 
all edges from a 
all site(and not the number of run-time types of the re
eiver) todetermine if the 
all site is monomorphi
 or polymorphi
. Ifthere is only one edge from a 
all site, we 
ategorize the 
allsite as monomorphi
, whereas if there are two or more edgeswe 
ategorize the 
all site as polymorphi
. In the 
all graphin Figure 2, the 
all a.m() is polymorphi
, whereas the 
allsb.m() and this.toString() are monomorphi
.
2.3 Rapid Type AnalysisRapid type analysis [8℄ is a very simple way of improvingthe estimate of the types of re
eivers. The observation isthat a re
eiver 
an only have a type of an obje
t that hasbeen instantiated via a new. Thus, one 
an 
olle
t the set ofobje
t types instantiated in the program P, 
all this instan-tiated types(P). Given a re
eiver o with de
lared type C withrespe
t to program P, we 
an use rapid types(C,P) = hier-

ar
hy types(C) \ instantiated types(P) as a better estimateof the runtime types for o.As an example, 
onsider the program P given in Figure 2(a),and assume that the program 
ontains instantiations of ob-je
ts of type A and B. Now 
onsider the 
all site a.m(),where a has de
lared type A. In this 
ase we would userapid types(P,A) = fA,Bg to �nd the runtime types for re-
eiver a. This leads to only two 
all edges, to A.m and toB.m. So, using rapid type analysis the 
all graph would notin
lude the 
all edge to C.m, nor would it in
lude the nodefor C.m.This parti
ular version of rapid type analysis should be 
alledpessimisti
 rapid type analysis sin
e it starts with the 
om-plete 
onservative 
all graph built by CHA and looks forall instantiations in method in that 
all graph. This may,therefore, �nd an instantiation whi
h is in a method thatshould really be removed from the 
all graph. The origi-nal approa
h suggested by Ba
on and Sweeney [8℄ is opti-misti
 rapid type analysis. In the optimisti
 approa
h the
all graph is iteratively 
reated, and only instantiations inmethods already in the 
all graph are 
onsidered as possi-ble set for 
omputing instantiated types(P). We have imple-mented both variations and give experimental results 
om-paring them in Se
tion 4.
3. VARIABLE-TYPE AND DECLARED-TYPE

ANALYSESRapid type analysis 
an be 
onsidered to be a very 
oarse-grain me
hanism for approximating whi
h types rea
h a re-
eiver of a method invo
ation. In e�e
t, rapid type analysissays that a type A rea
hes a re
eiver o if there is an in-stantiation of an obje
t of type A (i.e. an expression newA()) anywhere in the program, and A is a plausible typefor o using 
lass hierar
hy analysis. In this se
tion we pro-pose two analyses that result in �ner-grain approximationsby taking into 
onsideration 
hains of assignments betweeninstantiations of A and the re
eiver o.



Assuming an intermediate form like Jimple, where all 
om-putations are broken down into simple assignments, and as-suming no aliasing between variables, we 
an state the fol-lowing property.1 For a type A to rea
h a re
eiver o theremust be some exe
ution path through the program whi
hstarts with a 
all of a 
onstru
tor of the form v = newA()followed by some 
hain of assignments of the form x1 =v; x2 = x1; : : : ; xn = xn�1; o = xn. The individual assign-ments may be regular assignment statements, or the impli
itassignments performed at method invo
ations and methodreturns.We propose two 
ow-insensitive approximations of this rea
h-ing-types property. Both analyses pro
eed by: (1) buildinga type propagation graph where nodes represent variables,and ea
h edge a ! b represents an assignment of the form b= a, (2) initializing rea
hing type information generated byassignments of the form b = new A() (i.e. the node asso
i-ated with b is initialized with the type A) and, (3) propa-gating type information along dire
ted edges 
orrespondingto 
hains of assignments.For a program P , ea
h variable a with an obje
t (referen
e)type is asso
iated with some node in the type propagationgraph, 
alled representative(a). After propagating the types,ea
h node n in the type propagation graph is asso
iated witha set of types, 
alled rea
hing types(n). Thus, after propa-gating types we 
an �nd out the set of types rea
hing anyvariable. For building 
all graphs we are parti
ularly inter-ested in types rea
hing variables used as re
eivers. Given are
eiver o, with de
lared type C, we approximate the run-time types of o using rea
hing types(representative(o)) \ hi-erar
hy types(C). Note that we �lter out impossible rea
hingtypes by interse
ting with possible types as indi
ated by hi-erar
hy types.In the following subse
tions we des
ribe the analysis in moredetail. We �rst present the more a

urate analysis, 
alledvariable-type analysis, where the representative for a variablea is the name of a, and then explain a 
oarser-grain variant
alled de
lared-type analysis where the representative for ais the de
lared type of a.
3.1 Variable-type analysisVariable type analysis uses the \name" of a variable as itsrepresentative. In Jimple we 
an have three kinds of vari-able referen
es (more 
omplex referen
es are simpli�ed intoa 
ombination of these simple ones), and we assign repre-sentative names as follows:Ordinary referen
es: are of the form a, and refer to lo-
als or parameters. The name C.m.a is used as ourrepresentative, where C is the en
losing 
lass and m isthe en
losing method.Field referen
es: are of the form a.f where a 
ould be alo
al, a parameter, or the spe
ial identi�er this. Weuse as the representative the name C.f where C is thename of the 
lass de�ning �eld f. Note that we ig-nore a, so this means that we are approximating all1We dis
uss why we do not have to 
onsider aliasing in Se
-tion 3.1.2.

instan
es of obje
ts with this �eld by one representa-tive node in the type propagation graph.Array referen
es: are of the form a[x℄, where a is a lo
alor parameter, and x is a lo
al, parameter, or 
onstant.We treat arrays as one large aggregate, so the nameC.m.a is used, similar to the ordinary referen
e 
ase.
3.1.1 Constructing the type propagation graphGiven a program P , where P 
onsists of all 
lasses that arereferred to in the 
onservative 
all graph, nodes are 
reatedas follows:� for every 
lass C that is in
luded in P� for every �eld f in C, where f has anobje
t (referen
e) type
reate a node labeled with C:f� for every method C:m that is in
luded in the
onservative 
all graph of P� for every formal parameter pi of C:m,where pi has an obje
t type
reate a node labeled C:m:pi� for every lo
al variable li of C:m,where li has an obje
t type
reate a node labeled C:m:li� 
reate a node labeled C:m:this torepresent the impli
it �rst parameter� 
reate a node labeled C:m:return torepresent the return value C:mNote that the last two rules 
an be optimized to addthe C:m:this node only when the method refers tothis, and to add C:m:return only when the methodreturns an obje
t type. This does not a�e
t the a
-
ura
y of the result, it just leaves out nodes that willhave no edges to them.On
e all of the nodes have been 
reated, we add edges forall assignments that involve assigning to a variable withan obje
t type. These may be either expli
it assignmentsvia assignment statements, and impli
it assignments due tomethod invo
ation and returns. Edges are added as follows:Assignment Statements: are all in the form lhs = rhs;or lhs = (C) rhs;, where the lhs and rhs must be anordinary, �eld or array referen
e. For ea
h statementof this form, we add a dire
ted edge from the repre-sentative node for rhs to the representative node oflhs.Method Calls: are in the form of lhs = o:m(a1; a2; : : : ; an);or o:m(a1; a2; : : : ; an);. The re
eiver o must be a lo-
al, a parameter, or the spe
ial identi�er this. Ea
hargument must be a 
onstant, a lo
al, or parametername.The method 
all 
orresponds to some 
all site, 
allit C.m[i℄, in the 
onservative 
all graph. Assignmentedges are added as follows:for ea
h C0:m0 that is the target of C:m[i℄ inthe 
onservative 
all graph



� add an edge from the representative of oto C0:m0:this� if the return type is not voidadd an edge from C0:m0:return tothe representative for lhs� for ea
h argument ai that has obje
t typeadd an edge from the representative of ai tothe rep. of the mat
hing parameter of C0:m0.Note that we handle native methods by summarizingtheir e�e
t on our analyses. None of the ben
hmarksfor whi
h we present results have any native methods;but there are some native methods in the Java librarythat are 
alled by these ben
hmarks. We have exam-ined the 
ode for these Java library native methods inthe open sour
e Ka�e OpenVM [2℄ in order to �nd theappropriate summary.In Figure 3(a) we give the important parts of an exampleprogram. Note that sin
e our analysis is 
ow-insensitive,the order of assignments is not important, nor is 
ontrol
ow. Thus, this list of assignments represents a programthat 
ontains those assignments. This program has onlyordinary variables of the form a1, a2, a3, b1, b2, b3, 
.2Figure 3(b) shows the initial graph. There is one node pervariable, and one edge per assignment. For example, theassignment a3 = b3; 
orresponds to the edge from b3 toa3.
3.1.2 AliasesAll of the assignment rules assume that a variable refer-en
e, and all of its aliases, are represented by exa
tly onenode in the type propagation graph. That is, if a and bare aliases, then they should 
orrespond to the same nodein the graph. In fa
t, this is one of the key properties thatmakes our analysis simple. This property is true for or-dinary referen
es be
ause lo
als and parameters 
annot bealiased in Java.3 It is also true for �eld referen
es be
ausewe represent all instan
es of obje
ts with that �eld as onenode in the graph. So, if two �eld referen
es a.f and b.fare aliased (a and b refer to the same obje
t) it is �ne be-
ause we are representing them both with a �eld 
alled C.f.However, it is not true for array referen
es be
ause severaldi�erent variable names may refer to the same array. Fur-ther, referen
es to arrays 
an be stored in variables withtype java.lang.Obje
t. For example, 
onsider the follow-ing small example: A[℄ a = new A[10℄; Obje
t o1 = a;Obje
t o2 = o1; A[℄ b = (A[℄) o2; .In this 
ase a, o, o1, o2 and b are all referring to the samearray. So, an assignment to a[i℄ is also assigning to b[i℄.Thus, when adding edges for assignments of the form lhs= rhs, where both sides are of type java.lang.Obje
t, orwhen at least one side has an array type, edges are added inboth dire
tions between the representatives of rhs and lhs.This en
odes the aliasing relationship, and both nodes are2In the a
tual analysis the names are quali�ed by their sur-rounding 
lass name and method name, we use the unqual-i�ed variable name to keep our example simple.3That is, two lo
als a and b must represent di�erent lo
a-tions, and there is no me
hanism for getting a pointer tothose lo
ations.

guaranteed to be assigned the same solution. We did not �ndthis situation o

urring very frequently in our ben
hmarks.
3.1.3 Size of the propagation graphThe type propagation graph in
ludes at most 2M+P+L+Fnodes, where M is the number of methods, P is the totalnumber of parameters with an obje
t type, L is the totalnumber lo
als with an obje
t type, and F is the number of�elds with an obje
t type. Thus, the number of nodes growslinearly with the size of the program.The number of edges is slightly more diÆ
ult to estimate.There is at most one edge for ea
h assignment statement inthe program. However, the number of edges due to method
alls depends on the number of targets for 
all sites. In theworst 
ase a method 
all may have C targets, where C isthe number of 
lasses in the program under analysis. Thus,ea
h method 
all 
ould result in C�(2+num params) edgesbeing added to the type propagation graph. So, it is possibleto have O(C �M
) edges, where C is the number of 
lassesand M
 is the number of method 
alls in the program underanalysis. In pra
ti
e we do not �nd this behavior, and infa
t the graphs are quite sparse (see Table 4 in Se
tion 4).
3.1.4 Initializing and propagating typesIn the initialization phase, we visit ea
h statement of theform lhs = new A(); or lhs = new A[n℄;. For ea
h su
hstatement we add the type A to the Rea
hingTypes set ofthe representative node for lhs. Figure 3(
) shows the typeinitialization for the example program.After initialization, we propagate types. This is a

om-plished in two phases. The �rst phase �nds strongly-
onne
ted
omponents in the type propagation graph. Ea
h strongly-
onne
ted 
omponent is then 
ollapsed into one supernode,with Rea
hingTypes of this 
ollapsed node initialized to theunion of all Rea
hingTypes of its 
onstituent nodes. Figure3(d) shows two nodes 
ollapsed. In this 
ase neither nodehad an initial type assignment, so the 
ollapsed node has notype assignment either.After 
ollapsing the strongly-
onne
ted 
omponents, the re-maining graph is a DAG, and types are propagated in asingle pass starting from the roots in a topologi
al man-ner, where a node is pro
essed only after all of its prede-
essors have already been pro
essed. Note that both thestrongly-
onne
ted 
omponent dete
tion and propagationon the DAG has 
omplexity of O(max(N;E)) operations,where the most expensive operation is a union of two Rea
h-ingType sets.Figure 3(e) shows the �nal solution for our small example.From this solution we 
an infer that variables a1, a2, a3and b3 have a rea
hing type A (i.e. they 
an only refer toobje
ts of type A). Variable b2 has a rea
hing type B, 
 hasa rea
hing type of C, and b3 has a rea
hing type of A,B.
3.2 Declared-Type AnalysisDe
lared-type analysis pro
eeds exa
tly as variable-type anal-ysis, ex
ept for the way in whi
h we allo
ate representativenodes for variables. In de
lared-type analysis we use the de-
lared type of the variable as the representative, instead of
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Figure 3: Example of a variable-type analysisthe variable name. Basi
ally, this is just putting all variableswith the same de
lared type into the same equivalen
e 
lass.Figure 4 shows the de
lared-type analysis for same programfor whi
h we previously 
omputed the variable-type analy-sis. Note that the size of the graph is 
onsiderably smaller,but also the �nal answer is not as pre
ise. The de
lared-typeanalysis 
on
luded that all variables with de
lared type ofC must point to C obje
ts. However, it 
onservatively 
on-
ludes that variables with a de
lared type of A or B mightpoint to A, B or C obje
ts. In Se
tion 4 we present empir-i
al results to evaluate these two analyses with respe
t toa

ura
y and the size of the graph problem to be solved.
3.3 TradeoffsWe have designed our approa
h to work well with Java, par-ti
ularly for large, obje
t-oriented ben
hmarks. In order tokeep our algorithm simple and eÆ
ient, yet e�e
tive, wehave made several design de
isions:Avoiding solving the aliasing problem: We avoid hav-ing to solve the general aliasing problem by represent-ing all instan
es of �eld f of 
lass C as one variablename (as des
ribed in se
tion 3.1.2). This keeps theanalysis simple. Arrays do introdu
e one restri
tedsort of aliasing, and we handle this by introdu
ingbidire
tional edges for assignments that may involve

arrays.No killing based on 
asts or de
lared type: For ea
h as-signment statement lhs = rhs or lhs = (C)rhs, wealways propagate all types from the node for rhs tothe node for lhs. One 
ould imagine an algorithm thatremoved impossible types based on the de
lared typeof rhs or the type given in the 
ast expression (C).However, this would lead to information being killedalong some edges, and it would require either an itera-tive worklist solver or a more 
omplex 
onstraint solver(i.e. it would no longer be possible to 
ollapse strongly
onne
ted 
omponents and solve simply in one passover the graph).It should be noted that we do �lter out impossibletypes after we have the �nal solution. That is, forea
h variable we use the de
lared type of the variableand 
lass hierar
hy analysis to eliminate any rea
hingtypes that are not possible.A pessimisti
 algorithm: Our algorithm is pessimisti
 inthe sense that it adds edges for all method 
alls thatare indi
ated by the 
onservative 
all graph. Thismeans that we may in
lude spurious edges, and typesmay propagate along those edges. The opposite ap-proa
h would be to optimisti
ally assume that method
all of the form o:m() 
ould only 
all those methods
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(a) Program Figure 4: Example of a de
lared-type analysisthat 
orrespond to the types 
urrently rea
hing o atea
h step of the analysis. This set would in
rease asthe analysis pro
eeds, and on
e again iteration wouldbe required.We 
an improve our pessimisti
 algorithm by givingit a better 
onservative 
all graph to start with. Weexperimented with two variations: (1) using the 
allgraph generated using optimisti
 rapid type analysisas input to variable-type analysis; and (2) using theoutput of variable-type analysis as the input for a se
-ond iteration of variable-type analysis.An interpro
edural, whole program, approa
h: Ano-ther alternative to our approa
h is to propagate rea
h-ing type information intrapro
edurally, and perform
onservative approximations for the e�e
t of method
alls. By studying the more obje
t-oriented ben
h-marks, we found that many of the rea
hing types werereally being propagated interpro
edurally, and so wedesigned our analysis to work on a type propagationgraph that en
odes the whole program, with all edgesfor method 
alls and returns.Based on a typed 3-address representation: Our ap-proa
h was implemented using Jimple, an intermedi-ate representation that provides expli
it names andtypes for all lo
al variables. This allows our analysisto be very simple. Sin
e all assignments are betweenexpli
it, named lo
ations, we 
an represent the typepropagation graph in an obvious fashion. The fa
tthat lo
al variables have a type is also useful for tworeasons [22℄. First, it makes the de�nition of de
lared-type analysis trivial. Se
ond, it helps to improve thepre
ision of the 
onservative 
all graph, sin
e the de-
lared type of a re
eiver may be tighter than the typein the signature en
oded in the 
orresponding invoke-virtual or invokeinterfa
e byte
ode instru
tion.

4. EXPERIMENTAL RESULTSWe have experimented with seven ben
hmarks, as outlinedin Table 1. The four SPECjvm ben
hmarks in
lude raytra
ewhi
h is a graphi
s raytra
er, 
ompress whi
h is a 
ompres-sion program based on a modi�ed Lempel-Ziv method, ja
kwhi
h is a Java parser generator based on the Purdue Com-piler Constru
tion Tool Set (PCCTS), and java
 whi
h isthe Java 
ompiler from Sun's JDK 1.0.2. The other threeben
hmarks in
lude sable

 whi
h is a 
ompiler front endgenerator written in Java[3℄, soot is an earlier version ofour 
ompiler framework[1℄, and pizza is the Pizza 
ompiler[4℄. For all ben
hmarks, the Java library used was from theBla
kdown linux port, JDK1.1.7.The statisti
s in Table 1 provide an insight into the nature ofthe ben
hmarks for whi
h we have 
ondu
ted experiments.In the 
olumn labeled # Stmts, we show the number ofJimple statements in the whole appli
ation (ben
hmark plusJava libraries a

essed by the appli
ation), and the num-ber of Jimple statements in only the ben
hmark (withoutlibraries). In the 
olumn labeled Hierar
hy we give the av-erage and maximum depth of the inheritan
e hierar
hy forthe whole appli
ation and ben
hmark only. These numbersnot only measure the extent of obje
t orientedness of thewhole appli
ation, but are also useful in dis
overing whetherit is the ben
hmark itself that has been written in an obje
toriented manner, or if the Java libraries are the sour
e ofobje
t orientedness. For example, we 
an see that raytra
eand 
ompress are not very obje
t-oriented. The 
olumn la-beled Classes and Interfa
es gives the number of 
lassesand interfa
es that 
ome from the library, the ben
hmark
ode only, and the overall total.Table 2 gives a summary of the 
onservative 
all graph builtfor ea
h ben
hmark using Class Hierar
hy Analysis (CHA).We have measured the 
onservative 
all graph 
hara
teris-ti
s for the whole appli
ation (in
luding the library) as wellas the portions of the 
all graph related to the ben
hmarkalone. A

ordingly, Table 2 is divided into 2 distin
t parts.



Ben
hmark # Stmts Hierar
hy Classes and Interfa
esavg. depth max. depth library ben
h. wholewhole ben
h. whole ben
h. whole ben
h. only app.lang. name app. only app. only app. only 
lass int. 
lass int. (total)java 205 raytra
e 49239 5347 3.0 1.3 6 3 274 41 34 1 350java 201 
ompress 46619 2727 3.0 1.1 6 2 274 41 21 1 337java 228 ja
k 55107 11215 3.0 1.6 6 3 274 41 62 5 382java 213 java
 69585 25304 3.5 3.2 8 7 277 41 177 5 500java sable

-w 68575 24621 3.2 2.3 6 5 276 41 298 13 628java soot-
 63506 33396 3.3 2.1 6 4 185 11 497 34 727pizza pizza 
ompiler 73130 42805 3.0 1.7 6 5 187 11 207 11 416Table 1: Ben
hmark Chara
teristi
sName Whole Appli
ation Ben
hmark OnlyCall Sites Edges Call Sites EdgesjN j pot. pot. jN j pot. pot.mono. poly. total mono. poly. total mono. poly. total mono. poly. totalraytra
e 1729 6582 377 6959 6576 2591 9167 207 2037 12 2049 2037 46 2083
ompress 1583 5450 369 5819 5444 2556 8000 76 927 6 933 927 30 957ja
k 1857 7191 779 7970 7185 3619 10804 337 2672 396 3068 2672 992 3664java
 2821 10570 1276 11846 10564 13707 24271 1188 5933 848 6781 5933 10306 16239sable

 3737 11151 1332 12483 11140 24553 35693 1955 5920 889 6809 5920 20736 26656soot 2828 11653 1738 13391 11653 25331 36984 2001 9070 1545 10615 9070 22620 31690pizza 2660 13729 799 14528 13729 6024 19753 1756 11115 577 11692 11115 4069 15184Table 2: Conservative Call Graph Chara
teristi
sFirst 
onsider the 
hara
teristi
s of the whole appli
ation,in
luding libraries. Column 1 shows the number of methodsthat are in the 
all graph. Note that this number mea-sures the number of methods that might be 
alled startingat all possible entry points, based on CHA, and does notin
lude methods that 
annot be rea
hed from a root in the
onservative 
all graph. Column 2 shows the number ofmonomorphi
 
all sites in methods in the 
all graph. Themonomorphi
 sites in
lude 
all sites for invokestati
 andinvokespe
ial instru
tions as well as 
all sites for invoke-virtual and invokeinterfa
e instru
tions that have beenresolved to exa
tly one method by CHA. Column 3 showsthe number of potentially-polymorphi
 sites i.e. invoke-virtual and invokeinterfa
e instru
tions that have morethan 1 target after performing CHA. Column 4 shows thetotal number of 
all sites in the whole appli
ation. Column 5shows the number of monomorphi
 edges (edges from mono-morphi
 
all sites), while 
olumn 6 shows the number ofpotentially-polymorphi
 edges (edges from potentially-poly-morphi
 
all sites). Column 7 shows the total number ofedges in the whole appli
ation.Now 
onsider the se
ond part of Table 2, whi
h shows the
hara
teristi
s of the ben
hmark only, not in
luding any li-brary methods. This part of the table in
ludes all methodsfrom the 
all graph that do not belong to the Java library,
all sites inside these methods, and the edges atta
hed tothese 
all sites. These �gures give a 
lear idea about the per-forman
e of CHA on the ben
hmark 
lasses. For example,it is 
lear that there is hardly any s
ope for improvement ofthe ben
hmark portion of the 
all graph in ben
hmarks likeraytra
e or 
ompress, whereas in ben
hmarks like java
,soot, or sable

 there are many unresolved 
all sites.

Table 3 summarizes the e�e
t of applying a variety of te
h-niques on the 
onservative 
all graph. In this table pRTAis pessimisti
 rapid type analysis, oRTA is optimisti
 rapidtype analysis, DTA is de
lared-type analysis, and VTA isvariable-type analysis. We also gave two 
ombinations:oRTA+VTA is the 
ombination of �rst using oRTA to builda pruned 
all graph, and then applying VTA; and VTA+VTAis the result of �rst using one appli
ation of VTA to get apruned 
all graph, and then applying VTA on that prunedgraph.
4.1 Reducing the size of the Conservative Call

GraphOne use of our analyses is to redu
e the size of the 
all graph.Eliminating methods from the 
all graph means that thesemethods do not need to be in
luded in the appli
ation. Thisleads to smaller, 
ompa
ted 
lass �les for appli
ations, orsmaller exe
utables for 
ompilers that translate 
lass �lesfor 
omplete appli
ations to native 
ode. Further, redu
ingmethods and 
all edges results in smaller 
all graphs whi
h
an make subsequent interpro
edural analyses more eÆ
ientand more a

urate. In Table 3, the 
olumns labeled NodesRemoved and Edges Removed summarizes the numberand per
entage of nodes/edges removed for ea
h analysis.Rapid type analysis has been shown to be quite e�e
tivefor C++ ben
hmarks [8℄, parti
ularly for removing unusedmethods and 
all edges from the 
all graph for 
ompleteappli
ations (in
luding libraries). In this 
ase the library
ode often 
ontains many methods that are never 
alled bya parti
ular appli
ation. Our results 
on�rm that rapid typeanalysis also does give a signi�
ant improvement for our Java



Whole Appli
ation Ben
hmark OnlyNodes Edges Callsites Nodes Edges CallsitesRemoved Removed Resolved Removed Removed Resolved(%tot.) (%tot.) (%poly) (%tot.) (%tot.) (%tot.) (%poly) (%tot.)raytra
e pRTA 808 (46%) 3585 (39%) 292 (77%) (4.2%) 15 (7%) 46 (2%) 5 (41%) (0.2%)oRTA 884 (51%) 4128 (45%) 300 (79%) (4.3%) 15 (7%) 46 (2%) 5 (41%) (0.2%)DTA 925 (53%) 4375 (47%) 304 (80%) (4.4%) 18 (8%) 55 (2%) 5 (41%) (0.2%)VTA 1026 (59%) 5200 (56%) 342 (90%) (4.9%) 18 (8%) 68 (3%) 5 (41%) (0.2%)oRTA+VTA 1031 (59%) 5242 (57%) 342 (90%) (4.9%) 18 (8%) 68 (3%) 5 (41%) (0.2%)VTA+VTA 1026 (59%) 5200 (56%) 342 (90%) (4.9%) 18 (8%) 68 (3%) 5 (41%) (0.2%)
ompress pRTA 814 (51%) 3664 (45%) 293 (79%) (5.0%) 11 (14%) 40 (4%) 3 (50%) (0.3%)oRTA 890 (56%) 4207 (52%) 301 (81%) (5.2%) 11 (14%) 40 (4%) 3 (50%) (0.3%)DTA 926 (58%) 4418 (55%) 303 (82%) (5.2%) 16 (21%) 62 (6%) 4 (66%) (0.4%)VTA 1033 (65%) 5214 (65%) 344 (93%) (5.9%) 16 (21%) 70 (7%) 4 (66%) (0.4%)oRTA+VTA 1039 (65%) 5256 (65%) 346 (93%) (5.9%) 16 (21%) 70 (7%) 4 (66%) (0.4%)VTA+VTA 1033 (65%) 5214 (65%) 344 (93%) (5.9%) 16 (21%) 70 (7%) 4 (66%) (0.4%)ja
k pRTA 820 (44%) 3763 (34%) 313 (40%) (3.9%) 17 (5%) 121 (3%) 21 (5%) (0.7%)oRTA 896 (48%) 4306 (39%) 321 (41%) (4.0%) 17 (5%) 121 (3%) 21 (5%) (0.7%)DTA 924 (50%) 4475 (41%) 323 (41%) (4.1%) 20 (5%) 184 (5%) 21 (5%) (0.7%)VTA 1027 (55%) 5719 (52%) 734 (94%) (9.2%) 21 (6%) 565 (15%) 382 (96%) (12.5%)oRTA+VTA 1033 (55%) 5769 (53%) 735 (94%) (9.2%) 21 (6%) 565 (15%) 382 (96%) (12.5%)VTA+VTA 1027 (55%) 5719 (52%) 734 (94%) (9.2%) 21 (6%) 565 (15%) 382 (96%) (12.5%)java
 pRTA 823 (29%) 4516 (18%) 319 (25%) (2.7%) 30 (2%) 713 (4%) 30 (3%) (0.4%)oRTA 886 (31%) 5056 (20%) 327 (25%) (2.8%) 30 (2%) 738 (4%) 30 (3%) (0.4%)DTA 931 (33%) 5460 (22%) 337 (26%) (2.8%) 33 (2%) 855 (5%) 30 (3%) (0.4%)VTA 1001 (35%) 6639 (27%) 489 (38%) (4.1%) 35 (2%) 1136 (6%) 135 (15%) (2.0%)oRTA+VTA 1005 (35%) 6682 (27%) 489 (38%) (4.1%) 35 (2%) 1144 (7%) 135 (15%) (2.0%)VTA+VTA 1001 (35%) 6639 (27%) 489 (38%) (4.1%) 35 (2%) 1136 (6%) 135 (15%) (2.0%)sable

 pRTA 657 (17%) 4145 (11%) 407 (30%) (3.3%) 42 (2%) 1077 (4%) 164 (18%) (2.4%)oRTA 708 (18%) 4720 (13%) 421 (31%) (3.4%) 49 (2%) 1220 (4%) 168 (18%) (2.5%)DTA 773 (20%) 5670 (15%) 456 (34%) (3.7%) 75 (3%) 1854 (6%) 192 (21%) (2.8%)VTA 867 (23%) 10723 (30%) 635 (47%) (5.1%) 91 (4%) 5943 (22%) 311 (34%) (4.6%)oRTA+VTA 918 (24%) 11092 (31%) 663 (49%) (5.3%) 91 (4%) 5951 (22%) 311 (34%) (4.6%)VTA+VTA 1016 (27%) 11141 (31%) 680 (51%) (5.4%) 92 (4%) 6005 (22%) 317 (35%) (4.7%)soot pRTA 212 (7%) 2635 (7%) 137 (7%) (1.0%) 60 (2%) 1362 (4%) 38 (2%) (0.4%)oRTA 224 (7%) 2814 (7%) 143 (8%) (1.1%) 60 (2%) 1362 (4%) 38 (2%) (0.4%)DTA 282 (9%) 4061 (10%) 172 (9%) (1.3%) 68 (3%) 2168 (6%) 60 (3%) (0.6%)VTA 328 (11%) 7447 (20%) 657 (37%) (4.9%) 89 (4%) 5027 (15%) 510 (33%) (4.8%)oRTA+VTA 335 (11%) 7669 (20%) 662 (38%) (4.9%) 90 (4%) 5076 (16%) 510 (33%) (4.8%)VTA+VTA 348 (12%) 8380 (22%) 829 (47%) (6.2%) 109 (5%) 5960 (18%) 682 (44%) (6.4%)pizza pRTA 213 (8%) 2097 (10%) 123 (15%) (0.8%) 17 (1%) 643 (4%) 3 (0.3%) (0.0%)oRTA 213 (8%) 2097 (10%) 123 (15%) (0.8%) 17 (1%) 643 (4%) 3 (0.3%) (0.0%)DTA 233 (9%) 2566 (12%) 155 (19%) (1.1%) 20 (1%) 830 (5%) 23 (3%) (0.2%)VTA 270 (10%) 3462 (17%) 270 (32%) (1.9%) 32 (1%) 1418 (9%) 109 (17%) (0.9%)oRTA+VTA 270 (10%) 3462 (17%) 270 (32%) (1.9%) 32 (1%) 1418 (9%) 109 (17%) (0.9%)VTA+VTA 270 (10%) 3462 (17%) 270 (32%) (1.9%) 32 (1%) 1418 (9%) 109 (17%) (0.9%)Table 3: Improvement of Call Graph over Conservative Call Graphbyte
ode ben
hmarks.When 
onsidering the whole appli
ation, the number of deadmethod nodes removed by pRTA varies between 7% of thetotal number of methods in the 
onservative 
all graph (soot)to about 51% (
ompress), and the number of edges removedby pRTA varies from 7% (soot-
) to 45% (
ompress). Theoptimisti
 version, oRTA, does perform better than pRTAon several ben
hmarks, giving a high of 56% nodes and 52%edges redu
ed (
ompress). However, when you 
onsider theben
hmark 
ode only, we see that there is mu
h less s
opefor improvement, and we see very little di�eren
e betweenoRTA and pRTA.Both of our new analyses show additional bene�t over oRTA,with VTA performing the best. When 
onsidering the wholeappli
ation, VTA removes 10% (pizza) to 65% (
ompress)of the methods and 17% (pizza) to 65% (
ompress) of theedges. The most notable improvements due to VTA are

for the large obje
t-oriented ben
hmarks. For example, forsable

 oRTA removed 13% of the edges, whereas VTAremoved 30%, and for soot oRTA removed 7% whereas VTAremoved 20%.Our 
ombined analyses, oRTA+VTA and VTA+VTA, showsmall improvements over VTA, with the largest impa
t forthe very obje
t-oriented ben
hmarks, sable

 and soot.These results show that VTA is quite useful for further re-du
ing the size of the 
all graph, and in getting more 
om-pa
tion by removing additional methods. Note that forlarge ben
hmarks, where a greater proportion of the 
odeis from the ben
hmark itself and not from the library, amu
h smaller per
entage of methods 
an be removed by allanalyses, although VTA does perform slightly better.We also studied how many methods and edges 
ould beremoved when 
onsidering only the ben
hmark 
ode and



fa
toring out the library 
ode. For methods, oRTA elim-inates 1% to 14% and VTA eliminates 1% to 21%. Foredges, oRTA eliminates 2% to 4% and VTA eliminates 3%to 22%. VTA works parti
ularly well for ja
k, sable

,soot and pizza. Overall, when we 
onsider only the ben
h-mark 
ode, a smaller per
entage of methods and edges 
anbe eliminated, but the gap between RTA and VTA 
an bemore signi�
ant, and the gap between pRTA and oRTA isless signi�
ant.
4.2 Resolving Virtual CallsThe se
ond major measurement is how many potentiallypolymorphi
 
all sites 
an be resolved to exa
tly one method.Below we present both stati
 and dynami
 results.
4.2.1 Static ResultsGiven the 
onservative 
all graph built by CHA, we havemeasured how many of the remaining potentially polymor-phi
 sites 
an be resolved or eliminated by RTA, DTA andVTA. These results are found in Table 3, in the 
olumnslabelled Callsites Resolved. We say that a 
all site is re-solved if it was potentially polymorphi
 after CHA analysis,but resolves to exa
tly one method after RTA/DTA/VTA.4We have presented the number of 
all sites resolved, as wellas two per
entages. The 
olumn labelled %poly gives theper
entage with respe
t to the number of potentially poly-morphi
 
all sites in the 
onservative 
all graph, whereas the
olumn labelled %tot. gives the per
entage with respe
t toall 
all sites. A 
all site is eliminated if the method 
ontain-ing the 
all site is eliminated due to RTA/DTA/VTA.First 
onsider results of the whole ben
hmark. VTA per-forms signi�
antly better than pRTA and oRTA, in some
ases resolving more than twi
e as many 
all sites (i.e. ja
k,soot and pizza). Next, 
onsider the behavior of methodsthat are part of the ben
hmark only (i.e. not part of the Javalibrary). Here we see that the ben
hmarks raytra
e and
ompress do not have any interesting behavior. Even thoughthe analyses resolves a high per
entage of the potentiallypolymorphi
 
all sites (high %poly), these 
all sites were notvery important in the overall pi
ture (low %tot.). For theremaining �ve ben
hmarks we note that pRTA, oRTA andDTA do not perform very well, giving less than 5% (%poly)on four of the ben
hmarks. However, VTA 
an resolve asigni�
ant number of 
all sites with a high of 96%(%poly) or12%(%tot.) for ja
k. Also, note that the gap between RTAand VTA is quite large on all �ve ben
hmarks. This seemsto indi
ate that RTA and DTA are not good at resolving
all sites in the ben
hmark part of the 
ode, whereas VTA
an resolve a signi�
ant number.
4.2.2 Dynamic ResultsWe have used pro�ling to estimate the possible run time-impa
t of the analyses. We instrumented the byte
ode pro-du
ed by our 
ompiler to produ
e a summary of whi
h meth-ods were a
tually 
alled at ea
h invokevirtual and invokein-terfa
e 
all, and to 
olle
t the exe
ution frequen
y for ea
h
all site. We have 
on
entrated on the run time behaviorof 
all sites in the ben
hmark 
lasses (ex
luding the Java4We have shown the number of potentially polymorphi
 
allsites left by CHA analysis in 
olumns 3 and 10 of Table 2.

libraries).5 Figure 5 summarizes the per
entage of dynami

alls that 
orrespond to invokevirtual/invokeinterfa
e 
allsites that 
an be resolved to one method (monomorphi

all sites). For ea
h ben
hmark, the �rst four bars 
or-respond to 
all sites that 
ould be resolved using CHA,RTA, DTA and VTA. The rightmost bar for ea
h ben
h-mark shows the result of our dynami
 pro�le (i.e. howmany 
all sites only resolved to one method during an a
-tual exe
ution). For example, in ja
k, almost 100% of allinvokevirtual/invokeinterfa
e 
alls are monomorphi
 at run-time, whereas in java
 only about 90% are monomorphi
at runtime. In general, we 
an see some interesting trends.First, for ben
hmarks that are not very obje
t-oriented, likeraytra
e and 
ompress, a simple method like CHA �ndsall monomorphi
 
all sites. Se
ond, it appears that RTAand DTA give very little or no improvement on all ben
h-marks, 
on�rming our stati
 measurements. However, ourVTA analysis does give some improvement, with signi�
antimprovement on several of them. In some 
ases (ja
k andpizza), we observe that the number of 
all sites resolvedby VTA is almost the same as the number of monomorphi

alls obtained with the pro�le, and in these 
ases there is noneed for any more sophisti
ated analyses.For two ben
hmarks, soot and java
, we observe that whileVTA did resolve substantially more 
all sites than any of theother analyses, it is not able to perform well enough to ap-proa
h the results obtained in the pro�le. We studied thereasons for this gap on soot as the di�eren
e is greater forthis ben
hmark, and as it is an analysis framework devel-oped by us, we had the sour
e 
ode with whi
h we werefamiliar. We illustrate the reason for VTA's inability to �ndall monomorphi
 
alls with a typi
al example. The sootframework has an abstra
t 
lass Abstra
tValueBox that isa 
ontainer 
lass that de
lares a �eld holding an obje
t of
lass Value. Value is also an abstra
t 
lass that is overriddenby spe
i�
 
lasses like Lo
al, Instan
eField, InvokeExpr.Abstra
tValueBox is extended by spe
i�
 
ontainer 
lasseslike Lo
alBox, Instan
eFieldBox and InvokeExprBox. Thesespe
i�
 
ontainer 
lasses do not de
lare any �elds and thevalues that are held in these boxes are stored in the Value�eld of Abstra
tValueBox. Thus obje
ts belonging to many
lasses that override Value rea
h the Value �eld de
lared inAbstra
tValueBox. The a

essor method to get the Valuestored in a box is de�ned only in Abstra
tValueBox and itreturns the Value �eld. Thus whenever a spe
i�
 kind ofValue obje
t is put into a box and retrieved, all the 
lassesthat rea
hed the Value �eld are in the set of possible types(
omputed by VTA) for the obje
t retrieved. We believethat this would be a problem for even more sophisti
atedanalyses be
ause the statements that put values in the boxesare often very far from statements taking the values out, and5One 
ommon s
enario is that one would want to perform
ompiler optimizations on the ben
hmark 
ode alone, andleave the Java library 
lasses un
hanged (for example, whenperforming 
lass �le to 
lass �le optimization on user 
ode).This was the main reasoning behind our de
ision to pro�lethe ben
hmark 
lasses only, as this would give us a goodindi
ation of the possible performan
e impa
t of optimizingthe ben
hmark. Also we felt that it would be interestingto measure the di�eren
e in performan
e of the analyseson the ben
hmark 
lasses dynami
ally, given that the stati
results indi
ate that our VTA analysis does substantiallybetter than CHA and RTA in the ben
hmark 
ode.



Figure 5: % Dynami
 Monomorphi
 Calls (Ben
hmark Only)it would be diÆ
ult to pair the de�nitions and uses up 
or-re
tly.Another explanation for the gap is the presen
e of severalrun time 
ags in this ben
hmark. For a parti
ular option,there is usually an abstra
t 
lass performing the basi
 fun
-tionality asso
iated with the option, and it is extended bydi�erent 
lasses that perform a spe
i�
 fun
tion. Dependingon the parti
ular 
hoi
e for the runtime 
ag one of the pos-sible 
lasses is instantiated. Thus, this is an example wherethe 
all site is monomorphi
 for a parti
ular run of the pro-gram, but polymorphi
 over many di�erent runs. This sortof monomorphism 
annot be determined by a stati
 analysis,but would be a good 
andidate for runtime optimizations.The ben
hmarks java
 and soot are examples where thereexists a substantial number of polymorphi
 
alls, even af-ter an analysis like VTA has been used to devirtualize asmany 
alls as possible. The gap between the result of VTAand the pro�le 
orresponds to 
alls that are monomorphi
at runtime, but were not determined to be monomorphi
 bythe stati
 analysis. From Figure 5 we 
an see that for java
this gap is about 18% (90-72), and for soot this gap is about28% (67-39). One 
an try to 
lose this gap by applying moreexpensive stati
 analyses, or one 
an use dynami
 
all op-timization te
hniques, like bran
h target predi
tion [11℄, orinline 
a
hing [17℄. For example, a hardware-based bran
htarget bu�er (BTB), like the 512-entry BTB of a PentiumIII, redu
es the overhead of 
alls that seldomly swit
h tar-gets by storing the last target of every 
all site. The pre-di
tion hit rate of a large BTB is equal to the number oftimes that a target at an exe
uted 
all site does not 
hange,and therefore it gives an upper bound to the dynami
 fre-quen
y of monomorphi
 
alls. In Driesen and H�olzle's studyon the dire
t 
ost of virtual fun
tion 
alls in C++ [19℄, aBTB predi
ts 75% of the 
alls on a suite of C++ programs.When all member fun
tions are de
lared virtual (as in Java),the predi
tion rate 
limbs to 90%, whi
h is similar to the

Java pro�les obtained in the 
urrent study. A stati
 analy-sis te
hnique like VTA 
an be used to remove all provablymonomorphi
 
all sites, after whi
h a BTB optimizes dy-nami
ally monomorphi
 
alls. A BTB 
an handle provablymonomorphi
 
alls, but sin
e it is a limited resour
e 
loseto the pro
essor 
ore, it is likely to remain limited in 
apa
-ity, and therefore monomorphi
 
all site removal by stati
analysis 
an in
rease the program workload that a parti
ularpro
essor 
an handle eÆ
iently.Figure 5 also demonstrates how many truly polymorphi

alls exist in the ben
hmark, these 
orrespond to 100 minusthe height of the pro�le bar. For java
 there are about 10%(100-90), and for soot there are about 33% (100-67). Dy-nami
 te
hniques 
an also optimize truly polymorphi
 
allsby using more sophisti
ated bran
h target predi
tion, thatexploits 
orrelations between the 
urrent 
all site and a pre-viously exe
uted 
all site, both polymorphi
. For example,
as
aded two-level predi
tion has been shown to redu
e thenumber of unpredi
table polymorphi
 
alls from 25% (fora 256-entry BTB) to 6% (3-stages of 512-entry two-level),thereby optimizing 75% of the remaining truly polymorphi

alls [20℄.
4.2.3 Performance ImprovementsOne might wonder if the in
reased pre
ision of VTA is use-ful in further optimizations. Certainly redu
ing the size and
omplexity of the 
all graph will improve subsequent inter-pro
edural analyses and helps to 
ompa
t appli
ations, butis it also useful for performan
e improvement of the ben
h-mark? We don't expe
t it to make a large di�eren
e onany one optimization, but we do expe
t it to give small im-provements on di�erent optimizations. Currently we haveimplemented method inlining, where we use our frameworkto read 
lass �les, inline methods based on the 
all graphprodu
ed by CHA or the 
all graph after pruning usingVTA, and then generate the inlined 
lass �les [34℄. We ex-e
uted the original, and inlined ben
hmark 
lass �les using



the Bla
kdown linux JDK1.2, with the JIT turned on. Twoof the ben
hmarks show better performan
e when the inlin-ing is based on the 
all graph using VTA rather than CHA.For soot we observe 1% speedup when inlining is done us-ing the CHA 
all graph but 3% speedup when the VTA 
allgraph is used. For java
 we see no improvement for inliningwhen based on the CHA 
all graph, but 2% speedup whenusing the VTA 
all graph. This leads us to believe thatsome of the extra 
all sites found by VTA 
ould be impor-tant ones for inlining. We hope to see other bene�ts as moreoptimizations are added to our framework.
4.3 Measuring the AnalysisOur implementation is not yet tuned for speed, so in orderto give an estimate of the time required for ea
h analysis, wegathered information about the size of the data stru
turesbuilt for ea
h algorithm, plus some exe
ution numbers forour untuned implementation. In Table 4, we show our mea-surements.6 Note that for DTA and VTA, the time requiredto obtain the solution is proportional to the number of edgesin the 
onstraint graph after the graph has been transformedsu
h that ea
h strongly 
onne
ted 
omponent in the origi-nal 
onstraint graph is repla
ed by spe
ial SCC nodes. Thenumber of edges in the 
onstraint graph is observed to growlinearly with the size of the appli
ation for both DTA andVTA. In 
omparing DTA and VTA, we observe that VTAhas about 4 times the number of nodes, and about 8 timesthe number of edges as in DTA. This gives a good indi
a-tion about the relative 
osts of these 2 analyses. The last
olumn of Table 4 gives the time, in se
onds, for solving the
onstraint graph. The interesting point is not so mu
h theabsolute time 7, but the fa
t that the analysis s
ales well,and behaves linearly in pra
ti
e. This also shows that VTAis indeed a 
onstant fa
tor (around 10) more expensive thanDTA, and so the in
reased pre
ision of VTA over DTA does
ome at a pri
e.
5. RELATED WORKThere has been 
onsiderable work in the area of applyingmore expensive analyses of varying 
omplexity for 
all graph
onstru
tion, espe
ially for languages like C++, Modula-3,and Ce
il. One of the 
lassi
 algorithms is 0-CFA whi
hhas O(n3) 
omplexity. Other 
ontext-insensitive approa
hesin
lude Palsberg and S
hwartzba
h's algorithm [28℄, Halland Kennedy's 
all graph 
onstru
tion algorithm for For-tran [23℄, and Lakhotia's algorithm [26℄ for building a 
allgraph in languages with higher order fun
tions. Other re-lated work in
ludes Shiver's k-CFA family of algorithms [32,33℄ for sele
ting the target 
ontour based on k en
losing 
all-ing 
ontours at ea
h 
all site, Agesen's Cartesian Produ
tAlgorithm [6℄, and Ryder's [31℄ 
all graph 
onstru
tion al-gorithm for Fortran 77. Plevyak and Chien's iterative algo-6Note that the number of Jimple statements reported inTable 4 is less than the numbers reported earlier in Table1 where we summarized the ben
hmark 
hara
teristi
s. InTable 1 we in
luded all methods in 
lasses that are referredto by the ben
hmark, whereas in Table 4 we in
lude onlythose methods that appear in the 
onservative 
all graph.7This implementation is built in Java using very high-leveldata stru
tures based on 
olle
tions, and it was run using arelatively slow Java interpreter (linux jdk1.1.7) on a 333Mhzpentium. Thus one 
an safely assume that a tuned imple-mentation will run faster by a large 
onstant fa
tor.

rithm [30℄ tries to improve a safe 
all graph to begin withand tries to re�ne it to the desired extent by 
reating new
ontours. Chatterjee et. al. give a method for �nding rele-vant 
ontexts for a subset of C++/Java [12℄. Agesen [5℄ de-s
ribes 
onstraint-graph-based instantiations of k-CFA, andPlevyak's algorithm.Our work has fo
used on a te
hnique that 
an �nd a solu-tion that does not require any iteration and s
ales linearlyin the size of the program. Thus, previous work that fo-
uses on the e�e
tiveness of inexpensive analyses is moredire
tly related to this paper. In this �eld, the goal is to�nd simple, inexpensive, yet e�e
tive analyses. The resultsof Dean et. al. [14℄ suggest that 
lass hierar
hy analysis isa good te
hnique for resolving many method invo
ations forthe Ce
il language. Fernandez [21℄ implemented virtual 
allelimination and used an idea that is essentially Class Hier-ar
hy Analysis (CHA). Aigner and H�olzle [7℄ �nd that typefeedba
k and 
lass hierar
hy analysis are both e�e
tive atresolving method invo
ations in C++. Our work 
on�rmsthat CHA does work well for Java byte
ode, and we useCHA to get our original 
onservative 
all graph. However,our VTA methods 
an substantially improve the 
onserva-tive 
all graph, removing 10% to 63% of the nodes, and 17%to 64% of the edges.Ba
on and Sweeney's work on fast stati
 analysis of C++virtual fun
tion 
alls [8℄ 
onsiders three relatively simpleanalysis te
hniques 
alled: Unique Name, Class Hierar
hyAnalysis, and Rapid Type Analysis (RTA). They have dy-nami
ally measured the results for resolution of user virtual
alls, and have given an estimate for the number of dead 
allsites. They 
on
luded that rapid type analysis is extremelye�e
tive in resolving fun
tion 
alls, redu
ing 
ode size, andis fast. Our results seem to 
on�rm that rapid type analysisdoes also work well with Java when 
omplete appli
ationsin
luding library 
ode are analyzed. However, we show thatrapid type analysis does not perform well when 
onsideringthe ben
hmark 
ode only. Further, our results indi
ate thatvariable-type analysis gives better results for both 
ases, the
omplete appli
ation, and the ben
hmark only.Diwan [18℄ des
ribes results for simple and e�e
tive analysisof stati
ally-typed obje
t-oriented languages, and providesexperimental results for Modula III programs. Their anal-ysis is similar to ours in the sense that they also propagatetypes from allo
ation sites to uses. However, there are signif-i
ant di�eren
es between their approa
h and our rea
hing-type analyses. First, we analyze Java byte
ode, and so wehave tailored our approa
h to the spe
i�
s of Java, in
lud-ing how to properly handle Java arrays. Further, we haveexperimented with a wide variety of ben
hmarks, in
ludingsome large ben
hmarks that are very obje
t oriented. Se
-ond, we believe that our approa
h is more eÆ
ient sin
e webuild a 
omplete 
onstraint graph, and solve it on
e. Theirapproa
h requires iterating a 
ow-sensitive intrapro
eduralphase sin
e their interpro
edural strategy re-analyzes meth-ods when information about parameters or return values
hange due to the intrapro
edural phase. Third, their inter-pro
edural approa
h uses the de
lared type of obje
t �eldswhi
h 
an introdu
e impre
ision, whereas we use the rea
h-ing types for �elds.



Call Graph De
lared Type Variable Type TimeName Jimple before SCC after SCC before SCC after SCC (se
onds)Stmts jN j jEj jN j jEj jN j jEj jN j jEj jN j jEj DTA VTAraytra
e 27570 1729 9167 3540 3139 2989 1931 12496 18125 10700 13329 8 54
ompress 24833 1583 8000 3235 2832 2741 1745 11010 15734 9471 11461 8 44ja
k 33186 1857 10804 3828 3474 3284 2274 14293 21361 12320 16131 11 68java
 47172 2821 24271 5872 6061 4741 3374 22220 54930 17019 26417 12 113sable

 49421 3737 35693 7722 8273 6104 3927 25482 75280 20298 43618 13 128soot 43530 2828 36984 6333 6699 5178 3784 24190 68289 19620 43416 15 207pizza 55468 2660 19753 7177 7445 6023 3856 28007 50242 17216 23390 11 102Table 4: Size of Data Stru
turesMore re
ently, DeFouw et. al. have presented a frameworkfor expressing and experimenting with a variety of fast in-terpro
edural 
lass analyses for Ce
il and Java[15, 16℄. Akey part of their framework is the ability to merge nodes inthe 
onstraint graph after they have been visited P times.This approa
h of merging after a threshold allows them totune the 
omplexity of the algorithm. They present eightinstantiations of the framework, three of whi
h are linear ornear linear. Our DTA and VTA algorithms are not instan-tiations of their framework be
ause the various tradeo�s wemade (see se
tion 3.3) to make our algorithm eÆ
ient are notparameters of their approa
h. First, our algorithm is pes-simisti
 sin
e it uses an initial 
onservative 
all graph (or the
all graph generated by optimisti
 RTA) to insert edges intothe 
onstraint graph, whereas their s
hemes are optimisti
,inserting edges into the 
all graph as obje
t instantiationsare found. Se
ond, their algorithm merges a node with all ofits su

essor nodes when it is visited P times (the key designpoint in their framework). In our algorithm we de
ide whi
hnodes will be merged by 
omputing the strongly 
onne
ted
omponents, and merging those together. After this 
om-pression step, our algorithm will only visit ea
h node on
e.In their study they analyze a variety of Ce
il ben
hmarks,but only three Java ben
hmarks. We have demonstrated ouranalysis on only Java ben
hmarks, but on a wider variety ofthose.Tip and Palsberg have also been working to �nd s
alableanalyses that work well with Java [36℄. Their motivation isvery similar to ours, to �nd an analysis that makes sometradeo�s, gives better results than RTA, but s
ales betterthan traditional 0-CFA analysis. They present a spe
trumof 
onstraint-based te
hniques that fo
us on making anal-yses s
alable by limiting the number of sets that must beapproximated. In 0-CFA one set is asso
iated with ea
h ex-pression, and in RTA one set is asso
iated with the entireprogram. Their new analyses suggest intermediate points.For example, CTA uses a distin
t set for ea
h 
lass, and XTAuses a distin
t set for ea
h method and ea
h �eld. Althoughtheir analyses redu
e the number of sets approximated, theunderlying solver may still require iteration.The di�eren
e between their approa
h and ours is in theway in whi
h we enfor
e s
alability. For VTA we use oneset for ea
h lo
al variable, and one set for ea
h �eld, thusgiving us a �ner-grain abstra
tion. Instead of 
oarsening theabstra
tion level, our design goal was to eliminate iterationin the analysis, and we made various tradeo�s to enfor
e this(as summarized in Se
tion 3.3). For example: our analysesare 
onservative; we start with either the 
onservative 
all

graph or the RTA 
all graph; and we do not kill based on 
astinformation. We also tried a 
oarser version of VTA 
alledDTA, where we approximated one set for ea
h de
lared type,but we found that DTA was not nearly as e�e
tive as VTA.So, at least in our approa
h, the granularity of VTA appearsto be ne
essary for good results.Currently the experimental results of both the Tip/Palsbergapproa
h and our approa
h both demonstrate that we a
hieveimprovements over RTA. A head-to-head experimental 
om-parison will only be possible when both approa
hes are im-plemented in the same framework, with the same assump-tions, and run on the same set of ben
hmarks. It wouldbe very interesting to perform this experiment. This wouldalso allow us to determine if the approa
hes �nd the samesour
es of improvements, or if both te
hniques 
ombined to-gether gives even better results. If so, it would be possibleto run both analyses, and then use the interse
tion of theirresults.Another interesting area of future work is the 
ombination ofstati
 and dynami
 te
hniques. Ishizaki et. al. have studieda wide variety of devirtualization te
hniques for a Java JIT
ompiler [25℄. Their study shows the promise of 
ombiningstati
 te
hniques like type analysis and dynami
 te
hniques.Our work builds on the Soot framework under developmentat M
Gill. Harissa [27℄, Vortex [13℄ and JAX [35℄ are alter-native implementation frameworks.
6. CONCLUSIONS AND FUTURE WORKIn this paper we have presented a new te
hnique that 
an beused to estimate the possible types of re
eivers for virtualmethod and interfa
e 
alls in Java. Two variations of thete
hnique were presented, variable-type analysis that usesthe name of a re
eiver as its representative, and de
lared-type analysis whi
h uses the de
lared type of a re
eiver asits representative. These two analyses, plus 
lass hierar
hyanalysis and rapid type analysis, two previously developedtype estimation te
hniques, were implemented with Soot, anenvironment that translates Java byte
ode to a typed three-address 
ode. All four analyses were applied to seven Javabyte
ode ben
hmarks.Our methods work on 
omplete appli
ations, and so theyrequire having all of the byte
ode for the ben
hmark avail-able. Although this is not useful for situations where 
lasses
an be dynami
ally loaded, we feel that 
ompilation andoptimization of 
omplete appli
ations is reasonable in manysituations. There are 
ertainly many large appli
ations su
h



as 
ompilers, optimizers, editors and server-side appli
ationsthat 
an be 
ompiled in this fashion.For ea
h ben
hmark, 
lass hierar
hy analysis was used tobuild an initial 
onservative 
all graph. Measurements ofthese graphs 
on�rm what others have noted, namely that
lass hierar
hy analysis leads to a 
onservative 
all graphthat is fairly sparse, with a majority of 
all sites resolvingto a single method. However, there is s
ope for further im-provement of these 
onservative graphs.We applied rapid type analysis, variable-type analysis andde
lared-type analysis using the initial 
onservative 
all graph,and found that a signi�
ant number of edges and nodes 
ouldbe removed. Variable-type analysis gave the best results re-moving 10% to 65% of the nodes and 17% to 65% of theedges from the 
onservative 
all graph. Further, variable-type analysis resolved 32% to 94% of the potentially poly-morphi
 
all sites (after CHA) to 1 method. All of theseresults are better than what was a
hieved by rapid typeanalysis. Our de
lared-type analysis did give some bene�t,but not as signi�
ant as variable-type analysis.In order to study the e�e
t of the analyses on the ben
h-marks, we studied the dynami
 behavior of the ben
hmark
ode only. In this 
ase we found that neither rapid typeanalysis nor de
lared-type analysis had signi�
ant impa
t.However, variable-type analysis did show substantial im-provement, in some 
ases approa
hing the best possible re-sult. Thus, it seems that the added granularity of variable-type analysis over de
lared-type analysis is quite impor-tant, parti
ularly when optimizing the ben
hmark 
ode. Inother 
ases variable-type analysis did �nd signi�
antly moremonomorphi
 
all sites, but there was a substantial gap be-tween the stati
 result of the analysis and the dynami
 pro-�le. We presented several reasons for this gap, and we donot believe that a simple analysis will be able to 
lose mu
hof the remaining gap.We observed that the extra 
all sites resolved by variable-type analysis a

ount for a signi�
ant number of 
alls inthe dynami
 tra
e, and we demonstrated that inlining 
ouldmake use of these extra 
all sites, giving performan
e im-provement for two ben
hmarks.Our te
hniques were meant to be simple, and we des
ribedthe various tradeo�s we made to keep the algorithm sim-ple and eÆ
ient. We have des
ribed our approa
h in detail,and it should be easy for others to add to their 
ompilers,parti
ularly if they already have CHA and/or RTA analy-sis. Based on our experimental results, we believe that agood overall strategy would be to use an optimisti
 RTA-style analysis to get the original pruned 
all graph. Then,if there are a signi�
ant number of polymorphi
 
all sitesremaining, our VTA analysis 
ould further prune the graph,giving additional 
ode size redu
tion, and better virtual 
allresolution.We are 
urrently working on tools for tree shaking, pointeranalysis, and side-e�e
t analysis based on the 
all graphprodu
ed by variable-type analysis.
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