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ABSTRACT

This paper addresses the problem of resolving virtual method
and interface calls in Java bytecode. The main focus is on
a new practical technique that can be used to analyze large
applications. Our fundamental design goal was to develop
a technique that can be solved with only one iteration, and
thus scales linearly with the size of the program, while at the
same time providing more accurate results than two popular
existing linear techniques, class hierarchy analysis and rapid
type analysis.

We present two variations of our new technique, variable-
type analysis and a coarser-grain version called declared-type
analysis. Both of these analyses are inexpensive, easy to im-
plement, and our experimental results show that they scale
linearly in the size of the program.

We have implemented our new analyses using the Soot frame-
work, and we report on empirical results for seven bench-
marks. We have used our techniques to build accurate call
graphs for complete applications (including libraries) and
we show that compared to a conservative call graph built
using class hierarchy analysis, our new variable-type analy-
sis can remove a significant number of nodes (methods) and
call edges. Further, our results show that we can improve
upon the compression obtained using rapid type analysis.

We also provide dynamic measurements of monomorphic call
sites, focusing on the benchmark code excluding libraries.
We demonstrate that when considering only the benchmark
code, both rapid type analysis and our new declared-type
analysis do not add much precision over class hierarchy anal-
ysis. However, our finer-grained variable-type analysis does
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resolve significantly more call sites, particularly for pro-
grams with more complex uses of objects.

1. INTRODUCTION

As the Java(tm) programming language and Java bytecode
becomes more popular, it is becoming important to provide
optimizing compilers and more efficient runtime systems.
One important optimization problem for Java, as for other
object-oriented languages, is that of statically determining
what methods can be invoked by virtual method calls. The
results of such an analysis can be used to reduce the cost
of virtual method calls, to detect potential sites for method
inlining, and to provide an accurate call graph. A more
accurate call graph can be used to: (1) compact applications
by removing methods that are never called, and (2) improve
the efficiency and accuracy of subsequent interprocedural
analyses.

Of course, virtual method resolution is not a new problem.
It has been widely studied for a variety of object-oriented
languages[7, 8, 9, 10, 12, 14, 18, 16, 21, 24, 28, 29, 30].
The focus of this paper is the development and evaluation
of a new simple and inexpensive technique for resolving vir-
tual method calls in Java. A main design objective was to
develop a technique that would produce a solution in one
iteration and thus scales linearly in the size of the program.
Further, we wanted a technique which was simple, easy to
implement, could be applied to large Java applications, but
yet could also yield more precision than two efficient exist-
ing techniques. In particular, we wanted to measure static
and dynamic improvements over class hierarchy analysis[8,
14, 21] and rapid type analysis[8].

Our technique is based on an analysis that builds a type
propagation graph where nodes represent variables and edges
represents flow of types due to assignments, including the
implicit assignments due to method invocation and method
returns. The first variation is called declared-type analysis,
where the nodes represent the declared type of variables. For
this analysis the type propagation graph contains at most
one node for each class in the application. The second vari-
ation is called wariable-type analysis and it is finer-grained
and more accurate, although still efficient. In this variation
the type propagation graph contains at most one node for
each variable with an object (reference) type. Both of these
analyses can be thought of as more refined versions of rapid



type analysis. Whereas rapid type analysis simply collects
the types of all objects allocated, and uses this to prune
the call graph, declared-type and variable-type analysis find
which types of objects reach each variable (i.e. which allo-
cated objects might be assigned to this variable).

In keeping with our desire for a simple and efficient analy-
sis, the analyses were carefully designed so that one iteration
over the type propagation graph results in a safe solution.
Further, our algorithm is simple to implement and could eas-
ily be added to compilers that already have class hierarchy
analysis and/or rapid type analysis.

All of the analyses were implemented using the Soot frame-
work that provides Jimple, a typed three-address code repre-
sentation of Java bytecode [1]. Since our framework operates
on bytecode, our analysis is not restricted to Java, but can
be used for bytecode produced from a wide variety of lan-
guages. The benchmarks used in our evaluation are meant
to be representative of real applications and they include
four SPECjvm benchmarks plus three other large, object-
oriented benchmarks. We use these benchmarks to show
both static and dynamic results that illustrate the accuracy
of our analyses. When considering the whole applications,
including library code, we found that the existing analyses
did perform quite well, but our variable-type gave additional
improvements. When considering only the benchmark code,
factoring out the library code, we found that the existing
analyses performed poorly, but our variable-type analysis
performed significantly better.

The remainder of this paper is structured as follows. In Sec-
tion 2 we give an overview of Soot and Jimple, and we give
a very brief summary of class hierarchy analysis and rapid
type analysis as implemented in our system. In Section 3 we
outline variable-type analysis and the coarser-grain version,
declared-type analysis. We present our experimental frame-
work and empirical measurements in Section 4. Finally, in
Section 5 we discuss related work, concentrating mostly on
other efficient techniques, and in Section 6 we give our con-
clusions and future work.

2. FOUNDATIONS

2.1 The Soot Framework

Our analyses are built on top of the Jimple intermediate rep-
resentation, which is part of the Soot framework. The Soot
framework is a set of Java Application Programming Inter-
faces (APIs) for manipulating Java code in various forms [1].
We analyze complete applications, so our implementation
works by first reading all class files that are required by an
application, starting with the main root class and recursively
loading all classes used in each newly loaded class. As each
class is read, it is converted into the Jimple intermediate
representation. After conversion, each class is stored in an
instance of a SootClass, which in turn contains information
such as its name, its superclass, a list of interfaces that it im-
plements, and a collection of SootFields and SootMethods.
Each SootMethod contains information including its name,
modifier, parameters, locals, return type and a list of Jimple
three-address code instructions. All parameters and locals
have declared types [22]. Figure 1(a) shows a Java method,
and Figure 1(b) shows a textual representation of the Jimple
representation. It is important to note that we produce the

Jimple intermediate representation directly from the Java
bytecode in class files, and not from the high-level Java pro-
grams. This means that we can analyze Java bytecode that
has been produced by any compiler, optimizer, or other tool.

After analysis and transformation we convert the Jimple rep-
resentation back to Java bytecode, making our entire system
a bytecode to bytecode optimizer[37].

In terms of our analysis, there are several important points
to note. Firstly, there are relatively few kinds of Jimple
statements, and each statement has a simple format. Thus,
our analyses can be specified by giving the rules for each
kind of Jimple statement. Further, all operands in Jim-
ple are either variable references or constants. Since we
have a declared type for each variable, and each constant
has a type, our analyses can use this type information in a
straightforward manner. Another important point is that
Jimple splits variables according to D/U and U/D webs, so
that two unrelated variables of the same name will not be
confused in our analyses.

Figure 1(b) shows examples of assignment statements, con-
ditional statements, method calls, and return statements.
Also note that at the beginning of each method there are
special identity statements that provide explicit assignments
from parameters (including the implicit “this” parameter),
and locals.

2.2 Class Hierarchy Analysis and the Conser-
vative Call Graph

The objective of all of our analyses is to determine, at compile-
time, a call graph with as few nodes and edges as possible.
All of our analyses start with a conservative call graph that
is built using class hierarchy analysis.

2.21 ClassHierarchy Analysis

Class hierarchy analysis is a standard method for conser-
vatively estimating the run-time types of receivers [8, 14,
21]. Given a receiver o of with a declared type d, hierar-
chy_types(d) for Java is defined as follows:

e If receiver o has a declared class type C, the possi-
ble run-time types of o, hierarchy_types(C), includes C
plus all subclasses of C.

e Ifreceiver o has a declared interface type I, the possible
run-time types of o, hierarchy_types(I), includes: (1)
the set of all classes that implement I or implement a
subinterface of I, which we call implements(I), plus (2)
all subclasses of implements(I).

To implement this analysis, we simply build an internal rep-
resentation of the inheritance hierarchy, and then we use this
hierarchy to compute the appropriate hierarchy-types sets.

2.2.2 Call Graphs

For our purposes a call graph consists of nodes and directed
edges. For a single-threaded application, the call graph must
include one node for each method that can be reached by a
computation starting from the main method. If the program



public int stepPoly(int x)
{ if(x < 0)
{ System.out.println("error");
return -1;
}
else if(x <= b)
return x * Xx;
else
return x * 5 + 16;

(a) Java source

public int stepPoly(int)
{ java.io.PrintStream ri;
Example r0;
int i0, i1, i2, i3;

rQ0 := Qthis;
i0 := QparameterO;
if i0 >= 0 goto labelO;

rl = java.lang.System.out;
ri.println("error");
return -1;

labelO:
if i0 > 5 goto labell;

il = i0 * i0;
return il;

labell:
i3 = i0 * b;
i2 = i3 + 16;
return i2;

}

(b) Jimple representation

Figure 1: Example of Jimple

is an applet or has threads, then the call graph must also
include all methods that can be reached starting at any entry
point. An example call graph is given in Figure 2(b).

Each node in the call graph contains a collection of call sites.
Consider a method M from class C' with n method calls in its
body. Method M is represented in the call graph by a node
labeled C.M, and this node will contain entries for each call
site, which we denote C.M[1] to C.M[n]. In our example, the
call graph node for method C.main contains two call sites,
C.main[1] which is a.m(), and C.main[2] which is b.m().

Edges in the call graph go from call sites within a call graph
node, to call graph nodes. The call graph must contain
an edge for each possible calling relationship between call
sites and nodes. If it is possible that call site C.M[i] calls
method C'.M’, then there must be an edge between C.M 3]
and C'.M' in the call graph. In the example call graph there
are three edges from the call site a.m() corresponding to the
fact that the virtual call a.m() might resolve to calls to A.m,
B.mor C.m.

Special attention is required when adding calling edges from
a virtual method or interface call, and this is done using an
approximation of the run-time types of the receiver. Given
a virtual call site C.M[i] of the form o.m(a1,... ,an), and
a set of possible runtime types for receiver o, call this run-
time_types(o), we find all possible targets of the call as fol-
lows. For each type C; in runtime_types(o), look up the class
hierarchy starting at C; until a class Ciarger is found that
includes a method Ciarger.m that matches the signature of
m. The edge from C.M[i] to Ciarger.-m is added to the call
graph.

Consider the the call a.m() in the example in Figure 2. If
the possible runtime types for receiver a includes {4, B, C'},
then in each case a matching method m is found in the class

itself (without looking further up the hierarchy), and thus
the call edges to A.m, B.m, and C.m are added. However,
sometimes the target method is found further up the hier-
archy. Consider the call this.toString(). If the possible
runtime types for the receiver this are {A, B, C}, then look-
ing up the hierarchy in each case will result in the target
Object.toString().

Note that a call graph may contain spurious nodes and
edges. Spurious edges may be included for virtual method
calls. When adding call edges from a virtual method call site
C.MTi] of the form o.m(ay,... ,an), an edge must be placed
between this call site and every method C’'.m corresponding
to the possible run-time types of the receiver o. If we use
a conservative approximation of the run-time types for o,
then we may include spurious types in our approximation,
and this may lead to spurious edges. In our example, if the
type of the receiver a in the call a.m() can only have a run-
time type of A, then the edges to B.m and C.m are spurious.
Spurious nodes are included when all incoming edges to the
node are spurious. In the example, if the edge from a.m()
to C.m is spurious, then the node C.m would also become
spurious. Note that entire subpieces of the call graph could
become spurious if the subgraph becomes disconnected from
the roots of the graph. In the example, if the edge from
a.m() to A.m was spurious, then both the nodes for A.m and
Object.toString become spurious.

The analyses presented in this paper are designed to reduce
the number of spurious edges and nodes by providing better
approximations of the runtime types of receivers.

2.2.3 Building the Conservative Call Graph

In our implementation, call graphs are built iteratively using
a worklist strategy. The worklist starts with nodes for all
possible entry points (for example, main, start, run). As
each node (method) is added to the call graph, edges from



class A extends Object {
String m() {
return(this.toString());

}
}
toString()

class B extends A {
String m() { ...
}

} V

class C extends A {
String m() { ... } Y
public static void main(...) {
A a = new AQ); m)
B b = new B();
String s;

a.mQ);
b.m();

2]
non -

(a) Example Program

0

(ho

Class Hierarchy

| __Cmain
/9-@& b.m0
A.m B.m C.m

this.tpString()

Object.toString

main()

Call Graph

(b) Class Hierarchy and Call Graph

Figure 2: Example of a conservative call graph

the call sites in the node are also added. If the target of an
edge is not already in the call graph, then it is added to the
call graph and to the worklist. Conservative call graphs are
built using hierarchy-types as the estimate for runtime_types
for determining the edges from virtual method call sites.

Consider the example in Figure 2. The conservative call
graph starts with the entry method C.main which includes
two call sites a.m() and b.m(). Next, edges are added from
a.m(). The type of receiver a is estimated using hierar-
chy analysis on the declared type of a, hierarchy-types(A)=
{A4,B,C}. For each element of this set, the appropriate
method m is located, leading to three call edges to A.m, B.m
and C.m. For the call site b.m(), the declared type of b is B,
hierarchy_types(B)={B}, and so there is only one one edge
to B.m. There is one remaining call site, this.toString()
which is inside method A.m. The declared type of this is
A, and hierarchy_types(A)= {A,B,C}. However, in this case
all three types lead to the same call edge to the method
Object.toString(). This illustrates the point that a tighter
estimate of run-time types may not necessarily lead to fewer
edges.

In our work we use the number of call edges from a call site
(and not the number of run-time types of the receiver) to
determine if the call site is monomorphic or polymorphic. If
there is only one edge from a call site, we categorize the call
site as monomorphic, whereas if there are two or more edges
we categorize the call site as polymorphic. In the call graph
in Figure 2, the call a.m() is polymorphic, whereas the calls
b.m() and this.toString() are monomorphic.

2.3 Rapid Type Analysis

Rapid type analysis [8] is a very simple way of improving
the estimate of the types of receivers. The observation is
that a receiver can only have a type of an object that has
been instantiated via a new. Thus, one can collect the set of
object types instantiated in the program P, call this instan-
tiated_types(P). Given a receiver o with declared type C with
respect to program P, we can use rapid-types(C,P) = hier-

archy_types(C) N instantiated_types(P) as a better estimate
of the runtime types for o.

As an example, consider the program P given in Figure 2(a),
and assume that the program contains instantiations of ob-
jects of type A and B. Now consider the call site a.m(),
where a has declared type A. In this case we would use
rapid_types(P,A) = {A,B} to find the runtime types for re-
ceiver a. This leads to only two call edges, to A.m and to
B.m. So, using rapid type analysis the call graph would not
include the call edge to C.m, nor would it include the node
for C.m.

This particular version of rapid type analysis should be called
pessimistic rapid type analysis since it starts with the com-
plete conservative call graph built by CHA and looks for
all instantiations in method in that call graph. This may,
therefore, find an instantiation which is in a method that
should really be removed from the call graph. The origi-
nal approach suggested by Bacon and Sweeney [8] is opti-
mistic rapid type analysis. In the optimistic approach the
call graph is iteratively created, and only instantiations in
methods already in the call graph are considered as possi-
ble set for computing instantiated_types(P). We have imple-
mented both variations and give experimental results com-
paring them in Section 4.

3. VARIABLE-TYPE AND DECLARED-TYPE
ANALYSES

Rapid type analysis can be considered to be a very coarse-
grain mechanism for approximating which types reach a re-
ceiver of a method invocation. In effect, rapid type analysis
says that a type A reaches a receiver o if there is an in-
stantiation of an object of type A (i.e. an expression new
AQ)) anywhere in the program, and A is a plausible type
for o using class hierarchy analysis. In this section we pro-
pose two analyses that result in finer-grain approximations
by taking into consideration chains of assignments between
instantiations of A and the receiver o.



Assuming an intermediate form like Jimple, where all com-
putations are broken down into simple assignments, and as-
suming no aliasing between variables, we can state the fol-
lowing property.! For a type A to reach a receiver o there
must be some execution path through the program which
starts with a call of a constructor of the form v = newA()
followed by some chain of assignments of the form z, =
U, T2 = T1,...,Ln = Tn-1,0 = Tn. The individual assign-
ments may be regular assighment statements, or the implicit
assignments performed at method invocations and method
returns.

We propose two flow-insensitive approximations of this reach-
ing-types property. Both analyses proceed by: (1) building
a type propagation graph where nodes represent variables,
and each edge a — b represents an assignment of the form b
= a, (2) initializing reaching type information generated by
assignments of the form b = new A() (i.e. the node associ-
ated with b is initialized with the type A) and, (3) propa-
gating type information along directed edges corresponding
to chains of assignments.

For a program P, each variable a with an object (reference)
type is associated with some node in the type propagation
graph, called representative(a). After propagating the types,
each node n in the type propagation graph is associated with
a set of types, called reaching-types(n). Thus, after propa-
gating types we can find out the set of types reaching any
variable. For building call graphs we are particularly inter-
ested in types reaching variables used as receivers. Given a
receiver o, with declared type C, we approximate the run-
time types of o using reaching-types(representative(o)) N hi-
erarchy_types(C). Note that we filter out impossible reaching
types by intersecting with possible types as indicated by hi-
erarchy types.

In the following subsections we describe the analysis in more
detail. We first present the more accurate analysis, called
variable-type analysis, where the representative for a variable
a is the name of a, and then explain a coarser-grain variant
called declared-type analysis where the representative for a
is the declared type of a.

3.1 \Variable-type analysis

Variable type analysis uses the “name” of a variable as its
representative. In Jimple we can have three kinds of vari-
able references (more complex references are simplified into
a combination of these simple ones), and we assign repre-
sentative names as follows:

Ordinary references: are of the form a, and refer to lo-
cals or parameters. The name C.m.a is used as our
representative, where C is the enclosing class and m is
the enclosing method.

Field references: are of the form a.f where a could be a
local, a parameter, or the special identifier this. We
use as the representative the name C.f where C is the
name of the class defining field £. Note that we ig-
nore a, so this means that we are approximating all

!We discuss why we do not have to consider aliasing in Sec-
tion 3.1.2.

instances of objects with this field by one representa-
tive node in the type propagation graph.

Array references: are of the form a[x], where a is a local
or parameter, and x is a local, parameter, or constant.
We treat arrays as one large aggregate, so the name
C.m.a is used, similar to the ordinary reference case.

3.1.1 Constructing the type propagation graph

Given a program P, where P consists of all classes that are
referred to in the conservative call graph, nodes are created
as follows:

e for every class C that is included in P
@ for every field f in C, where f has an
object (reference) type
create a node labeled with C.f

o for every method C.m that is included in the
conservative call graph of P
@® for every formal parameter p; of C.m,
where p; has an object type
create a node labeled C.m.p;
@ for every local variable I; of C.m,
where [; has an object type
create a node labeled C.m.l;
@® create a node labeled C.m.this to
represent the implicit first parameter
© create a node labeled C.m.return to
represent the return value C.m

Note that the last two rules can be optimized to add
the C.m.this node only when the method refers to
this, and to add C.m.return only when the method
returns an object type. This does not affect the ac-
curacy of the result, it just leaves out nodes that will
have no edges to them.

Once all of the nodes have been created, we add edges for
all assignments that involve assigning to a variable with
an object type. These may be either explicit assignments
via assignment statements, and implicit assignments due to
method invocation and returns. Edges are added as follows:

Assignment Statements: are all in the form lhs = rhs;
or lhs = (C) rhs;, where the lhs and rhs must be an
ordinary, field or array reference. For each statement
of this form, we add a directed edge from the repre-
sentative node for rhs to the representative node of
lhs.

Method Calls: arein the form of lhs = o.m(a1,a2,... ,a,);
or o.m(ai,asz,...,an);. The receiver o must be a lo-
cal, a parameter, or the special identifier this. Each
argument must be a constant, a local, or parameter
name.

The method call corresponds to some call site, call
it C.mfi], in the conservative call graph. Assignment
edges are added as follows:

for each C'.m' that is the target of C.m][i] in
the conservative call graph



® add an edge from the representative of o
to C'.m'.this
@ if the return type is not void
add an edge from C'.m’.return to
the representative for lhs
© for each argument a; that has object type
add an edge from the representative of a; to

the rep. of the matching parameter of C'.m’

Note that we handle native methods by summarizing
their effect on our analyses. None of the benchmarks
for which we present results have any native methods;
but there are some native methods in the Java library
that are called by these benchmarks. We have exam-
ined the code for these Java library native methods in
the open source Kaffe OpenVM [2] in order to find the
appropriate summary.

In Figure 3(a) we give the important parts of an example
program. Note that since our analysis is flow-insensitive,
the order of assignments is not important, nor is control
flow. Thus, this list of assignments represents a program
that contains those assignments. This program has only
ordinary variables of the form a1, a2, a3, b1, b2, b3, c.?
Figure 3(b) shows the initial graph. There is one node per
variable, and one edge per assignment. For example, the
assignment a3 = b3; corresponds to the edge from b3 to
a3.

3.1.2 Aliases

All of the assignment rules assume that a variable refer-
ence, and all of its aliases, are represented by exactly one
node in the type propagation graph. That is, if a and b
are aliases, then they should correspond to the same node
in the graph. In fact, this is one of the key properties that
makes our analysis simple. This property is true for or-
dinary references because locals and parameters cannot be
aliased in Java.® It is also true for field references because
we represent all instances of objects with that field as one
node in the graph. So, if two field references a.f and b.f
are aliased (a and b refer to the same object) it is fine be-
cause we are representing them both with a field called C.f.
However, it is not true for array references because several
different variable names may refer to the same array. Fur-
ther, references to arrays can be stored in variables with
type java.lang.0bject. For example, consider the follow-
ing small example: A[] a = new A[10]; Object ol = a;
Object 02 = ol; A[l b = (A[1) o02;

In this case a, o, o1, 02 and b are all referring to the same
array. So, an assignment to a[i] is also assigning to b[i].

Thus, when adding edges for assignments of the form [hs
= rhs, where both sides are of type java.lang.0Object, or
when at least one side has an array type, edges are added in
both directions between the representatives of rhs and lhs.
This encodes the aliasing relationship, and both nodes are

2In the actual analysis the names are qualified by their sur-
rounding class name and method name, we use the unqual-
ified variable name to keep our example simple.

3That is, two locals a and b must represent different loca-
tions, and there is no mechanism for getting a pointer to
those locations.

guaranteed to be assigned the same solution. We did not find
this situation occurring very frequently in our benchmarks.

3.1.3 Sizeof the propagation graph

The type propagation graph includes at most 2M +P+L+F
nodes, where M is the number of methods, P is the total
number of parameters with an object type, L is the total
number locals with an object type, and F is the number of
fields with an object type. Thus, the number of nodes grows
linearly with the size of the program.

The number of edges is slightly more difficult to estimate.
There is at most one edge for each assignment statement in
the program. However, the number of edges due to method
calls depends on the number of targets for call sites. In the
worst case a method call may have C targets, where C is
the number of classes in the program under analysis. Thus,
each method call could result in C x (2+num_params) edges
being added to the type propagation graph. So, it is possible
to have O(C x M.) edges, where C' is the number of classes
and M, is the number of method calls in the program under
analysis. In practice we do not find this behavior, and in
fact the graphs are quite sparse (see Table 4 in Section 4).

3.1.4 Initializing and propagating types

In the initialization phase, we visit each statement of the
form lhs = new A(); or lhs = new A[nj;. For each such
statement we add the type A to the ReachingTypes set of
the representative node for lhs. Figure 3(c) shows the type
initialization for the example program.

After initialization, we propagate types. This is accom-
plished in two phases. The first phase finds strongly-connected
components in the type propagation graph. Each strongly-
connected component is then collapsed into one supernode,
with ReachingTypes of this collapsed node initialized to the
union of all ReachingTypes of its constituent nodes. Figure
3(d) shows two nodes collapsed. In this case neither node
had an initial type assignment, so the collapsed node has no
type assignment either.

After collapsing the strongly-connected components, the re-
maining graph is a DAG, and types are propagated in a
single pass starting from the roots in a topological man-
ner, where a node is processed only after all of its prede-
cessors have already been processed. Note that both the
strongly-connected component detection and propagation
on the DAG has complexity of O(max(N, E)) operations,
where the most expensive operation is a union of two Reach-
ing Type sets.

Figure 3(e) shows the final solution for our small example.
From this solution we can infer that variables al, a2, a3
and b3 have a reaching type A (i.e. they can only refer to
objects of type A). Variable b2 has a reaching type B, c has
a reaching type of C, and b3 has a reaching type of A,B.

3.2 Declared-Type Analysis

Declared-type analysis proceeds exactly as variable-type anal-
ysis, except for the way in which we allocate representative

nodes for variables. In declared-type analysis we use the de-

clared type of the variable as the representative, instead of
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Figure 3: Example of a variable-type analysis

the variable name. Basically, this is just putting all variables
with the same declared type into the same equivalence class.
Figure 4 shows the declared-type analysis for same program
for which we previously computed the variable-type analy-
sis. Note that the size of the graph is considerably smaller,
but also the final answer is not as precise. The declared-type
analysis concluded that all variables with declared type of
C must point to C objects. However, it conservatively con-
cludes that variables with a declared type of A or B might
point to A, B or C objects. In Section 4 we present empir-
ical results to evaluate these two analyses with respect to
accuracy and the size of the graph problem to be solved.

3.3 Tradeoffs

We have designed our approach to work well with Java, par-
ticularly for large, object-oriented benchmarks. In order to
keep our algorithm simple and efficient, yet effective, we
have made several design decisions:

Avoiding solving the aliasing problem: We avoid hav-
ing to solve the general aliasing problem by represent-
ing all instances of field f of class C as one variable
name (as described in section 3.1.2). This keeps the
analysis simple. Arrays do introduce one restricted
sort of aliasing, and we handle this by introducing
bidirectional edges for assignments that may involve

arrays.

No killing based on casts or declared type: For each as-

signment statement lhs = rhs or lhs = (C)rhs, we
always propagate all types from the node for rhs to
the node for Ihs. One could imagine an algorithm that
removed impossible types based on the declared type
of rhs or the type given in the cast expression (C).
However, this would lead to information being killed
along some edges, and it would require either an itera-
tive worklist solver or a more complex constraint solver
(i.e. it would no longer be possible to collapse strongly
connected components and solve simply in one pass
over the graph).

It should be noted that we do filter out impossible
types after we have the final solution. That is, for
each variable we use the declared type of the variable
and class hierarchy analysis to eliminate any reaching
types that are not possible.

A pessimistic algorithm: Our algorithm is pessimistic in
the sense that it adds edges for all method calls that
are indicated by the conservative call graph. This
means that we may include spurious edges, and types
may propagate along those edges. The opposite ap-
proach would be to optimistically assume that method
call of the form o.m() could only call those methods
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that correspond to the types currently reaching o at
each step of the analysis. This set would increase as
the analysis proceeds, and once again iteration would
be required.

We can improve our pessimistic algorithm by giving
it a better conservative call graph to start with. We
experimented with two variations: (1) using the call
graph generated using optimistic rapid type analysis
as input to variable-type analysis; and (2) using the
output of variable-type analysis as the input for a sec-
ond iteration of variable-type analysis.

An interprocedural, whole program, approach: Ano-
ther alternative to our approach is to propagate reach-
ing type information intraprocedurally, and perform
conservative approximations for the effect of method
calls. By studying the more object-oriented bench-
marks, we found that many of the reaching types were
really being propagated interprocedurally, and so we
designed our analysis to work on a type propagation
graph that encodes the whole program, with all edges
for method calls and returns.

Based on a typed 3-address representation: Our ap-
proach was implemented using Jimple, an intermedi-
ate representation that provides explicit names and
types for all local variables. This allows our analysis
to be very simple. Since all assignments are between
explicit, named locations, we can represent the type
propagation graph in an obvious fashion. The fact
that local variables have a type is also useful for two
reasons [22]. First, it makes the definition of declared-
type analysis trivial. Second, it helps to improve the
precision of the conservative call graph, since the de-
clared type of a receiver may be tighter than the type
in the signature encoded in the corresponding invoke-
virtual or invokeinterface bytecode instruction.

4. EXPERIMENTAL RESULTS

We have experimented with seven benchmarks, as outlined
in Table 1. The four SPECjvm benchmarks include raytrace
which is a graphics raytracer, compress which is a compres-
sion program based on a modified Lempel-Ziv method, jack
which is a Java parser generator based on the Purdue Com-
piler Construction Tool Set (PCCTS), and javac which is
the Java compiler from Sun’s JDK 1.0.2. The other three
benchmarks include sablecc which is a compiler front end
generator written in Java[3], soot is an earlier version of
our compiler framework[1], and pizza is the Pizza compiler
[4]. For all benchmarks, the Java library used was from the
Blackdown linux port, JDK1.1.7.

The statistics in Table 1 provide an insight into the nature of
the benchmarks for which we have conducted experiments.
In the column labeled # Stmts, we show the number of
Jimple statements in the whole application (benchmark plus
Java libraries accessed by the application), and the num-
ber of Jimple statements in only the benchmark (without
libraries). In the column labeled Hierarchy we give the av-
erage and maximum depth of the inheritance hierarchy for
the whole application and benchmark only. These numbers
not only measure the extent of object orientedness of the
whole application, but are also useful in discovering whether
it is the benchmark itself that has been written in an object
oriented manner, or if the Java libraries are the source of
object orientedness. For example, we can see that raytrace
and compress are not very object-oriented. The column la-
beled Classes and Interfaces gives the number of classes
and interfaces that come from the library, the benchmark
code only, and the overall total.

Table 2 gives a summary of the conservative call graph built
for each benchmark using Class Hierarchy Analysis (CHA).
We have measured the conservative call graph characteris-
tics for the whole application (including the library) as well
as the portions of the call graph related to the benchmark
alone. Accordingly, Table 2 is divided into 2 distinct parts.



Benchmark # Stmts Hierarchy Classes and Interfaces

avg. depth | max. depth || library | bench. |whole

whole bench. |[whole bench.|whole bench. only app.

lang. name app. only || app. only | app. only | class int.|class int.| (total)

java _205_raytrace | 49239 5347 3.0 1.3 6 3 274 41| 34 1 350

java _201_compress | 46619 2727 3.0 1.1 6 2 274 41 21 1 337

java _228_jack 55107 11215| 3.0 1.6 6 3 274 41| 62 5 382

java _213_javac 69585 25304 3.5 3.2 8 7 277 41| 177 5 500

java sablecc-w 68575 24621 3.2 2.3 6 5 276 41| 298 13 628

java soot-c 63506 33396 3.3 2.1 6 4 185 11| 497 34 727

pizza pizza compiler |[73130 42805| 3.0 1.7 6 5 187 11| 207 11 416

Table 1: Benchmark Characteristics
Name Whole Application Benchmark Only

Call Sites Edges Call Sites Edges

|N| pot. pot. |N| pot. pot.
mono. poly. | total | mono. poly. | total mono. poly. | total | mono. poly. | total
raytrace || 1729 | 6582 377 | 6959 | 6576 2591 | 9167 || 207 | 2037 12| 2049 | 2037 46 | 2083
compress || 1583 | 5450 369 | 5819 | 5444 2556 | 8000 76 927 6 933 927 30 957
jack 1857 | 7191 779 | 7970 | 7185 3619 |10804 | 337 | 2672 396 | 3068 | 2672 992 | 3664
javac 2821 | 10570 1276 | 11846 | 10564 13707 | 24271 || 1188 | 5933 848 | 6781 | 5933 10306 | 16239
sablecc || 3737 | 11151 133212483 | 11140 24553 | 35693 || 1955 | 5920 889 | 6809 | 5920 20736 | 26656
soot 2828 | 11653 1738 | 13391 | 11653 25331 | 36984 || 2001 | 9070 1545 |10615| 9070 22620 | 31690
pizza 2660 | 13729 799 | 14528 | 13729 6024 | 19753 || 1756 | 11115 577 | 11692 | 11115 4069 | 15184

Table 2: Conservative Call Graph Characteristics

First consider the characteristics of the whole application,
including libraries. Column 1 shows the number of methods
that are in the call graph. Note that this number mea-
sures the number of methods that might be called starting
at all possible entry points, based on CHA, and does not
include methods that cannot be reached from a root in the
conservative call graph. Column 2 shows the number of
monomorphic call sites in methods in the call graph. The
monomorphic sites include call sites for invokestatic and
invokespecial instructions as well as call sites for invoke-
virtual and invokeinterface instructions that have been
resolved to exactly one method by CHA. Column 3 shows
the number of potentially-polymorphic sites i.e. invoke-
virtual and invokeinterface instructions that have more
than 1 target after performing CHA. Column 4 shows the
total number of call sites in the whole application. Column 5
shows the number of monomorphic edges (edges from mono-
morphic call sites), while column 6 shows the number of
potentially-polymorphic edges (edges from potentially-poly-
morphic call sites). Column 7 shows the total number of
edges in the whole application.

Now consider the second part of Table 2, which shows the
characteristics of the benchmark only, not including any li-
brary methods. This part of the table includes all methods
from the call graph that do not belong to the Java library,
call sites inside these methods, and the edges attached to
these call sites. These figures give a clear idea about the per-
formance of CHA on the benchmark classes. For example,
it is clear that there is hardly any scope for improvement of
the benchmark portion of the call graph in benchmarks like
raytrace or compress, whereas in benchmarks like javac,
soot, or sablecc there are many unresolved call sites.

Table 3 summarizes the effect of applying a variety of tech-
niques on the conservative call graph. In this table pRTA
is pessimistic rapid type analysis, oRTA is optimistic rapid
type analysis, DTA is declared-type analysis, and VTA is
variable-type analysis. We also gave two combinations:
oRTA+VTA is the combination of first using oRTA to build
a pruned call graph, and then applying VTA; and VTA+VTA
is the result of first using one application of VTA to get a
pruned call graph, and then applying VTA on that pruned
graph.

4.1 Reducing the size of the Conservative Call
Graph

One use of our analyses is to reduce the size of the call graph.
Eliminating methods from the call graph means that these
methods do not need to be included in the application. This
leads to smaller, compacted class files for applications, or
smaller executables for compilers that translate class files
for complete applications to native code. Further, reducing
methods and call edges results in smaller call graphs which
can make subsequent interprocedural analyses more efficient
and more accurate. In Table 3, the columns labeled Nodes
Removed and Edges Removed summarizes the number
and percentage of nodes/edges removed for each analysis.

Rapid type analysis has been shown to be quite effective
for C++ benchmarks [8], particularly for removing unused
methods and call edges from the call graph for complete
applications (including libraries). In this case the library
code often contains many methods that are never called by
a particular application. Our results confirm that rapid type
analysis also does give a significant improvement for our Java



Whole Application Benchmark Only
Nodes Edges Callsites Nodes Edges Callsites
Removed Removed Resolved Removed Removed Resolved

(%tot.) (%tot.) (%poly) (Y%tot.) (%tot.) (%tot.) (%poly) (%tot.)

raytrace pRTA 808 (46%) 3585 (39%)[292 (77%) (4.2%)| 15 (7%) 16  (2%) 5 (41%) (0.2%)
oRTA 884 (51%) 4128 (45%) (300 ) (43%)|| 15 (7%) 46 (2%) 5 (41%) (0.2%)

DTA 925 (53%) 4375 (47%) |304 ) (4.4%) || 18 (8%) 55 (2%) 5 (41%) (0.2%)

VTA 1026 (59%) 5200 (56%) |342 ) (4.9%) || 18 (8%) 68 (3%) 5  (41%) (0.2%)
oRTA+VTA || 1031 (59%) 5242 (57%) |342 ) (4.9%) || 18 (8%) 68  (3%) 5 (41%) (0.2%)
VTA+VTA [[1026 (59%) 5200 (56%) |342 ) (4.9%) || 18 (8%) 68 (3%) 5  (41%) (0.2%)
compress pRTA 814 (51%) 3664 (45%)[293 ) (5.0%) [ 11 (14%) 40 (4%)| 3 (50%) (0.3%)
oRTA 890 (56%) 4207 (52%) (301 ) (5.2%) || 11 (14%) 40 (4%) 3 (50%) (0.3%)

DTA 926 (58%) 4418 (55%) |303 ) (5.2%) || 16 (21%) 62 (6%) 4  (66%) (0.4%)

VTA 1033 (65%) 5214 (65%) |344 ) (5.9%) || 16 (21%) 70 (7%) 4 (66%) (0.4%)
oRTA+VTA || 1039 (65%) 5256 (65%) |346 ) (5.9%) || 16 (21%) 70 (%) 4  (66%) (0.4%)
VTA+VTA | 1033 (65%) 5214 (65%)|344 ) (5.9%) || 16 (21%) 70 (%) 4  (66%) (0.4%)

jack pRTA 820 (44%) 3763 (34%) 313 ) B9%)| 17 (%) 121 (3%)| 21 (5%) (0.7%)
oRTA 896 (48%) 4306 (39%) |321 ) (4.0%) | 17 (%) 121 (3%)| 21 (5%) (0.7%)

DTA 924 (50%) 4475 (41%) |323 ) (41%) || 20 (5%) 184 (5%)| 21 (5%) (0.7%)

VTA 1027 (55%) 5719 (52%) | 734 ) (92%) || 21 (6%) 565 (15%) (382 (96%) (12.5%)
oRTA+VTA || 1033 (55%) 5769 (53%) |735 ) (92%) || 21 (6%) 565 (15%) (382 (96%) (12.5%)
VTA+VTA | 1027 (55%) 5719 (52%)|734 ) (92%) || 21 (6%) 565 (15%)[382 (96%) (12.5%)

javac pRTA 823 (29%) 4516 (18%)[319 ) (2.7%) | 30 (2%) 713 (4%)| 30 (3%) (0.4%)
oRTA 886 (31%) 5056 (20%) |327 ) (2.8%) || 30 (2%) 738 (4%)| 30 (3%) (0.4%)

DTA 931 (33%) 5460 (22%) |337 ) (2.8%) | 33 (2%) 855 (5%)| 30 (3%) (0.4%)

VTA 1001 (35%) 6639 (27%)|489 ) (41%) || 35 (2%) 1136 (6%)|135 (15%) (2.0%)
oRTA+VTA || 1005 (35%) 6682 (27%) |489 ) (41%) || 35 (2%) 1144 (7%)|135 (15%) (2.0%)
VTA+VTA | 1001 (35%) 6639 (27%) |489 ) (41%) || 35 (2%) 1136 (6%)|135 (15%) (2.0%)

sablecc pRTA 657 (17%) 4145 (11%) 407 ) (3.3%) || 42 (2%) 1077  (4%)|164 (18%) (2.4%)
oRTA 708 (18%) 4720 (13%)|421 ) (3.4%) || 49 (2%) 1220 (4%)|168 (18%) (2.5%)

DTA 773 (20%) 5670 (15%) |456 ) (B.7%)|| 75 (3%) 1854 (6%)[192 (21%) (2.8%)

VTA 867 (23%) 10723 (30%) 635 ) (5.1%) || 91  (4%) 5943 (22%) 311  (34%) (4.6%)
oRTA+VTA || 918 (24%) 11092 (31%) |663 ) (5.3%) || 91 (4%) 5951 (22%)|311  (34%) (4.6%)
VTA+VTA |[[1016 (27%) 11141 (31%) | 680 ) (5.4%) || 92 (4%) 6005 (22%)|317 (35%) (4.7%)

soot pRTA 212 (%) 2635 (7%)[137 ) (1.0%) || 60 (2%) 1362 (4%)| 38 (2%) (0.4%)
oRTA 224 (7%) 2814 (7%)|143 ) (1.1%) || 60 (2%) 1362 (4%)| 38 (2%) (0.4%)

DTA 282 (9%) 4061 (10%)|172 ) (1.3%) || 68 (3%) 2168 (6%)| 60 (3%) (0.6%)

VTA 328 (11%) 7447 (20%) | 657 ) (4.9%) || 89 (4%) 5027 (15%)|510 (33%) (4.8%)
oRTA+VTA || 335 (11%) 7669 (20%)|662 ) (4.9%) || 90 (4%) 5076 (16%)|510 (33%) (4.8%)
VTA+VTA 348 (12%) 8380 (22%) |829 ) (6.2%) || 109 (5%) 5960 (18%)|682 (44%) (6.4%)

pizza pRTA 213 (8%) 2097 (10%)[123 ) (0.8%) | 17 (1%) 643 (4%) 3 (0.3%) (0.0%)
oRTA 213 (8%) 2097 (10%)|123 ) (0.8%) | 17 (1%) 643 (4%) 3 (0.3%) (0.0%)

DTA 233 (9%) 2566 (12%)|155 ) (1.1%)|| 20 (1%) 830 (5%)| 23 (3%) (0.2%)

VTA 270 (10%) 3462 (17%)|270 ) (1.9%) || 32 (1%) 1418 (9%)|109 (17%) (0.9%)
oRTA+VTA || 270 (10%) 3462 (17%)|270 ) (1.9%) || 32 (1%) 1418 (9%)|109 (17%) (0.9%)
VTA+VTA 270 (10%) 3462 (17%) |270 ) (L.9%) || 32 (1%) 1418 (9%)|109 (17%) (0.9%)

Table 3: Improvement of Call Graph over Conservative Call Graph

bytecode benchmarks.

When considering the whole application, the number of dead
method nodes removed by pRTA varies between 7% of the
total number of methods in the conservative call graph (soot)
to about 51% (compress), and the number of edges removed
by pRTA varies from 7% (soot-c) to 45% (compress). The
optimistic version, oRTA, does perform better than pRTA
on several benchmarks, giving a high of 56% nodes and 52%
edges reduced (compress). However, when you consider the
benchmark code only, we see that there is much less scope
for improvement, and we see very little difference between
oRTA and pRTA.

Both of our new analyses show additional benefit over oRTA,
with VTA performing the best. When considering the whole
application, VTA removes 10% (pizza) to 65% (compress)
of the methods and 17% (pizza) to 65% (compress) of the
edges. The most notable improvements due to VTA are

for the large object-oriented benchmarks. For example, for
sablecc 0RTA removed 13% of the edges, whereas VTA
removed 30%, and for soot 0ORTA removed 7% whereas VTA
removed 20%.

Our combined analyses, ORTA+VTA and VTA+VTA, show
small improvements over VTA, with the largest impact for
the very object-oriented benchmarks, sablecc and soot.

These results show that VTA is quite useful for further re-
ducing the size of the call graph, and in getting more com-
paction by removing additional methods. Note that for
large benchmarks, where a greater proportion of the code
is from the benchmark itself and not from the library, a
much smaller percentage of methods can be removed by all
analyses, although VTA does perform slightly better.

We also studied how many methods and edges could be
removed when considering only the benchmark code and



factoring out the library code. For methods, oRTA elim-
inates 1% to 14% and VTA eliminates 1% to 21%. For
edges, oRTA eliminates 2% to 4% and VTA eliminates 3%
to 22%. VTA works particularly well for jack, sablecc,
soot and pizza. Overall, when we consider only the bench-
mark code, a smaller percentage of methods and edges can
be eliminated, but the gap between RTA and VTA can be
more significant, and the gap between pRTA and oRTA is
less significant.

4.2 Resolving Virtual Calls

The second major measurement is how many potentially
polymorphic call sites can be resolved to exactly one method.
Below we present both static and dynamic results.

421 Satic Results

Given the conservative call graph built by CHA, we have
measured how many of the remaining potentially polymor-
phic sites can be resolved or eliminated by RTA, DTA and
VTA. These results are found in Table 3, in the columns
labelled Callsites Resolved. We say that a call site is re-
solved if it was potentially polymorphic after CHA analysis,
but resolves to exactly one method after RTA/DTA/VTA.*
We have presented the number of call sites resolved, as well
as two percentages. The column labelled %poly gives the
percentage with respect to the number of potentially poly-
morphic call sites in the conservative call graph, whereas the
column labelled %tot. gives the percentage with respect to
all call sites. A call site is eliminated if the method contain-
ing the call site is eliminated due to RTA/DTA/VTA.

First consider results of the whole benchmark. VTA per-
forms significantly better than pRTA and oRTA, in some
cases resolving more than twice as many call sites (i.e. jack,
soot and pizza). Next, consider the behavior of methods
that are part of the benchmark only (i.e. not part of the Java
library). Here we see that the benchmarks raytrace and
compress do not have any interesting behavior. Even though
the analyses resolves a high percentage of the potentially
polymorphic call sites (high %poly), these call sites were not
very important in the overall picture (low %tot.). For the
remaining five benchmarks we note that pRTA, oRTA and
DTA do not perform very well, giving less than 5% (%poly)
on four of the benchmarks. However, VTA can resolve a
significant number of call sites with a high of 96%( %poly) or
12%(%tot.) for jack. Also, note that the gap between RTA
and VTA is quite large on all five benchmarks. This seems
to indicate that RTA and DTA are not good at resolving
call sites in the benchmark part of the code, whereas VTA
can resolve a significant number.

4.2.2 Dynamic Results

We have used profiling to estimate the possible run time-
impact of the analyses. We instrumented the bytecode pro-
duced by our compiler to produce a summary of which meth-
ods were actually called at each invokevirtual and invokein-
terface call, and to collect the execution frequency for each
call site. We have concentrated on the run time behavior
of call sites in the benchmark classes (excluding the Java

*We have shown the number of potentially polymorphic call
sites left by CHA analysis in columns 3 and 10 of Table 2.

libraries).’ Figure 5 summarizes the percentage of dynamic
calls that correspond to invokevirtual/invokeinterface call
sites that can be resolved to one method (monomorphic
call sites). For each benchmark, the first four bars cor-
respond to call sites that could be resolved using CHA,
RTA, DTA and VTA. The rightmost bar for each bench-
mark shows the result of our dynamic profile (i.e. how
many call sites only resolved to one method during an ac-
tual execution). For example, in jack, almost 100% of all
invokevirtual/invokeinterface calls are monomorphic at run-
time, whereas in javac only about 90% are monomorphic
at runtime. In general, we can see some interesting trends.
First, for benchmarks that are not very object-oriented, like
raytrace and compress, a simple method like CHA finds
all monomorphic call sites. Second, it appears that RTA
and DTA give very little or no improvement on all bench-
marks, confirming our static measurements. However, our
VTA analysis does give some improvement, with significant
improvement on several of them. In some cases (jack and
pizza), we observe that the number of call sites resolved
by VTA is almost the same as the number of monomorphic
calls obtained with the profile, and in these cases there is no
need for any more sophisticated analyses.

For two benchmarks, soot and javac, we observe that while
VTA did resolve substantially more call sites than any of the
other analyses, it is not able to perform well enough to ap-
proach the results obtained in the profile. We studied the
reasons for this gap on soot as the difference is greater for
this benchmark, and as it is an analysis framework devel-
oped by us, we had the source code with which we were
familiar. We illustrate the reason for VTA’s inability to find
all monomorphic calls with a typical example. The soot
framework has an abstract class AbstractValueBox that is
a container class that declares a field holding an object of
class Value. Value is also an abstract class that is overridden
by specific classes like Local, InstanceField, InvokeExpr.
AbstractValueBox is extended by specific container classes
like LocalBox, InstanceFieldBox and InvokeExprBox. These
specific container classes do not declare any fields and the
values that are held in these boxes are stored in the Value
field of AbstractValueBox. Thus objects belonging to many
classes that override Value reach the Value field declared in
AbstractValueBox. The accessor method to get the Value
stored in a box is defined only in AbstractValueBox and it
returns the Value field. Thus whenever a specific kind of
Value object is put into a box and retrieved, all the classes
that reached the Value field are in the set of possible types
(computed by VTA) for the object retrieved. We believe
that this would be a problem for even more sophisticated
analyses because the statements that put values in the boxes
are often very far from statements taking the values out, and

®One common scenario is that one would want to perform
compiler optimizations on the benchmark code alone, and
leave the Java library classes unchanged (for example, when
performing class file to class file optimization on user code).
This was the main reasoning behind our decision to profile
the benchmark classes only, as this would give us a good
indication of the possible performance impact of optimizing
the benchmark. Also we felt that it would be interesting
to measure the difference in performance of the analyses
on the benchmark classes dynamically, given that the static
results indicate that our VTA analysis does substantially
better than CHA and RTA in the benchmark code.
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Figure 5: % Dynamic Monomorphic Calls (Benchmark Only)

it would be difficult to pair the definitions and uses up cor-
rectly.

Another explanation for the gap is the presence of several
run time flags in this benchmark. For a particular option,
there is usually an abstract class performing the basic func-
tionality associated with the option, and it is extended by
different classes that perform a specific function. Depending
on the particular choice for the runtime flag one of the pos-
sible classes is instantiated. Thus, this is an example where
the call site is monomorphic for a particular run of the pro-
gram, but polymorphic over many different runs. This sort
of monomorphism cannot be determined by a static analysis,
but would be a good candidate for runtime optimizations.

The benchmarks javac and soot are examples where there
exists a substantial number of polymorphic calls, even af-
ter an analysis like VTA has been used to devirtualize as
many calls as possible. The gap between the result of VTA
and the profile corresponds to calls that are monomorphic
at runtime, but were not determined to be monomorphic by
the static analysis. From Figure 5 we can see that for javac
this gap is about 18% (90-72), and for soot this gap is about
28% (67-39). One can try to close this gap by applying more
expensive static analyses, or one can use dynamic call op-
timization techniques, like branch target prediction [11], or
inline caching [17]. For example, a hardware-based branch
target buffer (BTB), like the 512-entry BTB of a Pentium
I11, reduces the overhead of calls that seldomly switch tar-
gets by storing the last target of every call site. The pre-
diction hit rate of a large BTB is equal to the number of
times that a target at an executed call site does not change,
and therefore it gives an upper bound to the dynamic fre-
quency of monomorphic calls. In Driesen and Holzle’s study
on the direct cost of virtual function calls in C++ [19], a
BTB predicts 75% of the calls on a suite of C++ programs.
When all member functions are declared virtual (as in Java),
the prediction rate climbs to 90%, which is similar to the

Java profiles obtained in the current study. A static analy-
sis technique like VTA can be used to remove all provably
monomorphic call sites, after which a BTB optimizes dy-
namically monomorphic calls. A BTB can handle provably
monomorphic calls, but since it is a limited resource close
to the processor core, it is likely to remain limited in capac-
ity, and therefore monomorphic call site removal by static
analysis can increase the program workload that a particular
processor can handle efficiently.

Figure 5 also demonstrates how many truly polymorphic
calls exist in the benchmark, these correspond to 100 minus
the height of the profile bar. For javac there are about 10%
(100-90), and for soot there are about 33% (100-67). Dy-
namic techniques can also optimize truly polymorphic calls
by using more sophisticated branch target prediction, that
exploits correlations between the current call site and a pre-
viously executed call site, both polymorphic. For example,
cascaded two-level prediction has been shown to reduce the
number of unpredictable polymorphic calls from 25% (for
a 256-entry BTB) to 6% (3-stages of 512-entry two-level),
thereby optimizing 75% of the remaining truly polymorphic
calls [20].

4.2.3 Performance Improvements

One might wonder if the increased precision of VTA is use-
ful in further optimizations. Certainly reducing the size and
complexity of the call graph will improve subsequent inter-
procedural analyses and helps to compact applications, but
is it also useful for performance improvement of the bench-
mark? We don’t expect it to make a large difference on
any one optimization, but we do expect it to give small im-
provements on different optimizations. Currently we have
implemented method inlining, where we use our framework
to read class files, inline methods based on the call graph
produced by CHA or the call graph after pruning using
VTA, and then generate the inlined class files [34]. We ex-
ecuted the original, and inlined benchmark class files using



the Blackdown linux JDK1.2, with the JIT turned on. Two
of the benchmarks show better performance when the inlin-
ing is based on the call graph using VTA rather than CHA.
For soot we observe 1% speedup when inlining is done us-
ing the CHA call graph but 3% speedup when the VTA call
graph is used. For javac we see no improvement for inlining
when based on the CHA call graph, but 2% speedup when
using the VTA call graph. This leads us to believe that
some of the extra call sites found by VTA could be impor-
tant ones for inlining. We hope to see other benefits as more
optimizations are added to our framework.

4.3 Measuring the Analysis

Our implementation is not yet tuned for speed, so in order
to give an estimate of the time required for each analysis, we
gathered information about the size of the data structures
built for each algorithm, plus some execution numbers for
our untuned implementation. In Table 4, we show our mea-
surements.® Note that for DTA and VTA, the time required
to obtain the solution is proportional to the number of edges
in the constraint graph after the graph has been transformed
such that each strongly connected component in the origi-
nal constraint graph is replaced by special SCC nodes. The
number of edges in the constraint graph is observed to grow
linearly with the size of the application for both DTA and
VTA. In comparing DTA and VTA, we observe that VTA
has about 4 times the number of nodes, and about 8 times
the number of edges as in DTA. This gives a good indica-
tion about the relative costs of these 2 analyses. The last
column of Table 4 gives the time, in seconds, for solving the
constraint graph. The interesting point is not so much the
absolute time 7, but the fact that the analysis scales well,
and behaves linearly in practice. This also shows that VTA
is indeed a constant factor (around 10) more expensive than
DTA, and so the increased precision of VTA over DTA does
come at a price.

5. RELATED WORK

There has been considerable work in the area of applying
more expensive analyses of varying complexity for call graph
construction, especially for languages like C++, Modula-3,
and Cecil. One of the classic algorithms is 0-CFA which
has O(n®) complexity. Other context-insensitive approaches
include Palsberg and Schwartzbach’s algorithm [28], Hall
and Kennedy’s call graph construction algorithm for For-
tran [23], and Lakhotia’s algorithm [26] for building a call
graph in languages with higher order functions. Other re-
lated work includes Shiver’s k-CFA family of algorithms [32,
33] for selecting the target contour based on k enclosing call-
ing contours at each call site, Agesen’s Cartesian Product
Algorithm [6], and Ryder’s [31] call graph construction al-
gorithm for Fortran 77. Plevyak and Chien’s iterative algo-

®Note that the number of Jimple statements reported in
Table 4 is less than the numbers reported earlier in Table
1 where we summarized the benchmark characteristics. In
Table 1 we included all methods in classes that are referred
to by the benchmark, whereas in Table 4 we include only
those methods that appear in the conservative call graph.
"This implementation is built in Java using very high-level
data structures based on collections, and it was run using a
relatively slow Java interpreter (linux jdk1.1.7) on a 333Mhz
pentium. Thus one can safely assume that a tuned imple-
mentation will run faster by a large constant factor.

rithm [30] tries to improve a safe call graph to begin with
and tries to refine it to the desired extent by creating new
contours. Chatterjee et. al. give a method for finding rele-
vant contexts for a subset of C++/Java [12]. Agesen [5] de-
scribes constraint-graph-based instantiations of k-CFA, and
Plevyak’s algorithm.

Our work has focused on a technique that can find a solu-
tion that does not require any iteration and scales linearly
in the size of the program. Thus, previous work that fo-
cuses on the effectiveness of inexpensive analyses is more
directly related to this paper. In this field, the goal is to
find simple, inexpensive, yet effective analyses. The results
of Dean et. al. [14] suggest that class hierarchy analysis is
a good technique for resolving many method invocations for
the Cecil language. Fernandez [21] implemented virtual call
elimination and used an idea that is essentially Class Hier-
archy Analysis (CHA). Aigner and Hoélzle [7] find that type
feedback and class hierarchy analysis are both effective at
resolving method invocations in C++. Our work confirms
that CHA does work well for Java bytecode, and we use
CHA to get our original conservative call graph. However,
our VTA methods can substantially improve the conserva-
tive call graph, removing 10% to 63% of the nodes, and 17%
to 64% of the edges.

Bacon and Sweeney’s work on fast static analysis of C++
virtual function calls [8] considers three relatively simple
analysis techniques called: Unique Name, Class Hierarchy
Analysis, and Rapid Type Analysis (RTA). They have dy-
namically measured the results for resolution of user virtual
calls, and have given an estimate for the number of dead call
sites. They concluded that rapid type analysis is extremely
effective in resolving function calls, reducing code size, and
is fast. Our results seem to confirm that rapid type analysis
does also work well with Java when complete applications
including library code are analyzed. However, we show that
rapid type analysis does not perform well when considering
the benchmark code only. Further, our results indicate that
variable-type analysis gives better results for both cases, the
complete application, and the benchmark only.

Diwan [18] describes results for simple and effective analysis
of statically-typed object-oriented languages, and provides
experimental results for Modula III programs. Their anal-
ysis is similar to ours in the sense that they also propagate
types from allocation sites to uses. However, there are signif-
icant differences between their approach and our reaching-
type analyses. First, we analyze Java bytecode, and so we
have tailored our approach to the specifics of Java, includ-
ing how to properly handle Java arrays. Further, we have
experimented with a wide variety of benchmarks, including
some large benchmarks that are very object oriented. Sec-
ond, we believe that our approach is more efficient since we
build a complete constraint graph, and solve it once. Their
approach requires iterating a flow-sensitive intraprocedural
phase since their interprocedural strategy re-analyzes meth-
ods when information about parameters or return values
change due to the intraprocedural phase. Third, their inter-
procedural approach uses the declared type of object fields
which can introduce imprecision, whereas we use the reach-
ing types for fields.



Call Graph Declared Type Variable Type Time
Name || Jimple before SCC [ after SCC || before SCC | after SCC (seconds)

Stmts || |N| |E||| TNT [ET| [N] JFE] [N] [E] [N] [ET||[DTA VTA
raytrace 27570 ([ 1729 9167 (| 3540 3139 (2989 1931 12496 1812510700 13329 8 54
compress 24833 || 1583 8000 || 3235 2832|2741 1745 11010 15734 | 9471 11461 8 44
jack 33186 || 1857 10804 || 3828 3474 (3284 227414293 21361 {12320 16131 11 68
javac 47172 (2821 24271 || 5872 6061|4741 3374 ||22220 5493017019 26417 12 113
sablecc 49421 || 3737 35693 || 7722 8273 (6104 3927 || 25482 7528020298 43618 13 128
soot 43530 || 2828 36984 ||6333 6699|5178 3784 ||24190 68289 | 19620 43416 15 207
pizza 55468 || 2660 19753 || 7177 7445|6023 3856 || 28007 50242 | 17216 23390 11 102

Table 4: Size of Data Structures

More recently, DeFouw et. al. have presented a framework
for expressing and experimenting with a variety of fast in-
terprocedural class analyses for Cecil and Java[l5, 16]. A
key part of their framework is the ability to merge nodes in
the constraint graph after they have been visited P times.
This approach of merging after a threshold allows them to
tune the complexity of the algorithm. They present eight
instantiations of the framework, three of which are linear or
near linear. Our DTA and VTA algorithms are not instan-
tiations of their framework because the various tradeoffs we
made (see section 3.3) to make our algorithm efficient are not
parameters of their approach. First, our algorithm is pes-
simistic since it uses an initial conservative call graph (or the
call graph generated by optimistic RTA) to insert edges into
the constraint graph, whereas their schemes are optimistic,
inserting edges into the call graph as object instantiations
are found. Second, their algorithm merges a node with all of
its successor nodes when it is visited P times (the key design
point in their framework). In our algorithm we decide which
nodes will be merged by computing the strongly connected
components, and merging those together. After this com-
pression step, our algorithm will only visit each node once.
In their study they analyze a variety of Cecil benchmarks,
but only three Java benchmarks. We have demonstrated our
analysis on only Java benchmarks, but on a wider variety of
those.

Tip and Palsberg have also been working to find scalable
analyses that work well with Java [36]. Their motivation is
very similar to ours, to find an analysis that makes some
tradeoffs, gives better results than RTA, but scales better
than traditional 0-CFA analysis. They present a spectrum
of constraint-based techniques that focus on making anal-
yses scalable by limiting the number of sets that must be
approximated. In 0-CFA one set is associated with each ex-
pression, and in RTA one set is associated with the entire
program. Their new analyses suggest intermediate points.
For example, CTA uses a distinct set for each class, and XTA
uses a distinct set for each method and each field. Although
their analyses reduce the number of sets approximated, the
underlying solver may still require iteration.

The difference between their approach and ours is in the
way in which we enforce scalability. For VTA we use one
set for each local variable, and one set for each field, thus
giving us a finer-grain abstraction. Instead of coarsening the
abstraction level, our design goal was to eliminate iteration
in the analysis, and we made various tradeoffs to enforce this
(as summarized in Section 3.3). For example: our analyses
are conservative; we start with either the conservative call

graph or the RTA call graph; and we do not kill based on cast
information. We also tried a coarser version of VTA called
DTA, where we approximated one set for each declared type,
but we found that DTA was not nearly as effective as VTA.
So, at least in our approach, the granularity of VTA appears
to be necessary for good results.

Currently the experimental results of both the Tip/Palsberg
approach and our approach both demonstrate that we achieve
improvements over RTA. A head-to-head experimental com-
parison will only be possible when both approaches are im-
plemented in the same framework, with the same assump-
tions, and run on the same set of benchmarks. It would
be very interesting to perform this experiment. This would
also allow us to determine if the approaches find the same
sources of improvements, or if both techniques combined to-
gether gives even better results. If so, it would be possible
to run both analyses, and then use the intersection of their
results.

Another interesting area of future work is the combination of
static and dynamic techniques. Ishizaki et. al. have studied
a wide variety of devirtualization techniques for a Java JIT
compiler [25]. Their study shows the promise of combining
static techniques like type analysis and dynamic techniques.

Our work builds on the Soot framework under development
at McGill. Harissa [27], Vortex [13] and JAX [35] are alter-
native implementation frameworks.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new technique that can be
used to estimate the possible types of receivers for virtual
method and interface calls in Java. Two variations of the
technique were presented, variable-type analysis that uses
the name of a receiver as its representative, and declared-
type analysis which uses the declared type of a receiver as
its representative. These two analyses, plus class hierarchy
analysis and rapid type analysis, two previously developed
type estimation techniques, were implemented with Soot, an
environment that translates Java bytecode to a typed three-
address code. All four analyses were applied to seven Java
bytecode benchmarks.

Our methods work on complete applications, and so they
require having all of the bytecode for the benchmark avail-
able. Although this is not useful for situations where classes
can be dynamically loaded, we feel that compilation and
optimization of complete applications is reasonable in many
situations. There are certainly many large applications such



as compilers, optimizers, editors and server-side applications
that can be compiled in this fashion.

For each benchmark, class hierarchy analysis was used to
build an initial conservative call graph. Measurements of
these graphs confirm what others have noted, namely that
class hierarchy analysis leads to a conservative call graph
that is fairly sparse, with a majority of call sites resolving
to a single method. However, there is scope for further im-
provement of these conservative graphs.

We applied rapid type analysis, variable-type analysis and

declared-type analysis using the initial conservative call graph,

and found that a significant number of edges and nodes could
be removed. Variable-type analysis gave the best results re-
moving 10% to 65% of the nodes and 17% to 65% of the
edges from the conservative call graph. Further, variable-
type analysis resolved 32% to 94% of the potentially poly-
morphic call sites (after CHA) to 1 method. All of these
results are better than what was achieved by rapid type
analysis. Our declared-type analysis did give some benefit,
but not as significant as variable-type analysis.

In order to study the effect of the analyses on the bench-
marks, we studied the dynamic behavior of the benchmark
code only. In this case we found that neither rapid type
analysis nor declared-type analysis had significant impact.
However, variable-type analysis did show substantial im-
provement, in some cases approaching the best possible re-
sult. Thus, it seems that the added granularity of variable-
type analysis over declared-type analysis is quite impor-
tant, particularly when optimizing the benchmark code. In
other cases variable-type analysis did find significantly more
monomorphic call sites, but there was a substantial gap be-
tween the static result of the analysis and the dynamic pro-
file. 'We presented several reasons for this gap, and we do
not believe that a simple analysis will be able to close much
of the remaining gap.

We observed that the extra call sites resolved by variable-
type analysis account for a significant number of calls in
the dynamic trace, and we demonstrated that inlining could
make use of these extra call sites, giving performance im-
provement for two benchmarks.

Our techniques were meant to be simple, and we described
the various tradeoffs we made to keep the algorithm sim-
ple and efficient. We have described our approach in detail,
and it should be easy for others to add to their compilers,
particularly if they already have CHA and/or RTA analy-
sis. Based on our experimental results, we believe that a
good overall strategy would be to use an optimistic RTA-
style analysis to get the original pruned call graph. Then,
if there are a significant number of polymorphic call sites
remaining, our VTA analysis could further prune the graph,
giving additional code size reduction, and better virtual call
resolution.

We are currently working on tools for tree shaking, pointer
analysis, and side-effect analysis based on the call graph
produced by variable-type analysis.
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